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Summary

Edgeworth expansions are developed for the distribution functions of

some test stafistics in the normal linear regression model where the
arror covariance matrix is unknown. Tests based on generalized least
squares estimates and also on ordinary least squares estimates are
considered. In both cases, adjustments to the asymptotic critical

values are found and approximate lccal power calculated. The approxi-
mations are applied to a number of examples, including hetercscedasticity

and autocorrelation.







APPROXIMATE POWER FUNCTIONS FOR SQME ROBUST TESTS
OF REGRESSICN COEFFICIENTS

Thomas J. Rothenberg*

1. INTRODUCTION

In the linear statistical model, "tests on individual regression coefficients
can be contructed using the familiar t-statistic. If the errors are normal,
independent, and homoscedastic, these tests have the correc£ size and possess
optimal power properties. In practice, however, we are rarely sure about
the proper specification of the errors. Since the t~test is not robust
to misspecification of the error distribution, alteinative tests bhased on a
more richly parameterized model are often considered. In the present paper
we examine the properties of a family of tests in the normal regressioh
model when the error covariance matrix is unknown. The evaluations are
based on second-order asymptotic approximations to the sampling distributions
for local alternatives.

Let X be a known n X K nonrandom design matrix having full column
rank. The random vector y = (yl,...,yn)' is normal with mean XB and
covariance matrix L. The X-dimensional vector of regression coefficients
8 and the n X n matrix I are both unknown. The problem is to use the

cbserved value of y to test the null hypothesis H_ : c'f = c'BO against

0
the one-sided alternative HA: c'B > c‘BO, for given K-dimensional vectors
¢ and BO'

if a reasonable estimate B is available and one can estimate its vari-

ance, it is natural to construct a Wald-type test statistic of the form

c' (B - BO)

{(1.1) T =
{est wvar c'B)l/2




and to reject if T takes on large values. 2an example is the least squares

t-ratio

c'(X'X)"lX’y - c'BO

—lc]l/2

(1.2) T =
° [Szc, (X'x)

where s2 is the residual sum of squares divided by n - K. If I is a scalar
matrix, the appropriate critical wvalue for TO can be calculated from the
Student t distribution. If Z is not scalar, the variance estimate used

in TD is biased and the t-test is invalid. To protect against this pos-
sibility, the econometrician might postulate that L lies in some family

of covariance matrices «f and then construct a test having (approximately)

the right size for any Z in . 1In particular, let § be a p-dimensional
parameter vector taking values in ©, some open set in p-dimensional Euclidean
space. Let L{8) be a smooth function such that « is the range of L{8) as

5 varies over ©. The econometrician is assumed to construct a test statistic

of the form {1.l) using the parametric model
(1.3) vy = XB + u, ur~ N[O,Z(8)], g&0 .

It is useful to distinguish two differeni cases depending on how large

Case I. The parameter vector 8 has low dimension (p much smaller than
the sample size n); if the parametric model is correct, 8 can be well
estimated by % (for example, by maximum likelihood or by a regression
on least squares residuals). The seemingly unrelated regressions model
and models where the errors follow a low-order autoregression are typical

examples of this case. BAn obvious test statistic is the "studentized"

generalized least squares {GLS) estimate




1 1

c'(X'f_lX)f %18 v - c'BO
(1-4) T, =

! [ot(x' 8 n "teat/?

~

where L = Z(0). {(Note that the usual t-statistic 'I‘O is a gspecial case

land £ = 8I.)

where p

Case II. The parameter vector 8 has high dimension (p approximately
equal to n); all of the elements of & cannot generally be well estimated.
The heteroscedastic model where the exrors are independent but nothing is
known about the variances is one example. The autocorrelation model where
the u; are a stationary stochastic process but nothing is known about the
autocorrelation functdon is another example. With such a large family g{,
it might be unwise to attempt generalized least squares. However, the
ordinary least squares (OLS) estimate is normal with mean B and covariance
matrix (X'X)-lX'ZX(X'X)—l. Even though O cannot be well estimated, there
often exists a sample matrix E such that X'Ex/n is a good estimate of X'IX/n.
If so,.a possible test statistic is

et ix'n rry - '8,

(1.5) T = . _ :
e (x'm Tx'Ix(xm Te]t 2

This idea of constructing an OLS based test whose {(asymptotic) size is
robust under quite general unknown covariance structure is explored in
White (1980).

These two cases are not exhaustive. In particular, a third case where
p is large but still considerably less than n is of some importance in
econometrics. For example, in the autocorrelation model where the error
spectrum is known to be smooth, Hannan (1963} and Amemiya (1973) present

asymptotically efficient GLS estimates of B under the assumption that




both p and n/p tend to infinity. Tests based on such estimates are worth
exploring. Unfortunately, the method of asymptotic expansions employed
in this paper does not apply to these tests. Hence, we shall confine

our attention to the two cases described above.

The choice of an appropriate model for I is difficult since in practice
little is known about the error process. If one chooses a low-dimensional
parametric family L{8) and the true error covariance matrix is not contained
in it, the resulting GLS test will have the wrong size, even when the
sample is large. If one chooses a high-dimensional family as in Case II,
one may guarantee the correct size (at least for large samples) but at the
cost of reduced power. Optimazl choice necessarily depends on the strength
of one's convictions about the error structure. But gquantifying the size
error and power loss in a number of typical situations can certainly be
an aid.

In most situations the exact probability distributions of test
statistics like 'I‘l and T2 are difficult to derive. Critical regions -are
usually justified by asymptotic arguments and calculated from limiting
normal distributions. When the sample is large, the use of an estimated
L matrix in (1.4) and (1.3) instead of the true value typically produces
negligible error. It is not so obvious, however, that this error can safely
be ignored when samples are small. If the normal critical value is used
to form a rejection region, the actual size of the test may differ substan-
tially from the desired level Furthermore, the actual power of the test
may be considerably lower than that predicted by ignoring the randomness
of X and i. In the following sections we sketch a method for cbtaining

higher-order asymptotic approximations to the distributicns of test statistics

like 'I‘1 and T2. We calculate adjusted critical values that yield tests




having the correct size to order nnl. In addition, we compute approximate
local power functions for the size-adjusted tests. The approximations

are derived in Sections 2-4 for quite general covariance structures. The
resulting formulae are then evaluated for some simple cases in Sections 5
and 6. For moderate sample sizes, the second-order approximations are
found to differ considerably from the first-order asymptotic approximations.
In pa:ﬁigul@r, the size of a robust test based on ‘I‘l or T2 is often much
larger than its nominal value. The loss in power resulting from using an
estimated ¥ instead of its true wvalue depends very much on the particular
problem. For example, the power loss is typically large for the robust
OLS test which protects against error dependence; the loss is surprisingly
low for the OLS test which protects against heteroscedasticity.

The use of higher-order asymptotic expansions under local alternatives
to evaluate testing procedures is discussed in the survey papers by Bickel
(1974), Pfanzagl (1980), and Rothenberg (1982, 1984a). The approach has
been applied to the problem of testing regression ccocefficients in medels
with unknown error covariance matrix in Rothenberg (1984b), where quite
general multiparameter Wald, likelihood ratio, and Lagrange multiplier
tests are compared. Unfortunately, due to the complexity of the asymptotic
expansions in terms of noncentrél chi square distributions, the resulting
approximate power functions are difficult to interpret. In the present
paper, we concentrate on one-dimensional hypotheses and develop relatively
simple approximations based on the ncrmal distribution. Our approach is
similar to that employed by Albers (1978) and Durbin (1983) in investigating
the effects of autocorrelation. Indeed, our results can be viewed as

extensions of theirs to a broader class of models.




2., DISTRIBUTION THEQORY: CASE I

The GLS test statistic using the true error covariance matrix,

~ c'(X'Z“lX)th'Zaly - c'BO
(2-1.) T = r
Fer (x5 Ly "telt/?

is normal with unit variance and mean

c' (B ~ BG)
(2.2} &, = .
[c’(X'X_lx)_lc]l/2

Denoting the standard normal distribution function by $(°¢) and its upper
0 percentage point ta’ we can write the power function for the size-u

critical region T, > t& as

1

(2.3) Pr{Tl > ga] = @(61 - ta).

We are interested in the distribution of the feasible test statistic Tl
where Z has heen estimated from the data on the basis of the low-dimensional
parametric model (1.3). We shall assume that the true covariance matrix
lies in Efl, the range of L(*) over the parameter space O < RrF. Suppose
that the medel is identified so that & is the unigque vector in @ yielding
the true covariance matrix £. Then, if § is a good estimate of &, we
wonuld expect Tl to behave rather like ﬁl and to have a similar distribution
function.

To make this idea more precise and to develop better approximations
to the distribution of Tl’ it is useful to embed our problem in a seguence
indexed by the sample size and to examine the limiting behavior of our

sample statistics as n tends to infinity. We let the parameter space @

and the parameter vectors 61 and 0 be fixed and consider a sequence of




astimates Gn, n X K design matrices Xn’ and n X n covariance matrices En

-1,,--1 -1, 51 o . .
such that n Xngn Xn and n ann Xn stay positive definite and (stochasti-
cally) bounded. For this sequence, we develop an order n~l Edgeworth
approximation to the distribution of Tln'

The assumption that 51 stays fixed in our sequence of problems requires

-1
: a 1
A’ 61 is a function of ann Xn

some justification. For any given B in H
and will tend fo infinity as the sample size grows. Our interest, however,
is in comparing tests in situations where power is moderate--say, near
one-half--which implies a value of 61 near ta' Thus, it seems reasonable

to hold 61 fixed even when letting n tend to infinity. This is equivalent
to treating B as a function of n and considering a sequence of local
alternatives c'Bn tending to c'BO. Local asymptoiic analysis should give
reasonable approximations for that portion of thepower curve we are most
interestedrin.

To verify that the approximations we develop actually have errors
o(n_l), numerous regularity conditions must be imposed on the sequence of
estimates én’ design matrices Xn’ and covariance matrices Zn. These condi-
ticns are discussed in Rothenberg (1984a, 1984b) and will not be repeated
here. Since our main purpose is to obtain useful results for applications,
we shall not attempt to establish rigorously the order of the approximation
error, but simply sketch the formal development of the Edgeworth expansion.
To avoid cumbersome notation, we shall drop the subscript n in the following
derivations.

By definition, the test statistic Tl can be written as

T, + n_l/zz

(2.4) T, = i

i (1 + n—l/28)1/2




where S and Z are the standardized random variables

P c'(X'E—lX)_lc - c‘(X'E_lX)—lc
c'(X'Z_lX)-lc
(2.5}
= ) c'(x'ﬁ—lx)-lx'ﬁ_ly Lo e Yy
fer (x' sty "oy /2

The distribution of Tl depends on the particular estimate used for 8. In
practice, all of the commonly used estimates (including the MLE and those
obtained by a regression on least-squares residuals) have the property
that they are even functions of u and are ianvariant to changes in B.

{éee, for example, Breusch (1980).) As shown in Rothenberg (1984a), this
invarilance impliés that the pair of random variables (S,2Z) is distributed

independently of Tl. When p is small and the mapping LZ(°) defining gf;
is smooth, the standardized estimator VE(@ - B) typically has a well~
behaved limiting distribution as do 3 and Z. In fact, under reasonable

reqularity conditions, the joint distribution of (S,Z) can be approximated

. -1 . , , .
with error o(n ) by a distribution possessing bounded moments of the

formi/
E(S) = nd otn Yy, E(Z) = 0, Cov(S,Z) = otn™H
n
{2.6)
-1 -1
Var(s) = VS(G) + 0{n ), Var(z) = VZ(B) + G{n )

where V_, V and m are snooth functions of 9. Then the algorithm given

S z'

in Appendix A can be emploved to obtain a formal order n-l Edgeworth

approximation to the distribution of T For any L in ng and any

1

nonrandom scalar t




Altt,B) Bl(t,e)
SR S I e i Y PR
—_ 1 2n

where

_1 2 -
Al(t,e) = 4(1 + t )vs(e) + Vz(e} m(8)
(2.8)
_x .2
Bl{t,S) =3 t vs(e) + vz(e).

The approximate distribution (2.7) depends on the asymptotic variances

-1/2

of S and Z and on the n term in the expansion of the mean of 8. Explicit

expressions for these moments are easily obtained. Denote the derivative

matrices L, 3z/98, and X, ., = 822/88.88. for i,j = 1,...,p; define
i i 17 i~ g

-1 1 -1

(2.9} d Z"lx(xzz'lx)”lc ; D=3t - trxr i e

- Then, by Taylor expansion around the true value 8, S and Z can be approx—

mated by
P o L Sy T
S = ) = n(g, - 8,) + ) - n{b, - 8,38, - 8.)
H da'zd i i o/n i3 a'zd i i 3 3j
(2.10)
z d'ZiDu P
Z2 -y ———— ¥n(f. - 6. .
i@rat? S

Suppose yng - 8) is asymptotically normal with p X p covariance matrix
A&y = [Rij(e)] and that the approximate distribution of Qi has mean

u, (6) )
L somh f= 1,00

(2.11) R(B) =8, +
i 1
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, 2
The required moments are then given by—/

4'L,a d'I.a
Vg9 = Z Y \iy T5d Tra
ij
d'ZiDEjd
(2.12}) VZ(G) = z 5: Alj ——W
. i
d'Eid 1 d'(Zij - 2EiDEj)d
w8 = z i @ga ¢ 5§ : A aza .

Under appropriate smoothness conditions these moments can be well estimated

~

for large n by replacing 8 by 8.




3. DISTRIBUTION THEORY: CASE II

The OLS test statistic using the true error covariance matrix,

_ c'(x'X)_lX’y - c'B,
(3.1) T, = )
2 revxn koo n tet/?
is normal with unit variance and mean
c'(B -B.)
, §_ = 9
(3.2) 2 172

[c'(x'x)'lx'Zx(x'x)'lc]

The power function for the size-g critical region 52 > ta is

{3.3) Pr[T2 > ta]==®(§2 - ta) .

If the column space of X is spanned by K characteristic vectors of I,

the test statistics Tl and 52 are identical; otherwise, dl > 62 and the

GLS test is uniformly more powerful than the OLS test.
Again, we are interested in the distribution of the feasible test

statistic T2 where now L has been estimated from the data using a high-

dimensional parametric model. By definition

(3.4) T

where W is the standardized variance estimate

. e X'R) TR - D' Te

crx'x) Txrx(x'x) Te

{3.5)

Let qJ; be the set of n X n covariance matrices I such that ¥'IxX/n is a

wall-behaved estimate of X'LX/n. To make this notion precise, we embed

11
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our ﬁroblem in a sequence indexed by the sample size and examine the
limiting behavior of our statistics. &again, we let 8 depend on n so that
52 is fixed and consider a seguence of estimates in’ true covariance
matrices Zn’ and design matrices Xn such that Xéinxn/n is stochastically
bounded. We assume that, for all En in the set df;, the joint probability

distribution of (§2n,wn) can be approximated with error o(n-l) by a

distribution possessing bounded moments. Typically, the conditional moments

of this approximate distribution take the form

/2

B T) = al(T, - §)° - 11+ 5 + o /9

{3.86)

-1
vW + 0(n 7)

i

Var (W] %2)

where a, b, and V.. depend on X and %, but not on T

W 5 or 62. {Again, we

drop the subscript n to simplify notation.) Then, applying the algorithm

of Appendix A, we find the formal order n-l Edgeworth approximation

) B (£,8_,0)
. T Ay 2 5%
(3.7) Pr{T, < t] = @Lt 1- 5 |- 62 1 - 7o

for arbitrary nonrandom t, where

_1 200 - age?
Az(t,2)~4(l+t}vw a(t™ - 1) - b

{3.8)

12
Bz(t,SZ,Z) =7tV t at(62 - 28) .

When 2 1s a function of the ordinary least-sguares regression

residuals, the parameters a, b, and VW depend only on a few basic quantities.

Define the n X n matrices
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{3.9) M=1I-~- x(x'x)‘lx' ’, Q@ = n(MIM - I}

and the n dimensional wvectors

(3.10) X = nX(X'X)nlc ’ z = X .

¥x'Ix/n
The least-squares residual vector 4 can be decomposed into the sum of

two terms, one proportional to T. - 8. = Y and the other independent of T

2 2 2°

-1
vy - X(X'X) X'y = Mu

oo
It

(3.11) % x'u+M{I —E-’-"-’-‘-'—)
x'Ix x'Ex
- Y
=z 4+ &2 .
vn

The vector e is normal and uncorrelated with the N{(0,1l) wvariable Y.
2 similar decomposition can often be found for the standardized variance
estimate W. We develop explicit formulae for two important special cases.

(a) Heteroscedasticity Suppose the errors are known to be independent,

hut the variances are totally unknown. Then, I is a diagonal matrix with
. 2 . - .
typical element Ui = E(ui) and a natural cheoice for L is the diagonal

matrix with typical element ﬁi. We find

Ex?(a? - O%}
W= lézl
z X.0,
i1
(3.12) 2 xi(ei - Gi) 'xizi Y2 xizziei
= ¥n — + 2Y -
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The conditional moments of W given T. take the form (3.6) with

2
z x222 E X4c4
i3 1 ii _ ii
{3.13) a = x202 ’ b Z 2 5, VW = 2n EE—?;T%TZ .
E' i1 * 1 xi i

Under reasonable regularity conditions on the sequences of xi, Z and Oi,

the coefficients a, b, and VW are G(no) and can be well estimated {when

~ 1 .
n is large) by replacing Oi by ui and by replacing 04 by = uf in (3.9),

{3.10}, and {(3.13).

(b} Autocorrelation Suppose the errors are known o be stationary

with unknown autocovariances Yk = E(utu,+k). The error covariance matrix
+

I has elements Uij = Yli—j] and a natural choice for X has elements

~ - ~
Oi* = Yii 31 for some set of estimated autocovariances Yk” A reasonable
J - .

estimate is

S =L Y a4
k n -k tél t t+k
(3.14) 1 n-k Y2
= + z 2z — 4+ (z e + Y=
~k§-[ee + + +t]
n Nt t t+k t t+k n t t+k Zrak /o
for k = 0,1,...,n = 1. Definer=£fxx , £, = Y z.z .
' k nétt+k k n~kt=tt+k
and ; = L E e e for k = 0,1,...,n - 1. It will be convenient to
k n -k t etk

ot

define these autocorrelations for negative k by setting ?k = ?—k'
r, = r_k, etc. Then, using the convention that these autocorrelations

ars zero for Ikl > n, we can write

Zrk(Yk - Yk)

{3.15)
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where the summation runs from -® to ®. The Yk and £ are, by construction,

independent of Y. Hence, /E'E(W] ¥) has the form (3.6) with

ir r Lr. q
(3.16) a=zrkk , b = vn E(W) =f;:—}5-]“—}<-
K’k k'k

where &kk = tr(x'x)”1X‘X_k(x'x)_lX'ZX -2 tr(X’X)_lX'ZX_l is the

{approximate) bias of n%k. (The lagged crossproduct matrices X'X_k and

X'Ex«k are formed in the usual manner by summing over the n - |kl COmMmon

observations.)
It is not at all obvious that W has a limiting distribution. Indeed,

in the simplest special case where X is a single column of ones and the u,

are white ncise, one can verify that W blows up with increasing sample

size. If, however, both the r and the Yk die off rapidly as k increases,

it can be demonstrated that W is stochastically bounded and that the co-

efficients a and b are O(no). Suppose the T and Yk are sguare summable

as n tends to infinity. Then the {limiting} convolution of the twc auto-
co%ariance series

o
(3.17) o = 1 Y

jz—m

is also square summable. From the approximate moments given by Fuller

(1¢76, p. 239}, we have

Var[Z ri/5($i - Yi)] = 2 + O(no).

LY )oriry
o L L T ik g4k
i i3k rId ]
Rearranging the terms in the sum and letting n tend to infinity, we find

2Z£i
(3.18) V. o2 —————
W (Er )2

kYk




The asymptotic moments of W have somewhat simpler representation in
the frequency domain. Let f(A) be the spectral density function for the
error process u; that is, f is the Fourier transform of the autocovariance
sequence 7, . Suppose, when n is large; the Fourier transform of the

autocovariance sequence r, behaves like the (continuous) spectral density

k
function g(A). Likewise, suppose the Fourier transform of the Ek behaves
like the continuous spectral density g(A). Then,
T i 2 2
J glAyg(A)YdA 2 f 5 (Mg (A ak
= 1 - -
m W T 2
[ (A g{A)dr [{ f(l)g(l)d%}
~TT =T .

A similar representation is available for b. Indeed, our procedure for

forming T, in the autocorrelated case is essentially equivalent to trans-

2

forming the model y = XB + u to the freguency domain and treating it as a

hetercoscedastic model. The parameters a, b, and VW are given by (3.13},

where the variables are reinterpreted as discrete Fourier transforms of

the original variables and ¥ is reinterpreted as the diagonal matrix of

3/

spectral elements.—
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4. SIZE~CORRECTED TESTS AND THEIR DEFICIENCIES

The approximate distribution functions (2.7} and {(3.7) can be employed
to construct critical regions having the correct size to order n‘l.

Consider the critical value

~

A, 2@+ v ® + v B - n®
. = + == = +
(4-1) ty ta[l 2n] toa[l on )
where tu is the normal critical value satisfying ®(tu) =1 - 0a. BAs long

as the true error covariance matrix lies inAS ; SO that the expansion (2.7}

ig valid, the critical region Tl > tl has size o + O{nﬁl). Since

~

plim(a

1

1 - Al) = 0 under our assumptions, the use of an estimated A, in

forming t, produces an error of smaller order than n_l. The functions

1
VS(G} and VZ(G) are readily calculated from (2,12); they depend only on

the derivatives of % (8) and on the asymptotic variance of §. The function
. . . : -1 o
m(B) is more tedious to calculate since it depends on the n term in

”~

the Nagar expansicon of the bias of 0. Some examples are given in Sections

5 and 6.
A similar argument can be used for tests based on Tz. Consider the
critical value
z’iz %(1 + té)”W - 5(tc:i - 1) - 1;1
. = 1+ — = +
(22, ta[ 2J a[l _ j

where VW’ a, and b are estimates of VW’ a, and b. As long as the true L

- A4,) =0,

lies in‘<?2 g0 that the expansion (3.7} is valid and plim(i2 5

the critical region T. > t., has size o + O(n‘l). Again, V_ is typically

2 2 W
easy to calculate since it depends only on the first-order asymptotic

properties of W. The parameters a and b are more tedious to calculate

since they depend on the higher-order asymptotic properties.




18

It is useful to investigate the sign and magnitude of the terms Al and

A2 which measure the size error resulting from using the asymptotic

critical value ta instead of the corrected values. The simplest example,
useful for comparison purpcoses, is the Student t-statistic (1.2). If Y is

. . . 2 . .
in fact scalar with variance 07, T. has the representation (2.4) with

0
2 2 2 .
S = /E(s -07}/0 and Z = 0. Since Var(S) = 2n/(n - K}, the second-order

approximate critical value is

L+ e
(4.3 % = ta(l * m]

which may be recognized as the first two terms of the Cornish-Fisher
expansion of the percentage point of the Student distribution. For a
test of size ¢ = .05, ti is approximately three and the corrected critical
value is about 100/ (n - X) percent greater than the asymptotic value.
In evaluating the magnitude of the correction term in more complicated
cases, it will be coﬁvenient to set ti at 3 and n at 50. Then the Student
value of about two percent can gserve as a simple benchmark.é/
The terms Al and A2 depend on the specific family of covariance
matrices ﬁf postulated and on the specific estimate Z(@) or E. Some
idea of the range of possible valuez can be seen from the examples
presented in Sections 5 and & helow. The fbllowiﬁg general propositions,
however, can be deduced from the formulae given in Sections 2 and 3:

1. If E(@) is an unbiasedestimate of Z, then A, is necessarily

positive. (This follows from the fact that c'(X'Z“1X)‘lc is

1

a concave function of XZ; hence, by Jensen's inequality, m is

nonpositive.)
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~

2. If % is in fact scalar, a 1is zerc. Hence, if 7 is an unbiased
estimate of a I matrix that is close to being scalar, A2 will be
positive.

From these two facts it appears that there is a general tendency

for unbiased estimates of Z to yield test statistics with positive A
values. Such test stati;tics, when compared to the asymptotic critical
value t&, will reject the null hypothesis too oftén- Monte Carlo results

by MacKinnon and White (1982) are consistent with this observation.

An approximate power function for the size-adjusted test based on

T_1 is
priT > t,1 = @{61(1 - ;f—j - ta:]
where Bl is given in (2.8). An approximate power function for the size-
adjusted test based on T2 is
B, |
Pr{Tz > t2] = @[62[1 - g] - ta:[
where 82 is given ip (3.8). Comparing these second-order approximate

power functions with the exact power functions for the tests based on El

and %2 given in {2.3) and {3.3), we see that the B's measure the loss of

power due to using an estimated L. In fact, they are the asymptotic

deficiencies as defined by Hodges and Lehmann (1970)}. The term Bl is

(to a first-order of approximation} the number of additional observations

> t. to attain the same power

needed when using the critical region Tl 1

as the critical region %l > ta' Similarly, B2 is the number of additional

> t. to attain the same power

observations needed when using the region T2 5

. - > .
as the region T2 ta
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Since VS and VZ are nonnegative, the deficiency for the test based

X . ; . . . 2 .
on T1 is also nonnegative. It is an increasing function of tu but is

independent of the alternative 51. The deficiency for the test based

on T,, however, depends on the specific alternative 62 and may even take

2’
on negative values for sufficiently large |a|. Because an inefficient

egtimate of B is used in the numerator of the test statistic T noise in

57
the denominator may help! Again, the magnitude of Bl and 82 is illustrated
for some typical examples in Sections 5 and 6.

In choosing among parametric models for Z, there is a trade-off
between guaranteeing the correct size and obtaining highest power.
Generally, the higher the dimensionality of the set /8 of permitted
covariance matrices, the lower is the power of the test based on that
model. Traditional first-order asymptotic theory, however, suggests one
striking exception: tests based on GLS statistics like Tl and tests based
on robust OLS statistics like T2 always dominate the simple t-test based
on TO' If £ is scalar, all three tests are asymptotically equivalent;
if ¥ is nonscalar, the t-test has the wrong size, wherszas the other tests
often have the correct (asymptotic) size. If the desire is to maximize
power subject to the constraint that the size is correct, one would never
pexrform a t-test unless absolutely sure of the error specification. The
cost of insuring correct size is zero, asymptotically.

When second-order terms are taken inte account, this conclusion must

T and T. do not have

ba modified. The size-adjusted tests based on T 1’ 5

O'
identical second-order power functions in the scalar case. When highexr-
order approximations are employed, the cost of insuring correct size is

found to he nonzero. In the following sections, we calculate this cost

for a number of simple examples.
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5. A HETEROSCEDASTIC EXAMPLE

Congider the single-regressor model
(5.1) y, = Bxi + u, i=1,...,n

where the uy are independent normal errors with zero means and variances
2 .
Gi = E{ui). If the error variances are known to be egual, the usual

t-test would be optimal for the null hypothesis 3 = 8 against B > BO.

0

Its power function is, approximately,

t
(5.2} @[50(1 - E} - t@]

where 60 = (B - BO)(in)l/z/G and 02 ig the common unknown variance. The
deficiency of this t~te§t compared to the test with known 02 is té/2,

If one were not sure that the error variances were censtant, one
might postulate a low-dimensional parametric model for I and form a GLS
test statistic, Suppose, for example, that the n observations are classi-
fied into p subgroups where the error variances are assumed constant
within a group but may vary across groups. Let R = [rij] be an X p
selection matrix such that rij = 1 if observation i lies in group j;
rij = 0 if observation i does not lie in group j. Then, the natural GLS

test statistic is

p n 2
jZl izl (v; = %Bo)x T, /0]
(5.3) T, = — : 73
2 ~2
( y 2 x.r../O,]
Ly=1 i=1 113 3

2 . . . .
where Gj is some reasonable estimate of the error variance of subgroup j.

The simpiest unbiased estimate is
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(5.4} sj = ———— RSS, J=1,...,p

where RSSj is the residual sum of sguares from the QLS regression using
only the nj data peints in group j. An alternative estimate could be
formed from the residuals from a pooled regression on all the data. Since
these two estimates are asymptotically egquivalent, the choice affects

only the value of m in (2.12}. The size adjustment term A, depends on the

1

particular way of estimating the U?, but the deficiency term Bl does not.

If p is small and ail the nj moderately large (say, 15 or more), the

distribution of Tl should be well approximated by its formal order n_l

Edgeworth expansion. Under the assumption that the error variances are

indeed constant within groups, the approximate distribution of Tl is given

by (2.7) with

2
p n. n.(1-n.)
(5.5) v,o=12 ) =2, v_ = 2 f -4,
S ., n, Z R n,
=1 7] j=1 3
2 -2.1/2
8, = B -8 ] ;%3495
i3
whare
2 -2
} X, .o,
ERE S R
(5.6) nj = > =3 3= Llseeasp
L 1«00
ik

is the fraction of the sample information coming from subgroup j. If
the unbiased estimates (5.4) are used in forming Tl' we find that m = -V _.

To get an idea of the magnitude of the size correction term Al and

the deficiency term B_, it is convenient to examine the special case where

1




each subgroup has the same number of cbservations. Then nj = n/p and the

correction terms become

i
It

1 2 . 2
dp + = - .
D+ 5 p(ta 7)2 nj

{(5.7)

1l

1,2 2
By =2 +5plt) - 4] nyoo-

For typicai values of o, deficiency ig slightly less than 2p. That is,
one needs approximately 2p additional cbservations to compensate for not
knowing the p error variances. Depending on the distrikution of the nj,
the size-correction term Al can range from 2p to 4p - 2 for ti = 3, 1In

, . 2 . .
practice, one might expect large xi values to be associated with large

error variances, implving an A, at the upper end of that range. In the

1
cancnical case where n = 50, ti = 3, and the nj are all equal, the
¥y
corrected critical value t. is 4p - 2 percent greater than the asymptotic

1

value t
The use of test statistics like TO and Tl presupposes considerable

knowledge about the error variances. 2An alternative test statistic,

requiring essentially no information, is

E (v, - B.x.)x,
(5.8) T, = 041 3
}1/2

2 (o 2a2
[ <0
= i I

where Gi is the QLS residual for observation i. This statistic is

asymptotically N(0,1) under HO for very general patterns of heteroscedasticity.

23

Furthermore, as long as the Xi and Oi are well behaved, the distribution of

2

The approximate distribution has the form (3.7} with

T, possesses a valid orxder n—l mdgeworth approximation for local alternatives.
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4 2
) x.0 B -8
V. = 2n i°i , 5. = 0 i.
W v 2 2)2 2 2 211/2
) %o } %0’
1 1 - 11
(5.9)
2 2 2 2
X0, x/ 1
a=n Z ( 55 T 2] ’ b=a- E-VW .
A
13 J

The size-correction term A2 and the deficiency B2 for the test based
2

on (5.8} depend on the joint distribution of the xi and qu

If the Gi are
all egqual and the x, are distributed as a zero mean normal variate, a = 0
and Vw = -2b = 6. Then, deficiency is 3t§/2; when té = 3 and n = 50, the
corrected critical value is approximately nine pexrcent greater than the
asymptotic value. To get a more general picture of the range of values
the size correction can take, suppose that thg pairs (xi,ci) are_distributed

§§§ zero mean normal variates with correlation coefficient r. When ti = 3,

we find after a bit of calculation

4r2 } i

A= 9[1 + >
i+ 2r-

2

Hence, when n = 50 and the xi are highly correlated with the 02, the

corrected critical value t2 is about twenty percent greater than the

asymptotic value. The deficiency B, depends on the alternative and

2

typically is negative for small values of 62.
It is interesting to investigate the relative merits of the tests

based on TD' Tl' and T2. In general, however, the tests are incomparable.

If the Gi are not all equal, the test based on T. has the wrong size.

0

Likewise, the test based on T, will have the wrong size if the error

1

variance are not constant within groups. Only in the special case of
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homoscedastic ervors will all three tests be (approximately) valid.
Thus we shall conduct our comparison in this special case.
2 . ,
When the Gi are all equal, the three asymptotic noncentrality para-

meters 60, 8 and 62 are also equal. Hence, the three power functions

ll

are, to second order, determined by the deficiency parameters:

1 .2
Bo_zta
2
n. n.(1 -n.)
_1 2y 3 3 3
(5.10) sl—zt&[nanfzz — n .
b 3
1 L%
B.=—%t n 1 .

If the nj/nj are approximately constant and the xi normal,

2 3 .2
ta + 2(p - 1) ., B2 =3 ta

w
il
~ i

2 . 1
t r = -
o] Bl 2

It appears that there is little power loss from using the robust test
statistic T2 when it was not needed. However, if p is large, the power
loss from using the GLS statistic Tl can be substantial. When there is

in fact no problem of heteroscedasticity, attempting fo do generalized

least squares can introduce considerable noise.




©. AN AUTOCORRELATION EXAMPLE

Consider the single~regressor time series model:

. o + =1,...
(6.1) Yo xtB u t i, s

t

whare the u, are n successive realizations of a mean zero stationary
normal stochastic process. The usual t-test for the hypothesis 8 = BO

is based on the assumption that the errors are white noise. Aan alterna-
tive is to fit a low-dimensional parametric model for the errors and to

construct a test based on generalized least sguares. For example, one

might postulate the stationary AR(i} model:

- 2
{6.2) u, = put_1 + et et/v N{Q,0"})

and form the test statistic

Ly - By - BoXe * Bo¥ 10 (% - ox )
(6.3) T, =
2:{1/2

i
G[z {xt - pxt_l)

5/

where § and § are efficient estimates under the assumed model.~ Another

alternative is to calculate all the autocovariances of the OLS residual

series :
. 1 n-k
Yk:n-ktgl 6.8, X =0,1,00.,n - 1

and foxrm the "robust" OLS statistic

E (yt - Boxt)xt

(6.4) T, = .

B IPECE I

26
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If the X, and u, are well behaved, Tl and T2 are asymptotically normal

and their distributions can be approximated by Edgeworth expansions as in
Sections 2 and 3.

Suppose the errors really are AR(1l) so that the postulated model
{6.2) is correct. Then the Edgeworth approximation for T, takes the form

1

{2.7) with asymptotic noncentrality parameter

1/2
2]

. (B - B,) [I G, = px )" .

i s)

Explicit expressions for the variables S and Z are given in Appendix Bj;

their asymptotic variances are

. Yo% L Ax, - px_ )
2+ a(l - 09 t-1 "t t-1

<}
it

{6.5)

The asymptotic mean of S depends on the particular estimates used for p

and 0 in (6.3). I+ is convenient to use the modified maximum likelihood
estimates:
5 = n E !
n - 2 GZ
=1
{6.6)
~2 1 ~ A~ 2
g% = -
n - 3 P, - pu )
=~ 3 o 6/ .
where u, = Yo~ xtB and B is the MIE for B;~ the summation ranges f{rom

t = 2 to £ = n. Then, as shown in Appendix B, YnE(S) is given by
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(1 - ) xf__
(v - 2) - .
5 T - o
BRLS -1

N

{6.7} m =

These formulae simplify in some interesting special cases. For example,

ifp =0,
2
VS = 2(1 + 2rl)
2
(6.8) VZ = 2(1 + £, - 2rl}
- 2 _
m = 2r1 1

2 . .
where r; = Z XtXt-i//XXt' The formulae also simplify when the Xt behave
like an AR(1l) process. That is, if r, is approximately rr for constant

r less than one in absolute value, then

2 r-p_ )*
Vo = 2 + 4{1 - p ){
S 2 )
1 +p° -~ 2rp
2 2,2
(6.9) vz -5 {1 - ¢ }(12- £7) ,
(1 - rp} (1 + p~ - 2rp)
. 1-p Tz(r—o)z_:l
i+ 02 - 2rD [l + p2 - 2¥p

The approximate distribution of T2 has the form (3.7) with parameters

a, b, and VW given in (3.16) and (3.18). When both u, and X behave like

AR(l) processes, the formulae simplify. After considerable algebra, we find
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i/2
RS .21 - xp 2
8y =0 1 (B - By [(1 ) XJ 4

(6.10)

2 P
b = _[i + r2 + 8rg 5
]l - 1-rp-

v, =2

1 - r%p? —l+(r+p]21+ 4rp
1 -1 -phb L+ 1 - r2p?

The formuiae in (6.9) and (6.10) can be used to get an idea of the
magnitude of the size adjustment and deficiency factors defined in Section 4.
Some typical values are given in Table 1 for the case ti = 3; the defi-
ciencies for T2 are calculated at 62 = ta where asymptotic power is
one-half. Note that tHe values for A are the percent error {for a s?mple
of 50) in using the asymptotic critical value instead of the corrected
value.

Again, it is of interest to compare the relative merits of the tests

based on TO' T and T. in the special case where p = 0 and all three tests

1’ 2
are valid. The three asymptotic noncentrality parameters 60, 61, and 62

are equal and the second-order power functions are determined by the

deficiency terms

1 .2
By =2 %
_1 2,,2 L2
(6.11) Bl = 2(1 + Zrl)ta + 2(1 + £, 2rl)
1.2 % 2
B2:Eta§rk :

=00

k




Since cnly two covariance parameters are estimated in forming the GLS
test statistic Tl’ its deficiency is small (less than five typically).
The test based on T2, on the other hand, has a large deficiency if the

x_ are highly autocorrelated.

Table 1

Size-adjustment factors and asymptotic deficiencies

2
for GLS and robust QLS tests in the AR(l) model (tCe = 3)

GLS _ oLs
P - By By A, By
0 5.0 3.5 3.0 1.5
0.5 5.0 3.8 5.0 2.5
0 0.7 5.0 4.0 8,8 4.4
0.9 5.0 4.3 28.6 14.3
1.0 5.0 4.5 - -
0 3.6 2.6 3.0 0.5
0.5 5.0 3.5 3.3 3.3
0.5 0.7 6.5 4.7 15.1 6.2
0.9 9.3 7.6 37.6  17.4
1.0 11.0 10.5 - -
o 2.8 2.1 3.0 =-1.4
0.5 3.6 2.6 11.4 2.4
0.7 0.7 5.0 3.5 19.1 6.3
0.9 10.0 7.7 45.3 19.6
1.0 19.0 18.5 - -

30
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7. CONCLUSICNS

The examples developed in Sections 5 and 6 are meant to be illustrative
and certainly cannot be viewed as realistic aescriptions of actual
sconometric appiication. Nevertheless, they do suggest that second-order
size correction terms and deficiencies can be large even in very simple

models where asymptotic theory might be expected to work well. Since

. -1 . s
the magnitudes of the order n adjustments seem to be rather sensitive

to the design matrix X and error covariance matrix L, it is difficult to

make generalizations. It would appear, however, that the null rejection
probabilities of robust regression tests are often considerably greater
than their nominal level.

Althouch the approximate distributions for Tl and 'I‘2 ware derived

under the assumption of normality, it would not be difficult to dispense
with that assumption. The resulting approximations will depend on the
third and fourth cumulants of the error distribution. As long as these

cumulants are estimable, second-order size-adjusted critical values for

tests based on Tl and T2 can be constructed and their power functions
approximated. However, once normality has been dropped, it is no longer
reasonable to restrict attention to procedures based on least squares.
andrews (1982}, for exaﬁple, constructs robust point estimates of the
M-type for regression coefficients in models with possible error auto-
correlation and gross contamination. Tests based on such estimates are
worth considering but are beyond the scope of the present analysis.

The approximations developed in this paper, although probably

considerably better than the usual asymptotic approximations, are not
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necessarily very accurate for small samples. The method of Edgeworth
expansions produces relatively simple approximation formulae and is
applicable to a wide variety of econometric models. For any particular
test statistic, however, alternative methods tailored to the problem at
hand and yielding more accurate results are often available. Nevertheless,
the second-order size and power corrections derived here should provide

a reasonable indication of the magnitudes involved. Moreover, tﬁey provide
some insight into the key features of the design matrix which determine

the sampling distributions of commonly used test statistics.
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Appendix A: EDGEWORTH APPROXIMATIONS

The approximate distributions for the test statistics are derived using

an algorithm developed in Cavanagh (1983). Consider the statistic

Q

I8

{a.1) T =X + ——
n

where Xn has distribution function_Fn and density function fn. Suppose
the random variables Pn and Qn possess bounded moments as n tends to

infinity and the conditicnal moments

p (0 ZEC® | X =x0, q = B(o_| x_ = x), v (X) = var(p | X = x)

are smooth functions of x. Define the derivatives

n — It

dp dv d log f_(x}
v'(x) = ’ c (x) = ——
dax n n

Hh

pn(x) = i

The formal Edgeworth expansion to the distribution function of Tn
is the inverse Fourier transform of the power series expansion of its
- . ' . -1/2 .
characteristic function, arranged by ascending powers of n . Dropping
the subscript n for notaticonal convenience, we expand the characteristic

. -1
function of Tn to order n as follows:

. . . . 2
A Eeltxl:l , itP . it0 . (itP) 1

\Vn(t} = = + o >n
. eitx[l L iR, ite® |, (0 mm + p2(X)i‘{
X 1/; n 2n
) . 2 .
. g exp{it[x L B(R) q(x)“ EL IS > SR
X /E no 2n X

The final term can be rewritten wusing integration by parts. If the density

£f({x) is everywhere differentiable, we have
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Lo 2 . . .
- i&El__I eltxv(x)f(x)dx=r%§ J e;tx[v'(x) + v(x)c(x)1f({x)dx . .

2n
Hence, ?n(t) is approximately Eelth(X), where
(A.2) h(X) = X + p{X) + 2g{X) ~ v'(X) = v{X)c(X)
/?1' 2n

Since T and h(X) have the same characteristic function to order n—l, they

have the same formal Edgeworth expansion to that order. Thus,

Pr[T < x] =Prlh(x) < x] = Pr[x < b7 (x)]

= rlh Y] .

Reversion of the series (A.2) and reintroduction of the subscripts yields

the final result:

(A.3) Pr[Tn_i x] *F {x - +

- p_(®) 2pncx')p;(x) - 2q_(x) + V(%) + ¢ (0 ()
1 - I/I-l" 2n 1 -

Under mild regularity conditions on the conditiconal moments, it can be
verified that (A.3) is a valid approximation with error o{n—l) as n tends
to infinity.

The test statistics Tl and T2 given in (2.4) and (3.4} can be put

into the form (A.l}) by power series expansion:

- - 2
2Z - T.S 3T 8 - 487
T, =T ¥ 2 = + o0 (n"¥?
2/n b
= = 2
T.W 3T W° -
T, =T, - ——=+ 52 o (¥,
2vn o P
Shme@lmﬁﬁzamzwnijﬂm = ®(x - 8) and c{x}) = {§ - x). Further-

1/2) s0 the term p(x)p'(x)/n is o(n_z)

more, in both cases, p(x) is O(n
and can be ignored. Egs. {2.7) and (3.7) then follow from the general

approximation formula (A.3).
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Appendix B; CALCULATIONS FOR AUTOCORRELATION EXAMPLE

Suppose u ..,un are normal random variables with zero means and co-

1

variances E(uiuj) = Gipll-jl. Then the log likelihood function for the

model {6.1) is

n
n 2 1 2 1 -2 2 2, 2
5 log o™ + 5 leg (L -p7) - 350 [ Z (ut - out_l) + (L -p )ui}
t=2
2 2,2 . . . . X
where ¢ = (1 - p }Gu and a4 =y, - th. The maximum likelihood estimates
are
n n
~ rl"l e ~ -l
o= LG t—l// L Tyt o)
t=2 =3
{(B.1)
w2 _ 1 ? G o_zn e Llc 5% 2
n t e t-1 n i
=2

where u =Y, th and B is the MLE for B. Defining z, = X, - 0%,
and Et =u_ - put_l, we can write

n n

o~ 2 —
B -8 = Z z.E, ) z, + Op(n l),
£=2 £=2

cur modified maximum likelihood estimates (6.6) can be written as

n n n
- n 2 1 -2, 2
0 = == 2 u . u, z u, . + =0 (B -8 E z X __
n 2 =5 te-1 =2 t-1 n u =2 t t-1
n
1 -2 -1
(B.2) +=0 “(8 - B)tZz (2px, = x5 - % _)u, +o (a)
n 2
~2 1 ~ ~ -1
6 =— Jle_- B-B8z - ®-0u_ 1 +o,n7.

t=2
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Let Ac = JH(82 - 02}/02 and Ap = /Ekﬁ - P). To order n—l/z, their moments
are
2
vVar AO = 2 Var Ap =1-p", COV(AO,AO) =0 -
{(B.3)

] _l _ p2 E ztxt-l
P /oo 722

t . or

EAG =0, EA

Details can be found in Sheehan {1982).

2 =x_-p and £, = -0 . st
Let zy ‘ pxt_l nd €t u put_1 Then, the test statistic

{(6.3) has the representation (2.4) with

2
s = é\iizt~1
- g2 ¥ 32
S
(B.4) 2 2
Ca . ZAD ) 2 X, 1[1 . AU . 2Ap X tht—l) i fg z .
¢ I 22 N /a ]zl
and
Z=_‘/_£.(§' Sy ztet}[ 2]1/2
o &222 222 =
t t
(8.5)
2 y Z X
. 2 2.-1/2 _ _ - - 8 s-1
~ Ap(o Z t} % [(Zth Xe 1 Xt+l)ut —~—g—;§-—“ ztst] .
s

The asymptotic moments for S8 and Z can be calculated from these stochastic

expansions.
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1. It is not necessary to assume that S and Z possess moments. We require
only that their approximate distributién has morents.
2. For many problems, Z‘l has a simpler form than Z. In these cases one
can make use of the fact that Zi = -ZQiZ and Zij = 2ZQiEQjZ - ZQijZ,

_l . .
L ~. It is often convenient,

It

where Qi and Qij are derivatives of {
as in Rothenberg (1984a, 1984b) to conduct the entire analysis in terms
of § rather than X.

3. The discrete Fourier transforms of the u, héve variances that are
asymptotically (but not exactly) egual to the power spectrum. Our
spectral estimates, the Fourier transforms of the ?k' adjust for this
bias ané hence differ slightly from the usual periodogram values.

4. For ¢ = 0.05, a cne percent error in the critical value t corresponds
to approximately a three percent error in'the size of the test. Thus,
when n = 50, an A value of five implies a fifteen percent error in the
significance level.

5. The sums run from £ = 2 to t = n. This statistic is not guite of the
form (1.4) since p-differing is only approximately the same as generalized
least sguares. Except for a modification in the definition of 61, the

analysis is unaffected by this approximation.
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6. To the order of approximation emploved here, the distribution of Tl is
unaffected if B is replaced by some other asymptotically efficient
estimate. Hence, Gt may be calculated as residuals from the second
round of an interative scheme. If OLS residuals are used, the mean of S

is somewhat more complicated.
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