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ABSTRACT: Semiclassical quantization rules and numerical calculations are applied to study
polariton modes of materials whose permittivity tensor has principal values of opposite sign (so-called
hyperbolic materials). The spectra of volume- and surface-confined polaritons are computed for
spheroidal nanogranules of hexagonal boron nitride, a natural hyperbolic crystal. The field distribution
created by polaritons excited by an external dipole source is predicted to exhibit raylike patterns due to
classical periodic orbits. Near-field infrared imaging and Purcell-factor measurements are suggested to
test these predictions.
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Recently much interest has been attracted to a class of
uniaxial materials whose axial εz and tangential ε⊥

permittivities have opposite signs. These hyperbolic materials
(HM) possess extraordinary rays with unusual properties. In
this Letter, we focus on polar dielectric HM1−5 where the
extraordinary rays are phonon-polariton collective modes. Our
results may also apply to other HM, including ferromagnets,6

magnetized plasmas,7 artificial metamaterials,8 layered super-
conductors,9,10 and liquid crystals.11

The basic properties of hyperbolic polaritons are as follows.
Their isofrequency surfaces ω(p) = const in momentum space
p = (px , py , pz) are hyperboloids. In a broad range of |p| from
the free-space photon momentum ω/c to an upper cutoff
imposed by microscopic structure, these hyperboloids can be
approximated by cones (Figure 1a)

ω ε ω ε ω≡ + + =⊥H p p pp( , ) ( ) ( )( ) 0z z x yB
2 2 2

(1)

The group velocity v(p) = ∂pω is always orthogonal to the
isofrequency surface. Hence, within the conical approximation
it has a fixed angle α = tan−1{i [(ε⊥)

1/2/(εz)
1/2]} with respect to

the optical axis. Such a strictly directional propagation of
polaritons may be used for subdiffractional focusing12,13 and

super-resolution imaging known as “hyperlensing”.8,14−16

Because the high-momenta polaritons remain immune to
evanescent decay, volume-confinement of polaritons inside
nanogranules3,17,18 is possible. Several experimental observa-
tions of such modes in hexagonal boron nitride (hBN), a
natural mid-infrared HM, have been reported.2,3,12,13,17,19 (This
layered insulator is also known to be a premier substrate20 or a
spacer for van der Waals heterostructures.21,22) In the far-field
spectroscopy,3 the polariton modes of hBN nanogranules show
up as discrete resonances. Remarkably, the spectrum of such
resonances was found to depend primarily on the aspect ratio
of the granules rather than their size or precise shape. Exact
solutions1,6,10 for spheroidal or spherical shapes enable one to
compute such spectra but they do not elucidate the underlying
physical picture.
In this Letter, we further develop an alternative ray optics

method23 that makes connection to the Einstein−Brillouin−
Keller (EBK) quantization24,25 of a classical particle inside a
cavity having the same shape as the granule. The indefinite
permittivity tensor of the HM maps on the indefinite
Hamiltonian HB(p, ω) of the particle, eq 1. The EBK
quantization rules are valid provided the classical motion is
regular.25 They apply directly to spheroidal granules where
classical motion is completely integrable. However, this quasi-
classical approach gives valuable physical insights even when
the motion is weakly chaotic26,27 or pseudointegrable.28 This
fact makes our approach useful for physical interpretation of
eigenmode resonances discovered in experimental studies of
hBN nanostructures of various nonspheroidal shapes. We make
clearer the distinction between surface and bulk modes of such
systems. Our analysis reveals a large number of eigenmodes
that are not easily observable with conventional far-field optics
but can be detectable by near-field approaches, such as Purcell’s
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Figure 1. (a) A schematic of a polariton isofrequency surface and the
group velocity v in a HM. The example shown is for the case ε⊥ < 0, εz
> 0. (b) The geometry of the model studied. Vector d symbolizes an
external dipole source.

Letter

pubs.acs.org/NanoLett

© 2015 American Chemical Society 4455 DOI: 10.1021/acs.nanolett.5b00814
Nano Lett. 2015, 15, 4455−4460

pubs.acs.org/NanoLett
http://dx.doi.org/10.1021/acs.nanolett.5b00814


factor measurements and scanned probe nanoimaging.2,13,17

We predict an intriguing effect due to classical periodic orbits of
polaritonic rays, namely, emergence of regular patterns of a
high-intensity field induced on the surface of the spheroid in
response to a nearby local source.
The Exact Eigenmodes. Consider a granule that has a

shape of a spheroid with the symmetry axis parallel to the
optical axis (z-axis) of the permittivity tensor (Figure 1b). We
assume the spheroid is prolate, az > a⊥. (Oblate spheroids can
be treated in a similar manner.) The cross-section of the
granule in the cylindrical coordinates ρ ≡ (x2 + y2)1/2 and z is

shown in Figure 2a,c. We define two other sets of coordinates.
Outside the spheroid, we use the usual spheroidal ones

ρ η θ η θ= =a z asinh sin , cosh cos (2)

where η > η̅, 0 < θ < π, a2 = az
2 − a⊥

2 , and

η ̅ = ⊥a
a

tanh
z (3)

These coordinates are orthogonal and real. Inside, Figure 2b,d,
we use

ρ ε ξ θ ε ξ θ= − =⊥ib z bsin sin , cos cosz (4)

where 0 < ξ < ξ,̅ ξ ̅ < θ < π − ξ,̅ and

ξ
ε
ε

̅ = ⊥

⊥
i

a
a

tan
z

z

(5)

Parameter b = (εz
−1az

2 − ε⊥
−1a⊥

2 )1/2 is real if ε⊥< 0, εz > 0, and
imaginary if both the signs are reversed. The coordinates (ξ, θ)

are real and leave the permittivity tensor diagonal. However,
they are nonorthogonal.
We assume that granule is suspended in vacuum and that its

size is much smaller than c/ω. In this case the quasi-static
approximation for the electric field is valid, E = −∂rΦ. The
scalar potential Φ is represented by two different functions
inside and outside the particle: Φ1 and Φ2. The inner potential
obeys the Walker equation6

ε ε∂ + ∂ + ∂ Φ =⊥[ ( )] 0z z x y
2 2 2

1 (6)

The outer potential Φ2 satisfies the Laplace equation. The
potential and the normal component of the displacement must
be continuous across the spheroid surface. In the chosen
coordinates, these boundary conditions become separable,
which enables one to find the analytical solutions1,6 of this
eigenproblem

Here m, l are integers, l
m(z), Ql

m(z) are the associated Legendre
functions of the first and the second kinds, respectively, and ϕ
is the polar coordinate in the x−y plane. The boundary
conditions are satisfied provided1,6

For each m and l, this equation gives us several solutions for the
eigenfrequency ω (contained implicitly in ε⊥, εz) that can be
indexed by another integer n. The total number of such
solutions is equal to l for m = 0 and l − |m| + 1 for m ≠ 0
(Supporting Information).
Note that eq 8 depends only on the aspect ratio and not the

size of the spheroid. This is consistent with the scale-invariance
of eq 6. However, the physical picture is not clear from this
exact solution. Next, we present an alternative derivation in
terms of a more intuitive ray-optics approach.

Hamiltonian Optics. Ray or geometrical optics is a well-
established approach to study propagation of light on scales
longer than the photon wavelength. HMs are a new arena for
ray optics in which photons are replaced by excitations of much
shorter wavelength, polaritons, in the case of hyperbolic polar
insulator. This approach has been previously applied to HM of
cylindrical geometry.23,27 Here we study a spheroidal granule
and address both the ray and the wave optics effects within the
quasi-static approximation. The derivation of the ray picture
starts with seeking the scalar potential in the form

∑Φ = A er r( ) ( )
j

j
iS r

1
( )j

(9)

where the phases (or eikonals) Sj(r) vary much faster than the
amplitudes Aj(r). Substituting eq 9 into eq 6 and keeping only
the leading terms, quadratic in momenta pj(r) = ∂rSj , one
obtains (for each j) the Hamilton−Jacobi eq 1 of a fictitious
classical system with the “optical” Hamiltonian HB(pj , ω). The
EBK quantization is possible if the number of different j in eq 9
is finite. For the spheroid four terms suffice, corresponding to
the different sign choices of the momenta. To describe θ- and
ξ-motions one needs two terms each because our fictitious
particle can propagate in two opposite directions between the
surface and the caustics. The ϕ-motion has no caustic and one
term is enough. We must clarify that “motion” and
“propagation” refer to the geometry of the phase-space flow,
not to the actual time evolution of coordinates and momenta.

Figure 2. Correspondence of the (ρ, z) and (ξ, θ) coordinate systems
for the spheroid. The labels 1, 2, 3 are the three boundary regions. The
green dots separating these regions mark the points where the
spheroid surface is tangent to the polariton group velocity v. (a,b) The
classically accessible bulk region for a wave with a caustic ξ = ξc
(dotted line) inside the spheroid. Lines inside the region are
trajectories of wave packets, which are straight lines in real space
although they appear as curves in our choice of coordinates. (c,d) The
classically accessible boundary region (thick dark line) for a surface
wave. The caustic (dotted line) extends outside the spheroid.
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The velocity vb = ∂pHB of the fictitious particle deduced from
the optical Hamiltonian is different from the group velocity of
an actual polariton

ω
ω

= ∂
∂

= −
∂
∂ =

−⎛
⎝⎜

⎞
⎠⎟

H
v

p
v

H

B

0

1

b
B (10)

However, vb and v are always parallel to each other. Therefore,
if a fictitious classical particle with the conserved energy HB(p,
ω) = 0 and a polariton wavepacket of frequency ω are launched
at the same initial point (p, r), the geometrical shape of their
phase-space trajectories will be identical. This identity is well-
known in the Hamiltonian formulation of geometrical optics.29

Here we adopt it for hyperbolic polaritons. The EBK
quantization rules24,30 can also be directly adopted for our
problem because they are formulated in terms of contour
integrals in the phase-space. Therefore, to compute polariton
eigenmodes of an arbitrary nanostructure made of HM, we
need to quantize the motion of a single particle bouncing inside
a cavity of the same shape.
Two unusual circumstances still have to be handled. First, the

Hamiltonian of our fictitious particle is indefinite. Second, the
reflection rule and the corresponding phase shift at the surface
are determined by the boundary conditions. For spheroidal
nanogranule (Figure 1b), both of these peculiarities prove to be
tractable in the coordinate system defined above. Performing
the canonical transformation to the new momenta pξ , pθ , we
find

ξ θ ξ θ
=

−

−
−ξ θ ϕH

p p p

sin sin sin sinB

2 2

2 2

2

2 2 (11)

The classical motion governed by Hamiltonian eq 11 is
separable and so integrable. (Unfortunately, in the class of
smooth convex shapes, only ellipsoids and spheroids as their
particular case appear to be integrable.31)
The EBK quantization rules are in the form

∮ ξ π δ πν− + =ξp d
2

2
(12a)

∮ θ δ πλ+ = −θp d 2 2
(12b)

π πμ=ϕp2 2 (12c)

Here each integral is taken over a closed-loop contour in a
respective coordinate (cf. Figure 2b). The phase shift δ is
constant everywhere on the surface (Supporting Information),
as demanded by the separable form of the exact solution, eq 7.
These integrals can be evaluated in terms of elementary
functions. Comparing those expressions with the asymptotic
formulas24 for Legendre functions, it is easy to establish the
correspondence between the EBK quantum numbers λ, ν, μand
the indices l, m, n in the exact solution (Supporting
Information)

ν λ μ μ ν= + + = =l m n2 , , (13)

We refer to the ν > 0 eigenmodes as the bulk modes and to
those with ν = 0 as the surface ones. The scalar potential Φ1 of
the bulk modes oscillates inside the granule along the “radial”
direction ξ whereas that of the surface modes monotonically
increases with ξ and reaches a maximum at the surface.
To compare the EBK results with the exact solution, we

calculated the eigenmode spectra of an hBN spheroid as a

function of its aspect ratio. The measured3 optical constants of
hBN were used except the damping was neglected in order to
obtain real solutions for ω. Examples of these calculations are
shown in Figure 3. The EBK is expected to be asymptotically

exact at large quantum numbers but as one can see from Figure
3 an excellent agreement is reached for the bulk modes (the top
three curves) already for modest l, m, and n. On the other hand,
the (9, 2, 0) surface mode (the bottom curve) shows some
deviations from the exact result at intermediate aspect ratios.
We discuss such modes in more detail below.

Surface Modes. The hyperbolic surface modes (HSM)32

are similar33 to Dyakonov surface waves34−36 of uniaxial
materials with positive-definite permittivity tensor. However,
the HSMs have several new properties. Unlike the standard
Dyakonov waves, the momenta and therefore achievable degree
of confinement for the HSM are limited only by microscopic
(for hBN, atomic) structure. The HSM are robust to surface
defects in the sense that there can only be three other fixed
directions for the defect-scattered wave. This is a stronger
angular restriction than the absence of electron backscattering
in topological insulators37 and graphene.38 Finally, compared to
surface plasmons in metals, which lack any directionality, the
HSM of polar insulators should exhibit a much lower damping
as the they are free of electronic losses.
In the present case of the spheroid, the HSM correspond to

the EBK quantum numbers ν = 0 (and so to n = 0). The ξ
-coordinate of the caustic is given by

ξ μ
λ μ

=
+

=
+ +

m
l

sin c 1
2

1
2 (14)

see Supporting Information. For l and m fixed, ξc is
independent of the aspect ratio = a⊥/az. The coordinate ξ ̅
of the spheroid surface (eq 3) increases with . At large
enough , we have ξ ̅ > ξc , see Figure 2b. This is similar to bulk
modes (i.e., n > 0 modes) except the caustic is now very close
to the surface. At small , we have ξ ̅ < ξc , so the caustic
extends beyond the surface, Figure 2d. Momentum pξ is
imaginary inside the spheroid and eq 12a cannot be satisfied.

Figure 3. Eigenfrequencies of polariton modes in an hBN spheroid as
functions of the aspect ratio = ⊥a a/ z. The red lines are exact
solutions of eq 8. The blue circles are from the EBK quantization
method. The labels are the mode indices (l, m, n) with n = 0 and n > 0
being surface and bulk modes, respectively. For the (9, 2, 0) branch
which is classified as a surface mode, the left part of the blue circles is
from the surface EBK quantization method, and the right part is from
the bulk one. The dark green line is from the uniform approximation
method (Supporting Information).
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(In fact, eq 12a fails to give a solution already shortly before ξ ̅
drops below ξc .) The structure of the HSM in this case can be
understood from the following physical picture. The HSM must
exponentially decrease into the interior of the granule. It can be
viewed as a wave with an imaginary pξ outgoing from the
surface into the bulk, that is, a surface-reflected wave generated
in the absence of an incident one. Therefore, the amplitude
ratio of the two waves is formally infinite. On the other hand,
this ratio equals to eiδ, and so the HSM with imaginary pξ exists
if eiδ → ∞ or tan(δ/2) = −i. Using this condition, eq 14, and
expression for the phase shift δ (Supporting Information), one
can numerically solve for the eigenfrequency of the HSM for
any given l and m. The results of such calculations are
illustrated in the left part of the (9, 2, 0) curve in Figure 3. They
demonstrate a good agreement with the exact dispersion curve
at small where this approach is justified. We note that the
agreement can be greatly improved if the EBK formalism is
replaced by the so-called uniform approximation, which also
enables one to smoothly connect small and large parts of the
dispersion curve (Supporting Information). Lastly, one can
check that the quantum numbers λ = l − m and μ = m of the
HSM still obey the EBK rules,

∮ θ π λ μ= − − =θ ϕp pd (2 1),
(15)

applied now to the effective surface Hamiltonian

θ ξ
= + −θ ϕ

⎛
⎝⎜

⎞
⎠⎟H p p

1
sin

1
sin c

S
2

2 2
2

(16)

at energy HS = 0.
While the assumption of a spheroidal granule simplifies the

theoretical analysis, one may ask if is it possible to make some
correspondence between such a theory and the available
experiments that were all done with HM samples of
nonspheroidal shapes. Our tentative answer is as follows. The
modes observed in truncated hBN nanocones,3 which were
previously called “volume-confined” are, in fact, similar to a
subset of our HSM, specifically, (l, m, n) = (l, 0, 0) and (l, 1, 0)
modes. The modes of cuboidal hyperbolic metamaterials18 and
hBN slabs2,13 are conceptually similar to our bulk modes.
However, indexing them with l, m, or n would be tenuous as the
conserved quantities in such systems are considerably different
from those of prolate spheroids. (For example, translational
momenta in slabs vs angular momenta in spheroids.)
Periodic Orbits. Classical dynamics can prominently

impact the structure of quantum energies and quantum wave
functions.25 In particular, the latter may contain “scars”,
enhanced intensity lines, along these classical trajectories. An
orbit on an invariant torus39 defined by a set of coordinates i is
periodic (closed) if the ratios of the individual periods of
motion τi are rational numbers. For our bulk orbits, the
condition is τξ:τθ:τϕ = z1:z2:z3 and for the surface periodic
orbits, it is τθ:τϕ = z1:z2, where all zi’s are integers. Figure 4
shows the eigenfrequencies of two bulk and three surface
periodic orbits as functions of the spheroid aspect ratio. We
expect that at such frequencies the field distribution created by
polaritons excited by external sources should exhibit regular
geometrical patterns. Below we verify this prediction by direct
numerical calculations.
Response to a Dipole. A peculiar property of the spheroid

is that the dipole moment of all m > 1 modes exactly vanishes,
and so they have extremely weak coupling to far-field radiation.

Furthermore, while the dipole moment of the bulk, that is, n >
0 modes is nonzero, it is quite small. Detection of all such
modes in conventional optics experiments3 will be challenging.
However, observation of these modes may be possible using
scanning near-field optical microscopy. The latter technique
utilizes a sharp metalized tip to perturb and measure the system
response locally. Crudely, one can model the tip as a point
dipole and the measured signal as the electric field created by
the system at the location of such a dipole, see refs 40−42 and
references therein. The same quantity determines Purcell’s
factor, the enhancement of the radiative decay of a dipole
emitter.43

We assume that the emitter and its dipole moment d are in
the x−z plane. (Here and below the common factor e−iωt is
suppressed.) We expand the inner and outer potentials in terms
of spheroidal harmonics, that is, the expressions appearing on
the right-hand side of eqs 7a and 7b, cf. Supporting Information
for details. In an ideal lossless HM, the electric field outside
(reflected by the surface of the spheroid) would diverge at each
eigenfrequency. If the measured optical constants3 of hBN are
used, this divergence is replaced by a finite-width resonance.
Purcell’s factor, which is proportional to the field induced by
the reflected wave at the dipole position, exhibits resonances as
well, see Figure 5. The strength of the resonances and the
frequency spacing between them decrease as the indices l, m,
and n increase. As a result, low-order resonances give distinct
sharp peaks while high-order resonances merge into a smoothly
varying background. The latter is similar to the broadband
Purcell effect near the surface of an infinite HM.44−48 The
major resonances are due to the (l, 1, 0) modes. Note that the
perturbing dipole is assumed to have the same amplitude d at
all ω. However, in the scanning near-field experiments instead
of such a fixed dipole, one has a polarizable tip. The back
reaction of the nanogranule on the tip is expected to cause a
small but observable red shift of the resonances. This shift can
be modeled using recently developed analytical and numerical
approaches40−42 and studied experimentally by comparing the
far-field spectrum of a sparse array of identical granules3 with
the near-field spectrum of a single granule. Both types of efforts
can be subjects of a future work.

Figure 4. Frequencies of representative periodic orbits as functions of
the spheroid aspect ratio. The thick black lines are for the bulk orbits
B1 and B2 with the period ratios τ−1ξ:τ

−1
θ:τ

−1
ϕ = −2:1:0 and −4:1:0.

The thin blue lines are for the surface orbits S1, S2, S3 with the period
ratios τ−1θ:τ

−1
ϕ = 2:1, 1:1, and 1:2. The insets show such orbits in the

real space. For the surface orbits, they include all the orbits of the
given type passing through the equatorial point facing the viewer: two
for each S1 and S2 and one for S3. Despite similarity to Figure 3, there
is no direct relation between the dispersion curves of classical periodic
orbits and those of quantized eigenmodes, either surface or bulk ones.
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The electric field distribution at sharp resonances is
dominated by the resonance mode. An example is shown in
the inset of Figure 5 for (l, m, n) = (2, 1, 0). This field
distribution has the nodal structure of the spherical harmonic
but shows no “scars”. However, ray-like patterns do appear at
the periodic orbit frequencies. Figure 6 B1 depicts the field
distribution at the frequency of the bulk periodic orbit B1 of

Figure 4. The shape of the high-intensity ray patterns matches
the classical periodic orbits (magenta lines). The reason why
they dominate the field distribution can be understood by
imagining that it is a superposition of fields created by
wavepackets launched from a finite-size region facing the
dipole. Wavepackets whose launch points belong to a short
periodic orbit create a strongly concentrated electric field.
Other wavepackets follow quasiperiodic classical trajectories
that spread all over the spheroid, giving an approximately
uniform background. Similar behavior is found near the
frequency of the periodic orbit B2, see Figure 6 B2.
Near-field imaging experiments are expected to be most

sensitive to the electric field distribution on the surface of the
granule. Panels S1−S3 of Figure 6 show examples of such
distributions projected on the x−z plane. They demonstrate
directional ray patterns at the frequencies of the surface
periodic orbits S1−S3 (Figure 4).

Conclusions. We investigated basic properties of confined
polariton modes in spheroidal nanogranules of polar hyperbolic
materials. A physically transparent ray-optics method for
computing eigenfrequencies and wavepacket dynamics of the
polaritons was presented and its accuracy verified by
comparison with the exact analytical results and numerical
simulations. We also suggested how to probe these polariton
modes experimentally using external dipole sources and/or
scanned near-field optical microscopy.
There is a number of other directions to explore. For

example, we restricted our analysis to the hyperbolic regime
realized at frequencies inside the hBN Reststrahlen bands. The
change of the polariton isofrequency surfaces from hyperbolic
to elliptical at the extremes of these bands is a topological
transition. One may want to investigate signatures of this
intriguing transition in, for example, Purcell’s factor.49

The studied phenomena may also have far-reaching
technological implications. One can imagine a whole new
class of polaritonic devices that would include nanoresonantors,
hyperlenses, infrared photon sources, and so forth. Such devices
would be deeply subdiffractional and low-loss because phonon-
polaritons are immune to electronic losses that plague
conventional metal-based plasmonics. Our general approach
may be useful for design and optimization of these devices.
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I. EIGENMODE DISPERSION

A. Radial index of the modes

A nanogranule made of a hyperbolic material possesses
multiple bulk polariton modes corresponding to the same
‘angular’ indices l and m. Such modes can be indexed
with the ‘radial’ quantum number n, as described be-
low. Consider the exact eigenmode equation [eq (9) of
the main text]:

i
√
ε⊥
√
εz

d

dξ
lnPml (cos ξ) =

d

dη̄
lnQml (cosh η̄) . (S1)

Following Walker1, this equation can be written as

εz

(
|m|

tan2 ξ
+ k +

N∑
i= 1

2

x2
i tan2 ξ − 1 + x2

i

)

= − cosh η̄
d

d cosh η̄
lnQml (cosh η̄) ,

(S2)

where 0 < xi < 1 are the positive roots of the Legendre
function Pml (x) sorted in the ascending order, N = [(l −
|m|)/2] is the number of such roots, [z] is the integer
part of z, k ≡ 2N − n+ |m| is either 0 or −1, and tan ξ
is defined by eq (5) of the main text:

tan ξ = i
a⊥
az

√
εz√
ε⊥

. (S3)

The right-hand side of eq (S2) is a positive finite number,
while the left-hand side is a sum of poles that occur at

tan2 ξ = x−2
i − 1 . (S4)

In addition, if m 6= 0, there is another pole at tan2 ξ = 0.
It is easy to see then that eq (S2) may have multiple
solutions, as stated above. The number of such solutions
found in a particular frequency range depends on the
permittivities ε⊥(ω) and εz(ω), which enter tan ξ. In
hBN the hyperbolic response occurs in two separate mid-
infrared bands. The upper band, ωTO

⊥ < ω < ωLO
⊥ , is a

type II HM2,3, ε⊥ < 0, εz > 0. As frequency ω changes
from ωTO

⊥ to ωLO
⊥ , ε⊥ changes from −∞ to 0 while εz is

positive and approximately constant. To find the number
of the solutions of eq (S2), one just counts the number
of the poles crossed by tan2 ξ as frequency changes. We
can index these solutions by an integer n, which is equal
to zero if the pole is tan2 ξ = 0 and equal to i if the pole

originates from xi, eq (S4). One concludes that n runs
from 1 to N for m = 0 and from 0 to N for m 6= 0. At
frequencies that belong to the lower band, hBN behaves
as a type I HM,2,3 ε⊥ > 0, εz < 0, and similar analysis
yields that n runs from 1 to l − |m| −N . Therefore, the
total number of the solutions in both bands combined is
equal to l for m = 0 and l− |m|+ 1 for m 6= 0, as stated
in the main text.

B. Hamiltonian optics

The approximate eigenmodes of our system can also
be found by combining the Hamiltonian optics approach
and the Einstein-Brillouin-Keller (EBK) quantization
rules4,5. In this approach the polariton eigenfunctions
Φ are zero modes of the effective bulk Hamiltonian

HB = εijpipj , (S5)

which describes the region filled by the hyperbolic
medium. The eigenfrequency ω is contained implicitly
in the dielectric tensor εij(ω). It so happens that the
boundary condition for Φ can be written in terms of a
single quantity — the reflection phase shift δ — defined
below [Eq. (S24)]. This fact leads to the existence of
three conserved quantities in the problem, which implies
that the system is integrable. Two of such conserved
quantities are obviously the energy (equal to zero) and
the z-axis angular momentum Lz. The third conserved
quantity L12 is introduced shortly below.

We start with analyzing classical dynamics of the sys-
tem. After a canonical transformation to coordinates
(ξ, θ, φ), defined by [eq (4) of the main text]

ρ = −ib
√
ε⊥ sin ξ sin θ , z = b

√
εz cos ξ cos θ , (S6)

b2 = ε−1
z a2

z − ε−1
⊥ a2

⊥ , (S7)

where 0 < ξ < ξ, ξ < θ < π − ξ, the Hamiltonian HB

becomes [eq (12) of the main text]

HB = εij

(
∂(x, y, z)

∂(ξ, θ, φ)

)α
i

(
∂(x, y, z)

∂(ξ, θ, φ)

)β
j

pαpβ

=
p2
ξ − p2

θ

sin2 ξ − sin2 θ
−

p2
φ

sin2 ξ sin2 θ
. (S8)

The existence of the third conserved quantity L12 be-
comes evident when one goes through the standard pro-
cedure of separation of variables. In our case, where



2

HB = 0, the separated expressions for the momenta are

pξ = ±

√
L12 −

L2
z

sin2 ξ
, (S9)

pθ = ±
√
L12 −

L2
z

sin2 θ
, (S10)

pφ = Lz . (S11)

The position of the caustic is given by

ξc = arcsin

√
L2
z

L12
. (S12)

If 0 < ξc < ξ, where ξ is given by eq (S3), the momenta
pξ, pθ are real in the rectangular region ξc ≤ ξ ≤ ξ, ξ ≤
θ < π − ξ, see Figure 2b of the main text. Conversely,
if ξc exceeds ξ, no classically accessible region inside the
spheroid exists, see Figure 2d of the main text.

Note that the velocity of this fictitious motion has com-
ponents vα = ∂HB/∂pα. Since θ ≥ ξ, the signs of vθ and
pθ are the same but the signs of vξ and pξ are opposite.

Equations (S9)–(S11) specify a hypersurface in the six-
dimensional phase space that has the topology of a three-
dimensional torus6. According to the EBK rules, the to-
tal phase acquired across any closed loop on this torus
should be an integer multiple of 2π. The phase must in-
clude a phase shift of −π2 upon crossing the caustic and
the reflection phase shift(s) at the boundary. We found
(cf. Sec. I F) that due to the sign structure of the ve-
locity components, the vertical boundary segment ξ = ξ
(region 2 in Fig. 2 of the main text) and the two hor-
izontal ones θ = ξ, π − ξ (regions 1 and 3 in Fig. 2 of
the main text) have opposite phase shifts, respectively,
δ and −δ. Therefore, the EBK quantization conditions
have the form

2

ξ̄∫
ξc

|pξ|dξ −
π

2
+ δ = 2πν , (S13)

2

π−ξ̄∫
ξ̄

|pθ|dθ − 2δ = 2πλ , (S14)

2πLz = 2πµ . (S15)

Without loss of generality, the quantum numbers (µ, λ, ν)
can be taken to be nonnegative integers. From eq (S15)
we see than Lz = µ. We now need to express the remain-
ing classical integral of motion L12 in terms of the quan-
tum numbers. Using eqs (S9), (S10), (S13) and (S14),
we obtain

2µ

ξ̄∫
ξc

√
1

sin2 ξc
− 1

sin2 ξ
dξ − π

2
+ δ = 2πν , (S16)

2µ

π−ξ̄∫
ξ̄

√
1

sin2 ξc
− 1

sin2 θ
dθ − 2δ = 2πλ , (S17)

which can be rewritten as

2ϕµν (ξ, ξc)−
π

2
+ δ = 2πν , (S18)

4ϕµν

(π
2
, ξ
)
− 2δ = 2πλ . (S19)

Here we defined

ϕµν (ξ, ξc) ≡ µ
ξ∫

ξc

√
1

sin2 ξc
− 1

sin2 ξ
dξ

=
µ

sin ξc
A(ξ, ξc)− µB(ξ, ξc) , (S20)

A(ξ, ξc) ≡ arccos

(
cos ξ

cos ξc
+ i0

)
, (S21)

B(ξ, ξc) ≡ arccos

(
cot ξ

cot ξc
+ i0

)
. (S22)

Compared to eq (24) of the main text, here we add the
infinitesimal quantities ‘+i0’ in the definitions of A(ξ, ξc)
and B(ξ, ξc). These infinitesimal quantities have no effect
at ξ < ξc but they will be important in Sec. II where we
consider ξ > ξc to describe the surface modes. Combining
these equations, we obtain the expression for ξc:

sin ξc =
µ

2ν + λ+ µ+ 1
2

. (S23)

The final step of the EBK procedure is to account for the
boundary conditions, which entail a certain equation for
δ. This equation can be written as (cf. Sec. I F)

tan
δ

2
= i

1− eiδ

1 + eiδ

=
i

√
ε⊥
√
εz


1

sin2 ξc
+

1

sinh2 η̄
1

sin2 ξc
− 1

sin2 ξ


1/2

, (S24)

which is the same as eq (16) of the main text. Note
that η̄ is determined by the aspect ratio of the spheroid
a⊥/az = tanh η̄ while ξc is fixed by the quantum numbers
via eq (S23). For each given set of these parameters,
the system of equations (S18) and (S24) can be solved
numerically for ω, the implicit argument of ε⊥ and εz, to
find the desired eigenfrequency.

C. Correspondence between the EBK and the
exact eigenmodes

We are to compare the following two eigenmode equa-
tions. The first one is from the exact solution, eq (S1).
The second one is from the EBK method, eqs (S18), and
(S24). To do the comparison, we use the asymptotic
forms of the associated Legendre functions:
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Pml (cos θ) '


cml

(cos2 θc − cos2 θ)
1/4

cos
(
ϕml (θ, θc)−

π

4

)
, θc < θ ≤ π

2
,

1

2

cml

(cos2 θ − cos2 θc)
1/4

exp
(
−=ϕml (θ, θc)

)
,

1

l + 1
2

� θ < θc ,

(S25)

cml = (−1)m
[

2

π

1

l + 1
2

(l +m)!

(l −m)!

]1/2

, sin θc =
m

l + 1
2

. (S26)

These expressions are valid for large l and m. They can be derived7 applying the semiclassical approximation to the
Legendre differential equation. Similarly, for the Legendre function of the second kind one obtains

Qml (cosh η) ' π

2

cml(
cosh2 η − cos2 θc

)1/4 exp [−κml (η, θc)] , (S27)

κml (η, θc) =
m

sin θc
cosh−1

(
cosh η

cos θc

)
−m sinh−1

(
coth η

cot θc

)
. (S28)

The leading contribution to the logarithmic derivatives of the Pml and Qml comes from the cosine and the exponential
terms, respectively. Keeping only these terms, we obtain

d

dξc
lnPml (cos ξ) ' −

√(
l +

1

2

)2

− m2

sin2 ξ
tan

(
ϕml (ξ, θc)−

π

4

)
, (S29)

d

dη̄
lnQml (cosh η̄) ' − d

dη̄
κml (η̄, θc) = −

√(
l +

1

2

)2

+
m2

sinh2 η̄
. (S30)

Substituting these expressions into eq (S1), we see that
it can be matched with eq (S18) if we set θc = ξc, i.e., if
we make the following correspondence between the two
sets of integers:

l = 2ν + λ+ µ, m = µ . (S31)

The numerical demonstration of this agreement is shown
in Fig. 2 of the main article.

D. Hyperbolic surface modes

The momenta inside and outside of the spheroid satisfy
the equations

p2
ξ − p2

θ

sin2 ξ − sin2 θ
−

p2
φ

sin2 ξ sin2 θ
= 0 (inside) , (S32)

p2
η + p2

θ

cosh2 η − cos2 θ
+

p2
φ

sinh2 η sin2 θ
= 0 (outside) ,

(S33)

i
√
ε⊥
√
εzpξ = pη (surface) .

(S34)

Hyperbolic surface modes (HSM) correspond to imagi-
nary pξ and pη. Eliminating these variables from the

equations, we obtain

HS = p2
θ +

(
1

sin2 θ
− 1

sin2 ξc

)
p2
φ = 0 , (S35)

same as eq (17) of the main text. Function HS(pθ, pφ, θ)
can be considered an effective surface Hamiltonian for
polaritons. Here we defined

1

sin2 ξc
=

1

ε⊥εz − 1

(
ε⊥εz

1

sin2 ξ
+

1

sinh2 η̄

)
. (S36)

This formula, valid for the surface waves, replaces
eq (S12) for the bulk waves.

E. Uniform approximation

The lowest-order semiclassical approximation eq (S25)
diverges near the caustic θ = θc whereas the actual Leg-
endre function Pml (cos ξ) remains finite. This is not a
serious problem for the bulk modes; however, for surface
waves there is a range of parameters where the bound-
ary ξ is close to the caustic ξc. This is the cause of the
discrepancy between the exact and EBK results seen in
Fig. 3 of the main text near the aspect ratio A = 1. This
discrepancy can be greatly reduced by using the uniform
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x

z

A22e
S22A21e

S21

A12e
S12A11e

S11

ε2

ε1

Figure S1. Geometry of an auxiliary problem of wave reflec-
tion at the boundary of media with permittivity tensors ε1
and ε2.

approximation8 for the Legendre function:

Pml (cos θ) '
√
πcml

(
ζ

cos2 θ − cos2 θc

)1/4

Ai(ζ) , (S37)

ζ = eiπ/3
[
−3

2
ϕml (θ, θc)

]2/3

. (S38)

Here Ai(ζ) is the Airy function. If we apply this
approximation to the left hand-side of eq (S1), use
lnQml (cosh η) ' −κml (η, θc) on the right-hand side, and
keep the leading terms only, then eq (S34) gets replaced
by

i
√
ε⊥
√
εz

1

i

dζ

dξ

Ai′(ζ)

Ai(ζ)

∣∣∣∣
ξ=ξ

= i
∂

∂η
κml

∣∣∣∣
η=η̄

. (S39)

Figure 3 of the main text shows an example of applying
eq (S39) to computing the (9, 2, 0) surface mode of an
hBN spheroid. It yields an excellent agreement with the
exact eigenfrequency of this mode.

F. The phase shift of internal reflections

To compute the internal reflection coefficient of polari-
tons off the spheroid surface, we first consider an auxil-
iary problem of reflection at the interface of two media,
1 and 2, with diagonal dielectric tensors ε̂1 and ε̂2, re-
spectively, see Figure S1. To solve this latter problem we
write the scalar potentials of incident and reflected waves
as follows:

Φ1 = A11e
S11 +A12e

S12 , (S40)

Φ2 = A21e
S21 +A22e

S22 . (S41)

The first index in the phases Sjk labels the medium, and
the second distinguishes incident k = 1 and reflected k =

2 waves. The gradients of the phases Sjk are the wave
momenta pαjk = −i∂αSjk. We assume that only α = z
and x components are nonzero. The boundary conditions
are:

Φ1 = Φ2 , ε1z∂zΦ1 = ε2z∂zΦ2 . (S42)

To satisfy them, all pxjk’s must be equal. In addition, we
must have

A11 +A12 = A21 +A22 ,

A11∂zS11 +A12∂zS12 =
ε2z

ε1z
(A21∂zS21 +A22∂zS22) .

Taking advantage of the fact that ∂zS11 = −∂zS12 and
∂zS21 = −∂zS22, we get(

A11

A12

)
=

1

2

(
1 + t 1− t
1− t 1 + t

)(
A21

A22

)
, (S43)

where

t =
ε2z

ε1z

∂zS21

∂zS11
. (S44)

Setting A21 = 0, which means there is only outgoing wave
in medium 2, we get the reflection coefficient

eiδ =
1 + t

1− t
. (S45)

If the wave in medium 2 is evanescent, i.e., if momenta
pz2k are imaginary, then the reflection phase shift δ is real.

Next, we turn to our original problem of internal po-
lariton reflection at the surface of a suspended nanogran-
ule. The problem can be reduced to the one solved
above using the special choice of coordinates: coordinates
(ξ, θ, φ) inside the granule [eq (S6)] and the spheroidal co-
ordinates (η, θ, φ) in vacuum outside [eq (2) of the main
text]. Equation (S42) becomes:

Φ1 = Φ2, i
√
ε⊥
√
εz ∂ξΦ1 = ∂ηΦ2 . (S46)

Therefore, eq. (S45) holds after the following trivial
change is made:

t =
1

i
√
ε⊥
√
εz

∂ηS21

∂ξS11
=

1

i
√
ε⊥
√
εz

pη
pξ
. (S47)

Taking advantage of eq (S9) for pξ and the similar ex-
pression for momentum pη outside the spheroid,

pη = i

√
L12 +

L2
z

sinh2 η
, (S48)

we recover eq (S24).

II. PERIODIC ORBITS

To study classical periodic orbits of the polaritons,
it is convenient to perform a canonical transformation
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Figure S2. (Color online) Left: periodic orbits for different values of (τξ, τθ, τφ). The red, green, and blue correspond to,
respectively, |τθ/τφ| = 1, 1/3, and 3. Parameter |τξ| decreases from left to right. Smaller τξ’s yield smoother orbits. The value
of |τξ/τφ| can be inferred from the number of radial bounces that occur during one azimuthal (φ) cycle. Center: the dispersions
(electromagnetic field frequencies) of the periodic orbits as a function of the aspect ratio A = a⊥/az of the granule. The same
color code as in the left panel is used. As |τξ| decreases, the distance between adjacent curves of the same color decreases.
The τξ → 0 limit corresponds to whispering gallery trajectories grazing along the surface of the granule. The first 40 inverse
integer values of |τξ| are included. Right: the periodic orbits dispersions for A = 0.5. The orbits include |τθ/τφ| = i/j, where
{i, j} ∈ {1, 2, 3}. The values of |τξ| are the same as in the central panel.

to action-angle variables.6 The new momenta are the
actions of the three independent loops on the three-
dimensional torus specified by the constants of motion,
cf. eqs (S9)–(S11):

Jξ =

∮
pξdξ = 2

ξ∫
ξc

√
L12 −

L2
z

sin2 ξ
dξ , (S49)

Jθ =

∮
pθdθ = 2

π−ξ∫
ξ

√
L12 −

L2
z

sin2 θ
dθ , (S50)

Jφ =

∮
pφdφ = 2πLz . (S51)

The motion of each action-angle coordinate pair is peri-
odic with the period

τi =

(
∂HB

∂Ji

)−1

, i = ξ, θ, φ . (S52)

As explained in the main text, polariton wavepackets fol-
low the same trajectories in the real space and thus also
in the space of angle variables as the fictitious particle
with Hamiltonian HB . However, the rate of change of
the angle variables for polariton wavepackets is differ-
ent from ∂H/∂Ji by a certain overall factor. Therefore,
the periods τi themselves do not have a direct physical
meaning but their ratios do. The phase-space trajectory
or “orbit” is closed if these ratios are rational numbers.

Each τi can be represented by a certain Jacobian. For
example, τξ is given by

τ−1
ξ =

∂HB

∂Jξ
=
∂(HB , Jθ, Jφ)

∂(Jξ, Jθ, Jφ)

=
∂(HB , Jθ, Jφ)

∂(HB , L12, Lz)

∂(HB , L12, Lz)

∂(Jξ, Jθ, Jφ)

=
∂(HB , Jθ, Jφ)

∂(HB , L12, Lz)

[
∂(Jξ, Jθ, Jφ)

∂(HB , L12, Lz)

]−1

=

(
∂Jθ
∂L12

)
Lz,HB

[
∂(Jξ, Jθ)

∂(HB , L12)

]−1

. (S53)

For the other two periods, τθ and τφ, we obtain

τ−1
θ =

(
∂Jξ
∂L12

)
Lz,HB

[
∂(Jθ, Jξ)

∂(HB , L12)

]−1

, (S54)

τ−1
φ =

1

2π

∂(Jξ, Jθ)

∂(L12, Lz)

[
∂(Jξ, Jθ)

∂(HB , L12)

]−1

. (S55)

Their ratios can be reduced to the following form:

τ−1
ξ : τ−1

θ : τ−1
φ =

∂Jθ
∂L12

: − ∂Jξ
∂L12

:
1

2π

∂(Jξ, Jθ)

∂(L12, Lz)
,

(S56)

where the first two derivatives are to be taken at fixed
Lz and fixed HB = 0. After some algebra, we obtain the
explicit formulas

τ−1
ξ : τ−1

θ : τ−1
φ = π − 2A : −A : (B −A) sgnLz , (S57)
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where A = A(ξ, ξc) and B = B(ξ, ξc) are defined by
eqs. (S21) and (S22). To get a particular periodic or-
bit, we follow these steps. First, we choose the period
ratios to be desired rational numbers. Next, we deter-
mine A and B consistent with this choice. Next, we solve
for the constants of motion Lz and L12 from eqs. (S21)
and (S22). Finally, the orbit is generated and plotted
using eqs. (S9)–(S11). In general, the orbits can have
very complicated shapes, as illustrated in Figure S2 (left).
Roughly speaking, the ratio |τφ/τθ| determines the topol-
ogy or the winding number of the orbit whereas |τξ| de-
termines the typical radial distance of the orbit from the
center of the spheroid. As |τξ| decreases, the orbit is
pushed closer towards the surface of the spheroid. In
the limit τξ → 0, the orbit becomes a smooth trajectory
grazing along this surface. This kind of trajectories are
similar to the whispering gallery modes well known in
ray optics and acoustics. Therefore, they can be con-
sidered a generalization of the whispering gallery modes
to the present case of the indefinite Hamiltonian HB .
For positive-definite Hamiltonians it has been rigorously
proven9,10 that the motion along trajectories sufficiently
close to the surface of a smooth billiard is regular. There-
fore, such whispering gallery modes are subject to the
EBK quantization rules.5 We expect that the same prop-
erty holds for indefinite Hamiltonians as well.

In fact, a precise relation between classical periodic
orbits and quantization should exist. According to the
trace formulas given by Gutzwiller11 for chaotic Hamil-
tonian systems and by Berry and Tabor12 for integrable
ones, the density of states (DOS) of the quantized eigen-
modes can be represented by a sum over the periodic or-
bits. However, in the present case of the indefinite Hamil-
toninan, although the ray dynamics in a spheroidal par-
ticle is of course integrable, the density of states (DOS)
is divergent without a momentum cutoff. Therefore, if
one carries out the summation in the Berry-Tabor for-
mula11,12, one should get infinity not only at some dis-
crete frequencies that are equal to resonance frequencies
but in fact at all frequencies in the Restshrahlen band.
How to treat these divergencies is an intriguing problem
for future work.

The role of short periodic orbits in our system is also
unconventional. A fair approximation to the exact DOS
of a billiard system with the usual quadratic Hamilto-
nians H = p2/2m, can be obtained including only the
contributions of the shortest orbits.12 However, in our
case no obvious features of the eigenmode spectra near
the electromagnetic frequencies ω corresponding to short
periodic orbits can be identified. We speculate that the
geometric length of the orbit may not be a relevant quan-
tity for systems with indefinite Hamiltonians such as HB .
Note that the frequencies ω of families of orbits hav-
ing the same |τφ/τθ| and decreasing |τξ| tend to clus-
ter together. The corresponding frequencies converge
to certain value that is a function of the aspect ratio
A = a⊥/az, see the central panel in Figure S2. Such ω
are plotted in Figure S3. Naively, a high density of peri-

0 1 2 3 4 5

1350

1400

1450

1500

1550

1600

aÞ�az

Ω
Hcm

-
1

L

Figure S3. (Color online). Frequencies of the whispering
gallery periodic orbits as functions of the aspect ratio A. The
orbits have period ratios |τθ/τφ| = i/j with {i, j} = {1, 2, 3}
(same as in Figure S2, right). The inset illustrates the shape
of the orbits in the real space.

odic orbits near these whispering galley frequencies may
lead to enhancement of the properly regularized DOS.
This problem remains to be understood.

As discussed in Sec. I D, the momentum pξ can be
imaginary for large enough angular momenta Lz or at
small enough aspect ratios A. Such waves are not the
whispering gallery waves. Instead, they are HSM de-
scribed by the surface Hamiltonian HS . The analysis of
the periodic orbits of the HSM is simpler because there
is only one period ratio,

τ−1
φ : τ−1

θ = 1− 1

sin ξc
. (S58)

The HSM orbit is closed if τ−1
φ : τ−1

θ = n1 : n2 where n1

and n2 are integers. Dispersion of several such orbits as
a function of A are shown in Figure 4 of the main text.
Comparing eq (S58) with the EBK condition

1− 1

sin ξc
= −2λ+ 1

2µ
, (S59)

which follows from eq (19) of the main text, we see that
roughly a quarter of all possible HSM periodic orbits
(those with odd n1 and even n2) are simultaneously EBK
eigenmodes.

III. RESPONSE TO A DIPOLE

A. Quasi-static approximation

In this section we outline the steps needed to calcu-
late the field created by the nanogranule in response to
a nearby oscillating electric dipole. We assume that the



7

(d) (f)(e)

(a) (b) (c)

0
1
2
3
4
5

6420246S1 S2 S3

Figure S4. (a)–(f): False color plot of |Ex| in a meridional
cross section of a hBN spheroid due to a dipole source located
just above the north pole and pointed north. Damping loss
is neglected. Outside the spheroid, the dipole’s own field is
subtracted away, for clarity. The frequencies in (a)–(c) are
1551, 1555, and 1561 cm−1. In (d)–(f), they are 1490, 1494,
and 1497 cm−1. The middle numbers in these sets match the
frequencies of B1 and B2 in Figure 4 of the main text for the
chosen aspect ratio A = tanh 1 ≈ 0.761. The tilted magenta
lines run parallel to the polariton group velocity. S1–S3: False
color plot of E2

z at the surface of the spheroid projected onto
the meridional plane. The dipole is just above the surface at
the center of each plot. The frequencies in S1–S3 are 1557,
1535, 1488 cm−1, same as in Figure 4 of the main text for the
chosen aspect ratio A = tanh 0.5 ≈ 0.462. The tilted magenta
lines run parallel to the HSM group velocity at the center of
the image.

dipole is located at a point R in the x–z plane. Let the
spheroidal coordinates of R be (η0, θ0, 0) with η0 > η̄.
The local direction of the coordinate lines is specified by
the vectors

η̂ =
1

a

cosh η sin θ ρ̂+ sinh η cos θ ẑ

cosh2 η − cos2 θ
, (S60)

θ̂ =
1

a

sinh η cos θ ρ̂− cosh η sin θ ẑ

cosh2 η − cos2 θ
, (S61)

φ̂ =
1

a

ψ̂

sinh η sin θ
, a =

√
a2
z − a2

⊥ , (S62)

where ρ̂, ẑ, and ψ̂ are the unit vectors in the radial, z,
and the azimuthal directions, respectively. Suppose the
dipole moment d is also in the x–z plane, then it can be
defined in terms of two coefficients, dη and dθ, such that

dη = (η̂d) , dθ = (θ̂d) , (S63)

where η̂ and θ̂ are to be evaluated at η = η0 and θ = θ0.

As in the main text, we denote by Φ1(r) and Φ2(r) the
scalar potentials inside and outside the spheroid, respec-
tively. We denote by Φd(r) the potential of the dipole
alone. These three potentials admit the expansions in
series of spheroidal harmonics Y ml (θ, φ):

Y ml = Pml (cos θ) cosmφ , (S64)

Φ1 =

∞∑
l= 0

l∑
m= 0

Dm
l t

m
l Pml (cos ξ)Y ml , ξ < ξ , (S65)

Φ2 =

∞∑
l= 0

l∑
m= 0

Dm
l r

m
l Q

m
l (cosh η)Y ml + Φd , η > η̄ ,

(S66)

Φd =

∞∑
l= 0

l∑
m= 0

Dm
l Pml (cosh η)Y ml , η < η0 . (S67)

The expansion coefficients Dm
l of Φd can be derived from

the known expansion coefficients13 Cml of the potential
of a point charge:

Dm
l = d ∂RClm = (dη∂η0 + dθ∂θ0)Cml , (S68)

Cml (R) =
εm
a
im(2l + 1)

[
(l −m)!

(l +m)!

]2

Qml (cosh η0)Pml (cos θ0) , (S69)

where εm is the Neumann factor: ε0 = 1, εm = 2 (m = 1, 2, 3, . . .). We obtain

Dm
l =

εm
a
im(2l + 1)

[
(l −m)!

(l +m)!

]2

[dη∂η0Q
m
l (cosh η0)Pml (cos θ0) + dθQ

m
l (cosh η0)∂θ0P

m
l (cos θ0)] . (S70)
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Imposing the boundary condition (S46), we get the matrix equation for the series coefficients:(
Pml (cos ξ) −Qml (cosh η̄)

i
√
ε⊥
√
εz ∂ξP

m
l (cos ξ) −∂η̄Qml (cosh η̄)

)(
tml
rml

)
≡M

(
tml
rml

)
=

(
Pml (cosh η̄)
∂η̄P

m
l (cosh η̄)

)
, (S71)

which has the solution

tml =
1

detM
[−∂η̄Qml (cosh η̄)Pml (cosh η̄) +Qml (cosh η̄) ∂η̄P

m
l (cosh η̄)] , (S72)

rml =
1

detM
Sml , (S73)

where

detM = −Pml (cos ξ)∂η̄ Q
m
l (cosh η̄) + i

√
ε⊥
√
εz ∂ξP

m
l (cos ξ)Qml (cosh η̄) , (S74)

Sml = −i
√
ε⊥
√
εz ∂ξP

m
l (cos ξ)Pml (cosh η̄) + Pml (cos ξ) ∂η̄P

m
l (cosh η̄) . (S75)

When eq (S1) is satisfied, detM vanishes, so that tml and rml diverge. This behavior is consistent with having a
divergent resonant response at the polariton eigenfrequencies. To compute Purcell’s factor (Figure 5 of the main text
and Figure S5) we need to know the response electric field outside the spheroid. This field is given by

Er2 = −∂r[Φ2(r)− Φd(r)] = Er2ηη̂ + Er2θθ̂ + Er2φφ̂ , (S76)

Er2i = −
∞∑
l= 0

l∑
m= 0

Dm
l r

m
l ∂i [Qml (cosh η)Y ml (θ, φ)] , i = η, θ, φ , (S77)

so that Purcell’s factor is

f = 1 +
3

2

( c
ω

)3 1

d2
Im
[
dηE

r
2η + dθE

r
2θ

]
. (S78)

Note also that the square of the response electric field is given by

|Er2|2 =
1

a2

[
(Er2η)2

cosh2 η − cos2 θ
+

(Er2θ)
2

cosh2 η − cos2 θ
+

(Er2φ)2

sinh2 η sin2 θ

]
. (S79)

The formula for the total field E1 = −∂rΦ1(r) inside the
spheroid is similar, except it involves coefficients tml .

The distribution of the electric field calculated at sev-
eral periodic orbit frequencies of the bulk waves and the
HSM are shown in Figure 6 of the main text. They
demonstrate an enhanced amplitude at the locations of
the classical trajectories launched from the point on a
surface facing the dipole source. However, at a frequency
away from the periodic orbit frequencies, wavepackets fol-
low trajectories that spread all over the spheroid, forming
an irregular background. This effect is most apparent if
we neglect the damping loss of the media, as shown in
Figure S4(a)–(f). If the frequency is detuned by roughly
5 cm−1, i.e., a mere 0.3% to either side off the periodic
orbit frequency, the ray patterns disappear. The ray pat-
tern of several surface periodic orbits are also found at
their frequencies, as shown in panels S1–S3 of Figure S4.
If we account for the hBN phonon damping, as we do
in Figure 6 of the main text, then the polariton prop-
agation length becomes finite. Notably, because of the
scale-invariance of the problem, this length is not fixed,

it scales in proportion to the size of the nanogranule.
This unusual property holds as long as the size of the
granule is smaller than c/ω, so that the scale-invariant
quasi-static approximation is valid. Therefore, a better
measure of damping may not be the propagation length
but rather the quality factor Q = ω/Γ. In Figure 6 of the
main text we used the damping rate Γ = 7 cm−1, which
is near the upper end of the experimentally determined
range.14 This corresponds to Q ∼ 200. Clearly, for such
Γ the polaritons still propagate far enough to complete
the periodic orbits. Additionally, the frequency windows
for observing these orbits becomes wider, similar to the
effect of damping on Purcell’s factor resonances.

B. Radiative correction

To explain our procedure for computing the radiative
damping, it is instructive to consider two auxiliary prob-
lems first. We begin with the textbook problem of a
point-dipole emitter. It is well known15 that there is a
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small correction to the near field of such a dipole if we
consider the retardation effect. The correction contains
a real part, which leads to a shift of the resonance fre-
quency, and an imaginary part, which causes broadening
of the linewidth and accounts for the energy loss due to
radiation. We are primarily interested in the radiative
damping; thus, we retain only the imaginary part:

Ed = Estatic+i ImErad = −P− 3(r̂P)r̂

r3
+

2i

3
k3

0P. (S80)

Next, consider a finite-size nanogranule subject to an ex-
ternal electric field. The field outside is the sum of inci-
dent field and dipole field. They have to satisfy boundary
condition at the surface of the granule, which leads to

P = χ̂0(E0 + i ImErad) = χ̂0

(
E0 +

2i

3
k3

0P

)
, (S81)

where χ̂0 is the polarization tensor. Solving eq. (S81), we
get the radiative damping corrected polarization tensor:

P =
χ̂0

1− i 2
3 (ωc )3χ̂0

E0 . (S82)

Finally, let us consider our original problem of a
spheroidal granule perturbed by a dipole source. Here the
radiation correction field should be computed using the

total dipole moment of the system: the source dipole and
the spheroid. From the first term of eq (S66), the induced
dipole moment of the granule has x- and z-components

P zind =
a2

3
D0

1r
0
1 , P xind =

2a2

3
D1

1r
1
1 . (S83)

The potential Φrad corresponding to the correction
i ImErad can be written as

Φrad =
∑

m= 0,1

(cmDm
1 r

m
1 + cms d

z)Pm1 (cosh η)Y m1 , (S84)

where

c0 = −2i

9

(ω
c

)3

a3 , c1 = −2c0 , (S85)

c0s = −2i

3

(ω
c

)3

a , c1s = −c0s . (S86)

Thus, the right-hand side of eq (S66) changes to

Φ2 = Φd + Φrad +

∞∑
l= 0

l∑
m= 0

Dm
l r

m
l Q

m
l (cosh η)Y ml .

(S87)

Imposing the boundary condition (S46), we obtain the
equation for the modified reflection coefficients rml of the
dipolar (i.e., m = 0, 1) modes

M

(
tml
rml

)
=

(
1 + cmrml + cms

dm

Dm
l

)(
Pml (cosh η̄)
∂η̄P

m
l (cosh η̄)

)
, (S88)

which can be rewritten as[
M− cm

(
0 Pml (cosh η̄)
0 ∂η̄P

m
l (cosh η̄

)](
tml
rml

)
=

(
1 + cms

dm

Dm
l

)(
Pml (cosh η̄)
∂η̄P

m
l (cosh η̄)

)
. (S89)

The solution for the reflection coefficient is

rml =
Sml

detM− cmSml

(
1 + cms

dm

Dm
l

)
, (S90)

where detM and Sml can be found from eqs (S74) and (S75). If aω/c � 1, i.e., if the nanogranule is much smaller
than the diameter of Wheeler’s radian sphere c/ω, then cm, cms � 1, and the radiative damping is weak. Far enough
from the resonances, where rm1 is finite, the correction to reflected field to the lowest order in cm, cms is

δΦ2 =
∑

m= 0,1

Dm
1 δr

m
1 Q

m
1 (cosh η)Y m1 + cmDm

1 r
m
1 Pm1 (cosh η)Y m1 (S91)

=
∑

m= 0,1

(cmDm
1 r

m
1 + cms d

m)rm1 Q
m
1 (cosh η)Y m1 + cmDm

1 r
m
1 Pm1 (cosh η)Y m1 . (S92)

The first term in eq (S92) is due to radiative correction
of the polarizability of the spheroid, the second term is
the reflected damping field of the source dipole, and the

third term is the damping field of the induced dipole
on the spheroid. The corresponding change to Purcell’s
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Figure S5. Purcell’s factor as a function of frequency. The
system configuration is the same as in Figure 5 of the main
text except the long semi-axis of the spheroid is reduced to
200 nm. The red dots (blue lines) show Purcell’s factor with
(without) the radiative damping included.

factor is

δf = −3

2

( c
ω

)3 1

d2
Im (dη∂ηδΦ + dθ∂θδΦ) , (S93)

which is meant to be evaluated at η = η0 and θ = θ0.
In particular, if the dipole is polarized in the x-direction
and is located on the positive-z semi-axis, then eq (S93)
simplifies to

δf = Re

{
r1
1

[
2
Q1

1

P 1
1

+ r1
1

(
Q1

1

P 1
1

)2
]}

, (S94)

where the argument of bothQ1
1 and P 1

1 is equal to cosh η0.
Note that δf is free of the small parameter aω/c. Hence,
the ratio of the radiative correction and the uncorrected
Purcell’s factor scales linearly with (aω/c)3 � 1.

At the resonances, rm1 diverges, so one should avoid
expanding the denominator in eq (S90). This leads to
the more accurate formula

δf = Re

{
r1
1

1− c1r1
1

[
c1 + 2

Q1
1

P 1
1

+ r1
1

(
Q1

1

P 1
1

)2
]}

(S95)

instead of eq (S94). This equation indicates that the
resonances of the radiation-corrected Purcell’s factor are
shifted from points r1

1 = ∞ to points r1
1 = 1/c1 � 1.

Existence of such a shift is expected on general grounds.
However, we do not attempt to evaluate it because a more
important contribution to this shift should come from
the real part of the radiative reaction field neglected in
eq (S80).

Calculations done according to the above formulas are
shown in Figure 5 of the main text for the case of spheroid
with the long semi-axis az = 500 nm and in Figure S5 for
az = 200 nm. The most noticeable effect in these Fig-
ures is the broadening of the resonance peaks. There are
two sources of such broadening. The first is the intrinsic
loss of the medium, described by the phonon damping
rate Γ. It influences all the modes, i.e., we can see that
all the resonant peaks become broader as we increase Γ.
The second is the radiative damping effect, which broad-
ens the m = 0 and 1 dipolar modes but does not change
much the linewidths of the remaining (2, 2, 0) and (3, 2, 0)
modes. However, for az = 200 nm spheroid, c1 is already
so small that the radiative damping correction is negligi-
ble, cf. Fig. S5.

IV. DIELECTRIC FUNCTION OF hBN

Although our theory is developed for a general hyper-
bolic material, all the figures are calculated for the polar
insulator hBN. The dielectric tensor components of hBN
have the following form:

εi(ω) = εi(∞)

[
1 +

(ωLO
i )2 − (ωTO

i )2

(ωTO
i )2 − ω2 − iωΓi

]
, (S96)

where i =⊥ or z and14

ωTO
⊥ = 1360 cm−1, ωLO

⊥ = 1614 cm−1 , (S97)

ωTO
z = 760 cm−1, ωLO

z = 825 cm−1 , (S98)

ε⊥(∞) = 4.90 , εz(∞) = 2.95 . (S99)

The results shown in Figure 5 of the main text are calcu-
lated for two values of the damping rate Γ ≡ Γz, namely,
4 cm−1 and 7 cm−1 to illustrate the effect of dielectric
losses.

We treated the nanogranule as a continuum medium.
As observed in recent experiments16 even for hBN as thin
as three atomic layers the continuum medium treatment
that uses the bulk dielectric tensor yields an excellent
agreement with the observed mode spectra. Validity of
the continuum medium treatment for few-layer hBN can
also be justified theoretically based on the phonon dis-
persions of a few-layer hBN calculated by diagonaliza-
tion of the full dynamical matrix.17 One can easily check
that these results match with the continuum medium
treatment for phonon momenta much smaller than the
inverse lattice constant, which are relevant for our con-
sideration. The main difference between the continuum-
medium and microscopic theories is the total number of
phonon-polariton modes. This number is finite and is
proportional to the total number of layers.17 We have
in mind nanogranules which contain hundreds or even
thousands of layers. For such granules, our continuum-
medium theory should be fully valid.
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