
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Markov Chain Models and Data Science Applications

Permalink
https://escholarship.org/uc/item/6ch8z986

Author
Huang, Li-Hsuan

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ch8z986
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Markov Chain Models and Data Science Applications

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Applied Mathematics

by

Li-Hsuan Huang

Committee in charge:

Professor Harish S. Bhat, Chair
Professor Rick Dale
Professor Arnold D. Kim

2018

Copyright

Li-Hsuan Huang, 2018

All rights reserved.

The dissertation of Li-Hsuan Huang is approved,

and it is acceptable in quality and form for publi-

cation on microfilm:

(Professor Arnold D. Kim)

(Professor Rick Dale)

(Professor Harish S. Bhat, Chair)

University of California, Merced

2018

iii

DEDICATION

To my parents and sister.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . xii

Vita and Publications . xiii

Abstract . xiv

Chapter 1 Introduction . 1

Chapter 2 Modeling Basketball Substitutions and Scoring Rates 5
2.1 Introduction . 5
2.2 Data Collection . 6
2.3 Substitution Models . 8
2.4 Scoring Models and Results 10

2.4.1 Results for the 2014-15 NBA Regular Season . . . 11
2.4.2 Results for the 2014-15 NBA Playoffs 12
2.4.3 Additional Model Evaluation and Usage 15

2.5 Conclusion . 17

Chapter 3 Modeling Basketball Substitutions from Play-by-Play Data . . 18
3.1 Introduction . 18
3.2 Related work . 19
3.3 Data collection . 21
3.4 Model . 23

3.4.1 Substitutions . 24
3.4.2 Simulation of CTMC: Alarm clocks 28
3.4.3 Scoring rates . 33

3.5 Simulation and Results 34
3.5.1 Dead-end strategy 1: Reverse gear 35
3.5.2 Dead-end strategy 2: Reduced state and dead-end

state removal . 35
3.5.3 Dead-end strategy 3: Stay in dead-end state . . . 36
3.5.4 Results . 37

v

3.6 Conclusion and future work 40
3.7 Maximum likelihood estimate derivation 44

3.7.1 DTMC . 46
3.7.2 CTMC . 47

Chapter 4 Removing Absorbing States from Markov Chain Models 49
4.1 Introduction . 49
4.2 Background . 52
4.3 Mathematical Methods 53

4.3.1 DTMC Optimization Problem and Solution . . . 53
4.3.2 CTMC Optimization Problem and Solution . . . 56

4.4 Simulated Data Tests . 58
4.4.1 Metrics . 58
4.4.2 Data Generation and Optimization Test 59
4.4.3 Long-Term Error Test 61
4.4.4 Short-Term Error Test 62

4.5 Real Data Tests . 64
4.5.1 NBA Data . 64
4.5.2 Biomedical data 66

4.6 Remarks . 67

Chapter 5 Conclusion . 76

Bibliography . 81

vi

LIST OF FIGURES

Figure 2.1: We plot true and simulated times played by each 5-man unit.
We have plotted the line y = x in red; deviations from this
line constitute model error. Simulations are carried out using a
continuous-time Markov chain model for substitutions inferred
from play-by-play data. Note that the plot has log-scaled axes. 10

Figure 2.2: We plot true and simulated times played by each player. We
have plotted the line y = x in red; deviations from this line
constitute model error. Simulations are carried out using a
continuous-time Markov chain model for substitutions inferred
from play-by-play data. Note that the plot has log-scaled axes. 11

Figure 3.1: Example of a play-by-play game data 22
Figure 3.2: Example of plus/minus of players for four quarters of a game. . 22
Figure 3.3: Basketball game between two teams: 5 vs. 5 24
Figure 3.4: Example of players substitutions 25
Figure 3.5: Example of how a team scores 25
Figure 3.6: Flowchart of our basketball data modeling 26
Figure 3.7: Holding times for all NBA lineups for the 2015-15 regular sea-

son. Notice the empirical CDF and the theoretical CDF are
similar. Note the holding times for each individual team’s line-
ups might not be exponential. 30

Figure 3.8: Transition of lineups/states of Golden State Warriors in true
match against New Orleans Pelicans on 10/27/15. Most lineups
only played once. 30

Figure 3.9: True vs. simulated lineup and player playing time for the
2015-16 regular season. Although there is a good in-sample fit
between the simulation and true data, we see the model over-
simulates many lineups and players in both plots. See Table 3.4
for an example of a problem using all states. 32

Figure 3.10: Example of state transitions containing an absorbing state S5.
If we start with state S1, then either it proceeds to states 2 and
3 before returning or it jumps to state 4 and ends at state 5,
which leads to nowhere. 35

Figure 3.11: An example of reduced-state method: We remove states S5
and S4 because S5 is a dead-end state and S4 played less than
the threshold time: 120 seconds. 36

Figure 3.12: In-sample lineup and player simulated and true playing time
for reduced-state method. The threshold time T is 2 minutes. 37

Figure 3.13: An example of dead-end strategy. Allow simulation to stay
in the dead-end state if it is the last state transition, or else,
transition from the dead-end state to one of the starting states. 37

vii

Figure 3.14: Margin of victory for all 1,230 season games. On the left, we
plot the absolute difference between simulated and true margin
of victory for each game. On the right, we plot simulated and
true margins of victory. 38

Figure 3.15: On the left, we plot in-sample (training) accuracy as function
of home-court advantage. On the right, we plot simulated and
true margin of victory with and without optimal home-court
advantage shown in the left plot. 38

Figure 3.16: In-sample (training) accuracy of whole regular seasons based
on different scoring-rate methods. Best home-court advantages
that yield the best in-sample accuracies for the methods are
plotted in the vertical lines. 39

Figure 3.17: Average relative errors for all 30 NBA teams for different size
of training sets for simulating playing time for both team lineups 40

Figure 3.18: Average relative errors for all 30 NBA teams for different size of
training sets for simulating playing time for both team lineups
and players. The blue and red curves correspond to relative
errors of training and test sets. 41

Figure 3.19: Season game prediction. Observe our predictive accuracy is
as competitive as other models. The best out-of-sample accu-
racy seems to be when the training set consists of the first 68
games. However, the out-of-sample accuracy has several peaks
and valleys. 42

Figure 4.1: We plot simulated versus true (training set) playing times for
naive (top) and fixed (bottom) CTMC models. Each point on
each plot corresponds to one 5-person unit for one team. We
see that the fixed model features practically zero training error,
dramatically reducing the training error from the naive model. . 71

Figure 4.2: We plot naive (left) and fixed (right) CTMC test results using
40-game training sets. The fixed model decreases RMSE error
by ≈ 60.4%. For further details, see Section 4.5.1. 72

Figure 4.3: We plot naive (left) and fixed (right) CTMC test results using
60-game training sets. The fixed model decreases RMSE error
by ≈ 61.9%. For further details, see Section 4.5.1. 72

viii

LIST OF TABLES

Table 2.1: Sample rows of data frame produced by scraping play-by-play
data. 7

Table 2.2: For each of the 30 NBA teams, we record the total number of
5-man units used by the team during the 2014-15 regular season.
In our Markov chain model, this is the number of states Ni for
each team i ∈ {1, 2, . . . , 30}. 8

Table 2.3: Predictions (left, with non-integer values of margin) and ground
truth (right) for 15 NBA playoff series. The above results are test
set results using the continuous-time Markov chain substitution
model and the simple average scoring rate model. The model
correctly predicts 11/15 of the winners. 13

Table 2.4: Test set results for ridge regression (left, 80% accuracy), support
vector regression (center, 46% accuracy), and k-nearest neighbor
regression (right, 66% accuracy). Note that the ridge regression
scoring rate model results in a correct prediction for 12 out of
the 15 playoff series; this is the best model considered in this
chapter. For the order of the playoff series and true winners,
please see Table 2.3. 15

Table 3.1: Sample rows of data frame produced by scraping play-by-play
data. 23

Table 3.2: Example of two different lineups/states. Even though lineup 1
and lineup 2 differs by one player, we treat them as different
states in our model. 26

Table 3.3: Total number of lineups used by each team. Lineups for playoff
teams are included. Since each team has about 18 players, there
are

(
18
5

)
= 8, 568 lineup choices if we do not use the data. 31

Table 3.4: Only 6 lineups are used in one simulated game. Note: Kevon
Looney and Jason Thompson played 5 and 28 games, respec-
tively, in season 2015-16. Thompson was traded to the Toronto
Raptors in March. The appearance of states involving Jason
Thompson and Kevon Looney is unavoidable if we use the entire
regular-season to build the model. 33

Table 3.5: Number of lineups remaining after 2-minute threshold filter. Ob-
serve the reduced number of lineups compared to the counts in
Table 3.3 . 36

Table 3.6: Check marks correspond to strategies used. Home court advan-
tage is chosen to minimize in-sample error; For each team, train-
ing set is the first 75 games, test set is the remaining 7 games.
30 days is used in ‘weighting by days’ strategy. 39

ix

Table 4.1: We record the average constraint violation for fixed CTMC and
DTMC models as a function of the number of states. These
results have been averaged across 1000 simulations. 60

Table 4.2: Long-term training (top) and test (bottom) errors for the fixed
CTMC procedure at each of the test time series lengths and
different number of states. The training time series is of length
10000. 62

Table 4.3: Long-term training (top) and test (bottom) errors for the fixed
DTMC procedure at each of the test time series lengths and
different number of states. The training time series is of length
10000. 69

Table 4.4: We tabulate absolute differences between fixed and naive DTMC
(top) and CTMC (bottom) short-term test errors. For both types
of models, we consider increasing state space dimension M and
an increasing number of simulations. For all simulations, the
training and test set lengths are, respectively, 1000 and 3000. . . 70

Table 4.5: For each team, we compute fixed CTMC models using training
sets of either the first 40 (left of bar) or 60 (right of bar) non-
overtime, regular season games. For each fixed model, we report
Dim, the dimension of ε, equal to M(M − 1) where M is the
number of states or unique 5-person units in that team’s train-
ing set. We report NNZ, the number of nonzero entries in the
computed ε—the small values of NNZ relative to Dim show that
the computed solutions are highly sparse. Finally, we record CV,
the maximum constraint violation reported by the optimizer—all
values are close to zero. 73

Table 4.6: Long-term errors with training size 500 on Holson data. 74
Table 4.7: Long-term errors with training size 500 on preproglucacon data. 74
Table 4.8: Training time comparison between our models and best-case

HMM models on Holson and preproglucacon data sets 74
Table 4.9: Long-term training, long-term test, and long-term total error

for different internal states with 3 outputs. The HMM model is
applied to the first 500 observations of Holson data with training
50 iterations. The best model of each internal state is chosen
based on the maximum of negative log likelihood. The test set is
the remaining data. Random seed is set at 7 for reproducibility.
The training time was about 14,684 seconds, or 244.7 minutes. . 74

x

Table 4.10: Long-term training, long-term test and long-term total errors
with with training size 500 on the preproglucacon data using
HMM with parameter training size 100 and different internal
state sizes. Best model of each internal state was chosen after
training 10 times with different transition probability and emis-
sion probability matrix. Training time for all sizes of the internal
states, including choosing the best models, was about 6,858 sec-
onds (≈114 minutes). 75

xi

ACKNOWLEDGEMENTS

I would like to thank several people for making my PhD journey possible. First

are my family. They have been phenomenal for the past five years. Their encour-

agement and support really kept me going when I was struggling, doubtful and

thought of giving up. Second is my PhD and research adviser, Harish Bhat. I

recall numerous fun and interesting conversations regarding research, basketball,

and life in general to help propel my research. Mostly important, he helped steer

my research in a clear direction when I seemed lost. Third is my friend and col-

laborator, Sebastian Rodriguez. Sebastian was an amazing undergraduate student

I worked with between 2015 and 2016. He helped mine all the NBA data I needed

for the basketball projects. I owe many thanks to him. Fourth are my committee

members, Professor Rick Dale and Professor Arnold D. Kim. Their valuable feed-

back has helped me think about various aspects of basketball modeling. Fifth are

my PhD year 2013 cohort and the Applied Math Unit, especially Michael Stobb

and Mario Banuelos for contributing ideas and troubleshooting some of my coding

problems. Finally, I would to acknowledge funding and resource support I re-

ceived during the PhD program: UC Merced Applied Mathematics Summer 2017

Research Fellowship, Summer 2018 Applied Mathematics Travel Scholarship, and

the Merced cluster, which is funded by the National Science Foundation (Grant

No. ACI - 1429783).

xii

VITA

2018 Ph.D., Applied Mathematics, University of California,
Merced

2013-2018 Graduate Teaching Assistant, University of California,
Merced

2013 Postgraduate Work in Applied Mathematics, Califor-
nia State University, Northridge

2011 Undergraduate Workshop Assistant, California State
University, Fullerton

2011 B.A., Mathematics, California State University, Fuller-
ton

PUBLICATIONS

Bhat, H.S., Rodriguez, S., Huang, L., “Eliminating Absorbing States and Driving
Markov Chains to Desired Equilibria”, IEEE International Conference on Data
Science and Advanced Analytics (DSAA), 2018.

Bhat, H.S., Rodriguez, S., Huang, L., “Learning Stochastic Models for Basketball
Substitutions From Play-by-Play Data”, Machine Learning and Data Mining for
Sports Analytics Workshop (MLSA) at European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery (ECML-PKDD), 2015.

Bhat, H.S., Rodriguez, S., Dale, R., Heit, E., Huang, L., “Citation Prediction
Using Diverse Features”, Data Science and Big Data Analytics Workshop at the
International Conference on Data Mining (ICDM), 2015.

xiii

ABSTRACT OF THE DISSERTATION

Markov Chain Models and Data Science Applications

by

Li-Hsuan Huang

Doctor of Philosophy in Applied Mathematics

University of California Merced, 2018

Professor Harish S. Bhat, Chair

National Basketball Association basketball is a dynamic sport played by various 5-

person units (lineups) from two teams for 48 minutes. Researchers have attempted

to model the dynamics of the game using play-by-play data, which contains a game

log of events on the court and times at which those events happened. Recent work

involving NBA play-by-play data used discrete-time Markov chains to model team

possession-related events to predict final game scores. Moreover, the availability

of optical player tracking data has allowed researchers to model game progression

on an individual player level. While the work captured details of games, game

progression driven by lineups used by each team and the amount of time played

by each lineup on the court were not considered.

Using NBA play-by-play data, we sought models for time series detailing tran-

sitions of lineups (states) and the times at which a new lineup was used. Because

substitutions occur at random times, we built a continuous-time Markov chain

(CTMC) model for each NBA team in which each state corresponds to a unique

lineup. Using the 2014-15 NBA season, we correctly predicted 12 out of 15 playoff

outcomes. Nevertheless, all CTMC models suffered from absorbing states.

Each time series might have a final state which has never been reached pre-

viously. In this case, the final state will end up being an absorbing state for

the maximum-likelihood-estimate Markov model. In the long run, an absorbing

Markov chain has equilibrium distribution supported entirely on the set of absorb-

xiv

ing states. To remedy this problem in a basketball simulation, we considered three

strategies: i) reroute to a more probable state if an absorbing state is reached,

ii) remove lineups that played less than 2 minutes and lineups corresponding to

absorbing states in a season, and iii) allow simulation to stay in the absorbing state

if it is the final state reached before the game is over. Combining these strategies

with scoring-rate models built using singular value decomposition and weighted ob-

servations, we obtained best training and test accuracy of 75% and 70%, training

on the first 75 games and testing on the remaining 7 games for the 2015-16 NBA

season. A test accuracy of 70% compares favorably with state-of-the-art models.

These ad hoc absorbing-state strategies, developed for NBA data, however,

might not be valid in other applications; hence, we developed stable optimiza-

tion algorithms that systematically solve the issue of absorbing states so that the

Markov chains reach desired equilibria and achieve zero long-term training error.

We defined long-term training error as the one-norm difference between the equi-

librium distribution of an MLE derived Markov chain and the actual fraction of

time spent in each state on the training data. We then applied the optimization

methods to the NBA data and to two finite-state, discrete-time biomedical data

sets. The results showed smaller long-term training and test errors compared to

naive MLE models. Furthermore, for the biomedical data, the methods yield sim-

ilar long-term errors as hidden Markov models while requiring significantly less

training time.

xv

Chapter 1

Introduction

Within the field of sports analytics, basketball modeling has attracted sig-

nificant recent interest. Machine learning and deep learning methods have been

applied to predict both outcomes and margins of victory for NBA games for bet-

ting purposes. Nonetheless, all such efforts require manual feature extraction and

hyperparameter tuning in order to achieve acceptable performance.

National Basketball Association basketball is a dynamic sport played by various

5-person units (lineups) from 30 teams. In a regulation-length game, two teams

play against each other for 4 quarters of 12 minutes each. The objective of each

team is to outscore the opponent. Researchers have attempted to model the dy-

namics of the game using play-by-play data, which contains a game log of events

and times for which those events happened. Recent work involving NBA play-

by-play data used discrete-time Markov chains to model possession-based events

to predict final game scores (Shirley 2007; Štrumbelj and Vračar 2012). More-

over, the availability of optical player tracking data has allowed researchers to

model game progression on an individual player level, to gain insights into players’

decision-making tendencies (Oh et al. 2015; Cervone et al. 2016). While this

captures details of games, it does not consider substitution, lineup usage, and the

amount of time played by each lineup.

Using NBA play-by-play data, we seek to model substitutions, i.e., transitions

between lineups (states) and the times at which substitutions/transitions occur.

Each state maps to a unique 5-person unit. Because substitutions of lineups occur

1

2

at random times, we saw a need for a continuous-time stochastic model over a

discrete-state space model. In this dissertation, we consider a continuous-time

Markov chain (CTMC) model for each NBA team, augmented by scoring-rate

models.

We mined play-by-play data from the 2014-2016 NBA seasons. We obtained

structured data containing information such as which lineup played on the court

for two teams before a substitution occurred. We also recorded team scores and

point differentials when substitutions occurred. More features such as player fouls

were also mined.

I now outline each chapter of the dissertation.

In Chapter 2, using play-by-play data from all 2014-15 regular season NBA

games, we built a generative model that accounts for substitutions of one lineup

by another together with the plus/minus rate of each lineup. The substitution

model consists of a CTMC with transition rates inferred from data. We compared

different linear and nonlinear regression techniques for constructing the lineup

plus/minus rate model. We used our model to simulate the NBA playoffs; the test

error rate computed in this way is 20%, meaning that we correctly predicted the

winners of 12 of the 15 playoff series. However, the substitution models suffered

from absorbing states. In many regular-season NBA games, several rare lineups

are played when a team is leading or trailing by large margin. Typically those

lineups are the last lineups to play on the court till the end of game and might

not have been observed previously. Hence, in the estimated models, those lineups

will be the absorbing states. The equilibrium distributions of those models do not

capture the actual fraction of time spent in each state.

In Chapter 3 we extended our work from Chapter 2 to the 2015-16 NBA season.

We delved into the issue of absorbing states in Markov chain models whose equilib-

rium distributions differ significantly from the actual fraction of time spent in each

state. For predicting a player or a lineup playing time, absorbing Markov chains

have equilibria supported entirely on the set of absorbing states. For a basketball

game, the last 5-person unit on the court might not be playing much. Hence, such

CTMCs yield poor predictive accuracy. To resolve the absorbing state issue, we

3

considered three ad hoc strategies: i) reroute to a more probable state if an absorb-

ing state is reached, ii) remove lineups that played less than 2 minutes and lineups

corresponding to absorbing states in a season, and iii) allow simulation to remain

in the absorbing state if it was the final state reached before the game is over.

Combining these strategies with scoring-rate models built using singular value de-

composition, weighted observations based on dates by percentage and exponential

functions, we obtained best training and test accuracy of 75% and 70%, training

on the first 75 games and testing on the remaining 7 games for the 2015-16 NBA

season. The 70% test accuracy compares favorably to state-of-the-art models.

Motivated by our work in NBA analytics, we answered in Chapter 4 the ques-

tion, “How can we eliminate absorbing states from absorbing Markov chains so

that the new Markov chains have desired equlibria?” We considered an absorbing

Markov chain model a naive model, whereas the new Markov chain model after

absorbing state removal is a fixed model. A Markov chain has a desired equilib-

rium if it is exactly the actual observed fraction of time spent in each state. To

remedy the problem of absorbing state(s), we developed stable Markov chain op-

timization (MCO) algorithms for discrete-time Markov chain and continuous-time

Markov chain models. Each algorithm finds a sparse perturbation to the absorb-

ing Markov matrix so that the new estimated matrix has equilibrium distribution

matching exactly the observed fraction of time spent in each state. We formulated

this as a linear programming problem and solved it efficiently and accurately using

Python linear programming solvers cvxopt and mosek (Andersen et al. 2018; ApS

2018).

Applying MCO to the NBA data, we achieved zero long-term training errors

for lineup playing times for all teams. The long-term training (respectively, test)

error is defined as the one-norm error between the equilibrium of a Markov chain

and the true fraction of time spent in each state in the training (respectively, test)

set. Training on the first 40 and first 60 non-overtime games for each team, and

testing on an average of 40 and 20 games, root mean-squared error going from

naive to fixed models is reduced by 60%. The fixed model, on average, is off by 30

seconds for each lineup. This is a significant improvement from previous models.

4

We further tested the optimization method on two discrete-time biomedical

data sets obtained from the R package markovchain: Holson and preproglucacon.

The Holson data set contains life history trajectories for 1000 unique patients,

each measured at 11 points in time. The measurement at each time has value 1,

2, or 3. Preproglucacon data is the DNA sequence for the gene that encodes the

protein preproglucacon. This data consists of 1572 observations with bases A, T,

C, G coded numerically as 1, 4, 2, 3. Similar to the continuous-time counterpart,

the MCO on the two data sets achieved zero long-term training errors and smaller

long-term test errors compared to absorbing Markov chain models (naive models).

While these long-term errors are comparable to those from hidden Markov mod-

els (HMM), we observed that MCO has much shorter training time compared to

HMM.

Chapter 2

Modeling Basketball

Substitutions and Scoring Rates

2.1 Introduction

If one watches a basketball game played in the NBA, one cannot help but

notice that players are substituted in and out with regularity. A large difference

between basketball and other sports such as football/soccer and baseball is that

a player who is substituted out of the game can return to play at a later time.

Substitutions can substantially alter the strategy employed by the 5-person unit

on the court. Many teams field, at different times of the game, different lineups

in order to change the emphasis placed on aspects such as (but not limited to)

rebounding, pace and fast break opportunities, or long-range shooting.

In short, an NBA team is actually a collection of different 5-person units. On

average, in the 2014-15 regular season, teams used 15.1 different 5-person units

per game. In this work, we use play-by-play data to build stochastic models for

the dynamics of these 5-person units. Combining this model of substitutions with

scoring models for each 5-person unit, we obtain generative models that can be

used to simulate games. The ultimate goal of these models is to answer questions

such as: in a 7-game series between two teams, what is the probability each team

will win? Motivated by this goal, in the present work, we seek baseline continuous-

5

6

time stochastic models that can be used as a starting point for further modeling

efforts.

Our work builds on different strands of the literature. Discrete-time Markov

chain models of basketball have been considered in Shirley (2007), for instance.

One particularly successful model uses a discrete-time Markov chain to rank NCAA

basketball teams (Kvam and Sokol 2006). Classification methods from machine

learning have been applied to basketball “box score”-type data to make daily pre-

dictions of the winners of college basketball games (Shi et al. 2013). Continuous-

time stochastic models have been considered by Peuter (2013), though in these

models the lineup of players on the court is ignored. Finally, very recent work

models the spatial location of all players on the court during the game (Cervone

et al. 2016), with possessions modeled as a semi-Markov process. Perhaps the

work closest to ours is Oh et al. (2015), which develops a probabilistic graphical

model to simulate matches, including changes to team lineups. One of the main

conclusions of Oh et al. (2015) is that the outcome of individual games and series

are sensitive to changes in the team lineup. Our work uses this as a starting point

for modeling.

2.2 Data Collection

Although sources such as NBA.com and ESPN provide statistics of teams and

individual players, we found it difficult to obtain, from such sources, statistics

on the performance of 5-person units or lineups. To obtain this information, we

mined 2014-15 regular season NBA play-by-play data from knbr.stats.com, sup-

plemented by data from Basketball-Reference.com, to account for substitu-

tions taking place between quarters. For each play-by-play HTML page, we used

Beautiful Soup, a Python package, to scrape the information needed from the

text descriptions of particular plays.

To give an example of how the data appears after processing, we present Table

3.1. Each row of this data set corresponds to a group of 10 players who played on

the court for a positive amount of time before at least one substitution was made

7

1
(D

at
e)

2
(H

om
e

T
ea

m
)

3
(V

is
it

in
g

T
ea

m
)

4
(H

om
e

P
la

ye
r

1
)

5
(H

om
e

P
la

ye
r

2)

6
(H

o
m

e
P

la
ye

r
3
)

7
(H

o
m

e
P

la
ye

r
4)

8
(H

o
m

e
P

la
ye

r
5)

9
(V

is
it

in
g

P
la

ye
r

1)

10
(V

is
it

in
g

P
la

ye
r

2
)

11
(V

is
it

in
g

P
la

ye
r

3
)

12
(V

is
it

in
g

P
la

ye
r

4
)

13
(V

is
it

in
g

P
la

ye
r

5
)

14
(S

ec
o
n

d
s

P
la

ye
d

)

15
(H

om
e

E
ve

n
ts

)

16
(V

is
it

in
g

E
ve

n
ts

)

17
(T

o
ta

l
E

v
en

ts
)

18
(H

om
e

S
co

re
)

19
(V

is
it

in
g

S
co

re
)

20
(∆

i—
se

e
E

q
.

(3
.1

))

20150127 Mia Mil 478 479 480 487 481 57 426 425 431 427 350 13 21 34 15 17 -2

20150127 Mia Mil 479 480 487 481 484 57 426 425 431 427 149 8 27 14 20 22 0

20150127 Mia Mil 480 487 484 485 478 57 426 425 431 427 124 7 32 12 22 24 0

20150127 Mia Mil 487 484 485 478 185 57 425 427 430 429 97 14 6 13 29 30 1

20150127 Mia Mil 478 484 485 185 483 425 429 430 428 432 73 4 4 8 29 30 0

Table 2.1: Sample rows of data frame produced by scraping play-by-play data.

by either team. Columns 1-3 record the date of the game and the identities of

the home and visiting teams. Columns 4-8 record the identities of the five players

on the court for the home team, while columns 9-13 record the same information

for the visiting team. Column 14 contains the number of seconds this group of 10

players (5 from each team) played just before one substitution was made by either

team. Columns 15-17 record the number of play-by-play events that have occurred

for the home, visiting, and both teams since the last substitution. Columns 18-19

record the home and visiting scores at the time just before the substitution was

made.

Column 20, the last column, records the change in point differential. Let the

current home and visiting scores (recorded in columns 18-19) be Hi and Vi, respec-

tively. Then the change in point differential ∆i is

∆i = (Hi − Vi)− (Hi−1 − Vi−1), (2.1)

with the understanding that the initial scores are H0 = V0 = 0. This quantity

is the “plus/minus” of the two 5-person units on the court. If we start the first

row of Table 3.1, we see that at the time the first substitution is made, ∆1 = −2,

corresponding to home and visiting scores of 15 and 17, respectively. At the time

the next substitution is made, the score is 20 to 22 in favor of the visiting team.

Because the differential is still −2, the change in differential is zero, i.e., ∆2 = 0.

Viewed from the point of view of the home 5-person unit, this means that even

8

1
(A

tl
)

2
(B

k
n

)

3
(B

o
s)

4
(C

h
a)

5
(C

h
i)

6
(C

le
)

7
(D

al
)

8
(D

en
)

9
(D

et
)

10
(G

S
)

11
(H

o
u

)

12
(I

n
d

)

13
(L

A
C

)

14
(L

A
L

)

1
5

(M
em

)

401 669 309 516 372 426 387 446 523 466 518 841 504 504 481
1
6

(M
ia

)

17
(M

il
)

18
(M

in
)

19
(N

O
)

20
(N

Y
)

21
(O

K
C

)

22
(O

rl
)

23
(P

h
i)

24
(P

h
o)

25
(P

or
)

26
(S

A
)

27
(S

a
c)

28
(T

o
r)

29
(U

ta
)

3
0

(W
a
s)

415 404 472 702 362 420 358 586 563 807 574 470 541 265 417

Table 2.2: For each of the 30 NBA teams, we record the total number of 5-man
units used by the team during the 2014-15 regular season. In our Markov chain
model, this is the number of states Ni for each team i ∈ {1, 2, . . . , 30}.

though the unit scored 5 points on offense, the unit yielded 5 points on defense. We

see that the ∆i value encapsulates both the offensive and defensive performance of

a particular 5-person unit. It is better to score only 3 points on offense and yield

0 points on defense than it is to score 20 points on offense while yielding 25.

2.3 Substitution Models

Our model consists of two parts: (i) a model for substituting one 5-person

unit by another, and (ii) a model for how each 5-person unit contributes to the

overall score of the game. In this section, we begin by describing a continuous-time

Markov chain model for substitutions. We construct one Markov chain for each of

the 30 teams in the NBA; let Mi denote the transition rate matrix of the Markov

chain for team i. The Markov chain for team i is completely specified by Mi.

Each state of Mi is a different 5-person unit that appears in the training data for

team i. Let Ni be the number of states for Mi; using the entire 2014-15 regular

season as training data, we obtain the following counts: For each i, we infer the

Ni ×Ni transition rate matrix Mi using the MLE (maximum likelihood estimate)

as derived in Section 3.7:

M̂ j,k
i =

#(j → k)

α(j)
. (2.2)

9

Here M̂ j,k
i is the estimate for the (j, k)-th entry of Mi, #(j → k) denotes the

number of observations of a transition from state j to state k, and α(j) denotes

the total time spent in state j. All of these values can be computed using the

play-by-play data.

To validate this model’s performance on the training set of all regular season

2014-15 NBA games, we simulate 8200 games for each team. We count the number

of substitutions made by each team and divide by 100 to obtain a Monte Carlo

estimate for the total number of substitutions made by each team in one full

season of play. The simulation follows standard algorithms for sampling from a

continuous-time Markov chain. Assume the system is currently in state j. We then

simulate exponentially distributed random variables with rates given by row j of

the transition rate matrix. The minimum of these samples gives us both the time

spent in state j as well as the identity of the new state k to which we transition.

We initialize the simulation using the most common 5-person unit for each team,

and we terminate the simulation once it reaches 2880 seconds, corresponding to a

regulation-length NBA game.

Using results for 29 of the 30 teams, the correlation between the simulated

and true number of substitutions is 0.8634. For one team, the Boston Celtics,

simulations predict 4627.57 substitutions in one season, while the true number is

1792. This is one indication that there are surely far better distributions than the

exponential to model the time spent in one state before transitioning. We discuss

ongoing work in this direction in Section 4.6.

In Fig. 2.1 and Fig. 2.2, we plot the true and simulated times played by each

of the 5-man units across all 30 teams (Pearson correlation of 0.834), and the true

and simulated times played by each of the 492 NBA players (Pearson correlation

of 0.915). All times are in minutes. The data from the last panel has been plotted

on log-scaled axes; the reported correlation is for the raw data.

Overall, the in-sample fit between true and simulated unit and player times

indicate that our model is a reasonable starting point to account for substitutions

and 5-person unit playing team. Clearly, further research is necessary to improve

the fit and develop a more predictive model of 5-person unit time. An obvious area

10

for improvement is to model the number of fouls committed by each player on a

team. Because a player must leave the game immediately after committing a sixth

foul, a player is more likely to be substituted out of the game as he accumulates

more fouls. Another idea is to allow the Markov transition rates to depend on how

many minutes remain in the game and the game score; towards the end of blowout

games, where one team leads another by a large margin, we see teams rest their

regular players in favor of bench players.

In what follows, we will show that the model developed here, despite its defi-

ciencies and though it ignores which team actually won each regular-season game,

is capable of prediction.

simulated playing time

tr
ue

 p
la

yi
ng

 ti
m

e

10−3 10−2 10−1 1 10 102 103

10
−2

10
−1

1
10

10
2

10
3

Figure 2.1: We plot true and simulated times played by each 5-man unit. We
have plotted the line y = x in red; deviations from this line constitute model
error. Simulations are carried out using a continuous-time Markov chain model for
substitutions inferred from play-by-play data. Note that the plot has log-scaled
axes.

2.4 Scoring Models and Results

The second part of our model considers the change in point differential (or

plus/minus) rate for each 5-person unit. We refer to this as our scoring model, even

though the concept of point differential incorporates both offensive and defensive

11

0 1000 2000 3000 4000 5000

0
50

0
10

00
15

00
20

00
25

00
30

00

simulated playing time

tr
ue

 p
la

yi
ng

 ti
m

e

Figure 2.2: We plot true and simulated times played by each player. We have
plotted the line y = x in red; deviations from this line constitute model error.
Simulations are carried out using a continuous-time Markov chain model for sub-
stitutions inferred from play-by-play data. Note that the plot has log-scaled axes.

performance, as described in Section 2.2.

2.4.1 Results for the 2014-15 NBA Regular Season

When simulating the continuous-time Markov chain substitution model, if the

system spends τ units of time in state i, we multiply τ by the scoring rate associated

with this state. This yields a change in point differential for a particular segment

of game time. Summing these point differential changes across a 48-minute game,

we obtain an aggregate point differential. Again, we initialize the system in the

state corresponding to the lineup most often used by the team. To simulate a game

between two teams, we simulate each team’s aggregate point differential separately;

the team with the larger value is then declared the winner.

In the most basic scoring model, we assign to each 5-person unit an average

scoring rate. That is, across the entire training set, we sum the change in point

differentials for a particular 5-person unit and divide by the total time this 5-

12

person unit spent on the court. Using this scoring rate, we simulate each of the

1230 regular season games 100 times and average the results for each game. We

produce from this simulation three confusion matrices corresponding to true and

predicted winners (H = home, V = visiting):

H V[]
H 506 202

V 200 322

H V[]
H 329 94

V 152 280

H V[]
H 220 54

V 90 186

Rows correspond to predictions while columns correspond to the truth. From left

to right, we show results on all games (overall accuracy of 0.67), games in which

the predicted margin was ≥ 5 points (overall accuracy of 0.71), and games in which

the predicted margin was ≥ 10 points (overall accuracy of 0.73).

2.4.2 Results for the 2014-15 NBA Playoffs

Because we used regular-season data to train the model, we must consider the

above results to be training set results. To develop test set results, we consider the

2015 NBA playoffs. For each best-of-7 playoff series, we predict the winner, the

expected margin of victory, and the probability of victory. Note that the margin

here is in terms of the game score, i.e., if one team sweeps another, the margin is 4,

whereas if the series goes to a seventh game, the margin will necessarily be 1. We

present our predictions on the left and the truth on the right: Overall, our model

correctly predicts 11 out of the 15 playoff series winners. Two of the erroneous

predictions were made on series that were decided in a seventh and final game.

Ridge Regression. The next scoring model we present is built using ridge re-

gression (Hastie et al. 2009). Each NBA team plays 82 games in a regular season.

For team i, consider the 82×Ni matrix that indicates the number of seconds each

5-person unit played in each game. Let this matrix be X, and let ~y be the 82× 1

vector giving the margin of victory or defeat for each game. The rough idea is to

find ~β such that X~β = ~y. In this case, ~β will contain a plus/minus rate for each

5-person unit.

13

Series Winner Margin Probability Winner Margin

NO at GS GS 1.43 0.75 GS 4

Dal at Hou Hou 0.08 0.50 Hou 3

SA at LAC SA 0.24 0.51 LAC 1

Mem at Por Por 0.39 0.58 Mem 3

Mem at GS GS 1.07 0.64 GS 2

LAC at Hou LAC 0.72 0.64 Hou 1

Hou at GS GS 1.63 0.77 GS 3

Bkn at Atl Atl 2.05 0.82 Atl 2

Bos at Cle Cle 2.38 0.86 Cle 4

Mil at Chi Chi 0.92 0.66 Chi 2

Was at Tor Tor 1.04 0.68 Was 4

Was at Atl Atl 1.75 0.81 Atl 2

Chi at Cle Cle 0.91 0.67 Cle 2

Cle at Atl Cle 0.32 0.55 Cle 4

Cle at GS GS 0.32 0.58 GS 2

Table 2.3: Predictions (left, with non-integer values of margin) and ground truth
(right) for 15 NBA playoff series. The above results are test set results using the
continuous-time Markov chain substitution model and the simple average scoring
rate model. The model correctly predicts 11/15 of the winners.

There are two caveats. First, because Ni > 82 for all i, the linear system is

underdetermined. We choose ridge regression over LASSO for this problem because

we would like to determine a nonzero plus/minus rate for as many 5-person units

as possible. If this rate happens to be close to zero, then that is acceptable, but we

see no reason to promote sparsity as in LASSO. The second caveat is that while the

usual ridge regression penalty is ‖~β‖2
2, in our case, following this procedure yields

worse results than the average scoring rate model described above. Therefore, we

change the penalty to ‖~β − ~β0‖2
2, where ~β0 is the vector of average scoring rates

used in the earlier scoring model. We can implement this easily by considering

14

~β = ~β0 + ~β1. Then the ridge objective function is:

Jλ(~β1) = ‖ (~y −X~β0)︸ ︷︷ ︸
~y′

−X~β1‖2
2 +

λ

2
‖~β1‖2

2.

Passing ~y′ and X to a ridge regression solver then yields, for a fixed value of λ, a

minimizer ~β1. We use 10-fold cross-validation on the training set to determine an

optimal value of λ; we then rerun the ridge regression on the entire training set

using this optimal λ. This yields ~β1, which we add to ~β0 to obtain the scoring rate

model. Of course, this procedure is repeated for each team.

Using ridge regression, we improve our training set performance, as displayed

in the following confusion matrix:

[
509 194

197 330

]
. The overall accuracy is now 0.682.

We also see a slight improvement in test set performance as display in the left-most

table in Table 2.4, as we are now correctly predicting 12/15 or 80% of the playoff

winners. Among the models developed in this chapter, the ridge regression model

is the best. Again, two of the incorrect predictions are for series that were decided

in seven games.

Support Vector Regression. The next scoring model we consider is support

vector regression (SVR) with a radial basis function kernel. For team i, we extract

from the training data all rows and columns corresponding to 5-person units from

team i. This yields, for each team, a training matrix with approximately 1500-

2500 rows and exactly Ni columns. We fit one SVR model to each training matrix.

Then, when simulating a game, we use this SVR model to predict the change in

point differential generated by a particular 5-person unit over a particular stretch

of time.

Test set results for the SVR model are given in the central table in Table 2.4.

Because this model is more computationally intensive than the prior models, we

simulated each NBA playoff series 10 times rather than 100 times. Overall, we see

that only 7/15 or 46% of series winners have been predicted correctly.

Nearest Neighbor Regression. The final scoring model we consider is a k-

nearest neighbor regression model with k = 3. We train this model on the same

15

Winner Margin Prob.

GS 1.74 0.78

Hou 0.44 0.57

SA 0.42 0.54

Por 0.29 0.56

GS 0.32 0.53

Hou 0.01 0.53

GS 0.88 0.63

Atl 2.15 0.82

Cle 2.07 0.88

Chi 1.11 0.71

Tor 0.88 0.64

Atl 1.36 0.72

Cle 1.04 0.70

Cle 0.31 0.54

GS 0.16 0.51

Winner Margin Prob.

GS 2.50 0.90

Hou 3.20 0.90

LAC 0.80 0.90

Por 1.70 0.90

Mem 0.30 0.90

Hou 2.10 0.90

Hou 0.30 0.90

Bkn 2.50 0.90

Cle 0.80 0.90

Mil 0.80 0.90

Was 1.80 0.90

Was 3.20 0.90

Chi 2.90 0.90

Atl 1.90 0.90

GS 2.70 0.90

Winner Margin Prob.

GS 3.40 1.00

Hou 2.60 0.90

LAC 1.40 0.90

Por 1.00 0.70

GS 0.80 0.50

Hou 1.50 0.70

Hou 0.20 0.60

Bkn 2.40 1.00

Cle 2.50 0.80

Mil 1.50 0.70

Was 0.30 0.50

Was 0.30 0.60

Cle 2.00 0.80

Cle 0.10 0.50

GS 0.10 0.50

Table 2.4: Test set results for ridge regression (left, 80% accuracy), support vector
regression (center, 46% accuracy), and k-nearest neighbor regression (right, 66%
accuracy). Note that the ridge regression scoring rate model results in a correct
prediction for 12 out of the 15 playoff series; this is the best model considered in
this chapter. For the order of the playoff series and true winners, please see Table
2.3.

set of matrices used to train the SVR model. Playoff predictions are given in the

right-most table in Table 2.4. In situations where both teams won 5 of the 10

simulated series, we chose the team whose expected margin was positive. Overall,

we see that 10/15 or 66% of series winners have been predicted correctly.

2.4.3 Additional Model Evaluation and Usage

To assess whether our test set prediction accuracy is meaningful, we have built

three “box score” models. These models select—as a playoff series winner—the

team that has (i) scored the most points in the regular season, (ii) achieved the best

16

regular season winning percentage, and (iii) achieved the highest playoff seeding.

Respectively, these models correctly predict 8/15, 11/15, and 12/15 of the playoff

series’ winners. Of course, our model is more complex than these box score models;

naturally, we should expect our model to be capable of answering more complex

questions than a box score model is capable of answering.

Our model is particularly well suited to answer “What if?” questions involving

player/lineup usage. For example, the model can be used to assess the impact of a

player being injured. Atlanta’s Kyle Korver, one of the best three-point shooters

in the NBA, was injured and did not play after the first two games of the playoff

series against the Cleveland Cavaliers. From the next to the last row of Table 2.4,

we see that the continuous-time Markov chain with ridge regression scoring rate

predicts that Cleveland should win the series against Atlanta with a probability of

0.54 and a margin of less than one game (specifically, 0.31 games). These results

assume that the usage of players mirrors that of the regular season, i.e., that

Korver is healthy and able to play. As a test, we have removed from the Atlanta

Hawks’ transition matrix any 5-person lineup that involves Korver. Rerunning the

simulation, we now find that Cleveland should win the series with a probability of

0.79 and a margin of almost 2 games (specifically, 1.72 games). This is closer to

the real result, a 4-game series sweep by Cleveland.

While we have simulated the effect of a player not being to play at all, we note

that we can also simulate more subtle scenarios such as (i) a player only being able

to play a limited number of minutes per game, or (ii) a coach making a conscious

decision to use particular lineups more often against a given opponent.

We view our model as a modular component to be incorporated into (rather

than to replace) models that involve traditional predictors such as those used in

the box score models above. Our best model uses ridge regression to infer the

scoring rate for each 5-person unit, but completely ignores informative data such

as who actually won each regular season game. In future work, we seek to use this

information to generate improved predictions for the outcomes of games.

17

2.5 Conclusion

Given the simplicity of the model employed, our results are encouraging. There

are several clear directions in which the model can be generalized and improved.

First, at the moment, we are using a basic frequentist procedure to infer the tran-

sition rates of the continuous-time Markov chain. In ongoing work, we seek to

compare this procedure against more sophisticated techniques such as variational

Bayes and particle-based Monte Carlo inference (Opper and Sanguinetti 2007;

Hajiaghayi et al. 2014). Second, the continuous-time Markov chain assumes that

the holding time in each state has an exponential distribution. We seek to gener-

alize this to a distribution that more accurately models the data; this will yield a

semi-Markov process as in Cervone et al. (2016). While we have tested nonlinear

regression models such as SVR, we have not conducted extensive cross-validation

studies to find more optimal values of parameters for these models. For these

nonlinear models, it may be beneficial to consider several years worth of training

data. Finally, we expect that our scoring model can be improved by incorporating

the effect of the opposing 5-person unit on the court.

Chapter 3

Modeling Basketball

Substitutions from Play-by-Play

Data

3.1 Introduction

Before basketball data became widely available through the Internet, people

who were interested in understanding basketball had to rely on summary statistics

to determine the performance of a player and a team lineup. Summary statistics

are usually based on individual players, rather than on 5-person units (lineups).

If one watches an NBA game, one would notice that a player’s ability to score

consists of not only the player’s shooting accuracy, but also the lineup’s effort to

create a scoring opportunity.

Motivated by our previous work for the 2014-15 season, we use NBA play-by-

play data for the 2015-16 season to approach the following questions:

1. How can we model time played by lineups for all 30 NBA teams based on

substitutions?

2. How can we use such models to help predict game outcomes?

3. What methods can we use to increase our model’s flexibility and accuracy?

18

19

We seek continuous-time stochastic models to account for lineup substitutions

for all NBA teams, and we create team-specific scoring models to simulate games.

3.2 Related work

In this section we discuss work that has been done by others on basketball data

and modeling.

Shirley (2007) modeled NBA basketball games using play-by-play data and

discrete-time Markov chains with 30 states. Each state represents how a home

team or away team gains possession of the ball. Their main goals were to compute

in-game win probabilities for a home team and the change in win probability

as the number of possessions changes. They found that, regardless of number of

transitions, an average home team has a 61-65% chance of winning the home game.

However, the win probability changes when there are fewer transitions left in a

game, and the probability changes the most when the home team is leading. Their

results also showed a good estimate of the teams’ win percentage (R2 = 0.935) for

the 2003-04 season. However, the results were based only on in-sample prediction

due to insufficient data.

Štrumbelj and Vračar (2012) repeated Shirley’s model for the 2007-08 season

and obtained good estimates on teams’ actual win percentages for both in-sample

and out-of-sample data (R2 = 0.85). However, the results suggested the model

overestimated weaker teams. To improve upon Shirley’s model, Štrumbelj included

teams’ summary statistics such as effective field goal percentage and compared

the performance of his forecaster to others, such as Shirley’s model, bookmaker

odds mark, and an ELO rating system. Štrumbelj’s Markov model obtained out-

of-sample accuracies of 0.6896 and 0.7053 for the 2007-08 and 2008-09 seasons,

respectively. He noted that in both seasons, bookmaker odds mark has better pre-

dictive accuracies of 0.7042 and 0.7106 while Shirley’s method obtained accuracies

of 0.6698 and 0.6853.

Shi et al. (2013), on the other hand, applied several classifier learners on box-

score type data to predict NCAAB individual game outcomes. Their results showed

20

that for the seasons between 2009 and 2013, artificial neural networks and naive

Bayes yielded 70-74% out-out-sample accuracy. The authors observed that more

training data did not result in a better model and that Naive Bayes, one of the

simplest classifiers, performs well. Continuous-time stochastic models have been

considered by Peuter (2013). He also built models based on possessions but team

lineups are ignored. His results showed the competitiveness between his models

and Vegas forecasts for the 2012-13 season. Liu (2007) used a Bayesian social

relations model to investigate interactions between team players in relation to

offense, defense and how they contributed to the outcomes of the 2004 and 2005

NBA finals. The results of her model gave fair descriptions of player performance

and recognized some players’ contributions in offense and defense not visible in

traditional statistics.

On a finer scale, Shortridge et al. (2014) used spatial data to evaluate players’

shooting effectiveness. They developed metrics such as spatial shooting effective-

ness and points above league average, allowing them to distinguish two players

who have nearly identical traditional statistics such as effective field goal percent-

age. They also determine a player’s shooting effectiveness at different spots of the

half-court. Cervone et al. (2016) used multi-scale semi-Markov models on spatio-

temporal data to further investigate expected possession value (EPV) of players.

Based on EPV, they measure shot satisfaction of players who could either pass

the ball or attempt a shot. They compare EPVs of multiple players when they all

start a possession in the same situation. The methods allow one to see how and

why EPV changes.

Xin et al. (2017), treating a game as a series of networks, used a continuous-

time stochastic block model to help cluster player types for NBA games and obtain

estimates of the effectiveness of players at possession-related action, e.g., rebound-

ing. Their model can reveal differences in team offense strategies. Fewell et al.

(2012), in similar spirit, developed metrics to measure ball movement efficiency

(ball consistently moves to better shooters) and the predictability of ball move-

ment of a team. D’Amour et al. (2015) tried to quantify ball movement based on

possessions modeled using discrete states, continuous-time Markov chain.

21

Using stepwise multiple linear regression models, Gómez et al. (2016) explored

effects of player substitutions on point differences based on variables such as coach’s

decisions, player time in and out of the court, timeout, fouls, player field goal

effectiveness, game location, and quality of opposition according to 1, 5, and 10

ball possessions during each quarter. They found that the impact of substitutions

based on these factors was higher during the first and third quarters and lower

during the fourth quarter. For all teams they studied, away teams made more

substitutions than home teams, particularly when they were trailing. The home

teams made significantly more substitutions when they were leading. Interestingly,

this was not the case for the away teams.

Finally, the work closest to ours is by (Oh et al. 2015). Using probabilistic

graphical models, they simulated games using features such as possessions and

lineups and obtained good estimates for true teams’ win percentage (R2 = 0.87 on

testing set of 369 games in the 2013-14 season). Using their model, one can answer

question such as, “What is the predicted match outcome if I use these lineups

against the opposing team?” One main conclusion is that changes in team lineup

by either home or visiting team affects the dynamics and outcome of a game. Our

work uses this as a staring point for modeling.

3.3 Data collection

Although sources such as NBA.com and ESPN provide volumnious statistics

for teams and individual players, we found it difficult to obtain from such sites

comprehensive statistics on the performance of 5-person units or lineups. To obtain

this information, we mined 2015-16 regular season NBA play-by-play data from

knbr.stats.com, supplemented by data on substitutions taking place between

quarters from Basketball-Reference.com. For each play-by-play HTML page,

we used Beautiful Soup, a Python package, to scrape the information needed

from the text descriptions of particular plays. This is a more detailed description

of how we mined NBA data.

To give an example of how the data appears after processing, we present Table

22

Figure 3.1: Example of a play-by-play game data

Figure 3.2: Example of plus/minus of players for four quarters of a game.

3.1. Each row of this data set corresponds to a group of 10 players who played on

the court for a positive amount of time before at least one substitution was made

by either team. Columns 1-3 record the date of the game and the identities of

the home and visiting teams. Columns 4-8 record the identities of the five players

on the court for the home team, while columns 9-13 record the same information

for the visiting team. Column 14 contains the number of seconds this group of 10

players (5 from each team) played just before one substitution was made by either

team. Columns 15-17 record the number of play-by-play events that have occurred

for the home, visiting, and both teams since the last substitution. Columns 18-19

record the home and visiting scores at the time just before the substitution was

made1.

Column 20, the last column, records the change in point differential. Let the

current home and visiting scores (recorded in columns 18-19) be Hi and Vi, respec-

1The table actually consists of more columns than what is presented. For presentation pur-
poses, we omit the columns that do not contribute to our results.

23

1
(D

at
e)

2
(H

om
e

T
ea

m
)

3
(V

is
it

in
g

T
ea

m
)

4
(H

om
e

P
la

ye
r

1)

5
(H

om
e

P
la

ye
r

2)

6
(H

om
e

P
la

ye
r

3)

7
(H

om
e

P
la

ye
r

4)

8
(H

om
e

P
la

ye
r

5)

9
(V

is
it

in
g

P
la

ye
r

1)

10
(V

is
it

in
g

P
la

ye
r

2)

11
(V

is
it

in
g

P
la

ye
r

3)

12
(V

is
it

in
g

P
la

ye
r

4)

13
(V

is
it

in
g

P
la

ye
r

5)

14
(S

ec
on

d
s

P
la

ye
d
)

15
(H

om
e

E
ve

n
ts

)

16
(V

is
it

in
g

E
ve

n
ts

)

17
(T

ot
al

E
ve

n
ts

)

18
(H

om
e

S
co

re
)

19
(V

is
it

in
g

S
co

re
)

20
(∆

i—
se

e
E

q
.

(3
.1

))

20151027 GS NO 425 105 34 166 54 160 376 107 102 353 227 13 13 26 10 9 1

20151027 GS NO 425 105 34 166 54 160 401 107 102 353 199 26 11 24 25 18 6

20151027 GS NO 425 105 34 166 214 160 401 107 102 353 0 0 11 0 25 18 0

20151027 GS NO 425 105 34 166 214 160 401 107 102 5 71 5 6 11 32 20 5

20151027 GS NO 31 105 34 166 214 160 401 107 102 5 70 10 10 14 34 23 -1

Table 3.1: Sample rows of data frame produced by scraping play-by-play data.

tively. Then the change in point differential ∆i is

∆i = (Hi − Vi)− (Hi−1 − Vi−1), (3.1)

with the understanding that the initial scores are H0 = V0 = 0. This quantity is

the “plus/minus” of the two 5-person units on the court. If we start with the first

row of Table 3.1, we see that at the time the first substitution is made, ∆1 = 1,

corresponding to home and visiting scores of 10 and 9, respectively. At the time

the next substitution is made, the score is 25 to 18 in favor of the home team.

The differential is (25− 18)− (10− 9), and so the change in differential is six, i.e.,

∆2 = 6.

Viewed from the point of view of the home 5-person unit, this means that even

though the unit gave up 9 points on defense, the unit was able to score 15 and

thereby increase their team’s lead. We see that the ∆i value encapsulates both the

offensive and defensive performance of a particular 5-person unit. It is better to

score only 3 points on offense and yield 0 points on defense than it is to score 20

points on offense while yielding 25.

3.4 Model

Our model consists of two parts: (i) a model for substituting one 5-person unit

by another and (ii) a model for how each 5-person unit contributes to the overall

score of the game.

24

3.4.1 Substitutions

At any fixed instant of time, a basketball game is played between 5 players

from the home team and 5 players from the away team. Each game is 48 minutes,

consisting of four 12-minute quarters. The match begins with a jump ball, in which

the two tallest players from both teams try to help their team gain possession of

the ball. The player who obtains the ball either dribbles past the half-court or

passes the ball to his teammate. The goal for both teams is to put the ball into

the basket within 24 seconds. Each basket made has a value of one, two, or three

points, depending on different situations. Once a team scores a basket, the other

team has possession of the ball. The team with the largest sum from the baskets

made at the end of 48 minutes is the winner of the game. Figures 3.3 - 3.5 shows

examples of substitutions and how a team scores.

Figure 3.3: Basketball game between two teams: 5 vs. 5

During the game, a team can have multiple possessions of the ball. We consider

the following scenario as two consecutive ball possessions by a team: A player

misses a layup, and his teammate rebounds the ball and scores the basket. Unlike

other team sports, multiple player substitutions of players are allowed in basketball.

Coaches use substitution to rest players, avoid player foul trouble, put players

who play with synergy together, devise new offense and defense strategy, etc. A

substitution can occur at many possible times: after fouls, after timeouts, after out-

of-bounds play, etc. Hence we build our substitution model using discrete-state,

25

Figure 3.4: Example of players substitutions

Figure 3.5: Example of how a team scores

continuous-time Markov chains (CTMC). Each state of the chains corresponds to

a different 5-person unit/lineup. Table 3.2 is an example of different 5-person

lineups. Figure 3.6 shows the flowchart of our basketball data modeling. Before

continuing our discussion of basketball modeling, let us review some theory of the

discrete-state, continuous-time Markov chain.

Theory of continuous-time Markov chains.

Consider a state space S and a process Xt satisfying the Markov property,

P{Xt = y|Xr, 0 ≤ r ≤ s} = P{Xt = y|Xs}.

26

Figure 3.6: Flowchart of our basketball data modeling

State Player 1 Player 2 Player 3 Player 4 Player 5

1 425 105 34 166 54

2 425 105 34 166 214

Table 3.2: Example of two different lineups/states. Even though lineup 1 and
lineup 2 differs by one player, we treat them as different states in our model.

Suppose Xt is time-homogeneous,

P{Xt = y|Xr, 0 ≤ r ≤ s} = P{Xt−s = y|X0 = x}.

For each x, y ∈ S, x 6= y we define α(x, y) as the rate at which x jumps or moves

to y Lawler (2006). The total rate for which the chain changes from state x is∑
y 6=x

α(x, y).

A time-homogeneous continuous-time Markov chain with rates α is a stochastic

process Xt taking values in S satisfying

P{Xt+∆t = x|Xt = x} = 1− α(x)∆t+ o(∆t) (3.2)

27

P{Xt+∆t = x|Xt = y} = α(y, x)∆t+ o(∆t), y 6= x. (3.3)

Let px(t) = P{Xt = x}. Then, we can write 3.2 and 3.3 as a system of linear

differential equations,

p′x(t) = −α(x)px(t) +
∑
y 6=x

α(y, x)py(t).

Suppose we have an initial condition, px(0), x ∈ S and let A be the matrix whose

(x, y) entry equals α(x, y) if x 6= y and equals −α(x) if x = y.

If ~p(t) denotes the vector of probabilities, we can write the system as

~p′(t) = ~p(t)A,

which has solution

~p(t) = ~p(0)etA,

assuming the initial condition ~p(0). Now let pt(x, y) = P{Xt = y|X0 = x} and let

Pt be the matrix whose (x, y) entry is pt(x, y). The system of differential equations

can be written as a single matrix equation:

d

dt
Pt = PtA, P0 = I.

The matrix Pt is given by

Pt = etA.

We can use exponential waiting times to give an alternative description of the

Markov chain. Suppose rates α(x, y) have been given. Suppose X0 = x. Let

T = inf{t : Xt 6= x},

be the (holding) time at which the process first changes state. The Markov property

can be used to see that T must have the loss of memory property, and hence T

must have an exponential distribution. By 3.2,

P{T ≤ ∆t} = α(x)∆t+ o(∆t).

For this to be true, T must be exponential with parameter α(x). The infinitesimal

characterization of 3.3 can be used to check the probability that the state changes

to y is exactly α(x, y)/α(x).

28

To see T is exponential, consider P (T > s+ t|T > t). By definition

P (T > s+ t|T > t) =
P (T > s+ t, T > t)

P (T > t)
.

By the Markov property and time homogeneity, we can write the equation above

as

P (T > s+ t|T > t) =
P (T > s+ t, T > t)

P (T > t)
,

P (T > s|T > 0) =
P (T > s+ t)

P (T > t)
,

P (T > s) =
P (T > s+ t)

P (T > t)
,

which simplifies to

P (T > s)P (T > t) = P (T > s+ t).

The equation is only satisfied by an exponential function e−λt, where λ is the

parameter. In Figure 3.7, we plot the empirical CDF and true CDF of our NBA

data for all team lineups and observe that lineup substitutions, for the most part,

follow the exponential distribution.

3.4.2 Simulation of CTMC: Alarm clocks

Now if we are given the rates, we want to know how to construct the discrete-

state, continuous-time Markov chain. Let λi =
∑

j 6=i q(i, j) be the rate at which

the process leaves state i. Moreover, suppose λi > 0 and let r(i, j) = q(i, j)/λi be

the probability the chain goes to state j once it leaves i.

Computing the transition probability of the chain from the transition

rates q. Consider the Chapman-Kolmogorov equations:

pt+h(i, j)− pt(i, j) =

(∑
k

ph(i, k)pt(k, j)

)
− pt(i, j),

=
∑
k 6=i

ph(i, k)pt(k, j) + ph(i, i)pt(i, j)− pt(i, j).

pt+h(i, j)− pt(i, j) =
∑
k 6=i

ph(i, k)pt(k, j)− (1− ph(i, i))pt(i, j). (3.4)

29

Let q(i, j) = limh→0
ph(i,j)
h

for i 6= j. Then, dividing both sides of 3.4 by h and

letting h→ 0, we obtain

p′t(i, j) = lim
h→0

pt+h(i, j)− pt(i, j)
h

= lim
h→0

1

h

[(∑
k

ph(i, k)pt(k, j)

)
− pt(i, j)

]

= lim
h→0

1

h

[∑
k 6=i

ph(i, k)pt(k, j) + ph(i, i)pt(i, j)− pt(i, j)

]

= lim
h→0

1

h

[∑
k 6=i

ph(i, k)pt(k, j)− (1− ph(i, i)) pt(i, j)

]

= lim
h→0

1

h

[∑
k 6=i

ph(i, k)pt(k, j)−
∑
k 6=i

ph(i, k)pt(i, j)

]

=

[∑
k 6=i

lim
h→0

ph(i, k)

h
pt(k, j)−

∑
k 6=i

lim
h→0

ph(i, k)

h
pt(i, j)

]
=
∑
k 6=i

q(i, k)pt(k, j)−
∑
k 6=i

q(i, k)pt(i, j)

p′t(i, j) =
∑
k 6=i

q(i, k)pt(k, j)− λipt(i, j)

Let

Q(i, j) =

q(i, j) if j 6= i

−λi if j = i.

Then, we can write the differential equation as p′t = Qpt, which has solution

pt = eQt.

30

Figure 3.7: Holding times for all NBA lineups for the 2015-15 regular season.
Notice the empirical CDF and the theoretical CDF are similar. Note the holding
times for each individual team’s lineups might not be exponential.

We apply this knowledge and construct one Markov chain for each of the 30

NBA teams; let Mi denote the transition rate matrix of the Markov chain for team

i. The Markov chain for team i is completely specified by Mi. Each state of Mi is

a different 5-person unit that appears in the training data for team i. Let Ni be

the number of states for Mi; using the entire 2015-16 regular season and playoffs,

we obtain the following lineup counts in Table 3.3.

In Figure 3.8 we show an example of different 5-person units/states used by

the Golden State Warriors on October 27, 2015 against the New Orleans Pelicans:

Figure 3.8: Transition of lineups/states of Golden State Warriors in true match
against New Orleans Pelicans on 10/27/15. Most lineups only played once.

31

Team Total number of lineups Team Total number of lineups

ATL 414 TOR 336

CHI 460 MEM 625

GS 446 IND 420

BOS 440 LAC 423

DET 229 NYK 373

HOU 442 CLE 436

LAL 359 DEN 451

MIA 434 PHI 645

MIL 404 SA 565

BKN 452 NOP 554

ORL 437 WAS 495

PHX 588 CHA 323

POR 282 MIN 342

SAC 432 DAL 540

OKC 419 UTA 482

Table 3.3: Total number of lineups used by each team. Lineups for playoff teams
are included. Since each team has about 18 players, there are

(
18
5

)
= 8, 568 lineup

choices if we do not use the data.

For each team i, we infer the Ni × Ni transition rate matrix Mi using the

MLE (maximum likelihood estimate) as derived in Section 3.7 and also in Guttorp

(1995); Metzner et al. (2007a); Konstantopoulos (2006):

M̂ j,k
i =

#(j → k)

α(j)
. (3.5)

Here M̂ j,k
i is the estimate for the (j, k)-th entry of Mi, #(j → k) denotes the

number of observations of a transition from state j to state k, and α(j) denotes

the total time spent in state j. All these values can be computed using play-by-play

data.

To validate this model’s performance on the training set of 2015-16 NBA games,

we simulate 8200 games for each team. We count the number of substitutions made

by each team and divide by 100 to obtain a Monte Carlo estimate for the total

number of substitutions made by each team in one full season of play. The sim-

ulation follows standard algorithms for sampling from a continuous-time Markov

chain. Assume the system is currently in state j. We then simulate exponentially

distributed random variables with rates given by row j of the transition rate ma-

trix. The minimum of these samples gives us both the time spent in state j as

32

well as the identity of the new state k to which we transition. We initialize the

simulation using the most common 5-person unit for each team, and we terminate

the simulation once it reaches 2880 seconds, corresponding to a regulation-length

NBA game.

In Fig. 3.9, we plot the true and simulated times played by each of the 5-man

units across all 30 teams (left panel, Pearson correlation of 0.9809) and the true

and simulated times played by NBA players (right panel, Pearson correlation of

0.9955). All times are in seconds. The reported correlation is for the raw data.

Figure 3.9: True vs. simulated lineup and player playing time for the 2015-16
regular season. Although there is a good in-sample fit between the simulation and
true data, we see the model over-simulates many lineups and players in both plots.
See Table 3.4 for an example of a problem using all states.

Overall, the in-sample fits between true and simulated unit and player times

indicate that our model is a reasonable start for modeling substitutions and 5-

person unit playing times. Clearly, further research is necessary to improve the

fit and develop a more predictive model of 5-person unit times. An obvious area

for improvement is to model the number of fouls committed by each player on a

team. Because a player must leave the game immediately after committing a sixth

33

Lineup Player1 Player 2 Player 3 Player 4 Player 5

1 Harrison Barnes Stephen Curry Festus Ezeli Draymond Green Klay Thompson

2 Harrison Barnes Stephen Curry Draymond Green Andre Iguodala Klay Thompson

3 Leandro Barbosa Ian Clark Kevon Looney Brandon Rush Jason Thompson

4 Harrison Barnes Stephen Curry Draymond Green Andre Iguodala Klay Thompson

5 Andrew Bogut Stephen Curry Draymond Green Brandon Rush Klay Thompson

6 Andrew Bogut Stephen Curry Draymond Green Andre Iguodala Klay Thompson

Table 3.4: Only 6 lineups are used in one simulated game. Note: Kevon Looney
and Jason Thompson played 5 and 28 games, respectively, in season 2015-16.
Thompson was traded to the Toronto Raptors in March. The appearance of states
involving Jason Thompson and Kevon Looney is unavoidable if we use the entire
regular-season to build the model.

foul, a player is more likely to be substituted out of the game as he accumulates

more fouls. This affects how the player plays defensively, which in turn affects the

dynamics of his lineup. Another idea is to allow the Markov transition rates to

depend on how many minutes remain in the game and the game score; towards

the end of blowout games, where one team leads another by a large margin, we see

teams rest their regular players in favor of bench players.

3.4.3 Scoring rates

In the second part of our model, we consider changes in point differential

(plus/minus) rate for each 5-person unit. We refer to this as our scoring model,

even though point differential incorporates offensive and defensive performance,

as described in Section 3.3. When simulating the CTMC substitution model, we

multiply the time spent in a state by its associated scoring rate. Summing the re-

sults across a 48-minute simulated game, we obtain an aggregate point differential.

We initialize the system with a starting lineup, which we sample from the starting

lineup distribution. To simulate a matchup, we simulate each team’s aggregate

point differential independently. The team with the larger value is the winner of

the game. We also incorporate home-court advantage for the home team.

There are many ways to model scoring rates. The following are the methods

we have attempted.

Singular value decomposition (SVD). Consider the scoring matrix S whose

34

(i, j)−th entry corresponds to time played in game i by the jth lineup. In addition,

consider ∆ the vector of point differentials for all games the team played. Since

there are more columns (lineups) than rows (games), the linear system S~y = ∆

is underdetermined. To obtain the scoring rate ~y, we apply the SVD to find the

pseudoinverse S†. Multiplying S† and ∆ gives us the scoring rate ~y = S†∆.

Weighted observations. Intuitively, most recent games have more effect on

how two teams play against each other. To reflect this in our scoring rate model, we

consider weighting observations by dates. We first determine the day gap between

the date we would like to simulate the game and older game dates. This yields a

range of day differences greater than one. Most recent game dates will receive the

most weight. For example, we can assign a weight of 1 to the games played in the

last 30 days, and a weight of 0.25 to games played past a month. Incorporating

the weight matrix W and using the same scoring matrix and point differentials

vector ~∆ above, we obtain a linear system

Stime ~yrates to be determined = ∆actual plus/minus rates,

STWweightsS~y = STWweights∆,

~y = (STWS)†STW∆,

where (STWS)† is the pseudoinverse of STWS.

Exponentially weighting observation. Instead of choosing weights to weigh

observations based on dates, we can weigh observation based on an exponential

function. For example, choosing a date, we choose to weigh observations within

the 30-day period by 1 and others by the exponential function e−(other days−30)/30.

This method will generate tapered weights if we have observations from multiple

seasons or if we have many games much older than 30 days.

3.5 Simulation and Results

While constructing the CTMC matrices for all teams, we observed that not

all states transition to other states. In basketball this occurs, for example, if a

lineup is played till the end of the game. We call these states “dead-end” states

35

or absorbing states. See Figure 3.10 for an example. If M is a CTMC matrix, a

dead-end state corresponds to a row i for which

n∑
j 6=i

Mij = 0.

In a simulation, an absorbing state is forced to play for the remaining of the

game once it begins to play. This situation is unrealistic in a true basketball game.

To solve this problem, we develop three strategies: reverse gear, reduced states,

and dead-end states only at the end of the game. We briefly discuss the strategies

in the following subsections.

Figure 3.10: Example of state transitions containing an absorbing state S5. If we
start with state S1, then either it proceeds to states 2 and 3 before returning or it
jumps to state 4 and ends at state 5, which leads to nowhere.

3.5.1 Dead-end strategy 1: Reverse gear

In simulation, when we run into a dead-end state, we back track. This means we

can either return to a previous lineup, or use one of the starting lineups sampling

from its distribution.

3.5.2 Dead-end strategy 2: Reduced state and dead-end

state removal

Earlier plots of simulated and real lineup playing times show over-simulated

playing time for many team lineups. The scenario reflects a lineup that played

less than T minutes in a season but now plays more minutes in simulation. To

implement a reduced state strategy, we set a threshold time. Then, we proceed to

36

remove rows and columns corresponding to states/lineups that played less minutes

than the threshold during the season. This results in many states whose rows

sum to 0. We also remove these state rows and their corresponding columns. In

Table 3.5, we show lineup counts using reduced state models. Two minutes is our

threshold. In Figure 3.11, we show an example of reduced-state strategy applied

on a 5-state chain.

Team ATL CHI GS BOS DET HOU LAL MIA MIL BKN

Count 203 265 200 208 146 249 217 228 248 242

Team ORL PHX POR SAC OKC TOR MEM IND LAC NYK

Count 247 289 148 253 216 169 277 210 178 238

Team CLE DEN PHI SA NOP WAS CHA MIN DAL UTA

Count 227 252 353 247 334 250 184 189 273 275

Table 3.5: Number of lineups remaining after 2-minute threshold filter. Observe
the reduced number of lineups compared to the counts in Table 3.3

Figure 3.11: An example of reduced-state method: We remove states S5 and S4
because S5 is a dead-end state and S4 played less than the threshold time: 120
seconds.

3.5.3 Dead-end strategy 3: Stay in dead-end state

Every basketball game ends with a lineup/state that never transitions to an-

other state. To capture this pheonomenon of the game, we allow a dead-end

state/lineup to play if it was the last lineup played before the end of the game.

Otherwise, we transition to a staring lineup.

37

Figure 3.12: In-sample lineup and player simulated and true playing time for
reduced-state method. The threshold time T is 2 minutes.

Figure 3.13: An example of dead-end strategy. Allow simulation to stay in the
dead-end state if it is the last state transition, or else, transition from the dead-
end state to one of the starting states.

3.5.4 Results

We train using the first 75 NBA regular season games and test using the re-

maining games 75-82. We implement each of the strategies for dead-end states,

and we also implement various scoring rate models. Table 3.6 shows different

combinations of strategies, together with in-sample and out-of sample accuracies.

Overall, our results are as predictive as other work described in Section 3.2. We

do not add home-court advantage in the training set but do so for the test set to

obtain out-of-sample accuracy. We do so by taking a range of possible home-court

advantages and adding each one at a time to the home teams’ scores, to determine

which value yields the best out-of-sample accuracy. Notice that if the simulated

results are far from the true outcomes, in particular for the home teams, large val-

ues of home-court advantage are needed for best out-of-sample accuracy. Because

38

only a single value of home-court advantage is picked, it is the league home-court

advantage. In Table 3.6, we see unrealistic values of home-court advantage, though

each yields best out-of-sample accuracy for the particular strategy we used. In fact,

Ribeiro et al. (2016) observed over the seasons 2002-2014 play-by-play data that

the home-court advantage is about 3.3± 0.1 points, averaged over all seasons.

In Figure 3.14 we find the absolute difference between margins of victory be-

tween simulated and true games of the regular season (82 games). In Figure 3.15,

we show the optimal home-court advantage value that yields the best in-sample

accuracy, which reflects improved matching between simulated and true margins

of victory.

Figure 3.14: Margin of victory for all 1,230 season games. On the left, we plot the
absolute difference between simulated and true margin of victory for each game.
On the right, we plot simulated and true margins of victory.

Figure 3.15: On the left, we plot in-sample (training) accuracy as function of home-
court advantage. On the right, we plot simulated and true margin of victory with
and without optimal home-court advantage shown in the left plot.

We also explore ways to improve in-sample-accuracy based on scoring methods.

In Figure 3.16, we plot in-sample accuracy as a function of home-court advantage

based on different scoring methods used to simulate the NBA season.

39

Figure 3.16: In-sample (training) accuracy of whole regular seasons based on dif-
ferent scoring-rate methods. Best home-court advantages that yield the best in-
sample accuracies for the methods are plotted in the vertical lines.

Simulation Strategies Results

Scoring rates

against particular opponent

Weighting by

dates
scoring rates computed based on games

Reduced

states

Home-court

advantage

In-sample

accuracy

Out-sample

accuracy

26 0.71 0.67

" 5 0.61 0.51

" 46 0.71 0.64

" " 6 0.72 0.65

" " " 20 0.70 0.61

" " " 23 0.75 0.70

Table 3.6: Check marks correspond to strategies used. Home court advantage
is chosen to minimize in-sample error; For each team, training set is the first 75
games, test set is the remaining 7 games. 30 days is used in ‘weighting by days’
strategy.

We also experiment with various training and test splits on playing time of

team lineups and players to see our model’s performance. In Figure 3.18, we plot

average relative error of all 30 NBA teams for different training and test set splits.

Given predicted and true values, we compute relative error using the 2-norm:

Relative Error2 =
‖Ŷ − Y ‖2

‖Y ‖2

.

The blue and red curves represent training and test relative error, respectively.

The plots show that increasing the size of the training set for simulating player

and lineup playing time does not improve predictive accuracy. The results suggest

that we should cap our training set size at 12 games. We also have observed that

teams in the 2015-16 season did not consistently use the same lineups throughout

40

the season. This makes exploring other ways to split data into training and test

sets a worthwhile effort.

Figure 3.17: Average relative errors for all 30 NBA teams for different size of
training sets for simulating playing time for both team lineups

In Figure 3.19, we plot in-sample and out-of-sample accuracy for an 82-game

season based on various training and test set splits. The idea is that we train on

the first seven games, predict games 8-12, train on the first 12 games and predict

on the next set of five games, and so on. The last training set consists of the first

77 games; here we predict the last five games of the season. We do not see steady

improvement in test accuracy as we increase the size of the training set as there

are as many peaks as there are valleys.

3.6 Conclusion and future work

Compared to our previous work for the 2014-15 season (Bhat et al. 2015),

we have better captured the dynamics of a basketball game. We make better

predictions using various strategies in simulation and scoring models. Our results

are similar to those mentioned in Section 3.2. This is very encouraging given

the simplicity of our continuous-time Markov model. Moreover, our model can

answer hypothetical questions such as, “What is a game outcome if certain players

are unable to play due to injury or penalty from the league?” and “What is

41

Figure 3.18: Average relative errors for all 30 NBA teams for different size of
training sets for simulating playing time for both team lineups and players. The
blue and red curves correspond to relative errors of training and test sets.

the winning probability of a team if it were to play another team 100 times?”

To make our model more robust, we can apply the model to various seasons,

assess predictive accuracies, and update our methods in addition to the options

we described in Section 3.4.1. Another improvement to our model would be to

find optimal parameters for values such as reasonable home-court advantage and

weights on observation to maximize out-of-sample accuracy.

Several future goals to address some of the issues we have observed are the

following:

• Improve the fit between predicted and actual lineup times. In Fig-

ures 3.7 and 3.9, there are significant discrepancies between the predicted

and true lineup playing times despite the appearance of an exponential tail.

One potential solution is to generalize our Markov model by considering a

semi-Markov model, allowing an arbitrary holding time distribution (Barbu

and Limnios 2009). Another possibility is a hidden Markov model. In a hid-

den Markov model, a sequence of observed data is mapped to a sequence of

labels. Then, a probability distribution is computed over possible sequence

labels. The best label sequence is chosen (Rabiner 1989). Note that this

will require developing new methodology. Current methodology in R (using

42

Figure 3.19: Season game prediction. Observe our predictive accuracy is as com-
petitive as other models. The best out-of-sample accuracy seems to be when the
training set consists of the first 68 games. However, the out-of-sample accuracy
has several peaks and valleys.

available CRAN packages) only allows holding times to come from a set of

parametric distributions. For example, in the package SemiMarkov, the set

of parametric distributions where the holding times can come from include

exponential, Weibull or exponentiated Weibull.

• Improve overall basketball fidelity of the model.

– Substitutions should depend on various factors. Substitutions

are made based on how much time remains in the game, score differential

(i.e., whether we are in garbage time), and how many fouls each player

has. An example is Deshpande and Jensen (2016), who modeled team

winning probability as a function of its lead and time remaining in the

game based on the impact of team players.

– Plus/minus rates should be stochastic. Every lineup has good days

and bad days, and basketball has fundamental randomness. Gabel et al.

(2012); Ribeiro et al. (2016) observed that scoring rates are not constant

and are decreasing over time. Gabel showed that the distribution of

scoring time intervals has an exponential tail with little correlation to

43

scoring events. Moreover, scoring is also subjected to anti-persistence

and restoring force, i.e., a team is likely to score after the opposition

has just scored, and a team tends to coast after achieving a potentially

certain lead, which allows the opponent to score more.

– Lineup scoring rates are nonlinear. In a simulation we initialize

the scoring rate of a lineup by randomly sampling from its scoring rate

distribution. If the lineup is substituted out and plays later in the game,

we randomly sample again from the lineup’s scoring rate distribution.

Our model should reflect that a poorly rested lineup will play at a

different level than the same lineup at the start of a game.

– Home-court advantage should vary among teams. Jones et al.

(2007) has shown home-court advantage is not fixed. On average, home

teams are expected to win 60% of the time; home advantage is front

loaded in the first quarter and less in the remaining quarters. In the

2002-2004 seasons, Jones observed that home teams who won but trailed

after the first quarter lost their home advantage. These teams regained

it after the second quarter despite trailing. However, Ribeiro et al.

(2016), taking a microscopic approach similar to Jones, found a dimin-

ishing effect of home-court advantage over the season. This suggests

two approaches we can incorporate in our model:

∗ Adopt the value of league average home-court advantage, rather

than picking the best home-court advantage that maximizes our

test accuracy.

∗ Simulate games without home-court advantage to reflect reduced

importance of home-court advantage.

• Re-do the model starting from a possession-based framework. In-

stead of simulating both teams independently, which is a key feature of our

current approach, we could choose to simulate the entire game possession

by possession. Kubatko et al. (2007) discussed events that allow a team

to hold on to the ball. This can be a starting point for us to account for

44

lineup substitutions between possessions. In addition, we can figure out all

the different ways a possession can end for each team, and simulate these

outcomes one possession at a time. In this way, we can use more aspects of

the play-by-play data such as rebounds, blocks, out-of-bounds, steals, and

fouls.

• Find a method to quantify the change in intensity from regular

season to playoff games. During almost every postseason, basketball en-

thusiasts tend to notice that teams play with a different level of intensity

during the playoffs as compared with the regular season. A method to de-

scribe playoff intensity has been developed by Swartz et al. (2011). They

studied all possible standings of a playoff series and found that teams who

are close to being eliminated tend to play better, unless they give up. Sim-

ple metrics of measuring game intensity can be the number of player fouls

and final score difference between two teams. These metrics indirectly reflect

team defense: a tight defense results in an intense game and more fouls. A

finer measure would be to see the difference between total ball possessions

between two teams.

3.7 Maximum likelihood estimate derivation

Suppose we have X1, X2, . . . , XN independent and identically distributed ran-

dom variables with exponential distribution with parameter/rate λ. The probabil-

ity density function of the exponential distribution is

f(x;λ) =

λe−λx ifx ≥ 0,

0 ifx < 0.

The likelihood function is

L(λ;x1, . . . , xN) =
N∏
i=1

f(xi;λ) =
N∏
i=1

λe−λxi = λNExp

(
−λ

N∑
i=1

xi

)
.

To calculate the maximum likelihood estimator, we solve the equation

d logL(λ;x1, . . . , xN)

dλ
= 0

45

for λ.

d logL(λ;x1, . . . , xN)

dλ
=
d log(λNe−λ(x1+...+xN))

dλ

=
N

λ
−

N∑
i=1

xi

Solving for λ, we obtain λ = N∑N
i=1 xi

. To see if this λ is the maximum, we com-

pute d2L(λ;x1,...,xN)
dλ2

. Since d logL(λ;x1,...,xN)
dλ

= N
λ
−
∑N

i=1 xi, the second derivative with

respect to λ will yield

d2L(λ;x1, . . . , xN)

dλ2
= −N

λ2
< 0.

This shows the rate λ = N∑N
i=1 xi

captures most observed data.

An important task when modeling basketball data with continuous-time Markov

chains is estimating parameters, i.e., transition rates. Suppose we have a data se-

quence {t1, t2, . . . , tN}. We want to infer the rate λ for exponential distribution.

We do this using MLE. First, we write down the likelihood function:

p(t1, t2, . . . , tN |λ) = p([t1 − t0, t2 − t1, . . . , tN − tN−1]|λ).

Since each time segment Ti = ti+1 − ti, for i = 0, 1, 2, . . . , N − 1, is independent of

each other and follows an exponential distribution with rate λ,

L = p(t1, t2, . . . , tN |λ) = p([t1 − t0, t2 − t1, . . . , tN − tN−1]|λ)

= p(t1 − t0|λ)p(t2 − t1|λ) . . . p(tN − tN−1|λ)

= λe−λ(t1−t0)λe−λ(t2−t1) . . . λe−λ(tN−tN−1)

L = λNe−λtN

Maximize the log likelihood function, we obtain

logL = N log λ− λtN ,
∂(logL)

∂λ
=
N

λ
− tN = 0.

46

Hence, λ = N
tN
.

Here we derive MLEs for DTMC and CTMC models.

3.7.1 DTMC

Consider data consisting of a state time series {s0, s1, s2, . . . , sN}. Define pi,j

to be the probability of transitioning from state i to state j, i.e., P (j|i). Then the

likelihood function is:

L = ps0,s1ps1,s2 · · · psN−1,sN =
∏
i,j

p
N(i,j)
i,j

where N(i, j) is the number of times that the pattern (i, j) occurs in the state time

series. Note that pi,i = 1−
∑

j 6=i pi,j. Therefore,

L =
∏
i,j:i 6=j

p
N(i,j)
i,j

∏
i

(
1−

∑
j 6=i

pi,j

)N(i,i)

.

Fix states i′, j′ and maximize the log likelihood function over the parameter pi′,j′ :

∂ logL

∂pi′,j′
=
N(i′, j′)

pi′,j′
− N(i′, i′)

1−
∑

j 6=i′ pi′,j
= 0.

Suppose there are M−1 states in total. Then for fixed i′, the above equation gives

us M − 1 equations in M − 1 unknowns. Let ~1 denote the (M − 1)× 1 vector of all

ones. Then the M−1 equations can be summarized by the matrix-vector equation(
N(i′, i′)I + ~N~1T

)
~p = ~N.

where ~N is the (M − 1)× 1 vector

~N = (N(i′, 1), . . . , N(i′, i′ − 1), N(i′, i′ + 1), . . . , N(i′,M))

and ~p is the (M − 1)× 1 vector

~p = (pi′,1, . . . , pi′,i′−1, pi′,i′+1, . . . , pi′,M).

47

Note that ~N~1T is a rank-1 matrix; the matrix multiplying ~p is therefore a rank-

1 perturbation of a multiple of the identity. We can then solve for ~p using the

Sherman-Morrison-Woodbury matrix inversion formula:(
N(i′, i′)I + ~N~1T

)−1

=
1

N(i′, i′)
I − 1

N(i′, i′)
I ~N

(
1 +

~1T ~N

N(i′, i′)

)−1

~1T
1

N(i′, i′)
I

Hence ~p = ~N/
∑M

j=1N(i′, j). Since i′ and j′ were arbitrary, we see that the MLE

for the (i, j)-th entry of the transition matrix is p̂i,j = N(i, j)/
∑M

k=1N(i, k). In

words, this is the number of times we observe the pattern (i, j) divided by the total

number of times we observe any of the patterns (i, 1), (i, 2), . . . , (i,M). We have

derived this formula for i 6= j. Because p̂i,i = 1−
∑

j 6=i p̂i,j, it is valid for i = j as

well.

3.7.2 CTMC

Consider data consisting of times {0 = t0, t1, t2, . . . , tN} and state time series

{s0, s1, s2, . . . , sN}. Define α(x, y) as the rate that state x jumps to state y. Then

the transition rate out of state x is α(x) =
∑

y 6=x α(x, y). For i = 0, . . . , N − 1,

define Ti = ti+1 − ti. Then the likelihood function is (Guttorp 1995):

L = α(s0)e−α(s0)T0
α(s0, s1)

α(s0)
α(s1)e−α(s1)T1

α(s1, s2)

α(s1)
· · ·

= e−α(s0)T0α(s0, s1) e−α(s1)T1α(s1, s2) · · ·

= e−
∑

x α(x)W (x)
∏

x,y:x 6=y

α(x, y)N(x,y),

where W (x) =
∑N−1

i=0 Ti · I (si = x) and N(x, y) =
∑N−1

i=0 I(si = x, si+1 = y). In

words, W (x) is the total time spent in state x, and N(x, y) is the total number of

times that the pattern (x, y) is observed. Then

logL =
∑

x,y:x 6=y

[−W (x)α(x, y) +N(x, y) logα(x, y)].

Fix states x′, y′ and maximize the log likelihood function over the parameter

α(x′, y′):
∂ logL

∂α(x′, y′)
= −W (x′) +

N(x′, y′)

α(x′, y′)
= 0.

48

We obtain the MLE α̂(x′, y′) = N(x′, y′)/W (x′). This holds for all x′ 6= y′. Hence

the MLE for the (x, y) entry of the transition rate matrix is the total number of

transitions from state x to state y, divided by the total time spent in state x.

Chapter 4

Removing Absorbing States from

Markov Chain Models

4.1 Introduction

We study the problem of estimating Markov chain models for discrete-state

systems. Suppose we observe such a system continuously in time as it transitions

from one state to the next. Further suppose that there exists a set of one or more

states (say, S) from which the system never transitions to another state. Maximum

likelihood estimation will then yield a Markov chain model in which the states in S

are absorbing. Consequently, the equilibrium or stationary distribution associated

with the Markov chain will be supported only on S. The estimated model will

assign a probability of zero to the long-term probability of spending time in states

other than S. For several systems of interest, this will destroy the predictive power

of the estimated model.

Our motivating example arises in the area of basketball analytics. To model

substitutions and minutes played by each player for real NBA (National Basketball

Association) games, we have built continuous-time Markov chain models. For a

given team, each state corresponds to a distinct unit of five players on the court.

Transitions from one state to another correspond to the substitution of one or more

players. Given a time-stamped, play-by-play transcript of a game, we know exactly

49

50

how long each five-person unit played on the court and exactly when substitutions

occurred—in this sense, the system is observed continuously in time. In many

regular-season NBA games, when one team is ahead by a large margin towards

the end of the game, there is a high probability that one team (or both teams)

will substitute in rookies or non-starting players. Hence it is likely that the last

observed state (say, σ) of the system is a state that has been reached for the

first time in the game (and possibly for the first time in the entire season). As

described above, in the estimated model, σ will then be an absorbing state. The

equilibrium distribution for the estimated model will then have nothing to do with

the empirical fraction of time actually spent in each state.

The main contribution of this chapter is a a pair of algorithms for removing

absorbing states from both continuous-time Markov chain (CTMC) and discrete-

time Markov chain (DTMC) models. In both the CTMC and DTMC cases, the

model is specified by an M × M matrix p̂, where M is the number of states.

Starting from the maximum likelihood estimate (MLE) of p̂, we ask: what is the

most sparse perturbation ε that yields an absorbing-state-free Markov chain p̂+ ε

whose equilibrium vector exactly matches the observed fraction of time spent in

each state? We formulate this question as an optimization problem and show how

to solve it efficiently using linear programming.

While we have not found published work that solves the problems outlined

above, we can certainly identify subsets of the literature that help contextualize

the present work. Perhaps the most relevant subset is that dealing with inverse

eigenvector problems for nonnegative matrices—see Chu and Guo (1998); Chu and

Golub (2005); Bai et al. (2012). Here we find techniques to construct nonnegative

matrices with prescribed eigenvalues and eigenvectors. Once such a nonnegative

matrix has been constructed, it can be transformed into a stochastic matrix, i.e.,

a transition matrix for a DTMC. It is entirely possible to use these methods to

construct a DTMC whose equilibrium vector matches data, i.e., matches the em-

pirical fraction of time spent in each state. Special algorithms to deal with this

particular case of the inverse eigenvector problem have been developed (Kumar

et al. 2015; Maystre and Grossglauser 2015). However, there is no link between

51

these techniques and short-term trends in the data—for each i 6= j, the (i, j) entry

of the resulting stochastic matrix does not necessarily have anything to do with

the empirical frequency of transitions from state i to state j. In contrast, our

method constrains the estimated model to be close to these frequencies, i.e., the

MLE estimates p̂i,j.

Note that inverse eigenvector methods can be used to construct Markov Chain

Monte Carlo (MCMC) methods with optimal properties (Wu and Chu 2015). We

plan to explore in future work whether the methods from the present chapter can

be used in the MCMC context. Note also that the inverse eigenvector problem—in

which a desired eigenvalue-eigenvector pair is prescribed—is different from inverse

problems for eigenvalues only (Laurie 1991; Chen and Liu 2011; Yao et al. 2016).

The next subset of papers deals with PageRank, a fundamental algorithm used

to rank web pages (Langville and Meyer 2006a). Consider a collection C of M

interlinked web pages and treat each web page as a Markov chain state. If there are

n links on a particular web page, we assign a probability of 1/n to transition from

that particular web page to each of the linked pages. This gives us a Markov chain

corresponding to a random walk on the graph corresponding to C. Also consider

the M ×M stochastic matrix in which each entry is 1/M—this corresponds to

a Markov chain in which all states communicate uniformly with all other states.

The PageRank DTMC model consists of a linear combination of the random walk

and uniform transition matrices; if the weights in the linear combination sum to 1,

the resulting matrix is itself a valid Markov chain. The equilibrium vector of the

PageRank DTMC model can then be used to rank web pages.

There has been significant development in estimating/analyzing how this equi-

librium vector changes when links between web pages are changed (Ng et al. 2001;

Langville and Meyer 2006b; Chartier et al. 2011), and also in optimizing the

PageRank vector according to various criteria and methods (Fercoq et al. 2013;

Fercoq 2014; Csáji et al. 2014). Given a desired PageRank equilibrium vector

w and a PageRank DTMC model p̂ that has already been estimated, our algo-

rithm computes the most sparse perturbation ε that yields a DTMC model p̂ + ε

with equilibrium w. Suppose we treat the web graph as weighted, as in weighted

52

PageRank (Gleich 2015) or certain link recommendation models (Backstrom and

Leskovec 2011). Then the ε developed by our algorithm tells us how to adjust

weights to achieve a desired ranking of pages.

Finally, we should mention that the problem of estimating CTMC models from

temporally discrete observations is entirely different from the problem considered

here. If we only observe the CTMC process at discrete times, then we do not neces-

sarily know that those times correspond to transitions, nor can we rule out transi-

tions occurring at times in between the times at which we have data. This leads to

a more complex estimation problem that has attracted much recent interest—see

Metzner et al. (2007b); Rao and Teh (2013); Hajiaghayi et al. (2014); Crawford

et al. (2014).

4.2 Background

For the purposes of this chapter, we describe Markov chains via the methods

we use to generate sample trajectories. For more mathematical definitions, consult

Lawler (2006).

A DTMC with M states is determined by an M × M transition matrix p.

Suppose the DTMC is currently in state i. We examine pi, row i of the matrix p.

To be a valid transition matrix, each pi must be a probability mass function over

the state space. To generate the next sample in the trajectory, we sample from

the distribution pi; this yields a state i′ ∈ {1, 2, . . . ,M}.
To continue, we repeat the above procedure, starting in state i′. In this way,

we can generate trajectories of arbitrary length, consisting of sequences of states.

A CTMC with M states is determined by an M ×M transition rate matrix p.

Suppose the CTMC is currently in state i. We examine pi, row i of the matrix p.

The entries of pi off the diagonal must be nonnegative—we treat these entries as

parameters of M−1 independent, exponentially distributed random variables. We

draw one sample from each exponential random variable. The minimum of these

samples represents how long we spend in state i before transitioning. The argmin

of these samples represents the new state i′ to which we transition.

53

To continue, we repeat the above procedure, starting in state i′. In this way,

we can generate trajectories of arbitrary length, consisting of sequences of states

and corresponding transition times.

4.3 Mathematical Methods

4.3.1 DTMC Optimization Problem and Solution

Let us first consider the problem for DTMC models. Suppose we have an

M ×M transition matrix p̂, estimated using MLE, that has absorbing states. We

seek a perturbation ε such that p̂+ ε has no absorbing states. We still want p̂+ ε

to be a valid Markov transition matrix, so we require that∑
j

(p̂i,j + εi,j) = 1. (4.1)

Of course,
∑

j p̂i,j = 1 already, implying∑
j

εi,j = 0. (4.2)

Because of this constraint, we only need to solve for the off-diagonal part of ε, a

total of M2 −M unknowns. We set

εi,i = −
∑
j 6=i

εi,j. (4.3)

Assume that w is a desired equilibrium vector. This yields an additional constraint:

wT (p̂+ ε) = wT .

In coordinates, this reduces to∑
i 6=j

wiεi,j −
∑
i 6=j

wjεj,i = wj −
∑
i

wip̂i,j.

The entries of the perturbed matrix must also be valid probabilities:

0 ≤ p̂i,j + εi,j ≤ 1

54

for all i and all j. For i 6= j, we can enforce this constraint verbatim. For i = j,

we use (4.3) to rewrite the constraint as:

0 ≤ p̂i,i −
∑
j 6=i

εi,j ≤ 1.

For each i, we enforce the lower bound of 0:∑
j 6=i

εi,j ≤ p̂i,i.

However, for the upper bound, we replace 1 by wi and require, for each i,

−
∑
j 6=i

εi,j + p̂i,i ≤ wi. (4.4)

In this chapter, we will take w to be a candidate equilibrium distribution with no

absorbing states, i.e., 0 < wi < 1 for each i. Hence (4.4) and (4.3) guarantee that

εii + p̂ii ≤ maxiwi < 1. In short, the diagonal entries of the perturbed transition

matrix p̂+ε are bounded away from 1, implying that the perturbed system cannot

have any absorbing states.

We also enforce (4.4) because we know that the Markov transition matrix given

by

p̂+ ε =


w

w
...

w

 (4.5)

automatically has equilibrium distribution w. Hence we know there exists at least

one feasible solution where the diagonal elements satisfy p̂ii + εii = wi.

We now consider the choice of objective function. A natural first choice might

be the sum of the squares of the off-diagonal elements of ε, essentially a form of

the 2-norm. This objective function does not promote sparsity. It is likely that

the resulting solution will cause each MLE p̂i,j to be perturbed. We view this as

undesirable.

Instead, we would like to find a new transition matrix p̂+ε that retains as many

of the original MLE entries p̂ as possible. In other words, we want to maximize

55

the number of zero entries of ε. Consequently, we set our objective function equal

to the sparsity-promoting 1-norm of the off-diagonal elements of ε:

J(ε) =
∑
i,j:i 6=j

|εi,j|.

Putting the objective and constraints together, we are led to the following opti-

mization problem:

min
ε

J(ε)

s.t. 0 ≤ p̂i,j + εi,j ≤ 1, ∀i 6= j

0 ≤ −
∑
j 6=i

εi,j + p̂i,i ≤ wi, ∀i∑
i 6=j

wiεi,j −
∑
i 6=j

wjεj,i = wj −
∑
i

wip̂i,j, ∀j

(4.6)

To handle the 1-norm minimization problem, we employ the standard technique

of introducing decision variables ti,j and additional constraints. The resulting

optimization problem, equivalent to the one above, is:

min
ε,t

∑
i 6=j

ti,j

s.t. − ti,j ≤ εi,j ≤ ti,j, ∀i 6= j

ti,j ≥ 0, ∀i 6= j

0 ≤ p̂i,j + εi,j ≤ 1, ∀i 6= j

0 ≤ −
∑
j 6=i

εi,j + p̂i,i ≤ wi, ∀i∑
i 6=j

wiεi,j −
∑
i 6=j

wjεj,i = wj −
∑
i

wip̂i,j, ∀j.

(4.7)

This optimization problem is a linear program (Nocedal and Wright 2006). Mod-

ern linear programming algorithms enable the solution of this problem efficiently

and accurately for systems with hundreds of states M , i.e., when the number of

decision variables is roughly 105. We use CVXOPT (Andersen et al. 2018) and

Mosek (ApS 2018) to solve all linear programming problems described in this

chapter. Source code is available upon request.

56

4.3.2 CTMC Optimization Problem and Solution

Let us now consider the problem for CTMC models. Suppose we have anM×M
transition rate matrix α̂ estimated using MLE. Suppose that α̂ has absorbing

states.

We seek a perturbation ε such that α̂ has no absorbing states. For the continuous-

time Markov chain, this means that for each i, we must have∑
j 6=i

(α̂ + ε)i,j > 0.

If this sum were to be zero, then state i would be an absorbing state for the

continuous-time Markov chain. Note, however, that numerical optimizers do not

distinguish between strict and non-strict inequalities. To guarantee positivity, we

instead use the constraint ∑
j 6=i

(α̂ + ε)i,j ≥ δ > 0

for some tolerance δ. Note that for a continuous-time Markov chain, we always

choose the diagonal elements of the transition rate matrix to guarantee that the

total row sum equals zero. For this reason, we only need to solve for the off-diagonal

elements of ε, just as in the discrete-time case.

Assume that w is a desired equilibrium vector, again with 0 < wi < 1 for all i.

For the perturbed system to have w as its equilibrium, we must have

wT (α̂ + ε) = 0.

Let Y = {y1, . . . , yM} denote all row sums—not including the diagonal element—

of the estimated transition rate matrix α̂. We set δ1 = minY ∩ {r : r > 0}, the

minimum positive entry from Y . We also set δ2 = min1≤i≤M(1 − wi). Finally, we

set δ = min{δ1, δ2}. By setting δ in this way, we ensure that a system that has no

absorbing states and that already achieves the desired equilibrium vector w will

result in a solution of ε = 0. We also ensure that there always exists a feasible

57

solution—with the desired equilibrium vector w—given by

α̂ + ε =


w

w
...

w

− I, (4.8)

where I is the M×M identity matrix. Additionally, we require that the perturbed

transition rates are nonnegative: for all i 6= j,

α̂i,j + εi,j ≥ 0.

Because we are interested in retaining as many of the MLE entries of α̂ as possible,

we again seek a perturbation ε that is as sparse as possible. Therefore, we use the

1-norm objective function J defined above. Putting the objective and constraints

together, we are led to the following optimization problem:

min
ε

J(ε)

s.t. α̂i,j + εi,j ≥ 0, ∀i 6= j∑
j 6=i

(α̂ + ε)i,j ≥ δ > 0, ∀i

− wj
∑
i 6=j

(α̂ + ε)j,i +
∑
i 6=j

wi(α̂ + ε)i,j = 0, ∀j.

(4.9)

To handle the 1-norm minimization problem, we again employ the standard

technique of introducing decision variables ti,j and additional constraints. The

resulting optimization problem, equivalent to the one above, is:

min
ε,t

∑
i 6=j

ti,j

s.t. − ti,j ≤ εi,j ≤ ti,j, ∀i 6= j

ti,j ≥ 0, ∀i 6= j

α̂i,j + εi,j ≥ 0, ∀i 6= j∑
j 6=i

(α̂ + ε)i,j ≥ δ > 0, ∀i

− wj
∑
i 6=j

(α̂ + ε)j,i +
∑
i 6=j

wi(α̂ + ε)i,j = 0, ∀j.

(4.10)

58

Again, this is a linear program (Nocedal and Wright 2006); we solve it using the

same software described above.

4.4 Simulated Data Tests

We have subjected the methods described in Section 4.3 to a battery of tests

with simulated data. For each test, we generate data from a known discrete- or

continuous-time Markov chain. When generating the data, we ensure that there is

one state from which the system does not exit. When we apply MLE to this data,

we obtain a Markov chain model p̂ that we refer to as the naive model.

We then apply the optimization method from Section 4.3 to remove the ab-

sorbing state while simultaneously driving the Markov chain’s equilibrium vector

to equal the empirical fraction of time spent in each state. In this way, we obtain

p̂+ ε, which we refer to as the fixed model.

4.4.1 Metrics

There are two primary metrics in which we compare the naive and fixed models.

The first, which we call long-term error, relates to the ability of the model to predict

well in a distributional sense. Specifically, given a time series, let πemp denote the

empirical fraction of time spent in each state. For the DTMC model, πemp
i is the

number of times we observe state i normalized by the length L of the time series.

Given a DTMC model with transition matrix P , we compute πmod by solving

πmodP = πmod, i.e., we find the left eigenvector with eigenvalue 1.

For the CTMC model, πemp
i is the total amount of time spent in state i nor-

malized by the total time T spanned by the time series. Given a CTMC model

with transition rate matrix P , we compute πmod by solving πmodP = 0, i.e., we

find the left eigenvector with eigenvalue 0.

For both the DTMC and CTMC cases, the long-term error is the L1-norm

distance between the empirical and model distributions:

ELT = ‖πmod − πemp‖1 =
∑
i

∣∣πmod
i − πemp

i

∣∣ . (4.11)

59

Since both πmod and πemp are probability mass functions, we can show that ELT ≤ 2.

The second metric, short-term error, conveys the ability of the model to pre-

dict the very next element in the time series. Suppose we have a Markov chain

model and data consisting of a sequences of states {s0, s1, s2, . . . , sL}. For each

i ∈ {0, 1, . . . , L − 1}, we use the Markov chain to compute a one-step prediction

ŝi+1. We then compute the average short-term error via

EST =
1

L

L−1∑
i=0

1ŝi+1 6=si+1
(4.12)

Here 1X is the indicator function that equals 1 if condition X is true and 0 oth-

erwise. For both the DTMC and CTMC models, we compute the prediction ŝi+1

by sampling from the Markov chain conditional on currently being in state si. In

both cases, this amounts to examining row si of the transition (or transition rate)

matrix P and applying the appropriate sampling procedure from Section 4.2.

4.4.2 Data Generation and Optimization Test

Let us now describe how we generate data for all tests in this section. Let M

be the number of states in both the data and the naive/fixed Markov chain.

For DTMC tests, we begin by randomly generating a transition matrix over

M − 1 states. To do this, we first create an (M − 1) × (M − 1) matrix P of

integers drawn uniformly from {0, 1, . . . , 500}—we think of the unnormalized Pij

as a simulated count of transitions from state i to state j. We then normalize each

row of P to sum to 1.

In the CTMC case, we again create an (M − 1)× (M − 1) unnormalized count

matrix P of integers drawn uniformly from {0, 1, . . . , 500}. We then create an

M − 1× 1 vector of integers ~u drawn uniformly from {50, 51, . . . , 500}—we think

of this as the total time spent in each of the M − 1 states. We divide each row

of P by the corresponding entry of ~u. We then reset the diagonal entries of P so

that each row sums to zero, i.e., we set Pii = −
∑

j 6=i Pij. The final P is a valid

transition rate matrix over M − 1 states.

Equipped with a randomly generated Markov model, we apply the sampling

procedure described in Section 4.2 to create both training and test time series. To

60

the end of the training time series, we then tack on one final transition into state

M ; as this is the first entry into state M , there is clearly no exit from state M .

We then train one naive model p̂ by applying MLE to the training set—for this

naive model, state M is an absorbing state. Using the training set, we compute

the empirical fraction of time spent in each state, πemp. We then produce a fixed

model by applying the optimization procedure from Section 4.3 to p̂, setting the

desired equilibrium vector w equal to πemp.

Each time we apply the optimization procedures from Section 4.3, the optimizer

returns to us both ε and t. The optimizer also reports the maximum (or∞-norm)

violation of all constraints. These constraints, as described in Section 4.3, relate

to guaranteeing that p̂ + ε is a valid Markov chain with no absorbing states and

with equilibrium vector w = πemp.

Constraint Violation

States CTMC DTMC

4 9.958124e-10 6.519809e-17

8 3.405134e-16 6.172510e-17

16 7.585014e-16 6.195263e-17

32 2.110672e-15 2.029552e-16

64 4.193528e-15 2.527282e-16

128 4.848341e-15 1.058269e-16

256 3.958157e-15 1.411389e-09

Table 4.1: We record the average constraint violation for fixed CTMC and DTMC
models as a function of the number of states. These results have been averaged
across 1000 simulations.

In Table 4.1, we report the average constraint violation for fixed DTMC and

CTMC models. For each indicated number of states M , one simulation consists

of applying the above procedure to generate a training time series of length 1000,

computing naive and fixed models, and recording the constraint violation. The

values reported in Table 4.1 have been averaged over 1000 simulations. The small

values that we see indicate that, for practical purposes, the optimizer does achieve

61

the desired constraints.

4.4.3 Long-Term Error Test

The goal of the procedure described in Section 4.3 is to reduce the long-term

prediction error of estimated Markov chains. To show that our procedure meets

this goal, we carry out the following test. We fix the number of states M and,

as described above, generate a random, (M − 1)-state Markov chain that we then

sample to create both a training time series of length 104 and a test time series of

length L ∈ {5 × 102, 103, 104, 105, 106}. For the training time series, we tack on a

final transition into state M .

Let p̂ be the naive MLE model estimated from the training set. As above, we

also use the training set to compute the empirical fraction of time spent in each

state, πemp. We then produce a fixed model by applying the optimiation procedure

from Section 4.3 to p̂, setting the desired equilibrium vector w equal to πemp.

Using both training and test time series, we compute the long-term error ELT—

see (4.11)—for all fixed models. In Table 4.2, we display long-term training (top)

and test (bottom) errors for the fixed CTMC model. In Table 4.3, we display long-

term training (top) and test (bottom) errors for the fixed DTMC model. We see

that the training error is practically zero for each run, indicating that the optimizer

succeeds in creating fixed Markov models with the desired equilibrium vector.

We see from Tables 4.2 and 4.3 that, for each fixed number of states M , as the

length of the test set increases, the long-term test error decreases. This matches

our expectation from theory. Over any finite-length test set, it is possible for

the empirical fraction of time spent in each state to deviate from the equilibrium

vector for the data-generating Markov chain. By the law of large numbers, these

sampling error deviations must decay to zero as the length of the test set increases.

Note that the equilibrium vector for the data-generating, original, (M − 1)-state

Markov chain does in fact differ from the training set’s πemp vector. However, these

differences are negligible compared to the sampling error.

If we were to create tables analogous to Tables 4.2 and 4.3 for the naive CTMC

and DTMC models, every entry would be close to 2.0, the maximum possible value

62

of ELT. This is because state M is the unique absorbing state for the naive model;

therefore, πmod = (0, . . . , 0, 1). Meanwhile, the M -th entry of the πemp vector is

either nearly zero (for the training set) or identically zero (for the test set). This

reflects the fact that in our training data, state M is reached once and only once.

Length 5× 102 103 104 105 106

States

4 5.022e-10 6.589e-13 5.896e-09 3.424e-11 1.103e-11

8 2.081e-16 3.400e-16 2.775e-16 2.081e-16 4.996e-16

16 2.567e-16 3.469e-16 2.255e-16 1.769e-16 1.838e-16

32 1.847e-16 4.909e-16 3.382e-16 2.818e-16 2.324e-16

64 3.087e-16 4.401e-16 2.697e-16 3.313e-16 3.456e-16

128 7.942e-16 6.338e-16 7.218e-16 5.126e-16 4.898e-16

256 6.372e-16 7.938e-16 4.592e-16 5.651e-16 4.406e-16

Length 5× 102 103 104 105 106

States

4 0.051 0.058 0.006 0.035 0.004

8 0.123 0.068 0.029 0.022 0.023

16 0.177 0.137 0.053 0.058 0.032

32 0.279 0.160 0.091 0.065 0.069

64 0.383 0.289 0.103 0.096 0.079

128 0.526 0.400 0.180 0.136 0.122

256 0.748 0.622 0.258 0.189 0.170

Table 4.2: Long-term training (top) and test (bottom) errors for the fixed CTMC
procedure at each of the test time series lengths and different number of states.
The training time series is of length 10000.

4.4.4 Short-Term Error Test

While it is clear from the above tests that our procedure dramatically reduces

long-term prediction error, we want to be sure that the fixed Markov models retain

63

the short-term predictive accuracy of the naive models. Given a DTMC or CTMC

system, the MLE entries of the naive model are already optimized for short-term

predictive power. Because we have used the sparsity promoting 1-norm objective

function for ε, we expect that the optimizer will set most entries of ε to be zero.

If this is the case, the fixed model will retain many of the MLE entries from the

naive model, and therefore the fixed model’s short-term predictive power should

not differ greatly from that of the naive model.

To test this expectation, we run the following simulation procedure in both the

DTMC and CTMC cases: for fixed M , we follow the procedure described above

to generate a random, (M − 1)-state Markov chain that we then sample to create

both a training time series of length 103 and a test time series of length 3 × 103.

For the training time series, we append a final transition into state M . We then

compute the naive and fixed models using the training set only, in the same way

as for the long-term test. For both the naive and fixed models, we then use the

test set to compute the short-term errors EST—see (4.12). We record the absolute

difference between the short-term error of the naive and fixed models.

We repeat the above simulation procedure S = 1000 times. We have chosen this

number of simulations by simulating repeatedly until all short-term errors averaged

over the first s ≤ S simulations stabilize to within 10−2 of the average over all S

simulations. The results, displayed in Table 4.4, show that each fixed model’s

short-term predictive power does not differ greatly from that of the corresponding

naive model. We see that, along each row, errors do not differ by more than 10−2.

As we proceed down the table, we see smaller differences between the short-term

errors of the naive and fixed models. This is due to larger state spaces yielding

more sparse solutions for ε. For the largest state space (M = 256), the dimension

of ε is M(M − 1) = 65280; for systems of this size, it is typical that less than one

percent of the entries returned by the optimizer are nonzero.

Let us note that even in the idealized setting where we have perfect knowledge

of the Markov chain that generates data, we will still not achieve zero short-term

error. For instance, consider a two-state DTMC model where every entry of the

transition matrix is 1/2—the best possible short-term error will be 1/2. This is

64

another reason to consider the absolute difference between naive and fixed models,

rather than the raw short-term errors produced by both.

4.5 Real Data Tests

In this section, we apply the optimization procedures from Section 4.3 to

Markov models estimated from real data sets. As our primary motivating exam-

ple arises in basketball analytics, we begin with CTMC models for regular-season

NBA games. We then briefly examine the performance of our procedure on DTMC

models for biomedical data.

4.5.1 NBA Data

We begin with a description of the raw data itself. For each regular-season

game from the 2015-16 NBA season, we obtained play-by-play files (in HTML

form) from public web sites. These files contain time-stamped textual markers

that we mined to determine who was playing on the court at all times for all

games. Each team plays 82 games per season. Starting with all 1230 regular-

season games, we omitted games that went to overtime. Hence all games in the

data set considered here lasted 48 minutes (2880 seconds). For each team, we

assigned a state number to each unique 5-person unit that played at any time for

that team. Using these state numbers and the time stamps at which substitutions

occur, we then extracted from each game a trajectory {(ti, si)}Ni=0, where t0 = 0

and tN = 2880. At each time ti, the system transitions from state si−1 to state si,

corresponding to a substitution of one or more players on the court for one team

only.

Our goal here is to use this data to build CTMC models that predict how long

each 5-person unit plays on the court. Once we fix the sizes of the training and

test sets, we build one naive CTMC model for each team. We find that all naive

models—including those trained on all non-overtime games—features at least one

absorbing state; in many cases, several absorbing states exist. Using the empirical

fraction of time spent in each state, computed using the corresponding training set,

65

we applied the optimization procedure from Section 4.3 to generate fixed CTMC

models for each team.

In Figure 4.1, we plot training set result for the naive (top) and fixed (bottom)

CTMC models. For these results only, the training set consists of all non-overtime

games from the entire regular season. Each point on each plot corresponds to one

5-person unit for one team. We see that the optimization procedure results in a

fixed model in which the naive model’s training error has been reduced to nearly

zero.

For the remainder of this section, we consider naive and fixed CTMC models

trained on proper subsets of the regular season. We build naive and fixed CTMC

models using a training set of either the first 40 or first 60 non-overtime games

played by each team. The corresponding test sets consist of the remaining non-

overtime games in the season, less than or equal to 42 or 22 games, respectively.

In Table 4.5, we examine the performance of our optimization procedure applied

to CTMC models trained on, respectively, the first 40 and 60 non-overtime games.

The tables show that the optimizer succeeds in finding highly sparse solutions

that satisfy all constraints—removing absorbing states and achieving the desired

equilibrium. The sparsity is indicated by the small number of nonzero entries of

the computed ε compared to its dimension, which equals M(M − 1). Note also

that M , the total number of unique 5-person units that appear for each team in

each training set, is always in the hundreds.

In Figure 4.2 (40-game) and Figure 4.3 (60-game), we plot test set results for

naive (left) and fixed (right) CTMC models with differing training set sizes. Each

point on each plot corresponds to a 5-person unit for a given team. For each team,

the predicted playing times for each 5-person unit correspond to the entries in the

equilibrium vector for the CTMC model for that team, scaled by the number of

seconds in the test set for that team. We plot the real time played by each 5-person

unit versus the predicted playing time. Note that there is a massive concentration

of points near (0, 0); we have decided against log-scaled axes in order to give a sense

of the range of the predictions and true times in natural units. For the naive 40-

game model, the RMSE (root mean-squared error) between all predicted and real

66

times is 2.979. For the fixed 40-game model, the RMSE is 1.178, approximately

60.4% less than the naive model. This RMSE is measured in thousands of seconds

across roughly 40 games; in minutes per game, the 40-game fixed model’s average

error is 0.49.

The naive 60-game model’s RMSE is 1.584, while the fixed 60-game model’s

RMSE is 0.602, approximately 61.9% less. This RMSE is measured in thousands of

seconds across roughly 20 games; in minutes per game, the 60-game fixed model’s

average error is 0.50.

Hence each CTMC predicts each 5-person unit’s per-game playing time to

within half a minute, on average. We consider this to be an excellent result.

4.5.2 Biomedical data

Holson and preproglucacon are discrete-time data sets from the R package

markovchain (Spedicato et al. 2017). The Holson data set contains life history

trajectories for 1000 unique patients, each measured at 11 points in time. The

measurement at each time has value 1, 2, or 3. We split the data into training and

test sets of size 500 each. We fit a 3-state DTMC to this data and compare the

performance of naive and fixed models.

Preproglucacon data is the DNA sequence for the gene that encodes the protein

preproglucacon. This data consists of 1572 observations with bases A, T, C, G

coded numerically as 1, 4, 2, 3. We split this data into a training set of size 500

and a test set of size 1072. Using this data, we fit a 4-state DTMC and compare

the performance of naive and fixed models.

For the sake of comparison, we also fit a hidden Markov model (HMM) to both

data sets. The HMM is much more sophisticated than the DTMC and requires

much more computational effort to train (Fraser 2008). When we trained HMM

models, we explored hyperparameters such as the number of internal states and

the random initialization of the model. We report results for the best (smallest

long-term test error) hyperparameter choices we were able to find.

Tables 4.6 and 4.7 show long-term training and test errors for naive DTMC,

fixed DTMC, and HMM models. The fixed DTMC models feature greatly reduced

67

test set errors as compared to the naive DTMC models. Note also that for the

Holson data set, the long-term test errors for the fixed DTMC and HMM models

are comparable. For the preproglucacon data, the HMM’s long-term test error is

about 4 times less than that of the fixed DTMC.

While the HMM is able to achieve better test set results in some cases, we

show in Table 4.8 that this achievement comes at great computational expense.

We require about 50 times less computational time to produce the fixed DTMC

compared to the HMM. This includes time spent by the linear programming solver.

Tables 4.6 and 4.7 show results of the DTMC models and HMM models. Tables

4.9 and 4.10 showed how we picked the optimal internal states to use for our HMM

models. The long-term total error is computed as the one-norm difference between

training equilibrium vector and the fraction of time spent in each state for the

whole data. By whole data, we mean the union of the training and test sets.

4.6 Remarks

Both CTMC and DTMC models containing absorbing states do not capture

well the observed fraction of time spent in each state. We remove absorbing states

by finding a sparse perturbation to the transition (or transition rate) matrix such

that the new matrix achieves a desired equilibrium distribution. We formulated

this problem as a linear programming problem. Through extensive tests with

simulated and real data, we have shown that our method improves long-term pre-

dictions without sacrificing much short-term accuracy. Furthermore, our method

requires far less time to train than HMM methods.

One extension of our work is to see how well our models fit misspecified data.

In a simulated data test with misspecified data, we generate data from some model

that is totally different from the models considered in this chapter. Such model

could be a hidden Markov model, a model with non-Markovian properties such

as memory, or even a model like a differential equation whose output we then

convert into a discrete state time series. Another direction would be to apply our

methods to partially observed data. This arises commonly in medical data where a

68

disease progression is not fully observed. Hidden Markov models are usually used

for partially observed data. We would like to see how well our models perform in

comparison to HMM models.

69

Length 5× 102 103 104 105 106

States

4 2.738e-16 4.106e-18 3.010e-16 1.388e-16 3.566e-16

8 3.222e-16 3.514e-16 1.572e-16 2.233e-16 2.399e-16

16 1.507e-16 1.896e-16 1.355e-16 1.841e-16 2.675e-16

32 2.263e-16 2.715e-16 2.736e-16 1.333e-16 4.137e-16

64 4.092e-16 3.647e-16 4.178e-08 3.592e-16 4.585e-16

128 1.082e-15 1.014e-15 7.295e-16 7.309e-16 8.954e-16

256 9.276e-16 6.937e-16 6.796e-16 7.195e-16 6.593e-16

Length 5× 102 103 104 105 106

States

4 0.019 0.040 0.009 0.008 0.016

8 0.069 0.090 0.034 0.015 0.024

16 0.086 0.086 0.050 0.026 0.028

32 0.185 0.179 0.053 0.048 0.061

64 0.286 0.214 0.080 0.051 0.061

128 0.447 0.285 0.130 0.099 0.086

256 0.585 0.422 0.172 0.136 0.135

Table 4.3: Long-term training (top) and test (bottom) errors for the fixed DTMC
procedure at each of the test time series lengths and different number of states.
The training time series is of length 10000.

70

Simulations 50 250 500 1000

States

4 1.57e-02 1.91e-02 1.89e-02 2.05e-02

8 4.65e-03 3.15e-03 3.70e-03 3.62e-03

16 1.73e-03 6.74e-04 8.84e-04 8.94e-04

32 2.27e-04 2.60e-04 1.76e-04 8.70e-05

64 6.00e-05 2.41e-04 1.81e-04 1.38e-04

128 4.33e-04 3.06e-04 2.18e-04 8.30e-05

256 2.53e-04 1.95e-04 9.00e-05 7.80e-05

Simulations 50 250 500 1000

States

4 5.60e-04 9.83e-04 1.03e-03 1.14e-03

8 1.81e-03 3.20e-04 6.38e-04 5.85e-04

16 6.80e-04 6.30e-05 1.40e-05 1.04e-04

32 1.32e-03 1.40e-04 1.84e-04 3.42e-04

64 6.33e-04 4.80e-05 6.00e-06 6.20e-05

128 3.30e-05 7.40e-05 5.80e-05 3.80e-05

256 2.00e-05 1.15e-04 1.13e-04 1.95e-04

Table 4.4: We tabulate absolute differences between fixed and naive DTMC (top)
and CTMC (bottom) short-term test errors. For both types of models, we consider
increasing state space dimension M and an increasing number of simulations. For
all simulations, the training and test set lengths are, respectively, 1000 and 3000.

71

10 1 100 101 102 103

simulated playing time
10 1

100

101

102

103
tru

e
pl

ay
in

g
tim

e

10 1 100 101 102 103

simulated playing time
10 1

100

101

102

103

tru
e

pl
ay

in
g

tim
e

Figure 4.1: We plot simulated versus true (training set) playing times for naive
(top) and fixed (bottom) CTMC models. Each point on each plot corresponds to
one 5-person unit for one team. We see that the fixed model features practically
zero training error, dramatically reducing the training error from the naive model.

72

0 5 10 15 20 25 30 35
real time (thousands of seconds)

0

20

40

60

80

100

120
m

od
el

 ti
m

e
(th

ou
sa

nd
s o

f s
ec

on
ds

)
NBA test (Naive) results

Atl
Bkn
Bos
Cha
Chi
Cle
Dal
Den
Det
GS
Hou
Ind
LAC
LAL
Mem

Mia
Mil
Min
NO
NY
OKC
Orl
Phi
Pho
Por
SA
Sac
Tor
Uta
Was

0 5 10 15 20 25 30 35
real time (thousands of seconds)

0

10

20

30

40

m
od

el
 ti

m
e

(th
ou

sa
nd

s o
f s

ec
on

ds
)

NBA test (fixed) results

Atl
Bkn
Bos
Cha
Chi
Cle
Dal
Den
Det
GS
Hou
Ind
LAC
LAL
Mem

Mia
Mil
Min
NO
NY
OKC
Orl
Phi
Pho
Por
SA
Sac
Tor
Uta
Was

Figure 4.2: We plot naive (left) and fixed (right) CTMC test results using 40-
game training sets. The fixed model decreases RMSE error by ≈ 60.4%. For
further details, see Section 4.5.1.

0 5 10 15 20
real time (thousands of seconds)

0

10

20

30

40

50

60

70

m
od

el
 ti

m
e

(th
ou

sa
nd

s o
f s

ec
on

ds
)

NBA test (Naive) results

Atl
Bkn
Bos
Cha
Chi
Cle
Dal
Den
Det
GS
Hou
Ind
LAC
LAL
Mem

Mia
Mil
Min
NO
NY
OKC
Orl
Phi
Pho
Por
SA
Sac
Tor
Uta
Was

0 5 10 15 20
real time (thousands of seconds)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

m
od

el
 ti

m
e

(th
ou

sa
nd

s o
f s

ec
on

ds
)

NBA test (fixed) results

Atl
Bkn
Bos
Cha
Chi
Cle
Dal
Den
Det
GS
Hou
Ind
LAC
LAL
Mem

Mia
Mil
Min
NO
NY
OKC
Orl
Phi
Pho
Por
SA
Sac
Tor
Uta
Was

Figure 4.3: We plot naive (left) and fixed (right) CTMC test results using 60-
game training sets. The fixed model decreases RMSE error by ≈ 61.9%. For
further details, see Section 4.5.1.

73

Dim NNZ CV Dim NNZ CV

Team

Atl 72092 240 2.167e-18 112560 274 4.445e-17

Bkn 67340 164 1.484e-18 105950 272 4.888e-18

Bos 90902 237 8.345e-19 114582 277 5.117e-18

Cha 35532 185 1.775e-18 68382 263 2.957e-18

Chi 54522 223 1.842e-18 151710 286 1.045e-17

Cle 72630 243 3.305e-18 119370 275 4.916e-18

Dal 110556 208 1.935e-18 213906 364 3.374e-18

Den 69432 144 8.410e-19 144020 344 2.740e-18

Det 13806 114 2.252e-18 35910 178 1.107e-18

GS 70490 170 2.479e-18 120756 286 8.207e-18

Hou 73170 263 2.690e-18 141000 2040 1.440e-17

Ind 58806 171 2.730e-18 118680 280 3.404e-17

LAC 55932 156 3.320e-18 97032 258 4.264e-18

LAL 43056 132 2.267e-18 68382 216 2.339e-18

Mem 59292 238 2.149e-18 181902 302 4.993e-18

Mia 63252 1256 6.223e-17 114582 1866 6.285e-17

Mil 73170 1241 2.534e-17 104652 237 3.334e-18

Min 57360 202 2.542e-18 93942 235 3.524e-18

NO 93942 193 2.229e-18 172640 2373 5.705e-17

NY 56882 183 3.909e-18 99540 267 4.578e-18

OKC 48180 190 1.604e-18 90300 234 1.641e-18

Orl 57840 235 1.326e-18 134322 306 8.248e-18

Phi 175980 280 9.187e-18 270920 389 4.804e-18

Pho 93330 171 2.320e-18 234740 328 3.836e-18

Por 34040 1046 7.235e-17 45582 236 1.085e-18

SA 69432 243 5.111e-18 141000 316 1.709e-17

Sac 66306 243 1.382e-18 102720 286 4.837e-18

Tor 30102 165 4.034e-18 46010 204 3.328e-18

Uta 113232 288 1.172e-17 199362 384 8.124e-18

Was 87912 259 2.558e-18 146306 317 4.125e-18

Table 4.5: For each team, we compute fixed CTMC models using training sets
of either the first 40 (left of bar) or 60 (right of bar) non-overtime, regular season
games. For each fixed model, we report Dim, the dimension of ε, equal to M(M−1)
where M is the number of states or unique 5-person units in that team’s train-
ing set. We report NNZ, the number of nonzero entries in the computed ε—the
small values of NNZ relative to Dim show that the computed solutions are highly
sparse. Finally, we record CV, the maximum constraint violation reported by the
optimizer—all values are close to zero.

74

Holson

1-norm Error Naive Fixed HMM

Long-term Training 0.160545 1.665335e-16 0.000835

Long-term Test 0.235091 7.454545e-02 0.075380

Table 4.6: Long-term errors with training size 500 on Holson data.

Preproglucacon

1-norm Error Naive Fixed HMM

Long-term Training 0.003426 1.942890e-16 0.000509

Long-term Test 0.113921 1.154179e-01 0.036629

Table 4.7: Long-term errors with training size 500 on preproglucacon data.

Training Time (seconds)

Data Our models HMM

Holson 0.71 54.68

Preproglucacon 0.05 28.40

Table 4.8: Training time comparison between our models and best-case HMM
models on Holson and preproglucacon data sets

1-norm Error 2 3 4 5 6 7 8 9 10

Long-term Training 0.408995 0.464299 0.804931 0.827032 0.849197 0.933985 0.897961 0.832214 0.780222

Long-term Test 0.483541 0.538844 0.879477 0.901578 0.923742 1.004167 0.968143 0.902396 0.854767

Long-term Total 0.483527 0.538831 0.879463 0.901564 0.923729 1.004154 0.968130 0.902383 0.854754

Table 4.9: Long-term training, long-term test, and long-term total error for dif-
ferent internal states with 3 outputs. The HMM model is applied to the first 500
observations of Holson data with training 50 iterations. The best model of each
internal state is chosen based on the maximum of negative log likelihood. The
test set is the remaining data. Random seed is set at 7 for reproducibility. The
training time was about 14,684 seconds, or 244.7 minutes.

75

1-norm Error 2 3 4 5 6 7 8 9 10

LT Training 0.000820 0.000795 0.000666 0.000681 0.000905 0.000650 0.000577 0.000723 0.000772

LT Test 0.035891 0.036242 0.036427 0.037149 0.036796 0.036576 0.036647 0.036425 0.036406

LT Total 0.035857 0.036208 0.036393 0.037115 0.036762 0.036541 0.036613 0.036391 0.036372

Table 4.10: Long-term training, long-term test and long-term total errors with with
training size 500 on the preproglucacon data using HMM with parameter training
size 100 and different internal state sizes. Best model of each internal state was
chosen after training 10 times with different transition probability and emission
probability matrix. Training time for all sizes of the internal states, including
choosing the best models, was about 6,858 seconds (≈114 minutes).

Chapter 5

Conclusion

In Chapter 4, we showed that Markov chain optimization (MCO) achieved zero

long-term training errors and greatly reduced long-term test errors compared to

original maximum likelihood estimated (MLE) models for both discrete-time and

continuous-time data. In the discrete-time data sets on patient life trajectories

and protein DNA, we observed that MCO achieved reduced errors similar to more

sophisticated hidden Markov models but with significantly reduced training time.

In continuous-time data, we showed that we can predict game outcomes with

roughly 70% accuracy using continuous-time Markov chain models (CTMC) for

all National Basketball Association (NBA) teams. For each team we constructed

a CTMC and inferred transition rates via maximum likelihood estimators (MLE)

on observed data; that is, the rate at which state i transitions to state j is derived

as the ratio of the total number of observed transitions from state i to state j

and the total amount of time spent in state i. Note that the maximum likelihood

estimates maximizes short-term accuracy.

The MLE derived transition rate matrix can then be used to simulate a game

between two teams in turn. The team with the highest score in the simulation

is the winner of the game. Consider a National Basketball Association (NBA)

match. In a season, it is typical that a team plays a number of distinct 5-person

units only once. Those units/lineups are called absorbing states in a CTMC. This

results in a model equilibrium distribution supported on the set of absorbing states.

In the long run, the equilibrium distribution will assign 48 minutes among these

76

77

absorbing states. The absorbing state problem is resolved in our MCO work in

Chapter 4.

Using the pre-MCO models we achieved a best model test accuracy of 73% by

training on the 2014-15 NBA regular season data. Coupled with ad hoc strategies

on absorbing Markov chains, we achieved a best model accuracy of 75% (training)

and 70% (test). To achieve these results, we trained on the first 75 games of the

2015-16 regular season and tested on the rest of the regular season games.

The most recent work focused on capturing lineup playing time because max-

imum likelihood estimates give us transition rates that maximize observations of

most seen outcomes. We consider this to be ideal for short-term game predictions;

however, this accuracy comes at the expense of poorly capturing lineup playing

time as seen in Chapter 3.

Using our models, we can predict a game outcome using the following two

strategies:

1. Short-term based: Simulate a game between two teams. The team with

highest end-game point differential is the winner of the game.

2. Long-term based: Multiply equilibrium distribution by 2880 seconds and

point differential of each lineup contribution to obtain an estimate of game

point differential. This strategy has not been explored in previous chapters

but highlights the importance of capturing playing times of lineups accu-

rately, which is accomplished in our MCO work in Chapter 4.

A natural question we can then ask is, “Can we further extract more informa-

tion using our substitution models?”

On a fine scale, we can treat each 5-v-5 lineup configuration as a unique state

to capture how two lineups fare against each other. Recall Table 3.1 in Chapter 3.

We can view the first line of the table as a unique state. Currently our simulation

does not account for which lineup plays against which lineup. We believe this

strategy will yield better game prediction, e.g., game score differential and winning

percentage. In the case where 5-v-5 state has not been observed in a match, accrue

the lineup usage in the transition rate matrix. If we are interested in predicting

78

the outcomes of games between two particular teams, we would train one CTMC

model using past games between those two teams. The number of 5-v-5 states in

this model will likely be in the hundreds. If there are absorbing states, we can

apply MCO; as noted in Chapter 4, MCO can efficiently train CTMC models with

hundreds of states. To actually perform the simulation, we would apply either the

alarm clock or equilibrium vector methods described above. Either way, we would

obtain an estimate of how much time each 5-v-5 lineup configuration spends on

the court. Using plus/minus rates estimated for each 5-v-5 lineup, we can then

determine the overall winner of the game.

One major problem with this approach is that, in a regular season, two teams

play fewer than five games. The 5-v-5 state approach yields reduction in states

but because so few games are played between two teams, we have few observations

to infer true transition rates using MLE. Our current approach infers transition

rates without regard to which teams a particular team has played. One potential

fix is to include games of teams who are relatively similar to the opposing team.

In this way, we obtain more reasonable transition rates, possibly yielding better

game predictions.

For example, consider a matchup between the Golden State Warriors and Cleve-

land Cavaliers. In the 2017-18 season, the two teams only played twice against each

other during the regular season prior to the championship series. Since the top

5 teams (including the Cavaliers) in the Eastern Conference had similar or bet-

ter win-loss standings than the Cavaliers, we can include the games the Warriors

played against those teams. In this way, we minimize the effect of lineups with

outlier plus/minus rates that played little time on the court.

On a more subtle scale that can contribute to coaching decisions, we can ask,

“What are the strengths among lineups?” Let us return to the current model in

which lineups are treated as single units. We can ask, “Are there particular lineups

that are greater than the sum of their individual players?” In other words, we can

try to identify whether particular players—either superstars or bench players—lead

to a synergistic effect with other players on the court. We can also ask questions

such as: “If a particular lineup is unavailable, what is the best lineup to use in

79

its place?” Again, the answers to such questions are of much greater potential

interest to teams and coaches than they are to gamblers.

On a similar note, since basketball is a physical sport where players are prone

to injury, we can ask what is the likelihood of a team winning a game if certain key

players are unavailable to play. In Chapter 2, for example, we simulated playoff

games when Blake Griffin and Chris Paul of the Los Angeles Clippers were injured.

We can answer such hypothetical question and make game predictions of a team

missing key players for team strength evaluation and/or ranking.

One natural extension of our current work is applying our MCO work from

Chapter 4 to games in the women’s National Basketball Association (WNBA) and

the National Collegiate Athletic Association (NCAA). Both have play-by-play data

that can be found on public websites such as ESPN. Similar to our NBA models, a

challenge is picking up player substitutions. In a WNBA game, the word “enters”

is used instead of “substitute.” In an NCAA play-by-play game log on ESPN, the

words “substitute” and “enters” cannot be found.

Aside from basketball, we can potentially extend our MCO work to the National

Hockey League (NHL) using play-by-play data. In the NHL, a game is played by

5-v-5 lineups in three 20-minute quarters. The objective of a team in the game is to

outscore its opponent by putting the puck into the opponent’s goal. Substitutions

occur frequently; usually, scores by both teams are low because of strong defense.

If the game is tied after 60 minutes, a 5-minute three-on-three match between the

two teams ensues. The team to first score a goal is the winner of the game. A tied

overtime match results in a shootout in which three players from each team take

turns to take a penalty shot. The team with the most goals scored is the winner

of the match.

Similar to the NBA, teams in the NHL also play 82 games; eight teams from

each conference play in the playoffs. Each series is also best-of-seven games. A

team with better standing is awarded home-ice advantage in playoffs where four

games of a series are played at this team’s ice rink. In this way, strengths of lineups

do play an important role in determining a team’s success. Though individual

player substitution occurs in a game, it is more typical that two or more players

80

are substituted in one setting.

Nevertheless, for a more accurate prediction of game score differential, we need

to be able to capture playing times of lineups as well as how they score. In

Chapter 2 and 3, we used plus/minus rates to help predict game outcomes assuming

lineups scored linearly and players did not get tired. Consequently, we consistently

observed large positive or negative score margins in a game simulation. A potential

fix mentioned in Chapter 3 is to seek stochastic scoring models for all lineups of

all teams. Another approach to game prediction involves training neural networks

on data consisting of multiple features. This enables the neural networks to learn

interactions among features without requiring any feature extraction or feature

engineering. We can architect neural networks to output predictions as functions

of quantities such as time played by players and lineups, points scored by those

players and lineups, and the number of fouls committed by players.

Overall, if we include potential improvements as discussed in Chapter 4, we see

great scope for this work to be usefully applied in many settings. This includes

problems in sports analytics as well as other areas where Markov chains intersect

with large, detailed data sets.

Bibliography

Andersen, M. S., Dahl, J., and Vandenberghe, L. (2018). CVXOPT: A Python

package for convex optimization, version 1.2.0. http://cvxopt.org.

ApS, M. (2018). The MOSEK optimization toolbox for Python manual. Version

8.1.0.53.

Backstrom, L. and Leskovec, J. (2011). Supervised random walks: predicting and

recommending links in social networks. In Proceedings of the Fourth ACM

International Conference on Web Search and Data Mining, pages 635–644.

Bai, Z.-J., Serra-Capizzano, S., and Zhao, Z. (2012). Nonnegative inverse eigen-

value problems with partial eigendata. Numerische Mathematik, 120(3), 387–

431.

Barbu, V. S. and Limnios, N. (2009). Semi-Markov chains and hidden semi-Markov

models toward applications: their use in reliability and DNA analysis, volume

191. Springer Science & Business Media.

Bhat, H. S., Huang, L.-H., and Rodriguez, S. (2015). Learning stochastic models

for basketball substitutions from play-by-play data. In MLSA Workshop at

ECML/PKDD 2015.

Cervone, D., DAmour, A., Bornn, L., and Goldsberry, K. (2016). A multiresolu-

tion stochastic process model for predicting basketball possession outcomes.

Journal of the American Statistical Association, 111(514), 585–599.

Chartier, T. P., Kreutzer, E., Langville, A. N., and Pedings, K. E. (2011). Sensitiv-

ity and stability of ranking vectors. SIAM J. Sci. Comput., 33(3), 1077–1102.

81

82

Chen, X. and Liu, D. (2011). Isospectral flow method for nonnegative inverse

eigenvalue problem with prescribed structure. Journal of Computational and

Applied Mathematics, 235(14), 3990–4002.

Chu, M. and Golub, G. H. (2005). Inverse Eigenvalue Problems: Theory, Algo-

rithms, and Applications, volume 13. Oxford University Press.

Chu, M. T. and Guo, Q. (1998). A numerical method for the inverse stochastic

spectrum problem. SIAM Journal on Matrix Analysis and Applications, 19(4),

1027–1039.

Crawford, F. W., Minin, V. N., and Suchard, M. A. (2014). Estimation for gen-

eral birth-death processes. Journal of the American Statistical Association,

109(506), 730–747.

Csáji, B. C., Jungers, R. M., and Blondel, V. D. (2014). PageRank optimization

by edge selection. Discrete Applied Mathematics, 169, 73–87.

D’Amour, A., Cervone, D., Bornn, L., and Goldsberry, K. (2015). Move or die:

How ball movement creates open shots in the NBA. In MIT Sloan Sports

Analytics Conference.

Deshpande, S. K. and Jensen, S. T. (2016). Estimating an NBA players impact

on his teams chances of winning. Journal of Quantitative Analysis in Sports,

12(2), 51–72.

Fercoq, O. (2014). Perron vector optimization applied to search engines. Applied

Numerical Mathematics, 75, 77–99.

Fercoq, O., Akian, M., Bouhtou, M., and Gaubert, S. (2013). Ergodic control

and polyhedral approaches to PageRank optimization. IEEE Transactions on

Automatic Control, 58(1), 134–148.

Fewell, J., Armbruster, D., Ingraham, J., Petersen, A., Waters, J., and Boccaletti,

S. (2012). Basketball teams as strategic networks. PLoS ONE, 7(11), e47445.

83

Fraser, A. M. (2008). Hidden Markov Models and Dynamical Systems. SIAM,

Philadelphia.

Gabel, A., Redner, S., et al. (2012). Random walk picture of basketball scoring.

Journal of Quantitative Analysis in Sports, 8(1), 1416.

Gleich, D. F. (2015). PageRank Beyond the Web. SIAM Review, 57(3), 321–363.

Gómez, M.-Á., Silva, R., Lorenzo, A., Kreivyte, R., and Sampaio, J. (2016). Ex-

ploring the effects of substituting basketball players in high-level teams. Jour-

nal of Sports Sciences, pages 1–8.

Guttorp, P. (1995). Stochastic Modeling of Scientific Data. Chapman & Hall/CRC.

Hajiaghayi, M., Kirkpatrick, B., Wang, L., and Bouchard-Côté, A. (2014). Efficient

continuous-time Markov chain estimation. In Proceedings of ICML 2014, pages

638–646.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical

Learning. Springer Series in Statistics. Springer, second edition.

Jones, M. et al. (2007). Home advantage in the NBA as a game-long process.

Journal of Quantitative Analysis in Sports, 3(4), 2.

Konstantopoulos, T. (2006). Notes on survival models. Edinburgh: Heriot-Watt

University.

Kubatko, J., Oliver, D., Pelton, K., and Rosenbaum, D. T. (2007). A starting

point for analyzing basketball statistics. Journal of Quantitative Analysis in

Sports, 3(3).

Kumar, R., Tomkins, A., Vassilvitskii, S., and Vee, E. (2015). Inverting a steady-

state. In Proceedings of the Eighth ACM International Conference on Web

Search and Data Mining, WSDM 2015, Shanghai, China, February 2-6, 2015,

pages 359–368.

Kvam, P. and Sokol, J. S. (2006). A logistic regression/Markov chain model for

NCAA basketball. Naval Research Logistics, 53, 788–803.

84

Langville, A. N. and Meyer, C. D. (2006a). Google’s PageRank and Beyond: the

Science of Search Engine Rankings. Princeton University Press, Princeton,

NJ.

Langville, A. N. and Meyer, C. D. (2006b). Updating Markov chains with an eye

on Google’s PageRank. SIAM Journal on Matrix Analysis and Applications,

27(4), 968–987.

Laurie, D. P. (1991). Solving the inverse eigenvalue problem via the eigenvector

matrix. Journal of Computational and Applied Mathematics, 35, 277–289.

Lawler, G. F. (2006). Introduction to Stochastic Processes. Chapman & Hall/CRC,

Boca Raton.

Liu, X. L. (2007). Bayesian analysis of Dyadic data arising in basketball. Master’s

thesis, Simon Fraser University.

Maystre, L. and Grossglauser, M. (2015). Fast and accurate inference of Plackett–

Luce models. In Advances in Neural Information Processing Systems 28, pages

172–180.

Metzner, P., Dittmer, E., Jahnke, T., and Schütte, C. (2007a). Generator esti-

mation of Markov jump processes. Journal of Computational Physics, 227,

353–375.

Metzner, P., Dittmer, E., Jahnke, T., and Schütte, C. (2007b). Generator estima-

tion of Markov jump processes. Journal of Computational Physics, 227(1),

353–375.

Ng, A. Y., Zheng, A. X., and Jordan, M. I. (2001). Link analysis, eigenvectors and

stability. In Proceedings of the Seventeenth International Joint Conference on

Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10,

2001, pages 903–910.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New

York.

85

Oh, M.-H., Keshri, S., and Iyengar, G. (2015). Graphical model for basketball

match simulation. In MIT Sloan Sports Analytics Conference.

Opper, M. and Sanguinetti, G. (2007). Variational inference for Markov jump

processes. In Advances in NIPS 20, pages 1105–1112.

Peuter, C. D. (2013). Modeling Basketball Games as Alternating Renewal-Reward

Processes and Predicting Match Outcomes. Master’s thesis, Duke University.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applica-

tions in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

Rao, V. and Teh, Y. (2013). Fast MCMC sampling for Markov jump processes

and extensions. Journal of Machine Learning Research, 14, 3295–3320.

Ribeiro, H. V., Mukherjee, S., and Zeng, X. H. T. (2016). The advantage of

playing home in NBA: Microscopic, team-specific and evolving features. PloS

one, 11(3), e0152440.

Shi, Z., Moorthy, S., and Zimmermann, A. (2013). Predicting NCAAB match out-

comes using ML techniques—some results and lessons learned. In Proceedings

of the MLSA Workshop at ECML/PKDD 2013.

Shirley, K. (2007). A Markov model for basketball. In New England Symposium

for Statistics in Sports, Boston, MA.

Shortridge, A., Goldsberry, K., and Adams, M. (2014). Creating space to shoot:

quantifying spatial relative field goal efficiency in basketball. Journal of Quan-

titative Analysis in Sports, 10(3), 303–313.

Spedicato, G. A., Kang, T. S., Yalamanchi, S. B., and Yadav, D. (2017).

The markovchain Package: A Package for Easily Handling Discrete Markov

Chains in R.

Swartz, T. B., Tennakoon, A., Nathoo, F., Tsao, M., Sarohia, P., et al. (2011).

Ups and downs: team performance in best-of-seven playoff series. Journal of

Quantitative Analysis in Sports, 7(4), 1–17.

86

Štrumbelj, E. and Vračar, P. (2012). Simulating a basketball match with a homo-

geneous markov model and forecasting the outcome. International Journal of

Forecasting, 28(2), 532–542.

Wu, S.-J. and Chu, M. T. (2015). Constructing optimal transition matrix for

Markov chain Monte Carlo. Linear Algebra and its Applications, 487, 184–

202.

Xin, L., Zhu, M., Chipman, H., et al. (2017). A continuous-time stochastic block

model for basketball networks. The Annals of Applied Statistics, 11(2), 553–

597.

Yao, T.-T., Bai, Z.-J., Zhao, Z., and Ching, W.-K. (2016). A Riemannian Fletcher–

Reeves conjugate gradient method for doubly stochastic inverse eigenvalue

problems. SIAM Journal on Matrix Analysis and Applications, 37(1), 215–

234.

	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract
	Introduction
	Modeling Basketball Substitutions and Scoring Rates
	Introduction
	Data Collection
	Substitution Models
	Scoring Models and Results
	Results for the 2014-15 NBA Regular Season
	Results for the 2014-15 NBA Playoffs
	Additional Model Evaluation and Usage

	Conclusion

	Modeling Basketball Substitutions from Play-by-Play Data
	Introduction
	Related work
	Data collection
	Model
	Substitutions
	Simulation of CTMC: Alarm clocks
	Scoring rates

	Simulation and Results
	Dead-end strategy 1: Reverse gear
	Dead-end strategy 2: Reduced state and dead-end state removal
	Dead-end strategy 3: Stay in dead-end state
	Results

	Conclusion and future work
	Maximum likelihood estimate derivation
	DTMC
	CTMC

	Removing Absorbing States from Markov Chain Models
	Introduction
	Background
	Mathematical Methods
	DTMC Optimization Problem and Solution
	CTMC Optimization Problem and Solution

	Simulated Data Tests
	Metrics
	Data Generation and Optimization Test
	Long-Term Error Test
	Short-Term Error Test

	Real Data Tests
	NBA Data
	Biomedical data

	Remarks

	Conclusion
	Bibliography

