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ARTICLE

DNA methylation aging and transcriptomic studies
in horses
Steve Horvath 1,2,10,11✉, Amin Haghani1,10, Sichong Peng3, Erin N. Hales 3, Joseph A. Zoller 2, Ken Raj 4,

Brenda Larison 5,6, Todd R. Robeck7, Jessica L. Petersen 8, Rebecca R. Bellone3,9 & Carrie J. Finno 3,11✉

Cytosine methylation patterns have not yet been thoroughly studied in horses. Here, we

profile n= 333 samples from 42 horse tissue types at loci that are highly conserved between

mammalian species using a custom array (HorvathMammalMethylChip40). Using the blood

and liver tissues from horses, we develop five epigenetic aging clocks: a multi-tissue clock, a

blood clock, a liver clock and two dual-species clocks that apply to both horses and humans.

In addition, using blood methylation data from three additional equid species (plains zebra,

Grevy’s zebras and Somali asses), we develop another clock that applies across all equid

species. Castration does not significantly impact the epigenetic aging rate of blood or liver

samples from horses. Methylation and RNA data from the same tissues define the rela-

tionship between methylation and RNA expression across horse tissues. We expect that the

multi-tissue atlas will become a valuable resource.
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It has long been known that the level of cellular DNA
methylation changes with age1–3. With the technical devel-
opment of methylation arrays that profile large numbers of

individual CpG positions in the genome, an opportunity arose to
develop a highly accurate age-estimator for all human tissues4–6.
For example, the human pan-tissue clock combines the weighted
average of methylation levels of 353 CpGs into an age estimate
referred to as DNAm age or epigenetic age7. While the human
pan-tissue clock applies to chimpanzees,7 it does not apply to
more distantly related mammals as a result of evolutionary gen-
ome sequence divergence. Epigenetic clocks have been developed
for mice and many other species8–13. Overall, these publications
indicate that the underlying biological principle of epigenetic
clocks is shared between members of different mammalian spe-
cies. In humans, the discrepancy between DNA methylation age
and chronological age (which is termed “epigenetic age accel-
eration”) is predictive of multiple health conditions14–19. Epige-
netic age is predictive of mortality, even after adjusting for known
risk factors such as chronological age, sex, smoking status, and
other risk factors14–19. Collectively, the evidence is compelling
that epigenetic age is an indicator of biological age4–6,20–23.
Human epigenetic clocks have already found many biomedical
applications, including the measure of biological age in human
anti-aging clinical trials4,24.

Here, we develop epigenetic clocks for horses and other equid
species. Our human–horse clock was developed for a futuristic
goal: to translate anti-aging interventions from humans to horses
and vice versa. We characterize changes in DNA methylation that
accompany equine aging and castration. To study the relationship
between expression levels (mRNA) and methylation across tissue
types, we generated DNA methylation profiles from across 42
horse tissues for which RNA-seq profiles were also available.

Results
We generated DNA methylation profiles from various tissue
samples from domestic horses (Table 1). The horse methylation
data were used for two broad categories of analyses: (1) epigenetic
aging studies in blood and liver, (2) comparing DNAm levels to
transcriptomic data across 42 different tissues types. The aging
studies in horses used N= 192 blood samples and N= 48 liver
samples from multiple horse breeds aged between 0 and 29 years.
By contrast, the multi-tissue atlas involved 42 different tissues
from N= 2 mares used in the equine Functional Annotation of
Animal Genomes (FAANG) initiative25.

Unsupervised hierarchical clustering analysis of these profiles
led to distinct tissue-based clusters (color band in Fig. S1). A
subsequent random forest analysis of sex led to an error rate of
0% according to the out-of-bag (OOB) estimates.

Epigenetic clocks. Using the blood and liver tissues from horses,
we developed six epigenetic clocks: a multi-tissue clock, a blood
clock, a liver clock, and two dual-species clocks that apply to both
horses and humans. Using blood methylation data from three
additional equid species (plains zebra, Grevy’s zebras, and Somali
asses), we developed another clock that applies to all equid spe-
cies. To develop the pure horse clocks, the training data employed
consisted of horse blood and/or liver DNA methylation profiles,
while human and horse DNA methylation profiles constituted the
training data for both the human–horse clocks. To arrive at
unbiased estimates of the epigenetic clocks, we carried out a
cross-validation analysis of the training data. The cross-validation
study reports unbiased estimates of the age correlation R (defined
as Pearson correlation between chronological age and its estimate,
DNAm age), as well as the median absolute error. As indicated by
its name, the horse multi-tissue clock is highly accurate in age

estimation of blood and liver (R= 0.96 and median absolute error
1.0 years, Fig. 1a). The horse clocks for blood and liver samples
lead to similarly high levels of accuracy (Fig. 1b, c).

The dual-species (human–horse) epigenetic clocks were trained
using horse and human DNA methylation data. The resulting two
human–horse clocks mutually differ by way of age measurement.
One estimates the ages of horses and humans (in units of years,
Fig. 1d, e), while the other estimates relative ages (Fig. 1f, g).
Relative age is the ratio of the chronological age of an animal to the
maximum lifespan of its species (122.5 for humans and 57 years for
horses, Supplementary Table 1, see the “Methods” section). The
relative age ratio (with resulting values between 0 and 1) allows
alignment and biologically meaningful comparison between species
with different lifespans, which cannot otherwise be afforded by
direct comparison of their chronological ages.

The human–horse clock for chronological age is highly accurate
when DNA methylation profiles of both species are analyzed
together (R= 0.98, Fig. 1d), and remains remarkably accurate when
restricted to horse blood and liver samples (R= 0.95, Fig. 1e).
Similarly, the human-horse clock for relative age exhibits a high
correlation regardless of whether the analysis is applied to samples
from both species (R= 0.98, Fig. 1f) or only to horse samples
(R= 0.94, Fig. 1g). This demonstrates that relative age circumvents
the skewing that is inherent when the chronological age of species
with different lifespans is measured using a single formula.

Equid clock. Before building an equid clock, we first applied the
horse clocks to plains zebras (Equus quagga) since we had the
largest numbers of samples from this species (N= 76 blood samples
and N20 biopsy skin samples). According to the five different horse
clocks, the DNAmAge estimates from plains zebra blood correlate
highly with the age of the zebra (Fig. S2). However, these clocks
performed poorly in skin biopsy samples leading to large median
errors (Fig. S3). Based on these results, we decided to build our
equid clock on the basis of blood samples only. The equid clock was
trained on blood samples from four equids: domestic horse
(N= 188), plains zebras (N= 76), Grevy’s zebra N= 5, and Somali
wild ass (N= 7). To evaluate the accuracy of the equid clock, we
carried out two cross-validation schemes that serve different pur-
poses. First, the leave-one-sample-out (LOO) cross-validation ana-
lysis estimates accuracy in blood samples from the four species. We
find that the equid blood clock is highly accurate across four equid
species (LOO estimate R= 0.96, median error 1.0 years, Fig. 2a).
The equid clock performs well in each of the underlying species
(R= 0.90 in Equus africanus somaliensis, Fig. 2b), Equus caballus
(R= 0.96, Fig. 2c), Equus grevyi (R= 0.90, Fig. 2d), Equus quagga
(R= 0.94, Fig. 2e).

The second cross-validation scheme, leave-one-species out
(LOSO) analysis, attempts to estimate the accuracy in (future)
equid species that were not part of the original training set. Again,
we find a high age correlation (LOSO estimate R ≥ 0.91 across the
four equid species, median error= 1.5 years, Fig. S4). However, the
DNAm age estimate is expected to over or underestimate the true
chronological age in novel equid species, as exemplified by the
LOSO estimate in Equus grevyi, where the over-estimate results in a
high median error= 4.6 years despite the strong age correlation
(r= 0.93, Fig. S4D). The systematic bias/offset between DNAmAge
and age can be estimated by adding blood samples from animals of
known age to the test data set.

EWAS of age in horse tissues. The mammalian methylation array
contains 31,836 probes that could be aligned to specific loci adjacent
to 5093 unique genes (~17% coverage on 29,133 genes) in the horse
(Equus caballus EquCab3.0.100) genome. Our epigenome-wide
association studies (EWAS) correlated each of these CpGs with
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chronological age in horse blood (n= 188) and liver (n= 48)
samples. The top DNA methylation changes in each tissue are as
follows: blood, HOXC4 intron (z= 20), and NFIA intron (z=−19);
and liver, IKZF4 exon (z= 11), and upstream of HMX3 (z=−10)
(Fig. 3a; Supplementary Data 1). Tissue level meta-analysis identi-
fied 10,501 CpGs with large age-related methylation changes in
both blood and liver. Some of these include increased methylation
of cytosines close to TMEM121B, LHFPL4, and FOXD3 exons and
TBX18 promoter regions (Fig. S5).

At a nominal p-value < 10−5, 12,705 (FDR < 2.5 × 10−5) and
1813 (FDR < 0.0001) CpGs were found to be related to age in
blood and liver, respectively (Fig. 3d). The discrepant number of
significant age-related CpGs in each tissue probably reflects
differences in sample size (n= 188 blood samples versus 48 liver
samples, Table 1). To remove the bias resulting from differences
in sample sizes and focus on CpGs with the strongest age effects,
we also report results for the top 500 positively and top 500
negatively age-related CpGs in each tissue (Fig. 3f).

Age-related CpGs were found to be located in all genic and
intergenic regions that can be defined relative to transcriptional
start sites, which mirrors the distribution of the CpGs on the
mammalian array (Fig. 3b). Further, CpGs located in CpG islands
showed a higher correlation with age than non-island CpGs in
horse tissues (Kruskal–Wallis p < 10−22, Fig. 3c). Aging effects in

horse blood are positively correlated with those in horse liver
(r= 0.53, p < 10−16, Fig. 3d, f). A Venn diagram reveals that the
top 500 positively age-related CpGs in blood and liver share 89
CpGs in common (Fig. 3e). The top 500 negatively age-related
CpGs in blood and liver share fewer CpGs (43).

We observe strong effect sizes for the top 500 negatively age-
related CpGs in blood and liver: Pearson correlation coefficients
between CpGs and age range from R=−0.894 to R=−0.656 in
blood and from R=−0.92 to −0.58 in liver (Supplementary
Data 1). Similarly, large effect sizes can also be observed for the top
500 positively age-related CpGs in blood and liver: R ranges from
0.670 to 0.904 in blood and from 0.676 to 0.926 in the liver
(Supplementary Data 1). An alternative measure of effect size was
obtained by our 2 group comparison between newborns and horses
older than 16 (Fig. 3g). According to the standardized difference in
methylation, Cohen’s D statistic, age has a stronger effect on liver
than on blood (Kruskal–Wallis test p < 10−16, Fig. 3g).

We analyzed gene set enrichment of the top 500 positively and
top 500 negatively age CpGs in each tissue with the GREAT
software26. The significance thresholds for these top CpGs are
as follows: blood, p < 9.2 × 10−27 (FDR < 2.6 × 10−25); liver,
p < 6.9 × 10−6 (FDR < 1.3 × 10−4); meta-analysis, p < 1.2 × 10−20

(FDR < 2.4 × 10−19). To remove any bias resulting from the
design of the mammalian array platform, we specified CpGs

Table 1 Description of blood methylation data.

Tissue N No. of female No. of male castrated Breed Mean age Min. age Max. age

Clocks
Blood 192 131 49 Multiple 11.2 0.005 28
Liver 48 24 15 Multiple 4.42 0.042 29
Tissue atlas
Adipose 2 2 NA TB 4.5 4 5
AdrenalCortex 2 2 NA TB 4.5 4 5
Cartilage 2 2 NA TB 4.5 4 5
Cecum 2 2 NA TB 4.5 4 5
Cerebelluma 4 4 NA TB 4.5 4 5
CerebralCortexb 6 6 NA TB 4.5 4 5
Duodenum 2 2 NA TB 4.5 4 5
Fibroblast 2 2 NA TB 4.5 4 5
Heartc 8 8 NA TB 4.5 4 5
Hypothalamus 2 2 NA TB 4.5 4 5
Ileum 2 2 NA TB 4.5 4 5
Jejunum 2 2 NA TB 4.5 4 5
Keratinocyte 2 2 NA TB 4.5 4 5
Kidneyd 4 4 NA TB 4.5 4 5
Lamina 2 2 NA TB 4.5 4 5
Larynx 2 2 NA TB 4.5 4 5
Lung 2 2 NA TB 4.5 4 5
Mammary 2 2 NA TB 4.5 4 5
MitralValve 2 2 NA TB 4.5 4 5
Musclee 8 8 NA TB 4.5 4 5
Ovary 2 2 NA TB 4.5 4 5
Pituitary 2 2 NA TB 4.5 4 5
Skin 2 2 NA TB 4.5 4 5
SpinalCordf 4 4 NA TB 4.5 4 5
Spleen 2 2 NA TB 4.5 4 5
SuspensoryLig 2 2 NA TB 4.5 4 5
Tendong 4 4 NA TB 4.5 4 5
Uterus 2 2 NA TB 4.5 4 5

Total # Unique tissues= 42.
N= total number of samples per species. Number of females. Age: mean, minimum and maximum. NA= not applicable.
aLateral hemisphere and vermis.
bFrontal cortex, parietal cortex and temporal cortex.
cLeft atrium, left ventricle, right atrium and right ventricle.
dKidney cortex and kidney medulla.
eGluteal muscle, two regions of longissimus muscle, sacrocaudalis dorsalis muscle.
fC1 and T8 spinal cord.
gSuperficial digital flexor tendon and deep digital flexor tendon.
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located on the mammalian array as the background set. Top 500
CpGs with a significant positive age correlation in horse blood
and/or liver are proximal to genes that play a role in
developmental processes (hypergeometric p < 10−50, gene ontol-
ogy identifier GO:0032502) and multicellular organism develop-
ment (p < 10−50, GO:0035264, Fig. S6A). The implicated genes
can be found in Supplementary Data 2. Further, these CpGs are
enriched for genes that give rise to mouse phenotypes related to

development, such as “lethality during fetal growth through
weaning”, “preweaning lethality” (p < 10−50, Fig. S6B)26,27.
Finally, these positively age-related CpGs were located in gene
regions targeted by polycomb repressor complex 2 (e.g., EED,
SUZ12) targets that are marked with H3K27ME3 modification
(p < 10−50, Fig. S6D). Overall, these results from this equine
EWAS of age are consistent with those in humans and other
mammalian species28–31.

Fig. 1 Cross-validation study of epigenetic clocks for horses and humans. Chronological age (x-axis) versus leave-one-sample-out (LOSO) estimate of
DNA methylation age (y-axis, in units of years) for a the multi-tissue clock for horse blood and liver, b horse blood clock, c horse liver clock. d Ten-fold
cross-validation (LOFO10) analysis of the human-horse clock for chronological age. Dots are colored by species (black= human) and horse tissue type
(green= liver, orange= blood). e Same as panel d but restricted to horses. f Ten-fold cross-validation analysis of the human–horse clock for relative age,
which is the ratio of chronological age to the maximum recorded lifespan of the respective species. g The same as panel d but restricted to horses. Each
panel reports sample size, correlation coefficient, median absolute error (MAE).
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Equus africanus somaliensis

Equus grevyiEquus caballus

Equus quagga

Equid

a b

c d

e

Fig. 2 The equid clock for blood samples. Blood samples (dots) are colored by species as indicated in the respective panels. Leave one sample out cross-
validation estimate of age (y-axis) versus chronological age in a all species combined, b Equus africanus somaliensis, c Equus caballus, d Equus grevyi, e Equus
quagga. Each panel reports the number of blood samples, median absolute error in units of years, and Pearson correlation.
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Although a large number of CpGs were changed by age in both
liver and blood, there were several that were unique to each tissue.
In particular, 26 CpGs exhibited a divergent aging pattern between
these two tissues (Figure S5). For example, while methylation in
GPC5 exon-1 is decreased with age in blood, it is increased in
horse liver.

We studied the overlap between age effects in horse blood with
those in human blood. A subset of 57 CpGs were shared between
the top age-related CpGs in these species (Fig. 3I). This shows
that DNAm aging between these species is partially converged,

and why a dual-species epigenetic clock can be developed for
horses and humans.

Transcriptomic data in horses. We intersected genes implicated
by our EWAS of age in horse blood with age-related
mRNA changes implicated by published peripheral blood
mononuclear cell (PBMC) transcriptomic data in horses
(n= 12)32. In total, 322 genes (243 upregulated, 79 down-
regulated) were differentially expressed at 5% FDR by age in
horse PBMC (Fig. 3h). We observed nominally significant overlap
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(hypergeometric p= 0.033, Odds ratio= 1.4) between age effects
on mRNA and age effects on DNAm levels at these genes. A
subset of 79 out of 322 genes had at least one CpG with age-
related methylation change in our blood data, including NFIA,
DMD, IRS1, and CNTFR. Supplementary Data 3 reports all the
significant CpGs and their corresponding mRNA changes with
age in the PBMC of horses.

Effect of castration. Castration is a common practice. At puberty,
which occurs between 12–15 months of age in horses, the con-
centrations of testosterone and estrone sulfate in intact stallions are
ten and 100-fold greater, respectively, than in geldings33–35. Thus,
castration presents an opportunity to test whether sex hormones
affect the rate of epigenetic aging in male horses. This has important
implications for cancer risk in horses, as castrated males were
previously shown to be at a higher risk for ocular squamous cell
carcinoma than females or stallions36–39. We employed the horse
clocks to study whether castration affected epigenetic aging rates.
Our primary analysis focused only on male samples. We evaluated
the effect of castration on the epigenetic age of blood and liver.
Multivariate regression models that regressed leave-one-out esti-
mates did not show a significant association between castration and
aging, irrespective of the age stratum. Our multivariate analysis
based on leave-one-sample out estimates has an obvious limitation:
both castrated and intact animals were used in the training set,
which may condition out the effect of castration. Therefore, we
repeated the analysis by developing a clock with female samples
(training data) and applied it to male samples (test data). Again, we
did not find a significant association of castration on epigenetic
aging in blood. After failing to observe any significant association,
we carried out secondary analyses in different age groups. We did
not detect a significant association for castration in any age group.
For example, we did not find significant associations in males older
than five years or males younger than 15 years. This negative result
echoes the same finding for blood samples from cats29. By contrast,
castration was found to slow epigenetic aging in ear samples from
sheep40.

Aging effects on CpG methylation in geldings correlated strongly
with those of stallions (r= 0.78) (Fig. 4b). There were nevertheless a
few loci with methylation levels that changed with age only in
geldings. For example, a CpG in the exon of FOXP2 has decreased
methylation with age in geldings, while a CpG in the 3′UTR of
ABCA1 shows an increase of methylation only in stallions (Fig. 4d,
e; Supplementary Data 4). According to Cohen’s D statistic, aging
effects on methylation levels were stronger in stallions than geldings
(Fig. 4c), suggesting a larger age-related methylation change in non-
castrated animals. Pearson correlation coefficients for individual
CpGs are reported in Supplementary Data 4. In general, there was a

moderate difference between geldings and stallions with regards to
the baseline mean methylation of CpGs in the blood (independent
of age). Some of the top methylation signatures of geldings included
an increase of methylation in RABAC1 intron, PRPH exon, and a
decrease of methylation in TRPS1 intron and AKAP6 intron
(Fig. 4a; Supplementary Data 5). Castration-related genes, impli-
cated by mean methylation differences or different aging patterns,
were related to development of nervous system, cartilage,
connective tissue, and muscle physiology (Fig. S7; Supplementary
Data 6).

We used results from a recent study evaluating the effects of
castration on DNAm patterns in ear punch samples from sheep40

to investigate if commonality exists between observed methylation
loss or gain following castration from these two divergent species.
EWAS comparisons of the top 500 age-related CpGs revealed a
single CpGs (adjacent to ARX 3’UTR) that gained methylation
following castration in both horse blood and sheep ears (Horse
blood: p= 3.49e−6, false discovery rate= 0.008, sheep ear:
p= 3.14e−17, FDR= 4.6e−15, Fig. 4f). The low overlap (single
CpG near ARX) is probably due to a tissue difference between horse
and sheep studies (blood versus ear) and species differences.

DNAm relate to gene expression differences in horse tissues.
Meaningful interpretation of epigenetic findings requires the
coupling of DNA methylation changes with those of gene
expression. This challenge is further compounded by compar-
isons between tissues and species. Our study provides a rare
opportunity to address this question by studying CpGs that are
located in genomic regions that are conserved across mammalian
species. Here, we integrated DNAm and RNA-seq data from
57 samples (originating from 29 different tissues of two horses25)
to uncover the relationship between methylation changes of
promoter CpGs with the expression of adjacent genes. Our ana-
lysis revealed that this relationship is dependent on the distance
between the methylation site and the transcriptional start site
(TSS) (Fig. 5a). In general, methylation of CpGs that are closer to
TSSs (from 10,000 nucleotides downstream to 1000 upstream of
TSS) has a stronger repressive effect on mRNA levels (r=−0.2,
p < 2 × 10−16). This negative relationship was independent of
CpG island status of the loci (Fig. S8).

Regulation of gene expression, however, is a multi-faceted
process, of which methylation of the promoter is just one of the
determinants. The chromatin context within which the CpGs are
located is another feature that may exert a strong influence. As such,
we first sought to ascertain the chromatin features within which the
above CpGs are positioned, and then incorporate this information
into the analysis of the impact of methylation of these CpGs on
gene expression. Since chromatin states that are specific to the horse

Fig. 3 EWAS of age in horse blood and liver. Stouffer meta-analysis results between blood (n= 188) and liver (n= 48). a EWAS of age (Pearson
correlation test) versus horse genome coordinates (Equus_caballus.EquCab3.0.100). Red dotted line corresponds to p= 10−5 (blood false discovery rate
FDR < 2.5e−5, liver FDR < 0.00018, meta FDR < 3e−5). Significant CpGs are colored in red (age-related increase) and blue (decrease). Top 15 CpGs are
labeled by neighboring genes. b Top CpGs in each tissue relative to adjacent transcriptional start sites. Gray corresponds to 31836 CpGs in the horse
genome. c Box plot of age effects versus CpG island status. Z statistics resulted from applying the Fisher z-transformation to Pearson correlation
coefficients. The numbers of CpGs are reported in blue text. The top four age-related CpGs in each tissue are labeled by adjacent genes. Boxes show the
interquartile range (IQR) of the Z scores. The notches indicate the 95% confidence interval of the median. The whiskers represent 1.5*IQR length of the Z
scores. Venn diagram of the overlap of (d) all significant CpGs, e) top 1000 (500 in each direction) significant CpGs. Significance thresholds: blood,
p < 9.2e−27 (FDR < 2.6e−25); liver, p < 6.9e−6 (FDR < 1.3e−4); meta-analysis, p < 1.2e−20 (FDR < 2.4e−19). f Age effects in blood versus liver. Red
dotted line: p < 10−4; blue dotted line: p > 0.05; Red dots: shared CpGs; blue dots: CpGs whose age correlation differs between blood and liver tissue. R:
Pearson correlation coefficient. g Effect size (Cohen’s D) of age group (<2 days versus >16 years). Top 500 CpGs that gain methylation (denoted by +)
and top 500 CpGs that lose methylation (denoted −). Red dashed line corresponds to Cohen d= |0.8|. Kruskal–Wallis test for tissue comparison. h Age-
related mRNA changes in horse blood32 (GSE101117). Log (base 10) transformed FDR (y-axis) based on linear regression. The large blue and red dots
report genes with at least one CpG that change with age in horse blood methylation data (Supplementary Data 3). i Venn diagram of the top 1000 (500
per direction) significant age-related CpGs in the blood of horses and humans (human n= 267, aged between 12 and 68).
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genome are presently unavailable, we used the “stacked chromatin
states (stackHMM)” that identifies chromatin features based on the
consensus of over 100 human cell types (Supplementary Data 7)41.
Despite the species difference, this approach can nevertheless prove
highly informative because the design of the mammalian methyla-
tion array was based on DNA loci that are conserved across
mammals41, allowing chromatin features identified by stackHMM
to be applied not only to the horse but other mammalian species as
well. Interestingly, this analysis led to the observation that the
contextual chromatin feature of CpGs was an even better indicator

of the DNA methylation-gene expression relationship. In general,
methylation of CpGs within enhancers appears to correlate with
reduced gene expression (e.g. EnhWk2,3,6; EnhA3,6,7:9; and
TxEnh1,3,7,8) (Fig. 5b, c). In contrast, increased gene expression
is correlated with methylation of CpGs within polycomb repressed
targets (e.g., ReprPC1–5), bivalent promoters (e.g., BivProm1–4),
promoter flanks (e.g. PromF4,5), and transcriptional start sites (e.g.,
TSS1,2) (Fig. 5b, c). Correlations of individual CpG methylation
with mRNA expression are reported in Supplementary Data 8.
Since the cerebellum was an outlier for some of the CpG-mRNA

Fig. 4 Castration moderately alters DNAm profile of horse blood. a Manhattan plots of the EWAS of castration, in the blood of male horses. Statistics:
Multivariate linear regression model whose dependent variables are CpGs and whose co-variates are castration status and chronological age. Sample size:
geldings, 48; stallions, 10. The coordinates are estimated based on Equus_caballus.EquCab3.0.100 genome assembly. The direction of associations with
p < 10−4 (FDR < 0.02, red dotted line) is highlighted by red (increase) and blue (decrease) colors. Top 15 CpGs (p < 4.7e−6, FDR < 0.008) were labeled by
the neighboring genes. b Sector plot of aging effects on blood methylation levels by castration status in male horses. The Z statistics result from applying
the Fisher z-transformation to the Pearson correlation between CpG and age. Red-dotted line: p < 10−4; blue-dotted line: p > 0.05; Red dots: age-related
CpGs not affected by castration; black dots: CpGs whose aging pattern differs between geldings and stallions. c The effect size of age on DNAm is larger in
blood of naïve vs the castrated male horses. The effect size is calculated by Cohen D method between age groups <2 days vs. >11 years horses. Only the
top 1000 significant CpGs per tissue (500 per direction) are presented in the box plot. (+) and (−) indicate the direction of change for each group. The
dashed red line indicates Cohen d > |0.8 | , which means a large effect size. d, e Scatter plots of selected CpGs that change with age only stallions (d), or
geldings (e) blood. The red dots and blue dots in the scatter plot correspond to blood samples from geldings and stallions, respectively. The shading
visualizes the 95% confidence band of the linear regression model. R: Pearson correlation coefficient. These relationships require validation in new data and
also a consideration for a potential confounding effect of horse breeds. f The overlap of castration methylation signatures between horse blood and sheep
ears40. Although we considered the top 1 thousand significant CpGs in sheep (500 in each direction), we only found one overlapping CpG.
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associations, we examined if the relationship with chromatin states
is sensitive to cerebellum inclusion. Our sensitivity analysis revealed
that cerebellum did not affect our findings (Fig. S9), suggesting a
converging pattern between chromatin states and DNAm-mRNA
association in tissues.

Discussion
As human methylation arrays (450K and EPIC) are specific to the
human genome, their utility could not be extended to other
species. A critical step toward crossing the species barrier was the
employment of a mammalian DNA methylation array41, which

led to the acquisition of the most comprehensive epigenetic
dataset of domestic horses thus far. Using these data, we con-
structed six highly accurate DNA methylation-based age esti-
mators for horses that are applicable to their entire life course
(from birth to old age). The fact that the presented horse clocks
are highly accurate according to unbiased cross-validation studies
(Figs. 1 and 2) shows that one can build epigenetic clocks using
CpGs that are embedded within evolutionarily conserved DNA
sequences.

The same mammalian array was applied to species of particular
interest: four equid species and humans. The resulting data
facilitated the development of two noteworthy multi-species
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clocks: the human-horse dual-species clock and the equid clock
that apply to blood samples from all equid species. Each of these
multi-species clocks corresponds to a multivariate regression
model with the same set of covariates, i.e., the same set of CpGs
and coefficient values are being used. However, the dependent
variable in the regression model adjusts for systematic differences
in species characteristics such as maximum lifespan or age at
sexual maturity. Relative age, defined as the ratio of chronological
age to maximum lifespan, is used as a dependent variable of the
human-horse clock. The mathematical operation of generating a
ratio eliminates chronological unit of time and produces a value
that indicates the age of the organism in respect to the maximum
age of its own species. The equid clock uses a different age
transformation that does not require knowledge of maximum
lifespan. Rather, it uses average age at sexual maturity, which is a
more robustly estimated species characteristic, in its log-linear
transformation of age. Collectively, the ability to use a single
mathematical formula to measure epigenetic age in different
species and the replacement of the chronological unit of time with
a transformed version are two significant innovations that will
propel cross-species research. While this article focused on
equids, we have described multi-species clocks for several other
species and all mammals29–31,42–44. In general, we expect that
species-specific clocks (pure horse clocks) will outperform pan-
mammalian clocks because methylation levels are strongly
affected by genetics and the environment.

The species characteristics used in our age transformations are
debatable, e.g., the reported maximum lifespan of 57 years for
horses will appear unrealistic to many experts. We respond to
these concerns in two ways. First, we used species characteristics
from a rigorous and highly regarded database, anAge45. Second,
and more importantly, our mathematical models are highly
robust with respect to different choices of these species’ char-
acteristics. Similarly, accurate multi-species clocks would result
when using alternative choices of maximum lifespan. Our horse
data are limited with respect to the upper limit of the ascertained
ages (29 years).

Beyond utilizing the horse methylation data sets to develop
epigenetic clocks, we also investigated the characteristics of age-
related CpGs. Many CpGs with a high positive age correlation in
horse liver showed the same in horse blood and vice versa.
Negatively, age-related CpGs were less conserved across tissue
types. An unbiased functional enrichment study demonstrates
that positively age-related CpGs are adjacent to genes that play a
role in development (gene ontology category of development,
Fig. S6). The role of development is also suggested by enrichment
of positively age-related CpGs with respect to bivalent chromatin

domains and targets of polycomb repressive complex 2. Thus, the
connection between development and aging, albeit not immedi-
ately intuitive, is difficult to ignore. For example, we find a
positive correlation between age effects in human blood and those
in horse blood (Fig. 3I). Overall, the results of our EWAS of age in
horses echo those in humans and many other mammalian
species2,4,46. A prior methylation study in horse leukocytes based
on a different genomic platform (Reduced Representation Bisul-
fite Sequencing) found increased methylation near IGFR147.
Corroborating these results, we found a CpG in an exon of IGF1R
with an age-related gain of methylation in horse blood. We show
that age-associated EWAS hits in horse blood are adjacent to
genes implicated by a transcriptomic study of aging effects in
horse blood-related mRNA changes32.

It would indeed be very informative to resolve a direct rela-
tionship between DNAm and gene expression changes. This has
remained one of the challenging and limiting features of under-
standing DNA methylation changes because data for gene
expression is often unavailable. Fortuitously, such data for these
tissues are available in the horse tissue atlas (but not in our aging
study). The tissue atlas allowed us to correlate DNAm and
transcriptional data across 29 tissues from the horse tissue atlas.
Our analysis suggests that cytosine methylation alone has a
modest correlation with gene expression outcomes. However, the
incorporation of contextual chromatin elements (enhancers,
promoters, etc.) to the analysis increased the magnitude of the
correlation between CpG methylation and gene expression. Spe-
cifically, methylation of CpGs within enhancers is more likely to
correlate with reduced gene expression, while methylation of
CpGs in polycomb repressed targets, bivalent promoter, promoter
flanks, and transcriptional start sites result in largely increased
gene expression (Fig. 5a, b). This may at first appear counter-
intuitive, as methylation of promoters is often associated with
repression of transcription. It is to be noted, however, that this
notion is largely true for promoters with adjacent CpG islands. In
the specific case of PRC targets and bivalent chromatin domains,
our analysis is consistent with the recent observation that an
increase of methylation in bivalent chromatin domains results in
a reduced presence of the repressive histone H3K27me3, causing
the balance of histone ratio towards the transcription-promoting
H3K4me348. This is consistent with the finding that DNA
methylated regions of the genome are largely low in or devoid of
H3K27me3, possibly due to the unfavorable binding of PRC2,
which is required for methylation of H3K27 histone. Interest-
ingly, methylation of bivalent chromatin domains was reported to
correlate with increased expression of developmental genes49,
which incidentally are the predominant genes proximal to age-

Fig. 5 DNAm levels in promoters relate to gene expression changes across horse tissues. This analysis was based on a Pearson correlation of DNAm
and mRNA level of the adjacent genes in 29 different tissues from two female horses. Each CpG was assigned to one gene based on the closest distance to
the transcriptional start sites. a, b The y-axis reports a Z statistic of a correlation test between the methylation level of each CpG and gene expression of the
adjacent gene across tissues. The Z statistics result from applying the Fisher z-transformation to the Pearson correlation between CpG and mRNA. a The x-
axis reports the distance to the transcription start site. The analysis is limited to CpGs located in the promoter regions of genes. Genes are colored by
chromatin states of their respective gene promoters. The chromatin states are based on the stackHMM annotations, which represent a consensus
chromatin state in over 100 human tissues68. A description of the chromatin states is provided in Supplementary Data 7. Red horizontal lines correspond to
significance threshold (Z > 2.8 and Z <−2.8 values, two-sided p < 0.005). b Boxplot of DNAm-mRNA association by stackHMM state in CpGs with the
significant cis-expression relationship. Boxes show the interquartile range of the z scores (i.e. lower and upper 25th percentile). The notches indicate the
95% confidence interval of the median. The whiskers represent 1.5*IQR length of the z scores. This analysis focuses on CpGs that are located in promoter
and have a significant (Pearson correlation p < 0.05) DNAm-mRNA association with the adjacent gene. Thus, the CpGs in panel b is the subset of CpGs
from panel a, namely those that have a significant mRNA-DNAm association. We found 256 CpGs with a positive association, 2223 CpGs with a negative
association. To simplify the figure, we only reported the stackHMM states with a median DNAm-mRNA association of z > 2.8 or z <−2.8 (Pearson
correlation p < 0.005). c Scatter plots of selected CpGs with DNAm-mRNA association in horse tissues. R: Pearson correlation coefficient. P: Two-sided
Student t-test p-value. Het heterochromatin, ReprPC repressed by polycomb proteins, Acet acetylation, EnhWk weak enhancers, EnhA enhancers, TxEnh
transcribed and enhancer, Tx transcription, TxEx exon, BivProm bivalent-promoter, Prom promoter, TSS transcriptional-start-site.
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related CpGs. Our chromatin state analysis was limited due to its
use of human cell lines. A horse-specific chromatin state anno-
tation is expected to become available as part of the ongoing
FAANG initiative25.

The association between CpG methylation level, genomic ele-
ments, and gene expression is a valuable tool to interpret
methylation array findings from all mammalian species. For
example, our analyses of age-related methylation changes in horse
tissues reveal that CpGs that became increasingly methylated with
age are located largely within promoters and CpG islands. Two of
the top CpGs that exhibited increased methylation with age in
horses were located in the promoters of TBX18 and FOXD3.
However, while the TBX18 promoter had a strong negative cor-
relation with DNAm-mRNA (z=−2.8), the FOXD3 promoter
showed a positive DNAm–mRNA correlation in horse tissues
(z= 1.5). Thus, we can deduce that TBX18 expression decreases
with age, but FOXD3 mRNA levels will increase with age. Cross-
species expansion of this finding is only possible due to the design
of the mammalian methylation array for highly conserved
genomic regions41. Thus, this multi-omics analysis of horse tis-
sues is a tool to link DNAm with transcription in other studies
based on the mammalian methylation array. Such a link is
essential for functional interpretation of the findings and also for
the experimental design of gene-perturbation studies.

When it comes to aging effects, we did not have access to
transcriptomic data and methylation data from the same animals.
Based on human studies, we expect that the cis relationship
between methylation and gene expression will be weak in blood
due to large cell-to-cell variability50. Recent studies reveal
stronger relationships between methylation levels and tran-
scriptomic changes in single-cell data51–53.

The presented horse clocks lend themselves to estimating the
chronological age of any animal. Experience with human clocks
suggests that epigenetic age estimates may be affected by technical
issues and biological differences, such as diet, viral infections,
environmental factors, and even genetic differences that could
result in an offset, i.e., a constant difference between epigenetic
age estimate and the true chronological age. Future research is
needed to determine whether the discrepancy between epigenetic
age and chronological age relates to pathologies such as cancer or
other age-related conditions in horses.

Future studies could develop second-generation epigenetic
clocks that relate to mortality/morbidity risk similar to what has
been achieved in humans4,19,54.

Methods
Ethics. This research complied with all relevant ethical regulations overseen by 4
ethics review boards:

This horse tissue collection protocol was approved by the UC Davis
Institutional Animal Care and Use Committee (Protocol#19037).

Zebra samples were collected under a protocol approved by the Research Safety
and Animal Welfare Administration, University of California Los Angeles: ARC #
2009-090-31, originally approved in 2009.

The human skin samples were acquired with informed consent prior to
collection of human skin samples approved by the Oxford Research Ethics
Committee in the UK; reference 10/H0605/1. Participants were not compensated.
The secondary use of the other de-identified/coded human tissue samples (blood,
postmortem tissues) is not interpreted as human subjects research under U.S.
Department of Health & Human Services 45 CFR 46. Therefore, the need to obtain
written, informed consent from human study participants was waived (secondary
use of de-identified tissues). Human samples were covered by University of
California Los Angeles IRB#18-000315.

Study samples

Horses
We generated DNA methylation data from n= 42 different horse tissues collected at
necropsy (Table 1). The tissue atlas was generated from two Thoroughbred mares as part of
the FAANG initiative25, with the following tissues profiled: adipose (gluteal), adrenal cortex,

blood (PBMCs; only n= 1 mare), cartilage, cecum, cerebellum (2 samples each from lateral
hemisphere and vermis), frontal cortex, duodenum, fibroblast, heart (2 samples each from
the right atrium, left atrium, right ventricle, left ventricle), hypothalamus, ileum, jejunum,
keratinocyte, kidney (kidney cortex and medulla), lamina, larynx (i.e., cricoarytenoideus
dorsalis muscle), liver, lung, mammary gland, the mitral valve of the heart, skeletal muscle
(gluteal muscle and longissimus muscle), occipital cortex, ovary, parietal cortex, pituitary,
sacrocaudalis dorsalis muscle, skin, spinal cord (C1 and T8), spleen, suspensory ligament,
temporal cortex, tendon (deep digital flexor tendon and superficial digital flexor tendon),
uterus25. These tissues were also used for RNA-seq analyses.
Blood samples were collected via venipuncture into EDTA tubes from across 24 different
horse breeds (buffy coat). Most of the samples were from the Thoroughbred (TB)
(n= 79) and American Quarter Horse breeds (QH, n= 62). For the following breeds, we
had between one and six blood samples: Andalusian, Appaloosa, Arabian, Dutch
Warmblood, Hanoverian, Holsteiner, Irish Sport Horse, Lipizzaner, Lusitano, mixed
breed, Oldenburg, Paint or Paint cross, Percheron, Shire, Standardbred, Warmblood and
Welsh Pony. The n= 49 liver samples originated from necropsy collections of horses
across 19 different breeds, with most of the liver samples from QHs (n= 20). All col-
lection protocols were approved by the UC Davis Institutional Animal Care and Use
Committee (Protocols #20751 and 21455, respectively).

Additional equid species. The data from the three additional equid species are
described in a companion paper55 that focuses on plains zebras (Equus quagga).
Briefly, both blood (n= 76 including 42 female samples, aged between 0.16 and
20.2 years, mean age= 5.2 years) and skin biopsy (n= 24 including 9 female
samples, aged between 0.16 and 24.8 years, mean age=5.9 years) samples from
plains zebras were obtained from a captive population of zebras maintained in a
semi-wild state by the Quagga Project56 in the Western Cape of South Africa. The
population was founded in 1989 by 19 individuals (9 from Etosha National Park in
Namibia, 10 from the Kwazulu-Natal in South Africa). Skin samples were taken by
remote biopsy dart (1 mm wide by 20-25 mm deep plug) and preserved in RNA-
later (Qiagen). Blood samples were taken opportunistically during veterinarian
visits and preserved in EDTA tubes. Most samples were collected from different
individuals, except for two animals that were sampled twice some years apart. All
samples were stored at -20 °C. After eliminating samples with low confidence for
individual identity and age, we retained 76 blood samples and 20 skin samples. We
retained the founder, however, in an effort to extend the age range represented in
the skin clock.

Blood samples from Grevy’s zebra (total n= 5 comprised of 4 males and 1 female,
age ranged from 2.3 years to 18.5 years) and Somali wild ass (total n= 7 comprised of
6 males and 1 female, age ranged from 2.4 years to 10.0 years) were opportunistically
collected from zoo-based animals during routine health exams31,55.

Human tissue samples. To construct the human-horse clock, we analyzed the
generated methylation data from n= 1,352 human tissue samples (including adi-
pose, blood, bone marrow, dermis, epidermis, heart, keratinocytes, fibroblasts,
kidney, liver, lung, lymph node, muscle, pituitary, skin, spleen) from individuals
whose ages ranged from 0 to 101. Of the n= 1352 tissues, n= 655 came from
women (Supplementary Data 9). These human tissue samples came from multiple
sources: tissue and organ samples from the National NeuroAIDS Tissue
Consortium57, blood samples from the Cape Town Adolescent Antiretroviral
Cohort study58, and blood, skin, and other primary cells provided by Kenneth
Raj59 and blood samples from the PEG study60.

DNA methylation data. The mammalian DNA methylation data were generated
using the mammalian methylation array (HorvathMammalMethylChip40) based
on 37492 CpG sites41. Not all of these CpGs apply to horses. Here we focused on
31,836 CpGs that could be mapped to the horse genome (Equus_caballus.Equ-
Cab3.0.100, https://www.ncbi.nlm.nih.gov/assembly/GCF_002863925.1/).

Thus, the mammalian array covers relatively few cytosines in the horse genome.
In particular, it does not cover horse-specific cytosines.

Genome coordinates for each CpG are provided on the GitHub page of the
Mammalian Methylation Consortium61; see the section on data availability. The
manifest file of the mammalian methylation array can be found at Gene Expression
Omnibus (GEO) at NCBI as platform GPL28271. The SeSaMe normalization
method was used to define beta values for each probe62.

RNA-seq data. Strand-specific RNA libraries were created following poly-A selec-
tion. Libraries were sequenced at 2x150bp on Illumina HiSeq2500, with a targeted
depth of 30 million reads. RNA-seq data were used to quantify transcripts anno-
tated in Ensemble annotation (GCA_002863925.1, release 103) using Salmon
mapping-based mode63.

Penalized regression models. Penalized regression models were created with
glmnet64. We investigated models produced by “elastic net” regression
(alpha= 0.5). The optimal penalty parameters in all cases were determined
automatically by using a 10 fold internal cross-validation (cv.glmnet) on the
training set. By definition, the alpha value for the elastic net regression was set to
0.5 (midpoint between Ridge and Lasso type regression) and was not optimized
for model performance.
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We performed a cross-validation scheme for arriving at unbiased (or at least
less biased) estimates of the accuracy of the different DNAm based age estimators.
One type consisted of leaving out a single sample (LOOCV) from the regression,
predicting an age for that sample, and iterating over all samples. A critical step is
the transformation of chronological age (the dependent variable). While no
transformation was used for the blood clock for horses, we did use a log-linear
transformation for the dual-species clock of chronological age (Supplement).
Details on the clocks (CpGs, genome coordinates), coefficient values, and age
transformations are provided in the Supplement.

Relative age estimation. Relative age estimation was performed to introduce bio-
logical meaning into the age estimates of horses and humans, which have very
different lifespans. Additionally, this estimation serves to overcome the inevitable
skewing due to the unequal distribution of data points from horses and humans
across the age range. Relative age estimations were calculated using the formula:
Relative age=Age/maxLifespan, where the maximum lifespan for the two species
was chosen from the “anAge” database (57 for horses and 122.5 for humans45).

Maximum lifespan of horses. The maximum age for horses (57 years) will sound
too high for many experts. Miniature horses appear to live longer, however, there
are no miniature horses in our dataset. The anAge database45,65 record for horse
states the following. Quote “One Icelandic … horse…is reported to have lived 57
years (Richard Miller, pers. comm.). Anecdotal evidence tells of a horse…that lived
for 62 years in England, but that record is unverified.” A news article on the
Icelandic horse “Tulle” can be found online (Horse Tulle URL). The oldest regular-
sized horse with a well-documented age appears to have reached an age of 53
according to the Official Guide for Determining the Age of the Horse from the
American Association of Equine Practitioners (B. Wright 1999 URL).

Epigenome-wide association studies of age. EWAS was performed in each tissue
separately using the R function “standardScreeningNumericTrait” from the
“WGCNA” R package66. Next, the results were combined across tissues using
Stouffer’s meta-analysis method.

GREAT analysis. We analyzed gene set enrichments using GREAT26. The GREAT
enrichment analysis automatically conditioned out (removed) any bias resulting
from the design of the mammalian array by using a background set of CpGs that
map to horses and are located on the mammalian array. Thus, our GREAT
enrichment analysis conditioned out (removed) any bias resulting from restricting
the analysis to conserved CpGs on the mammalian array platform. The GREAT
software performs both a binomial test (over genomic regions) and a hypergeo-
metric test over genes.

We performed the enrichment based on default settings (Proximal: 50.0 kb
upstream, 1.0 kb downstream, plus Distal: up to 1000 kb) for gene sets implemented
in GREAT. To avoid large numbers of multiple comparisons, we restricted the
analysis to the gene sets whose sizes ranged from 10 to 3000 genes. We report one-
sided nominal P values and two adjustments for multiple comparisons: Bonferroni
correction and the Benjamini-–Hochberg false discovery rate”.

Tissue atlas: correlating DNAm with mRNA. The annotation file of the mammalian
methylation array provides the genomic location of all target CpGs relative to the
adjacent transcriptional start site in the horse genome41. Thus, we could link each
CpG with mRNA level of the adjacent gene. We assigned each CpG to the gene
whose transcriptional start site is closest to the CpG. A detailed description of
alignment and gene assignment is reported in our mammalian array reference
paper41. The R function “corAndPvalue” from the “WGCNA” R package66 was
used to calculate Pearson correlation coefficients, its Fisher transformation, and
2 sided p values based on the Student T test.

URL. B. Wright (1999) Official Guide for Determining the Age of the Horse,
American Association of Equine Practitioners. http://www.omafra.gov.on.ca/english/
livestock/horses/facts/info_age.htm Horse Tulle https://www.angelfire.com/az/
testryder/home.html.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The methylation data from horses, zebras, and equids generated in this study have been
deposited in Gene Expression Omnibus (accession numbers GSE174767, GSE184222,
GSE184223). The RNA-seq data can be downloaded from https://www.ebi.ac.uk/ena/
data/view/ERA1487553 The human methylation data were not generated for this study.
These data will be presented in other publications67 and can be requested from SH. In
addition, the data will be posted on GEO as part of the data release from the
Mammalian Methylation Array Consortium. The mammalian methylation array is
available through the non-profit Epigenetic Clock Development Foundation (https://
clockfoundation.org/). We used species characteristics from the AnAge Database
https://genomics.senescence.info/species/.

Code availability
Details on the clocks (CpGs, genome coordinates) and R software code are provided in
Supplementary Note 1 and in Supplementary Data 10. Genome annotations of the CpGs
can be found on Github61 https://github.com/shorvath/MammalianMethylationConsortium/
tree/v1.0.0.
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