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ABSTRACT

Ecosystem nutrient budgets often report values for

pools and fluxes without any indication of uncer-

tainty, which makes it difficult to evaluate the

significance of findings or make comparisons across

systems. We present an example, implemented in

Excel, of a Monte Carlo approach to estimating

error in calculating the N content of vegetation at

the Hubbard Brook Experimental Forest in New

Hampshire. The total N content of trees was esti-

mated at 847 kg ha-1 with an uncertainty of 8%,

expressed as the standard deviation divided by the

mean (the coefficient of variation). The individual

sources of uncertainty were as follows: uncertainty

in allometric equations (5%), uncertainty in tissue

N concentrations (3%), uncertainty due to plot

variability (6%, based on a sample of 15 plots of

0.05 ha), and uncertainty due to tree diameter

measurement error (0.02%). In addition to allow-

ing estimation of uncertainty in budget estimates,

this approach can be used to assess which mea-

surements should be improved to reduce uncer-

tainty in the calculated values. This exercise was

possible because the uncertainty in the parameters

and equations that we used was made available by

previous researchers. It is important to provide the

error statistics with regression results if they are to

be used in later calculations; archiving the data

makes resampling analyses possible for future

researchers. When conducted using a Monte Carlo

framework, the analysis of uncertainty in complex

calculations does not have to be difficult and

should be standard practice when constructing

ecosystem budgets.

Key words: Monte Carlo; Hubbard Brook; forest

biomass; allometric equations; error analysis; eco-

system N budget.

LACK OF ERROR IN ECOSYSTEM BUDGETS

There are many sources of uncertainty in nutrient

budgets for forested ecosystems. Some sources of

uncertainty are well understood and commonly

reported, such as the variability reflected in repli-

cate plots. For systems of small stature, such as

grasslands or tundra, ecosystem nutrient stocks can

be assessed independently on multiple plots, and

reporting the variation across plots is sufficient to

describe the uncertainty in the estimates. Forest

nutrient budgets, however, require the use of
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allometric equations to estimate the biomass of tree

components. The uncertainty in these equations

should be included in estimates of uncertainty in

nutrient budgets, along with the uncertainty in

nutrient concentrations of tissues and the mea-

surement and sampling error. To our knowledge,

the uncertainty in all these components has never

been propagated through a calculation of nutrient

contents of a forest.

In principle, the uncertainty associated with any

calculation can be derived analytically from the

reported uncertainty in the components (Taylor

1996; Lo 2005). In practice, however, analytical

error propagation is problematic in situations

where the calculations are difficult to represent

mathematically or the coefficients of variation are

high (>30%) (Harmon and others 2007). Gaussian

error propagation uses partial derivatives to esti-

mate errors associated with changes in parameters,

but the slope is an inaccurate approximation of a

non-linear effect especially if the uncertainties are

large. Many of the equations used in ecosystem

budgets are non-linear. For example, allometric

equations for tree biomass are commonly loga-

rithmic (Jenkins and others 2003), and equations

that predict tree height from diameter may follow a

saturating function (Canham and others 1994).

One equation for forest floor mass involves a

combination of exponential decay and logistic

growth with six parameters (Covington 1981).

Monte Carlo simulation of error is an attractive

alternative to analytical solutions. It can be em-

ployed to propagate parameter uncertainty in any

set of equations. For equations of even moderate

complexity, the Monte Carlo approach requires

fewer assumptions and is far easier to implement

than analytical approaches (Press and others 1986,

p. 531). Monte Carlo propagation of uncertainty in

tree biomass equations has been applied to tropical

(Chave and others 2004), temperate hardwood

(Fahey and others 2005), and boreal coniferous

forests (Hermle and others 2010); temperate coni-

fer plantations (Sicard and others 2006); and oak

woodlands (Harmon and others 2007).

In the environmental sciences, there is a need for

better characterization of all aspects of data

uncertainties, for example, to better inform policy

decisions (Ascough and others 2008). Monte Carlo

simulation offers a tractable, flexible, and robust

approach. Our goal in this paper is to make the

calculation of error less daunting for ecosystem

scientists. With data from the Hubbard Brook

Experimental Forest in New Hampshire, USA, we

provide step-by-step instructions for calculating the

uncertainty in the nitrogen content of trees. We

use the Monte Carlo approach to incorporate the

reported errors of the components into the final

estimate. We include measurement uncertainty

and inter-plot variation to demonstrate how they

should be represented and to allow all these sour-

ces of uncertainty to be compared. To minimize

technical obstacles, we implement our example in a

common spreadsheet format (Excel, http://www.

microsoft.com), but note that this type of analysis

could be conducted using any of a variety of other

environments, such as R (http://www.r-project.

org), Matlab (http://www.mathworks.com), or SAS

(http://www.sas.com).

THE MONTE CARLO APPROACH

The Monte Carlo approach to estimating uncer-

tainty is conceptually straightforward (Press and

others 1986). The equations of interest are repeat-

edly evaluated using parameter values randomly

selected from their known (or assumed) probability

distributions. The random generation of the

parameters should ideally account for any covari-

ance structure in their joint probability distribu-

tions. After applying the equations many times, the

resulting large number of predictions can be used

to define the probability distribution of the propa-

gated error.

Uncertainty in the allometric relationships can be

represented in various ways. One approach is to

use the variation in the parameter estimates. For

example, parameters can be simulated by resam-

pling with replacement the original allometric data

(Chernick 2008). Alternatively, estimates can be

calculated for each iteration from the variance and

covariance matrix of the parameters (Sicard and

others 2006). However, neither the data nor the

joint probability distributions of the parameters are

typically available. Instead, error estimates are of-

ten provided for the dependent variables calculated

with the biomass equations (Jenkins and others

2003). Thus, an alternative approach is to use these

estimates of the model uncertainty (such as the

root mean square error of the residual) to perturb

the regression line by a randomly sampled amount

at each Monte Carlo iteration. In this section, we

illustrate the Monte Carlo procedure applied to a

single parameter (in the case of N concentration)

and to model uncertainty (in the case of height and

biomass).

The example we have chosen is estimating error

of the N content of aboveground biomass in the

northern hardwood forest at Hubbard Brook. This

calculation requires, for each tree species, equa-

tions relating tree height to diameter (Equation 1),
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equations relating the biomass of various tissue

types to height and diameter (Equation 2), and

estimates of tissue N concentration (Equation 3).

Specifically,

log Hð Þ ¼ aþ b log DBHð Þ þ eH ð1Þ

log Bið Þ ¼ mþ n log 0:5Hp DBH=2ð Þ2
� �

þ eBi
ð2Þ

NT ¼
X

i

Bi Ni þ eNi
ð Þð Þ ð3Þ

where H is the tree height; DBH is the tree diameter

at breast height (1.37 m); Bi is the biomass of tissue

i; NT is the total N in the tree; Ni is the concentra-

tion of N in tissue i; a, b, m, and n are parameters;

and �H, eBi
, and eNi

are residual errors for the height,

biomass equations, and the estimates of N con-

centration of tissue i, respectively. We have

estimates of the error associated with the N con-

centration of the tissues (rNi
) from Likens and

Bormann (1970). For the height and biomass

equations, Whittaker and others (1974) provided

estimates for rH and rBi
, rather than the standard

deviations of parameters a, b, m, and n; we there-

fore based the Monte Carlo analysis on the residual

error terms �H, eBi
, and eNi

. We assumed that these

error terms �H, eBi
, and eNi

were independent of one

another and normally distributed with a zero mean

and with standard deviations described under

‘‘Advice on Selecting Error Terms’’.

The estimation of the probability distribution of

NT requires generating random values for all the

error terms at each iteration of the Monte Carlo

(Figure 1). Then the reported diameters for the

trees and the parameters associated with the dif-

ferent species and tissue types can be used to

calculate a value of NT using Equations (1)–(3).

Repeating the calculation with new random num-

bers many times makes it possible to accumulate

estimates of the mean and variance and other sta-

tistics of interest of all previous Monte Carlo esti-

mates of NT. A sufficient sample size is achieved

when the mean and standard deviation settle to

acceptably constant values (Figure 2).

A CASE STUDY IMPLEMENTED IN EXCEL

We implemented the Monte Carlo approach to

error estimation of the N content of aboveground

biomass at Hubbard Brook Experimental Forest,

New Hampshire using Excel (Microsoft Excel 2002

and 2007 and Microsoft Excel X and 2008 for

Mac, Microsoft Corporation, Redmond, WA). In

addition to the uncertainty in the biomass equa-

tions (Equations 1 and 2) and the parameter

uncertainty associated with N concentrations

(Equation 3), our example includes the measure-

ment precision in tree diameters and the uncer-

tainty associated with sampling plots to characterize

the ecosystem.

We randomly selected plots from the network of

0.05-ha plots distributed across the Hubbard Brook

Valley (Schwarz and others 2003). We confined

our sampling to the plots in the northern hardwood

forest type (n = 140). All trees 9.5-cm DBH or

Identify species;
measure tree

diameters

Generate allometric
equations including

uncertainty

Monte Carlo simulation

Sample tree
diameters

Sample parameter
values

Calculate height of every tree

Calculate parabolic volumes

Calculate mass of tissue by type

Calculate N content of tissue

Sum biomass and N content by plot

Generate one estimate of the forest biomass N content by
sampling from the distribution defined by multiple plots

Add outcome to previous iterations

Enough
iterations? NoYes

Describe distribution
of results

Figure 1. Flowchart of the steps in the Monte Carlo

calculation of uncertainty in N content of a forest using

sample plots and the uncertainty in tree measurement,

allometric relationships, and tissue concentrations.
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greater were measured during 1994–1995 and

identified to species (Solomonoff 2007). We used

allometric equations constructed from trees sam-

pled at Hubbard Brook in 1965 (Whittaker and

others 1974) and tissue chemistry from trees sam-

pled in 1966–1967 (Likens and Bormann 1970).

We calculated parabolic volume from the measured

DBH and the predicted height (calculated using

DBH-height regressions reported in Whittaker and

others 1974). We use parabolic volume rather than

tree diameter to predict biomass at Hubbard Brook

because the relationship of tree height to diameter

can vary with elevation (Whittaker and others

1974).

The Excel workbook was organized to keep the

parameters (and randomly sampled error terms)

describing biomass and nutrient concentrations in

separate spreadsheets, organized by tissue type

and species. The calculations of tree and stand

biomass and nutrient contents were calculated on

a spreadsheet that started with the tree inventory

data in two columns, giving the species (important

as an index variable) and diameter of each tree.

This spreadsheet had columns for estimates of

biomass by tissue type, more columns for esti-

mated N content by tissue type, columns for the

sum of biomass and sum of N content, and hun-

dreds or thousands of rows for the trees. All of

these results changed with each iteration of the

Monte Carlo. At the bottom of the set of trees

representing each plot, we summed the values of

the biomass and N content estimates. A single

estimate of the ecosystem values was randomly

selected based on the mean and standard error of

these plots. To document the contribution of the

other sources of error to the uncertainty in N

content, we used 15 plots. We also used 5, 10, 20,

30, 40, or 60 plots, with all sources of error

included, to quantify the effect of sampling

intensity on the total uncertainty.

The entire sequence of calculations (Figure 1) is

carried out in Excel when any cell is changed. In

the Monte Carlo, because of the random number

queries, the estimates for each tree and the sums

for the plots all change with every update. To

accumulate multiple estimates of the ecosystem

values requires copying the values into a list of

results, which we did in a separate spreadsheet. The

error statistics can be computed from any number

of rows, and the values compared until the number

of iterations is sufficient to give a reproducible

result (Figure 2). In this example, 100 iterations

were enough to estimate the mean biomass and the

standard deviation with an uncertainty of about

1% of the mean.

UNCERTAINTY IN THE NITROGEN CONTENT

OF BIOMASS

Calculated without uncertainty, the N in biomass

in mid-elevation hardwoods at Hubbard Brook

averaged 847 kg ha-1, based on fifteen 0.05-ha

plots. Using the Monte Carlo approach to estimate

the uncertainty in tree measurement, allometric

equations, N concentrations, and plot variability,

we obtained a mean estimate of 869 kg ha-1 with a

standard deviation of 66 kg ha-1, or 8% of the

mean (Table 1 and Figure 2). The difference

between the N content without error and the

resampled mean reflects a bias in the resampling

procedures (less than 3% in this case). The mean of

the Monte Carlo estimates is higher than the mean

calculated without error, because of the logarithmic

equations for height and biomass.

In addition to Monte Carlo calculations that

combined all sources of error, we made calculations

with each source of error alone. The uncertainty in

the height of the trees (Equation 1) contributed 3%

uncertainty to the total N budget, expressed as the

standard deviation divided by the mean (the coef-

ficient of variation). The uncertainty in the biomass

Figure 2. Mean and standard deviation of N content of

aboveground vegetation at Hubbard Brook as a function

of the number of Monte Carlo iterations. The different

lines represent results from five independent Monte

Carlo simulations.
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equations (Equation 2) contributed 4% uncer-

tainty. The standard error of the N concentrations in

tissues (Equation 3) contributed 3%. Plot variability

contributed 6%, with a sample of fifteen 0.05-ha

plots. The measurement error of tree diameters

contributed only 0.02%. The sum of the individual

sources of error, reported in units of coefficient of

variation or kg N/ha (Table 1), is much greater than

the uncertainty from the Monte Carlo simulations

with all errors combined. The variance of a sum is

the sum of the variances (Taylor 1996); the sum of

standard deviations is not meaningful. In this case,

squaring the standard deviations of the errors of

individual sources and summing them approxi-

mates the square of the standard deviation of the

errors of combined sources.

We investigated the effect of sampling intensity

on uncertainty by selecting different numbers of

plots (Table 1). With only five plots, the uncer-

tainty in N contents of the ecosystem was 15%.

With 30–60 plots, it was 7%. Adding more plots

cannot reduce the uncertainty below that contrib-

uted by the other sources, which was 7%. Plot-

sampling error alone was only 3% with 60 plots.

The uncertainties associated with the allometric

equations describing tree biomass (Whittaker and

others 1974) are quite low; these equations were

among the best fit (93rd percentile) of 180 equa-

tions compiled by Jenkins and others (2004). Most

other allometric equations would contribute more

uncertainty to the nutrient content of vegetation

than our example shows.

The Monte Carlo analysis can provide information

about which of the equations are most important to

improve, based on their effect on overall uncertainty

(Table 1). This is not the same as the uncertainty in

the individual equations, because some equations

are more important than others to the final result.

For example, although the uncertainty in the

equation for bark biomass is higher than that for

wood biomass (Whittaker and others 1974), this

uncertainty contributes less to the uncertainty in

total biomass N, because the wood contains so much

more N than the bark. In this data set, branches have

both high uncertainty in the biomass equation and

high N content, and thus contribute the greatest

uncertainty (in kg N/ha) to the overall estimate of N

in biomass at Hubbard Brook (Table 1b).

ADVICE ON SELECTING ERROR TERMS

Selecting the appropriate component error terms

for an uncertainty analysis using Monte Carlo

simulation depends on the question being asked

(Harmon and others 2007). To describe the varia-

tion in the population or the uncertainty in esti-

mates of individuals, the standard deviation is the

appropriate term to use. To describe uncertainty in

the estimate of the population mean, the standard

error of the mean should be used.

The question that we addressed in our example

was the uncertainty in the ecosystem total of N in

trees, which is the uncertainty in the mean.

Therefore, we used the means and standard errors

of the N concentrations for the tissues of each

species to define the uncertainty in N concentra-

tions (Equation 3). This variation is smaller than

the measured variation in tissue concentrations

(the standard deviation). This choice is easy to

understand in the case of a single parameter.

For a regression equation, uncertainty is de-

scribed by the variation around the fitted equation.

The standard deviation of the dependent variable

based on the regression model, sy�x, is calculated as

Sy�x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi � ŷið Þ2

n� 2

s

ð4Þ

where y refers to the dependent variable (log10 of

tree height or tissue biomass, in our example); yi is

the observed and ŷi is the predicted value of the ith

observation, and n is the number of observations

used to estimate the regression equation (Snedecor

and Cochran 1989, p. 162).

The uncertainty associated with regression pre-

dictions also depends on the value of the inde-

pendent variable x, in our case log10 (DBH). The

uncertainty described by the standard deviation of

the regression, Sy�x (Equation 4), describes the error

at the mean value of the observations in the

regression data set, �x: The uncertainty in predicting

y increases as values of x depart from this mean.

Finally, the uncertainty in the regression prediction

also depends on the number of observations in the

regression data set, n. For the error terms in

Equations (1) and (2), we used the error appro-

priate to an estimate of the mean of y at a specified

value of x, sm (Snedecor and Cochran 1989, p. 164):

sm ¼ sy�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx � �xÞ2
Pn

i¼1 ðxi � �xÞ2

s

ð5Þ

The uncertainty in predicting the value of y for an

individual from regression, sp, is larger, analogous

to the standard deviation compared to the standard

error (Snedecor and Cochran 1989, p. 166):

sp ¼ sy�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

n
þ ðx � �xÞ2
Pn

i¼1 ðxi � �xÞ2

s

ð6Þ
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The use of Equation (5) or (6) requires the number

of observations in the regression, the mean of the x

observations, and the sum of squared deviations of

the x, ðxi � �xÞ2. Because these statistics are not

commonly reported, some researchers have chosen

to represent the uncertainty in the biomass equa-

tions using only the standard deviation of the

regression (Equation 4) (Chave and others 2004;

Fahey and others 2005). This approach results in an

overestimate of the uncertainty in the population

mean (Equation 5), but an underestimate of the

uncertainty in the individual estimates (Equa-

tion 6).

ADVICE ON APPLYING ERROR TERMS

As a general rule, errors should be generated to

simulate the measurement and analytical proce-

dures. In this sense, every Monte Carlo iteration is

like a resampling of the study. For example, mea-

surement uncertainty applies independently for

each measurement. In our case study, we randomly

sampled the measurement uncertainty in DBH for

every tree in our sample. The errors are as likely to

be positive as negative, and they tend to cancel out.

In contrast, at each iteration, we simulated a single

set of allometric equations and a single set of

N-concentration parameters and applied them to

all the trees to estimate NT.

It is possible to select the right form of error but

to apply it incorrectly. A common mistake is to

apply parameter uncertainty independently for

each observation in the data set. To calculate

uncertainty in the ecosystem total, we are inter-

ested not in the variation from tree to tree, but in

the possible inaccuracy of the equation describing

the average tree. For example, consider the equa-

tion for the mass of the branches of a sugar maple

tree, which has high uncertainty. If this equation is

inaccurate, then this error applies equally to every

sugar maple tree in the sample. For this reason, we

sample the error terms in the table of parameters in

Excel, not in the list of trees. Each tree is calculated

with the same sample of the error term (or sample

of the parameter, in the case of nitrogen concen-

tration), until the next iteration of the Monte

Carlo.

The same argument applies when comparing

ecosystem totals across multiple plots or sites. It is

important to apply the parameter uncertainty

simultaneously for all observations at each iteration

of the Monte Carlo. Using the same example as

before, if Whittaker’s equation is in error about the

branches of sugar maple trees, it is equally so for all

the trees in the population. This source of error

does not contribute as much to the uncertainty in

detecting differences between plots or between

sites as it does to the uncertainty in the mean.

Our case study illustrates the sampling of multi-

ple plots. We used the same parameters, sampled

with error, at each iteration of the Monte Carlo,

and at each iteration, we estimated the ecosystem

Table 1. Uncertainty in Estimation of N Content of Trees at Hubbard Brook, Reported as (a) the Coefficient
of Variation (the Standard Deviation Divided by the Mean) and (b) kg N/ha of 100 Monte Carlo Iterations

Stem wood Stem bark Branches Leaves and twigs Roots Total biomass

(a) Coefficient of variation (%)

Diameter measurement 0.03 0.02 0.03 0.02 0.02 0.02

Height equations 3 3 3 2 3 3

Allometric equations 2 5 14 7 6 4

N concentration 5 3 4 2 7 3

Sampling error (15 plots) 8 7 7 5 6 6

All sources combined 9 8 14 9 11 8

All sources, 5 plots 18 13 22 12 18 15

All sources, 10 plots 11 9 20 10 12 10

All sources, 20 plots 8 8 16 10 11 8

All sources, 30 plots 8 7 16 10 10 7

All sources, 40 plots 8 7 15 10 9 7

All sources, 60 plots 7 8 17 10 10 7

(b) kg N/ha

Diameter measurement 0.04 0.002 0.06 0.01 0.06 0.01

Height equations 5 2 8 2 8 25

Allometric equations 3 4 34 6 16 39

N concentration 7 2 8 2 20 24

Sampling error (15 plots) 12 6 17 4 18 53

All sources combined 14 7 34 7 31 66
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total as a random sample based on the mean and

standard error of the plot totals. To compare two

sites each with multiple plots (not illustrated in this

paper), we would compute the t statistic for the site

difference at each iteration of the Monte Carlo, and

report the proportion of all iterations with a sig-

nificant t. To compare more than two sites, the

proportion of significant results of analysis of vari-

ance would be reported for many iterations. A

confidence of 95% in the difference across sites

would be indicated if more than 95% of the Monte

Carlo iterations produced a significant difference.

Designing a flowchart (Figure 1) can help to plan

the sequence of calculations. Using a programming

language would make the structure of the calcu-

lations more explicit than in Excel. The imple-

mentation of a Monte Carlo calculation is not

difficult; conceptualizing the approach to take is

more challenging.

SOURCES OF ERROR NOT INCLUDED IN THIS

EXAMPLE

We assumed, in this illustration, that the error in

each of the equations was independent of all the

others. This assumption certainly is not always

true. For example, in stream water fluxes, some

elements are at higher concentrations when water

flux is high, while others are diluted at high vol-

umes. Relationships among the parameters could

be included in a Monte Carlo simulation, by

sampling from a multivariate distribution, if these

relationships are known. Correlations among

parameters can also be treated mathematically

(Taylor 1996).

The propagation of error does not require that

the variables be normally distributed. We used a

normal distribution of error in this illustration,

consistent with the assumptions of Whittaker’s

regression models (Whittaker and others 1974). If a

distribution is known to be non-normal, then the

actual distribution should be used in the random

resampling procedure.

There are other sources of errors in measure-

ment, which are not addressed in this approach.

We have treated all the errors as random pertur-

bations with mean zero. Systematic errors, which

lead to bias, have not been accounted for. For

example, we represent minor species using the

equations developed for the major species, such as

the substitution of sugar maple for red maple

(Whittaker and others 1974). Regression equations

are commonly used at sites other than those at

which they were developed, which introduces

uncertainty not described by the uncertainty in the

regression model (Harmon and others 2007).

Laboratory procedures are prone to error; there

are some values of tissue concentration in the ori-

ginal Hubbard Brook data set (Likens and Bormann

1970), which were not borne out by later mea-

surements (Siccama and others 1994). Analytical

uncertainty is often not reported but is usually

small compared to variation across samples (in this

case, by tree; Likens and Bormann 1970).

Log-transformed equations like the ones we used

for estimating height (Equation 1) and biomass

(Equation 2) systematically underestimate the

values when back transformed (Baskerville 1972).

This bias can be corrected using the standard

deviation of the regression (Equation 4) and the

sample size, which are commonly reported (Spru-

gel 1983). Jenkins and others (2003) question

whether this correction factor is an improvement.

The decision regarding the correction factor is

important to the accuracy of nutrient budgets, but

it does not contribute to the uncertainty analysis.

CONCLUSIONS

Ecosystem biomass and nutrient budgets have

commonly reported sampling error derived from

replicate plots, but few have included in their error

analysis the uncertainty in allometric regressions or

nutrient concentrations. The variation across sam-

pling plots may be the largest source of uncertainty,

as shown in this example from northern hard-

woods and in our previous work in this forest type

(Fahey and others 2005) and in oak woodlands

(Harmon and others 2007). However, estimates of

uncertainty that exclude other sources of error are

biased, in that the true uncertainty is greater than

that reported when only the sampling error is

considered.

Propagating parameter and equation uncertainty

in ecosystem budgets is not difficult. When the

allometric equations we used here were published,

the authors wrote, ‘‘The problem of confidence

limits for treatment of forest samples by logarithmic

regression is unsolved’’ (Whittaker and others

1979). Since that time, advances in computing

technology have made it relatively easy to make

the necessary calculations on a personal computer,

using spreadsheets, computer programs, or spe-

cialized software. Designing an appropriate analysis

is probably more difficult than implementing it.

We contend that reporting uncertainty in the

result of ecosystem calculations should be standard

practice. It is important to the audience who will

make use of the result; it also has a benefit to
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researchers who want to know how best to im-

prove an estimate. When making use of results

reported by others, we often depend on reported

error statistics. In the case of regression equations,

we would ideally use not just the standard devia-

tion of the regression, but also the mean and sum

of squared deviations of the independent variable

(Equation 5 or 6). These can be calculated from

archived data, which are also necessary for resam-

pling approaches (Chernick 2008). Providing this

information will enable future users to properly

evaluate the uncertainty introduced by use of the

equations.
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APPENDICES

STEP-BY-STEP IMPLEMENTATION
IN EXCEL

In each iteration of the Monte Carlo, we accounted

for measurement error in the tree DBH measure-

ments (± 0.05 cm, Solomonoff 2007) by randomly

generating an error term for the DBH of each tree

(Figure 1). Specifically, the error term was a ran-

dom normal deviate with a mean of zero and rd of

0.05 cm. This error was calculated independently

for each tree in the inventory. This is the only

measured variable in this illustration; the other

variables are calculated from previously reported

parameters.

The next step of the calculation was to estimate

tree height as a function of diameter and species

(Equation 1). The tree species was used as an index

variable to look up the parameters a and b. The

error term for the DBH-height equation, �Hi, was

simulated as a random normal deviate with a mean

of zero and rH. In this implementation, rHi was

based on the reported error of the regression

(Whittaker and others 1974) corrected for the

sample size and the deviation of each tree from the

mean tree in Whittaker’s sample (Equation 5).

Unlike the error in tree diameter, which was

independently estimated for each tree, �Hi was used

for all trees of a given species in the data set for

each iteration of the Monte Carlo. An error in the

height equation affects all the trees simultaneously,

whereas an error in diameter measurement per-

tains to a single tree. In the Excel implementation,

this means that the parameter and equation errors

must be included in the lookup tables, so that for

each iteration of the ecosystem calculation, the

same random sample of each error is used.

Next, the height of each tree was used to calcu-

late its parabolic volume. The geometric formula

for parabolic volume, 0.5 Hp(DBH/2)2, was evalu-

ated without additional error terms.

To calculate the biomass of tree tissues as a func-

tion of parabolic volume (Equation 2), we used tree

species to index the parameter values in a lookup

table and error terms (�Bi) generated as random

normal deviates with a mean of zero and standard

deviation rbi. Similar to tree height, rbi was cal-

culated from the reported error of the regression

estimate (Whittaker and others 1974; Equation 5).

Then the N content of each tissue type (Equation 3)

was calculated from this biomass and the N con-

centration for each species and tissue type, which

was obtained from a final lookup table. Uncertainty

in N concentration was included as a random nor-

mal deviate with a mean of zero and rNi defined by

the reported standard error of the replicate tissue

samples (Likens and Bormann 1970).

For each of the plots in the sample of the eco-

system, the mass and nutrient contents by tissue for

all the trees in each plot were summed, with no

error added by summing. The mean and standard

error of these plots were used to randomly generate
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a single estimate of the ecosystem values, and the

results were accumulated in another spreadsheet in

which each line represented one iteration of the

Monte Carlo simulation.

The Excel workbook with our data and the Monte

Carlo results are available at http://www.esf.edu/for/

yanai/Uncertainty/Yanai_Ecosystem_Error.xls.

RANDOM NUMBER GENERATION

The random number generator in Excel, RAND(),

returns a number between 0 and 1 with even dis-

tribution. To generate the normal random error

estimates, we used NORMINV(RAND(), mean,

standard deviation), with the mean and standard

deviation referencing cells with those values.

LOOKUP TABLES IN EXCEL

It is important that each iteration of the Monte

Carlo apply the same error estimates for equa-

tions 1, 2, and 3 to all the trees in the data set. For

this reason, the random generation of errors cannot

be contained in the equations that are repeated in

each line of the stand inventory (calculating height

or biomass from DBH, for example). If the error

terms are generated in a parameter table, they will

change with each new calculation (iteration) but

they will be constant across all the trees in the

inventory.

We used the VLOOKUP function in Excel to

reference the parameters and the error terms in the

biomass equations and nutrient concentrations. In

our example, the parameters for height, biomass,

and nutrient concentration are each a table, with

tree species as the index variable. VLOOKUP re-

quires three arguments. The first gives the index

variable (the species of the tree). The second gives

the location of the table. The third specifies in

which column of the table you want to look up a

value. Note that the index variable must be in

alphabetical order.

TRICKS AND TOOLS IN EXCEL

The results of each iteration of the Monte Carlo are

copied and pasted (Edit, Paste Special, Values) into

a list of results where they will not be updated with

the next iteration. This process goes more quickly if

you add the ‘‘Paste Values’’ button to your toolbar.

Depending on your version, you might find this

under: Tools, Customize, Commands, Edit, Paste

Values. Or the sequence of menu selections may

be: View, Customize Toolbars and Menus. You can

also create a keyboard shortcut for this operation.

By default, Excel automatically recalculates the

value of every formula when any cell is changed.

This can take some time for thousands of trees.

When modifying a spreadsheet, you can turn this

feature off, in Excel Preferences, Calculations,

Manually. There is a keyboard shortcut to ‘‘calcu-

late now.’’ When running the Monte Carlo simu-

lations, you will need to turn the automatic

calculation back on.

We made many mistakes while building our

Monte Carlo spreadsheets. As always, it helps to

test the parts before assembling the whole. The

uncertainty in biomass and nutrient concentrations

can be implemented for a single tree, and the

sampled variance can be compared to the expected

variance. A spreadsheet that has only one tree

calculated many times with random error each

time can be useful for trouble-shooting. Graphing

the relationships represented by the component

equations can help to reveal unexpected problems.

You may find it useful to graph your outputs as a

function of the number of iterations (Figure 2).

Doing so for multiple independent Monte Carlo

runs allows you to visualize the rate of diminishing

uncertainty in your estimate of uncertainty.
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