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Almost nothing is known about the diets of bathypelagic fishes, but
functional morphology can provide useful tools to infer ecology. Here we
quantify variation in jaw and tooth morphologies across anglerfishes
(Lophiiformes), a clade spanning shallow and deep-sea habitats. Deep-sea
ceratioid anglerfishes are considered dietary generalists due to the necessity
of opportunistic feeding in the food-limited bathypelagic zone. We found
unexpected diversity in the trophic morphologies of ceratioid anglerfishes.
Ceratioid jaws span a functional continuum ranging from species with
numerous stout teeth, a relatively slow but forceful bite, and high jaw
protrusibility at one end (characteristics shared with benthic anglerfishes)
to species with long fang-like teeth, a fast but weak bite and low jaw
protrusibility at the other end (including a unique ‘wolftrap’ phenotype).
Our finding of high morphological diversity seems to be at odds with
ecological generality, reminiscent of Liem’s paradox (morphological special-
ization allowing organisms to have broader niches). Another possible
explanation is that diverse ceratioid functional morphologies may yield simi-
lar trophic success (many-to-one mapping of morphology to diet), allowing
diversity to arise through neutral evolutionary processes. Our results high-
light that there are many ways to be a successful predator in the deep sea.
1. Introduction
Studying the ecology of organisms that are rare, extinct or live in extreme habi-
tats is very challenging. As an alternative to in situ observations, morphological
characteristics can be used to infer functional abilities by comparison with more
accessible species [1–3]. While functions such as prey acquisition correlate well
with tooth shape or jaw mechanics in diverse taxa [4–8], our understanding of
the correspondence of morphology to function or ecology is imperfect [9–16].
For example, species with specialized morphologies may still prefer to eat
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common food resources more often than their presumed
specialized diet, a phenomenon called Liem’s paradox [17–
20]. This pattern is hypothesized to arise when periodic limit-
ation of preferred food prompts organisms to use specialized
morphologies to acquire alternative resources [21].

Liem’s paradox has been related to freshwater [17,19],
shallow marine [15,18] and terrestrial organisms [5].
However, these studies are from high-diversity, high-
productivity systems. The bathypelagic zone of the deep
sea (greater than 1000 m) represents the converse of these,
being the largest and most food-limited habitat on Earth
[22,23]. Little is known about the diets of bathypelagic
fishes, but evidence suggests they must have generalized
diets in order to meet their trophic demands [22,24–26].
Despite their dietary generalism, recent studies using phylo-
genetic comparative methods show that bathypelagic fishes
have a greater diversity of body shapes than fishes from the
continental shelf or slope [1,2,27]. It is unknown whether
such morphological diversity corresponds to ecological
diversity in deep-sea fishes.

Anglerfishes (order Lophiiformes) provide an opportu-
nity to examine form and function with respect to habitat.
Lophiiformes contain five suborders, four of which are
benthic and found in shallow marine or continental slope
settings. Frogfishes (Antennarioidei), one of the benthic sub-
orders, are well recognized as an extreme among marine
fishes regarding their feeding biomechanics. A functional
trade-off is known among fishes between jaws with forceful
bites but low protrusion, and highly protrusible jaws with
low-force output [28–30]. Frogfishes are far on the latter
end of this trade-off, with the largest buccal expansion and
fastest prey capture speeds recorded for any fish [3,29,31–
34]. The fifth suborder, Ceratioidei, is a bathypelagic
radiation containing roughly half the species and family
diversity of Lophiiformes [26]. Ceratioid anglerfishes are
extremely difficult to observe owing to their low population
density and inaccessibility [35]. Ceratioids have larger oral
and opercular cavities than frogfishes, potentially indicating
even greater buccal expansion and jaw-ram [26]. Some
ceratioids have developed specialized morphologies and
behaviours, such as the ‘wolftrap’ anglers which have a
modified upper jaw for trapping prey [26].

Here we use high-resolution micro-computed tomogra-
phy (µCT) scanning [36] of museum specimens to quantify
jaw and tooth characteristics across Lophiiformes, including
major lineages of ceratioids. Our results indicate that cera-
tioids span a wide range of trophic morphologies despite
being putative dietary generalists.
2. Methods
(a) Specimen imaging
We obtained µCT scans for 57 lophiiform species (n = 1 per
species), including 42 female ceratioids (representing 73.5% of
genera and 10 of 11 families in Ceratioidei) and 15 benthic
species from three of four suborders and 50% of genera (elec-
tronic supplementary material, table S1). No batfish species
(Ogcocephalidae) were included because their teeth were too
small to quantify at our scanning resolution. Most µCT scans
(48 of 57) were newly generated using a Bruker 1173 SkyScan
at the Karel F. Liem Bio-Imaging Center at the University
of Washington Friday Harbor Laboratories. We obtained nine
scans from online repositories (electronic supplementary
material, table S1).

(b) Data collection
We took 13 measurements from the skull and teeth of each speci-
men (electronic supplementary material, table S2; figures S1 and
S2). Measurements were taken from µCT scans using 3D Slicer
version 4.11.20210226 [37] with the SlicerMorph extension [38].
Skull and jaw-related measurements were head length, head
depth, premaxilla ascending process height (a predictor of jaw
protrusion ability [3]), premaxilla length, lower jaw length, jaw-
closing in-lever length, jaw opening in-lever length and horizon-
tal gape (i.e. jaw width; a predictor of maximum prey size [39]).
Given the wide gapes of many anglerfishes, we corrected the
length of the lower jaw and premaxilla to anteroposterior lengths
to ameliorate the effects of jaw curvature (electronic supplemen-
tary material, Extended Methods; electronic supplementary
material, figure S2). Mechanical advantages of lower jaw opening
and closing were formed from the ratios of the respective in-
levers and corrected lower jaw length (electronic supplementary
material, table S2). These lever ratios were proxies used to
describe the continuous trade-off between more forceful jaw
movements (high values) and faster jaw movements (low
values) [14,28,40].

Tooth-related measurements were taken for upper and lower
jaws. These were length of the tooth-bearing region, number of
teeth, the mean height of the five tallest teeth, the mean width
at the base of the five tallest teeth and the average spacing
between the five tallest teeth. These features have been used to
detect functional differences among piscivorous reef fishes [41]
and predict feeding behaviour, water column use, and prey
size [7]. Tall teeth are typically better suited for puncturing
prey than stout ones; the same goes for teeth that are widely
spaced, as tightly packed teeth may be better for gripping or
processing prey than puncturing [41,42].

(c) Phylogenetic inference
Existing phylogenies for Lophiiformes have poor sampling over-
lap with our µCT scan dataset. Phylogenetic trees were
therefore newly estimated from publicly available cytochrome c
oxidase (CO1) sequences for 43 of 57 scanned species (electronic
supplementary material, table S3). We estimated two alternative
trees using RAxML version 8.1.20 [43,44], enforcing backbone
topological constraints based on phylogenomic studies by Hart
et al. [45] and Miya et al. [46] (hereafter ’Hart’ and ’Miya’
trees). Trees were made ultrametric using non-parametric rate
smoothing [47]. Details of phylogenetic inference are in the elec-
tronic supplementary material (Extended Methods).

(d) Data analyses
All measurements were size-corrected by dividing by head length
[48], then log-transformed. We tested for allometry following [41]
(details in ExtendedMethods, electronic supplementary material).

To visualize morphological variation, we conducted
principal component analyses (PCAs) without phylogenetic cor-
rection, including all species with µCT scan data (n = 57) using
the ‘prcomp’ function in R. We used the first two components
of this ordination to calculate the relative areas of morphospace
occupied by benthic lophiiforms and ceratioid anglers, with
and without accounting for sample size differences (Extended
Methods, electronic supplementary material) [18]. We also con-
ducted two phylogenetic PCAs (pPCA) using each alternative
tree (n = 43 species). To perform pPCAs, we used the function
phyl.pca from the package ‘phytools’ using a correlation matrix.

We fit three linear regressions comparing: (i) mean tooth
length versus jaw-closing mechanical advantage, (ii) height of
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Figure 1. (a) PCA of jaw and tooth morphologies for 57 species of Lophiiformes. For pPCA, see electronic supplementary material, figure S5. (b) Mechanical
advantage values measured for anglerfishes compared to morphotypes from [41]. Fish icons were digitized from FAO identification guides. (c) Examples of variation
in trophic morphologies among Lophiiformes, where orange = upper jaw and blue = lower jaw. The bars below the jaws reflect the species’ relative position with
respect to ascending process height (top row; y-axis of figure 2b) or tooth length, spacing and width (bottom row; PC1 of (a)). Images not to scale.
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the ascending process versus jaw-closing mechanical advantage
and (iii) mean tooth length versus mean tooth spacing. We
chose these comparisons because, although jaw mechanics are
well studied in frogfishes [3,29,31–33], it is unclear how these
variables covary in other lophiiforms. Similarly, the relationship
between tooth length and spacing was previously shown to
distinguish functional groups in reef fishes [7,41]. Following
[49], we compared the fit of three models: a non-phylogenetic
ordinary least square model (OLS), phylogenetic generalized
least squares with a Brownian motion model (PGLS-BM) and
with an Ornstein–Uhlenbeck model (PGLS-OU). Upper and
lower jaw tooth variables were averaged for these analyses.
Regressions were performed using the ‘phylolm’ package version
2.6.2 [50]. We also performed ancestral state reconstructions for
these four traits using the ‘fastAnc’ function in ‘phytools’.
3. Results
PCAs revealed that the morphospace occupied by the benthic
lophiiforms was mostly subsumed within the larger ceratioid
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Figure 2. Linear regressions and ancestral state reconstructions for the following traits: (a) average tooth length versus jaw-closing mechanical advantage, (b) height
of the ascending process versus jaw-closing mechanical advantage and (c) average tooth length versus average distance between teeth. Analyses shown here use the
Hart tree; for Miya tree, see electronic supplementary material, figure S6. See Table 1 for statistical results. For explanation of traits, see electronic supplementary
material, figure S1.
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morphospace (figure 1). When accounting for sample size,
Ceratioidei occupied a morphospace 2.1 (median) times
larger than the benthic lophiiforms (electronic supplementary
material, figure S3). The ‘wolftrap’ ceratioids (Thaumatichthys
and Lasiognathus) form a distinct morphological group with
high values on PC2 (figure 1; electronic supplementary
material, figure S4). If these were excluded from the
morphospace comparisons, the remaining ceratioids still
occupied a morphospace 1.3 times larger than the benthic
taxa after correcting for sample size (electronic supplemen-
tary material, figure S3).

Species were separated along PC1 (41.1% of var.) based
on differences in jaw lengths, jaw-closing mechanical advan-
tage and tooth characteristics (tooth lengths, widths, spacing



Table 1. Results of linear regressions of functional traits of interest using two alternative backbone topologies. If significant (alpha = 0.05), the best-fitting
model is in italics.

comparison tree p-value R2

AIC
score,
OLS

AIC
score,
BM

AIC
score,
OU

AICw,
OLS

AICw,
BM

AICw,
OU

average tooth length versus

jaw-closing mechanical

advantage

Hart <0.0001 0.453 42.08 64.53 43.82 0.705 <0.001 0.295

average tooth length versus

jaw-closing mechanical

advantage

Miya <0.0001 0.453 42.08 60.89 44.12 0.735 <0.001 0.265

height of the ascending

process versus jaw-closing

mechanical advantage

Hart 0.1000 0.065 127.52 83.07 88.09 <0.001 0.925 0.075

height of the ascending

process versus jaw-closing

mechanical advantage

Miya 0.0531 0.088 127.52 78.54 84.50 <0.001 0.952 0.048

average tooth length versus

average tooth spacing

Hart <0.0001 0.516 36.78 68.02 39.30 0.779 <0.001 0.221

average tooth length versus

average tooth spacing

Miya <0.0001 0.516 36.78 53.34 38.82 0.735 <0.001 0.265
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and count). Benthic lophiiforms, with relatively low PC1
values, were characterized by forceful bites, high tooth
counts and short, tightly packed teeth (figure 1a). PC2
(19.2% of var.) described differences in horizontal gape, the
height of the ascending process and jaw-closing in-lever
length. The ‘wolftrap’ ceratioids, with high PC2 scores, dis-
played shallow head depth, narrow gapes and a small or
absent ascending process of the premaxilla. Results between
PCAs with and without phylogenetic correction were similar
(electronic supplementary material, figure S5).

Of lophiiform families, Oneirodidae and Linophrynidae
have the greatest diversity (electronic supplementary material,
figure S4). Both families have species with ‘average’ mor-
phologies, near the PCA centroid and outliers with more
extreme morphologies, such as the oneirodid wolftrap anglers
Lasiognathus and the extreme macrodonts in Linophryne.

Regressions (figure 2) showed that several functional
traits were correlated. Average tooth length was negatively
related to jaw-closing mechanical advantage ( p < 0.001;
R2 = 0.45). The height of the ascending process was positively
related to jaw-closing mechanical advantage, though this
effect was not significant when accounting for phylogeny
( p = 0.10; R2 = 0.06). Average tooth length was positively
related to average tooth spacing ( p < 0.001; R2 = 0.52). These
results suggest a continuum of diversity in trophic mor-
phologies across Lophiiformes, characterized on one end by
species with many tightly packed and stout teeth, high jaw-
closing mechanical advantage (i.e. slow but high-force bite),
and high jaw protrusion. These traits characterize benthic
lophiiforms. On the latter end of the continuum are species
with large and spaced fang-like teeth, low jaw-closing mech-
anical advantage (i.e. fast but low-force bite) and low jaw
protrusion. These traits characterize the wolftrap ceratioids
at the most extreme. Ceratioids span this entire continuum
(figure 2). Interestingly, we found that the (non-phylogenetic)
OLS model had a better fit than BM or OU models in most
cases (figure 2, table 1), likely because the branch lengths of
ceratioids are so short that phylogenetic signal is minimal.
Results were robust to the phylogeny used (table 1; electronic
supplementary material, figures S5 and S6).
4. Discussion
Our results suggest that morphological and functional diver-
sity in ceratioids is much greater than would be predicted
based on their generalist diets. Ceratioids span the gamut
from short teeth, high jaw protrusion and slow-closing but
high-force jaws on one end (similar to shallow-water lophii-
forms [31]) and large teeth, low jaw protrusion and fast-
closing but low-force jaws on the other, including the
unique ‘wolftrap’ phenotype (figure 2). Note that ‘fast’ or
‘slow’ qualifications herein are relative to other lophiiforms,
and all lophiiforms could be considered ‘fast’ when com-
pared to force-adapted fishes like parrotfishes or piranhas
[14]. As some examples of this diversity, Linophryne are
extreme macrodonts with teeth as long as 25% of their head
length (figure 2), and the lack of an ascending process implies
poor jaw protrusion ability (figure 1c). Yet, other ceratioids
have small teeth (e.g. Bertella), showing that the macrodont
phenotype is far from universal in this deep-sea clade.
Some ceratioids resemble shallow-water frogfishes (e.g. Cryp-
topsaras), which could imply functional similarities such as
extreme buccal expansion [29,31,32]. Mechanical advantage
values seen in ceratioids are comparable to reef fishes
(figure 1b) and are not as extreme as those recorded in
deep-sea dragonfishes, in which the applicability of this
metric is questionable [51]. This suggests that established
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form–function relationships for shallow-water fishes should
apply to ceratioids.

The two phenotypes described here are similar to the
macrodont versus villiform functional groups previously
described for piscivorous reef fishes [7,41]. The functional
diversity of anglerfishes is striking. Ceratioids alone span
most of the variation in mechanical advantage seen across
11 orders of reef fishes (figure 1b; data from [41]). Our results
suggest that deep-sea ceratioids capture prey in varied ways.
This is supported anecdotally by the few videos of ceratioids
[26,35]. Existing behavioural inferences or direct observations
are compiled in the electronic supplementary material, table
S4 and are generally consistent with our results.

Yet, evidence suggests ceratioids have generalist diets
[22,26]. Gut content observations are compiled in the elec-
tronic supplementary material, table S5; ceratioids eat a
range of fishes and invertebrates with seemingly little connec-
tion to functional morphology (electronic supplementary
material, table S4). For ceratioid feeding, the how seems to
covary with morphology (prey capture), but the what
does not (prey item). Why would this diversity arise? One
possibility is that there are many ways of being successful
predators in the deep sea (many-to-one mapping of func-
tional morphology to diet [15,52]). If a broad range of
phenotypes yields similar success at catching similar prey,
morphological and functional diversity can accumulate
through neutral evolution via relaxed selection [9,11]. Pisciv-
ory has been found to constrain evolution in shallow, visually
dependent predators because of the functional constraints
related to pursuing and capturing highly mobile prey
[7,15,53]. Bathypelagic fishes live in darkness and are
believed to use lures to attract rather than pursue prey [22].
These factors relax the typical demands on piscivores in
high-light environments [1,54].

A second possibility is that ceratioid phenotypes are
indeed adapted to capturing different types of prey. Liem’s
paradox suggests morphologically specialized species have
the most generalized diets of all because they can access
both common and unique food resources [17,18,20,21].
Unlike shallow organisms, ‘common’ and ‘unique’ items for
a ceratioid may refer to prey size, not prey species. Perhaps
some ceratioids play out Liem’s paradox by maintaining
the ability to eat any prey that comes along while
simultaneously having morphologically specializations for
capturing exceedingly large prey when available. This
phenomenon might explain the success of ceratioids in the
bathypelagic zone, the most food-limited habitat on Earth
[22,23]. Future investigations of diet are necessary to
distinguish between these alternatives and better understand
evolution in the deep sea.

Data accessibility. Input data files and R scripts are available from the
Dryad Digital Repository: https://doi.org/10.5061/dryad.qfttdz0n2
[55]. All CT scans were uploaded to Morphosource (see electronic
supplementary material, table S1).

The data are provided in the electronic supplementary material
[56].
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