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Abstract

SIAM, a model of structural similarity, is
presented. SIAM, along with models of
analogical reasoning, predicts that the relative
similarity of different scenes will vary as a function
of processing time. SIAM's prediction is
empirically tested by having subjects make
speeded judgements about whether two scenes
have the same objects. The similarity of two
scenes with different objects is measured by the
percentage of trials on which the scenes are
called the same. Consistent with SIAM’s
prediction, similarity becomes increasingly
influenced by the global consistency of feature
matches with time. Early on, feature matches are
most influential if they belong to similar objects.
Later on, feature matches are most influential if
they place objects in alignment in a manner that
is consistent with other strong object alignments.
The similarity of two scenes, rather than being a
single fixed quantity, varies systematically with
the time spent on the comparison.

Introduction

The similarity of two things is not simply a relation
between the two things; it is a relation between
the two things and the comparison-maker.
Similarity assessments must be constructed by a
process that compares the items in question.
Sometimes the process is straightforward. The
similarity of cigars and cigarettes is easily
determined. Determining the more abstract
similarity between cigarettes and time bombs
(Ortony, Vondruska, Foss, & Jones, 1985)
seems to take a longer time. The fact that
similarity develops along a time course suggests
that similarity does not immediately impinge upon
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our perceptual system. Instead, perceptual and
cognitive processes actively build a conception
of similarity.

The time course of similarity assessments
provides a useful tool for investigating the
comparison process. |f we dispatch with the
assumption that similarity is “out there” in the
objective world, then the question of “How does
similarity develop?” becomes crucial. One
method for understanding how comparisons are
made is temporal analysis.

Dynamic Models of Similarity

General models of similarity have not often
addressed temporal aspects of processing
(Carroll & Wish, 1974; Tversky, 1977). These
models do not consider similarity to be a
dynamically evolving quantity. Instead, their
equations for similarity give single “endpoint”
estimates. However, specific process models
have been developed for some specialized
tasks. For example, similarity has often been
measured by the time elapsed, or the errors
made, when subjects determine if two displays
are different. The assumption made is that the
longer it takes to respond that the displays are
different, or the more times that different displays
are erroneously thought to be the same, the
more similar the displays are. Specific
processing mechanisms have been
hypothesized to account for how this speeded
same/different task is executed (for a review, see
Farrell, 1985). The speeded same/different task
will be used to measure similarity in the
experiment to be reported. The speeded
same/different task cannot replace subjective
ratings as a method for investigating similarity,
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but it does provide a converging measure that is
relatively immune to experimenter demands and
subjects’ high-level reasoning strategies.

Recently, a general model of similarity has
been developed called SIAM that also
hypothesizes a dynamic time course for
comparisons (Goldstone 1991; Goldstone &
Medin, in press). According to SIAM (Similarity as
Interactive Activation and Mapping), when
structured scenes are compared, the parts of
one scene are aligned, or placed in
correspondence, with the parts of the other
scene. Emerging correspondences influence
each other as processing continues. With
sufficient time, the strongest correspondences
will be those that are consistent with other
correspondences. Similarity is determined by a
process of interactive activation between feature
and object correspondences. The degree to
which features from two scenes are placed in
correspondence depends on how strongly their
objects are placed in correspondence.
Reciprocally, how strongly two objects are placed
in correspondence depends on the
correspondence strength of their features.

The details of SIAM are discussed elsewhere
(Goldstone, 1991). Essentially, SIAM's network
architecture is composed of nodes that excite
and inhibit each other. Nodes represent
hypotheses that two entities correspond to one
another in two scenes. For the present
purposes, two types of nodes are important:
feature-to-feature nodes, and object-to-object
nodes. Each feature-to-feature node represents
an hypothesis that two features correspond to
each other. One feature-to-feature node is
assigned to every possible pair of alignable
features. As the activation of a feature-to-feature
node increases, the two features referenced by
the node will be placed in stronger
correspondence. Object-to-object nodes
represent hypotheses that two objects
correspond to each other.

Network activity starts by features being
placed in correspondence according to their
physical similarity. After this occurs, SIAM begins
to place objects into correspondence that are
consistent with the feature correspondences.
As objects begin to be put in correspondence,
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activation is fed back down to the feature
(mis)matches that are consistent with the object
alignments. In this way, object matches
influence activation of feature matches and
feature matches influence the activation of
object matches concurrently.

Activation spreads in SIAM by two principles:
1) nodes that are consistent with one another
send excitatory activation to each other and 2)
nodes that are inconsistent inhibit one another.
Nodes are inconsistent if they produce many-to-
one mappings, and are consistent otherwise.
Processing in SIAM starts with a description of
the scenes to be compared. Scenes are
described in terms of objects that contain feature
slots that are filled with particular feature values.
On each “slice” of time (cycle), activation spreads
between nodes. Nodes that are highly active are
weighted heavily in the similarity assessment.

SIAM shares architectural commonalities with
McClelland and Rumelhart's (1981) interactive
activation model of word perception and Marr and
Poggio's model of depth perception (1979), and
is highly related to the SME (Falkenhainer,
Gentner, and Forbus, 1990) and ACME (Holyoak
and Thagard, 1989) models of analogical
reasoning. In ACME, SME, and Marr and
Poggio’s model, there are pressures against
developing many-to-one mappings, and
pressures in favor of developing mutually
consistent mappings. The models of McClelland
and Rumelhart, Holyoak and Thagard, and Marr
and Poggio are all examples of what Marr (1982)
calls “cooperative algorithms.” Cooperative
algorithms create globally consistent mappings
by local interactions between units. SME also
moves from locally determined mappings to
globally consistent mappings with more
processing. As we will see, SIAM incorporates a
similar local-to-global processing principle.

A Behavioral Prediction of SIAM

In SIAM, object correspondences depend on
feature and object correspondences!. SIAM

T In the full version of SIAM,
correspondences also depend on

object
role



initially begins to place objects in
correspondence on the basis of their featural
overlap; the more featural commonalities two
objects have, the more strongly they will be
placed in correspondence. However, the
strength of an object correspondence is also
influenced by its consistency with other object
correspondences. If two objects from one scene
correspond to a single object in another scene,
then the two correspondences are inconsistent
and will decrease each others’ strength. SIAM,
like ACME and SME, predicts that object
correspondences will become increasingly
influenced by other object correspondences
with time, as activation spreads between nodes .

One prediction of this temporal processing is
that feature matches that are jnconsistent with
the set of globally consistent correspondences
should tend to influence similarity less with time.
Globally consistent feature matches should
become more influential with time. A set of
mappings between objects is globally consistent
if it a) yields only one-to-one mappings, and b)
maximizes the number of matching features that
belong to corresponding entities. Even though
object A from scene 1 may be most similar to
object B from scene 2, these objects may not be
a part of globally consistent set of mappings. In
particular, if other objects from scene 1 are also
fairly similar to B, and other objects from scene 2
are fairly similar to A, and if we only allow one-to-
one correspondences, then placing A in
correspondence with B may not maximize the
number of feature matches between aligned
objects.

In SIAM, object correspondences will first be
based on feature matches, the only information
available. Obijects that are featurally similar will
begin to be placed in correspondence. With
time, object correspondences will be inhibited by
inconsistent object correspondences, and
excited by consistent object correspondences.
By these interactions, object correspondences
that are consistent with many other object
correspondences become stronger. In turn, the
feature matches that belong to these globally

correspondences that serve to align objects that
play similar roles in their scenes.
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consistent correspondences will receive more
weight. In this manner, the global consistency of
feature matches comes to influence similarity
more with increased processing time.

Experimental Support for a Local-
to-global? Processing Shift

To test the influence of processing time on
globally consistent and inconsistent feature
matches, subjects are shown pairs of scenes;
sample scenes are shown in Figure 1. Each
scene contains two butterflies, and each
butterfly contains four features. Subjects must
decide whether the two scenes contain the
same butterflies within a specified deadline. A
symbolic representation is shown below each of
the butterflies in Figure 1. For example, the
target scene is composed of butterflies “AAAA™
and “BBBB," where the letters refer to different
values along the four dimensions {body shading,
head type, tail type, wing shading}. The butterfly
“XABA" has feature matches on the second and
fourth dimensions with “AAAA", and a feature
match on the third dimension with “BBBB."

First, consider trials in which the target scene
is compared to the base scene. Both of the
butterflies in the target scene have more
matching features in common with the base
scene's left butterfly than right butterfly. The
base butterfly “BABA" has two matches in
common with both of the target scene’s
butterflies. Thus, if we only consider the |ocally
preferred mappings, we would map both target
butterflies onto the top butterfly of the base.
However, if the global consistency of object
mappings is maintained, then this many-to-one
mapping is not permitted. The best globally
consistent mapping is to map the left butterflies
onto each other, and the right butterflies onto

2 The term “local-to-global,” as used here, is only

distantly related to previous researchers' (e. g.
Navon, 1977) claim for a processing shift from
global (holistic) to detailed/analytic similarities.
The current claim concerns the increasing
importance of globally consistent features
matches on similarity.



each other. In short, “BBBB" corresponds to
“BABA" if we only consider local feature
matches, but “BBBB" corresponds to “XXXB" if
we consider the influence that object
correspondences can have one another.

The target scene is also compared to two
derivatives of the base scene. Each derivative
differs from the base scene by only a single
feature. For Figure 1A, one of the local feature
matches is removed, leaving all of the globally
consistent matches intact. For Figure 1B, one of
the globally consistent matches is removed, and
all of the local matches are preserved. The
empirical questions of primary interest is “Is the
target scene more similar to the scene in Figure
1A or 1B, and does the relative similarity of the

scenes depend upon the processing time
allowed?"

Thirty-three undergraduates were presented
with 608 displays each. On half of the trials, two
copies of the target scene were displayed. On
these ftrials, the subjects’ correct response was
“same.” On the other half of the trials, displays
consisted of the targel scene and one of the
other three scenes shown in Figure 1. Butterfly
position, dimension order, dimension values,
scene location, and display type were all
randomized. Displays were presented on
Macintosh SE30 computers.

The subjects’ task was to press a key with
one hand if the butterilies of one scene were the
same as the butterflies of the other scene, and to
press a key with the other hand if the two scene's

Local Global

BABA

XXXB

Globally consistent matches kept

|iABA XXXB

A

Figure 1. Sample scenes used in the experiment.
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butterflies were different. It was stressed to
subjects that the same butterflies did not have to
be in the same positions in their scene in order to
respond “same.” The experiment was divided
into 19 blocks. On each block, subjects were
given a “very fast,” “fast,” or “fairly slow" deadline
(1, 1.84, and 2.68 sec respectively). If a subject
did not respond before the deadline passed, the
message “OVERTIME" appeared on the screen.

The significant (F (4, 288) = 3.94, mse = 8,
p<.05) cross-over interaction between deadline
and type of display is shown in Figure 2. If
subjects are forced to respond within a short
deadline, the display that preserves the locally
preferred match is more often incorrectly
responded to as “same” than the display that
preserves the globally consistent match. The
opposite effect is found when subjects are given
longer to respond. The four mean error rates of
particular interest are: slow-deadline/global-
matches-kept = 5%, slow-deadline/local-
matches-kept = 3%, fast-deadline/global-
matches-kept = 18%, and fast-deadline/local-
matches-kept = 21%. A planned comparison of
these four data shows a significant interaction
between deadline and type of scene on error
rate (F (1,288) = 3.46, mse=6.8, p<.05). The
overall times to correctly respond “Different”
to the different displays are not significantly

different (base = 1.147 sec, global match kept
= 1.137 sec, local match kept = 1.135 sec).

Implications

If similarity is measured by the percentage of
trials that scenes with different butterflies are
incorrectly judged to be the same, then the
obtained results are consistent with SIAM's
prediction. More incorrect “same” judgments are
found for short deadlines when local matches are
preserved. More incorrect “same” judgments are
found for the longest deadline when global
matches are preserved. This is consistent with
SIAM's dynamic account of similarity. The
influence of one object-to-object mapping on
another takes time to develop, and until it is
developed, object-to-object mappings will be
largely determined by feature-to-feature
matches. Locally consistent matches are more
important than globally consistent matches for
similarity early in processing (fast deadline). Later
in processing, globally consistent matches gain
in importance relative to local matches. At first,
both butterflies of the target are mapped onto
one butterfly of the other scene, but with time
the influence of one mapping redirects the other

mapping.
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Figure 2. Results showing an interaction between deadline and type of scene.



The experiment indicates that featural
similarity cannot completely predict object
correspondences. Objects will tend 1o be
aligned if they share many features, however
object alignment also depends on the similarity
of other objects pairs. Butterfly BBBB from the
target scene of Figure 1 is most similar to
butterfly BABA of the base scene, but it is placed
in proper alignment with butterfly XXXB. BBBB
corresponds to XXXB and not BABA because
BABA is also similar to the target scene's other
butterfly, AAAB. By aligning BBBB with XXXB
and BABA with AAAB, the number of matching
features between consistently (one-to-one
mapping) aligned objects is maximized. With
increased processing time, SIAM and subjects
both seem to base object correspondences
more on global consistency than on the local
similarity of objects.

The experiment supports a notion of
similarity as constructed over time. In fact, the
results are problematic for any model that
hypothesizes that two entities have a single
process-independent similarity value. We
cannot assign single estimates for the similarity of
the target scene and Figure 1A, and the target
scene and Figure 1B, because at different times
each is more similar than the other. Figure 1A is
more similar to the target scene on slow
deadlines, but Figure 1B is more similar to the
target scene on fast deadlines. The similarity of
two entities seems to depend on the particular
mechanisms of the comparison process. In the
current case, comparisons seem to involve a
process in which locally determined
correspondences give way to globally consistent
ones. More generally, the outcome of a
comparison seems to depend not just on the
things compared, but also on the process that is
doing the comparing.
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