
UCLA
Recent Work

Title
A Hierarchical Framework for Organizing a Software Development Process

Permalink
https://escholarship.org/uc/item/6cg5z5js

Authors
Iravani, F.
Dasu, S.
Ahmadi, R.

Publication Date
2011-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6cg5z5js
https://escholarship.org
http://www.cdlib.org/


Submitted to
manuscript (Please, provide the mansucript number!)

A Hierarchical Framework for Organizing
a Software Development Process

Foaad Iravani∗, Sriram Dasu†, Reza Ahmadi∗
∗Anderson School of Management, University of California, Los Angeles, Los Angeles, California 90095

firavani@anderson.ucla.edu, rahmadi@anderson.ucla.edu
†Marshall School of Business, University of Southern California, Los Angeles, California 90089, dasu@marshall.usc.edu

Every year, companies that produce consumer tax preparation software struggle with a massive amount of

work imposed by thousands of state and federal changes to tax laws and forms. With their release not even

beginning before August, these changes still must be processed and incorporated into the application by mid-

December. Three companies dominate this competitive market with its short selling season so that release

delays create significant losses. Though systematic resource allocation and process management are crucial,

the volume and complexity of the changes, the brief timeframe to implement them, and feedback loops built

into the system for error resolution make it extremely difficult to analyze the process. One of the leading

tax software providers tasked us with developing systematic approaches for managing the process flow and

staffing each stage so that the company met the deadline at the lowest cost. Based on the characteristics

of the process, we develop deterministic models that partition tax forms into groups and determine the

staffing levels for each group. Partitioning the development process into groups has the benefit of simplifying

workflow management and making it easier to find staffing levels. To provide the company with a range of

resource configurations, we use two modeling approaches to obtain lower and upper bounds on the number

of resources at each stage. Numerical experiments indicate that the models successfully capture the features

of the process and the heuristics perform well. Implementing our models at the company has resulted in 31%

reduction in overtime and 13% reduction in total resource costs.

Keywords: product development, software development, workforce management, capacity planning, resource

allocation, grouping index, integer programming.

1. Introduction

Consumer tax preparation software is a profitable niche in the software development industry,

which has become a leading industry worldwide and particularly important in the United States.

In 2010, Software Magazine reported that the top 500 software companies in the U.S. employed

nearly 3.56 million people and earned $491.7 billion in total revenue. The Bureau of Labor Statistics

1



Iravani, Dasu, and Ahmadi: Hierarchical Framework for a Software Process
2 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

projects that, through the next decade, software will be the third-fastest growing industry in the

U.S. economy. Growth in the tax preparation software segment, specifically, has been boosted by

IRS efforts to achieve an 80% rate for electronically filing major returns by 2013. In 2011 alone,

sales of some consumer tax preparation applications grew by as much as 20%, with 40 million

taxpayers using them to file (The Electronic Tax Administration Advisory Committee, 2011). And

in this highly regulated domain, makers of these products face the formidable task of speedily

integrating thousands of state and federal changes every year.

The idea for this project grew from conversations with a software engineer who is studying for

an MBA. The engineer, who works for one of the largest tax preparation software providers in the

U.S., characterized the market as fiercely competitive, subject to a short and fixed sales window,

and annually faced with obsolescence. Three companies dominate this high-pressure market, racing

one another every year to incorporate changes to laws and forms, test the new version, and release

a bug-free product for the upcoming tax season. Many taxpayers want sufficient lead time to ensure

accurate filing, and those eligible for refunds want to receive them as soon as possible. Therefore,

releasing its product early helps the company maximize its market share, and delays can result in

significant losses.

The development process for tax software is complex, consisting of multiples stages and incorpo-

rating thousands of revisions. Some changes are trivial while others command significant developer

time. Adding to the challenge is the fact that state and federal authorities only begin announcing

their changes in early August and continue into December, while mid-December marks the start

of the tax software sales season. Within the development process itself, built-in feedback loops

interrupt the workflow to resolve errors and bugs. To release the software on time and control

development costs, therefore, the company must effectively manage the process and accurately

determine staffing levels. After a period of observation, we concluded that the complexity of the

process thwarts even the most experienced manager’s efforts to organize and administer develop-

ment. We found tasks to be assigned on an ad hoc basis and staffing levels subject to individual
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power and influence. The firm’s bottom line suffered from significant overtime costs and yet the

company still found it difficult to achieve a timely release.

Clearly, the large number of forms calls for a staffing plan driven by an effectively organized devel-

opment effort that simplifies day-to-day operations management, improves coordination among

different stages, and facilitates information flow. To that end, we propose a model that restruc-

tures the development effort by partitioning tax forms into multiple independent groups and that

determines staffing levels throughout the process. Because making the two decisions simultaneously

is hard, we employ a hierarchical approach in which we first form the groups and then allocate

to them sufficient resources (we use the terms resource and employee interchangeably) to ensure

timely completion. The decision to create groups is supported by studies in software development

(e.g., Brooks 1975, Cusumano 1997) which demonstrate such benefits as increased effectiveness

and enhanced quality arising from the division of tasks into groups.

We also propose a second model for managing the company’s available resources when either

hiring is not possible or new employees need time to get up to speed. This model minimizes the

total amount of work by splitting available resources between one line for processing all federal

forms and one line for processing all state forms.

Although we are applying the hierarchical planning framework to a tax software process, our

analysis also can be applied to product development in other highly-regulated industries that

necessitate the redesign of the same product, face tight deadlines, and have processing requirements

similar to those we encounter here (e.g., Ahmadi et al. 2001). Aerospace, cellular communication,

healthcare, and enterprise resource planning (ERP) face similar staffing quandaries. For example,

every year the Centers for Medicare & Medicaid Services publishes regulatory updates to payment

rules, standard assessments, and resource utilization group and case mix calculations. Producers

of clinical and financial software must incorporate these changes before October in an efficient

and cost-effective way. In all these disciplines, development teams work in parallel to complete the

design tasks and share a common deadline for completion. Thus, task assignment and resource

allocation are common issues.
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The remainder of this paper is organized as follows. In Section 2, we review the relevant literature.

In Section 3, we describe the characteristics of the problem, explain the modeling assumptions,

and propose an approximation to capture the effect of feedback loops on the process completion

time. We introduce the notation and formulate the models in Section 4 and describe their solution

procedures in Section 5. In Section 6, we investigate the performance of the hierarchical approach

and the solution procedures using numerical experiments. Section 7 talks about the implementation

of our models in the company. The paper is concluded in Section 8 with a summary of the research.

2. Literature Review

The development process for tax preparation software has elements of reentrant flow shops (Graves

et al. 1983) and product development projects. On one hand, the development process is repetitive

because the software is produced each year and each version encompasses multiple jobs, all facing

the same deadline. On the other hand, the changes vary significantly each year so that the company

cannot just repeat the same process. Every version of the application, therefore, can be thought of

as a project.

In addition to traditional project management techniques (Tavares 1998), several approaches

focus on the duration of product development projects, including overlapping activities (Krishnan

et al. 1997, Roemer et al. 2000, Roemer and Ahmadi 2004, Loch and Terwiesch 1998) and reducing

the number and the size of loops in the process (Smith and Eppinger 1997, Carrascosa et al.

1998, Ahmadi et al. 2001) by changing the sequence of development activities and the flow of

information among developers. In our setting, however, the sequence is fairly straightforward and

offers minimal opportunity for modification or increased overlap. Therefore, we seek to achieve the

desired duration of the development process by creating groups to facilitate the flow of the process

and then staffing the stages properly.

Partitioning the development effort and allocating tasks among groups is a common software

industry practice and substantially influences project duration, software quality, development cost,

and reusability. Cusumano (1997) and Cusumano et al. (2003) survey techniques employed by
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leading software companies to partition and manage large projects. Such studies largely focus on

ways to divide complex tasks into manageable modules (Shaw and Clements 2006). In our problem,

we define an index for grouping tasks based on similarities between the amount of work they require

and then staff the groups to ensure timely completion.

In software engineering, an interesting question is whether to assign two developers to work on

a module, or to assign only one developer. Empirical evidence suggests that assigning multiple

developers increases the time and effort to develop a module but it decreases the time and effort

to integrate the module. Dawande et al. (2008) develop a mathematical model to find conditions

under which one approach dominates the other. In our models, we assume that jobs can be divided

among the developers, which is an approximation for tractability.

Browning and Ramasesh (2007) provide a comprehensive review of network-based process models

for managing product development activities and name very few papers that are concerned with

resource allocation in product development projects. Joglekar and Ford (2005) study ways to

dynamically shift a finite pool of resources across different stages of the process using a procedure

consisting of three steps, which is considerably simpler than ours. Though we are not concerned with

dynamically reassigning resources, Joglekar and Ford intriguingly seems to suggest that complexity

diminishes the value of dynamic resource allocation.

In software development, another class of resource allocation problems is concerned with opti-

mally allocating resources among competing priorities. For example, Ji et al. (2005) explore optimal

allocation between software construction and debugging to maximize quality. While Kumar et al.

(2006) look at the trade-off between the benefits of adding a new feature and the risk of introducing

new bugs with it.

Queuing network models also has been proposed for staffing projects. Adler et al. (1992) consider

multiple product development projects that proceed through nodes representing departments or

functional capabilities. Queuing models assume that the design facility is continually receiving

design projects (Adler et al.) or maintenance requests (Asundi and Sarkar 2005, Kulkarni et al.
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2009, Feng et al. 2006) each with its own deadline. Although we have multiple tasks in the process,

they are all part of a single project.

Resource scheduling problems also arise during software execution (Hos and Shin 1997) where the

challenge is to allocate elements of a job in real time to a set of resources so as to complete the job

on time. Complexity in these problems stems from the nature of the precedence relationships and

interdependencies among the tasks. In our problem, the flow patterns and precedence relationships

are simple, and the challenge stems from the large number of tasks that have to be done.

Kekre et al. (2009) address an interesting problem with features similar to our work. They analyze

the workforce management of multistage check-clearing operations at a major commercial bank.

They use simulation-optimization to capture the tradeoff between efficiency and the risk of delayed

checks resulting from excessive workforce reduction. Our problem involves staffing the stages of the

process and deciding which group each form should be assigned to. Because the number of forms

is very large, numerous scenarios exist for resource allocation and group assignment, even for three

to five groups. Therefore, simulation-optimization is not well-suited to our problem, though one

could use the technique to explore different staffing scenarios for the fixed assignment of forms to

groups.

3. Problem Characteristics and Modeling Assumptions

Maintaining a tax preparation application encompasses multiple complex processes throughout

the year, a number of which are concentrated into the quarter before the impending tax cycle.

Some processes, such as maintaining the software engine at the core of the application, proceed

independently of revisions to the tax code. Five major processes dominate the workflow (see Figure

1).

1. The Image Development Group (IDG) evaluates all tax form and document changes and

creates an image of each form.

2. Calculation (CALC) elucidates and tests the computations that underlie each form. The most

important stage, CALC also carries the highest amount of work.
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3. Electronic Filing (EF) develops electronic versions of the forms, employing functions and

macros based on the structure of each form and the fields it contains.

4. The Interview team designs the user interface that guides the consumer through the software.

5. Integration and Final Test incorporate the forms into the application and put each component

through exhaustive trials. Integration also designs the buttons, menus, and toolbars. Final

Test sends each error back to the team that introduced it.

Figure 1 Tax Software Process Line

The backward arcs in Figure 1 show the feedback from the final test to upstream stages. If an

error is found in a form during the final test, it may be returned to CALC, EF, or Interview for

correction. Each stage, in turn, consists of two substages. The first substage is for processing forms

and the second is for testing forms internally. The internal tests may send the forms back to their

corresponding process for reprocessing.

Besides annual Internal Revenue Service (IRS) changes, each state taxing authority adopts sepa-

rate tax laws and creates different forms. The number of changes that must be incorporated into the

application is large, historically 3,000-5,000, and the taxing authorities release them dynamically

starting in August and continuing all the way until mid-December. As stated earlier, some forms

contain small changes while others contain changes that are time-consuming to implement, pro-

ducing considerable variation in processing times. Thus, workflow management and coordination

becomes a formidable task.

3.1. Modeling Assumptions

To effectively control this development effort, we need to partition the forms into manageable

groups, staff each group, and develop rules for sequencing the tasks. Unfortunately, the volume of
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work, dynamic arrivals, feedback loops, and variability in processing times make it nearly impossible

to identify good sequencing rules. Hence we develop models that support tactical decisions of

grouping and staffing and do not consider operational issues such as sequencing and scheduling.

We make two simplifications while developing the tactical model. We have observed that at no

point is the system idle due to lack of work. This observation permits us to ignore detailed patterns

of dynamic arrival of forms. We can base grouping and staffing decisions on a forecast of amount

of work and assume that forms arrive in a deterministic manner. If the forecast is significantly

revised during the season, the company can always revisit the models and change staffing levels.

This simplification was validated by managers based on their past experience and by our compu-

tational experiments reported in section Section 6 which are based on historical data. The Second

simplification concerns feedback loops which impact the process in several ways. They increase the

amount of work at each stage, introduce additional uncertainty into processing time requirements,

and may cause a stage to wait while a downstream stage is creating a rework loop. Given our

interest in completion time, the last impact is the most problematic. The likelihood of inserted idle

times depends on the initial amount of work – when the amount of work is high, inserted idle times

are very unlikely. In absence of inserted idle times, we may be able to approximate the process

with loops with one without loops, provided we suitably modify the processing times at each stage.

3.2. Approximating Feedback Loops

Figure 2 shows an alternate depiction of the development process that separates the sub-stages and

Figure 3 shows an approximating process with no feedback loops. Note that IDG process and its

internal test are eliminated because the final test never sends a form back to the IDG for rework.

However, the approximation we describe here will be separately applied to the feedback loop from

IDG internal test to IDG proces.

In the approximating process, the processing time distribution of a form at each stage is deter-

mined by the the original processing time distribution of the form and the distribution of the

number of times the form revisits the stage. In the original process, let ρk(i, n) represent the prob-

ability that the number of times form i visits stage k is n and let fk(i, t) denote the processing time



Iravani, Dasu, and Ahmadi: Hierarchical Framework for a Software Process
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 9

distribution of form i at stage k. In the approximating process, the processing time distribution

for form i at stage k is defined as hk(i, t) =
∑

n ρk(i, n)f
(n)
k (i, t), where f

(n)
k (i, t) is the n–fold con-

volution of fk(i, t). In the unabridged version of the paper (Iravani et al. 2011), we show that for a

two-stage system with deterministic processing times the completion time in the no-loops process

converges to that of the original process as the number of forms increases. Also, our numerical

experiments in Section 6 show that the approximation performs well.

Figure 2 Process with Feedback Loops

Figure 3 Approximate No-loops Process

4. Models

Based on the foregoing assumptions, we formulate a monolithic model that simultaneously parti-

tions tax forms into groups–company managers determine their total number–and staffs the groups.

We find that the monolithic model is strongly NP-hard and solvers such as Industrial Lingo are

ineffective in solving even moderate-size problems that involve more than 100 forms. Thus, we

adopt a hierarchical approach to formulating problems that calculate the similarity between pro-

cessing times for forms, assign forms to groups based on the similarity index, and staff the groups

to release the software on time. This approach is similar to the classic hierarchical production

planning approach in Hax and Candea (1984). One can picture the groups of forms as families of

similar items. While Hax and Candea focus on disaggregating the production plan of product types
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to product families and items, we are concerned with staffing the production process. Because our

hierarchical staffing models assume the ability to hire additional resources when needed to finish

processing forms before the deadline, we also include a model for reallocating current employees.

We formulate the models as follows:

1. Monolithic grouping and resource allocation problem (GRAP)

2. Hierarchical framework (see Figure 4)

(a) Grouping index problem (GIP)

(b) Grouping problem (GP)

(c) Resource allocation problem (RAP)

3. Process line separation problem (PLSP) to reallocate existing resources

Figure 4 Steps of the hierarchical framework for grouping and resource allocation

4.1. Grouping and Resource Allocation Problem

Formulating the GRAP entails one approach to determine the upper bound for optimal resources

(GRAP1) and another to obtain the lower bound (GRAP2). For the upper bound, we allocate

resources in such a way that the sum of the maximum effective processing time across all stages
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for all forms is less than the deadline. For the lower bound, we allocate resources in such a way

that the total effective processing time at each stage is less than the deadline.

Let Pik denote the processing time for form i at stage k, which in fact represents the total

time needed to perform a number of divisible tasks for this form (see Table 1 for notation). If

Ykg is the number of resources allocated to stage k of group g, and form i is processed in group

g, then the effective processing time of form i at stage k is roughly
Pik

Ykg

. Let Ti = maxk

Pik

Ykg

be

the maximum effective processing time for form i. A simple yet tractable approximation for the

time to complete all the forms in this group is
∑I

i=1 Ti. We find that this estimate, motivated by

Proposition 1, continues to be accurate in our numerical experiments even with feedback loops.

Appendix 1 provides proofs for all propositions.

Proposition 1. Consider a flow shop with K single resource stages processing I jobs (forms)

with processing times Pik. The time to complete these jobs is at most
I∑

i=1

maxk {Pik} + (K −

1)maxi{maxk {Pik}}.

Table 1 Notations for the GRAP

Parameters

k Index for process stages 1, . . . ,K.
g Index for groups 1, . . . ,G to be formed.
i Index for forms 1, . . . , I.

Pik Processing time of form i at stage k.
wk Cost of allocating one resource to stage k.
D The deadline by which all forms have to be compiled into the software.

Variables

Ykg Number of resources (employees) allocated to stage k of group g.
Ti Maximum effective processing time of form i if it is assigned to group g. In mathematical

terms, Ti =maxk{Pik/Ykg}.
Zig 1 if form i is allocated to group g; 0 otherwise.

As the number of jobs becomes large relative to the number of stages, (K−1)max i{max k {Pik}}

becomes relatively small and the completion time asymptotically approaches
∑I

i=1max k {Pik}. In
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our problem, each group processes at least 1,000 forms so that, in our models, we use
∑I

i=1 Ti as

an approximation for the time to complete all forms. Thus, we formulate GRAP1 as

(GRAP1) Min
K∑

k=1

G∑
g=1

wkYkg (1)

s.t.

Ti ≥
PikZig

Ykg

∀i, ∀k, ∀g, (2)

I∑
i=1

TiZig ≤D ∀g, (3)

G∑
g=1

Zig = 1 ∀i, (4)

Ykg ≥ 1 and integer ∀k, ∀g (5)

Zig ∈ {0,1} ∀i. (6)

Objective function (1) minimizes total resource cost. Constraint (2) defines the maximum effec-

tive processing time for form i based on the group to which it is assigned. Constraint (3) ensures

that all forms are completed by the deadline. Constraint (4) guarantees that each form is assigned

to one group only. Finally constraints (5) and (6) ensure that resources are positive integers and

Zig is a binary variable.

In GRAP2, we require that the total effective time to process all forms at each stage be less

than the due date. In a flow shop, the maximum of the total effective processing time at each

stage is a lower bound for completion time. Consequently, the solution to GRAP2 represents the

minimum number of resources needed to meet the deadline. The formulation for GRAP2 is the

same as GRAP1, except that we replace constraints (2) and (3) with:

I∑
i=1

PikZig

Ykg

≤D, ∀k, ∀g. (7)

We now establish the complexity of the GRAP.

Proposition 2. GRAP1 and GRAP2 are strongly NP-hard.
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4.2. Grouping Index Problem

The first component of our hierarchical framework produces a means of measuring the similarity

between forms by articulating and solving the GIP. The idea behind grouping forms is the notion

that if form i1 and form i2 have proportional processing times in each stage, i.e.,
Pi1k

Pi2k

is the same

for all k, then it is suitable to assign these forms to the same group. Suppose that forms i1 and i2

are to be processed in one group by Yk resources at stage k and define

Λi1 =maxk

{
Pi1k

Yk

}
, Λi2 =maxk

{
Pi2k

Yk

}
.

For these forms, we define the balance loss as total idle time arising from the difference between

effective processing times at bottleneck and non-bottleneck stages:

K∑
k=1

{(
Λi1 −Pi1k/Yk

)
+
(
Λi2 −Pi2k/Yk

)}
Yk =

(
Λi1 +Λi2

) K∑
k=1

Yk −
K∑

k=1

(
Pi1k +Pi2k

)
(8)

The smaller the balance loss, the more suitable i1 and i2 are to be placed in the same group. We

define the GIP for states i1 and i2 as

(GIP) Min
(
Λi1 +Λi2

) K∑
k=1

Yk (9)

s.t.

Λi1 ≥
Pi1k

Yk

∀k, (10)

Λi2 ≥
Pi2k

Yk

∀k, (11)

Yk ≥ 1 ∀k. (12)

The GIP addresses the following question: Assuming unlimited resources, what is the minimum

balance loss we will incur if we assign forms i1 and i2 to the same group? Note that (9) is the

variable part of (8). Also, resources are allowed to take real values because the GIP is not concerned

with resource allocation. The GIP can be solved by defining β =
Λi1

Λi1
+Λi2

, and finding Yk from (10)

and (11) as follows:

Min (Λi1 +Λi2)

K∑
k=1

Yk ≡MinΛi1
,Λi2

>0(Λi1 +Λi2)
K∑

k=1

max(Pi1k/Λi1 ,Pi2k/Λi2)



Iravani, Dasu, and Ahmadi: Hierarchical Framework for a Software Process
14 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

≡MinΛi1
,Λi2

>0

K∑
k=1

max (Pi1k/[Λi1/(Λi1 +Λi2)],Pi2k/[Λi2/(Λi1 +Λi2)]) (13)

≡Min0<β<1

K∑
k=1

max (Pi1k/β,Pi2k/(1−β)) . (14)

The function max(Pi1k/β,Pi2k/(1−β)) is convex in β. It is also unimodal because its value

goes to infinity when β approaches either boundary of (0,1). Because the objective function is

the sum of convex unimodal functions we can easily find the optimal solution. Let Λ∗
i1
,Λ∗

i2
, Y ∗

k

be the optimal solution of (9). We define the penalty for placing forms i1 and i2 in the same

group to be Ri1i2 = di1i2 −minb̸=i1di1b+di2i1 −minb̸=i2di2b in which di1i2 =Λ∗
i1

∑K

k=1 Y
∗
k −

∑K

k=1Pi1k,

di2i1 =Λ∗
i2

∑K

k=1 Y
∗
k −

∑K

k=1Pi2k, and di1b (di2b) denotes the value of di1i2 (di2i1) when (9) is solved

for i1 (i2) and b ̸= i1 (b ̸= i2). Going back to (8), one can see that di1i2(di2i1) is the proportion of

idle times attributable to form i1(i2). The grouping index is defined for every pair of forms. Using

the sum of pairwise grouping indices entails double counting when a group includes more than two

states. The terms minb̸=i1di1b and minb̸=i2di2b are subtracted to alleviate that effect.

4.3. Grouping Problem

Now we use the GIP to assign forms to groups, which were defined by company process managers,

by formulating the GP. The lower the Ri1i2 , the better it is to have these forms in the same group.

By defining

Xi1i2 =

{
1 if forms i1 and i2 ̸= i1 are assigned to the same group,

0 otherwise

and Pi =
∑K

k=1Pik, we can formulate the GP for any pair of forms

(GP) Min
I−1∑
i1=1

I∑
i2=i1+1

Ri1i2Xi1i2 (15)

s.t.

Xi1i2 ≥Zi1g +Zi2g − 1 ∀g, ∀i1, i2, i1 ̸= i2 (16)

G∑
g=1

Zig = 1 ∀i, (17)

I∑
i=1

PiZig ≤Q ∀g, (18)
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Xi1i2 ∈ {0,1} ∀i1, i2, i1 ̸= i2, (19)

Zig ∈ {0,1} ∀i, ∀g. (20)

where Q= (1+δ)
∑I

i=1

∑K

k=1Pik/G. Objective function (15) minimizes the total penalty for group-

ing forms. Constraint (16) is a logical constraint that links Zi1g and Zi2g to Xi1i2 . Constraint (17)

ensures each form is assigned to a group. Constraint (18) states that the total processing times for

the forms in each group should not exceed the average total processing time per group by more

than a predefined fraction. Ideally, we want δ to be zero, but this may make the problem infeasible.

On other hand if δ is too large, the constraint becomes redundant. Although the value of δ

need not be unique, our numerical investigations indicate that 0.25 is reasonable for 3 to 5 groups.

However, when the number of groups increases, δ should be increased to ensure feasibility. We can

now attest to the complexity of the GP.

Proposition 3. The GP is strongly NP-complete.

4.4. Resource Allocation Problem

For the last component of the hierarchical framework, we solve the RAP to establish staffing levels

that allow each group to finish processing their assigned forms on time at minimum expense.

Procedures for formulating and solving the RAP are the same for all groups. Therefore, instead of

defining ig as the index for forms assigned to group g, with a little abuse of notation we use i in

this section to index forms that are assigned to a group. RAP1 is formulated as

(RAP1) Min
K∑

k=1

wkYk (21)

s.t.

Ti ≥
Pik

Yk

∀k, ∀i, (22)

I∑
i=1

Ti ≤D (23)

Yk ≥ 1 and integer, ∀k. (24)

We obtain RAP2 from RAP1 by replacing (22) and (23) with
∑I

i=1Pik/Yk ≤ D for all k. The

following proposition states that RAP1 is a hard problem.
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Proposition 4. RAP1 is binary NP-hard.

4.5. Process Line Separation Problem

The final model addresses the PLSP to help the company manage existing resources. The three

models in the hierarchical framework assume that the company has already decided to acquire

additional resources if necessary. As a strategic decision, hiring new employees requires financial

resources, time to interview candidates, and time to train new hires. In a crunch, the company

may need to reconfigure current resources as it prepares new employees to join the teams. Thus,

we propose a model that distributes existing resources to two major process lines: one line for

processing all federal forms and one line for processing all state forms.

Let Mk be the current number of employees at stage k. Also, let IS and IF denote the number of

federal and state forms indexed by is and if . We use Yks and Ykf to denote the resources in stage

k working on state and federal forms. The PLSP is defined as

(PLSP) Min

IS∑
is=1

Tis +

IF∑
if=1

Tif (25)

s.t.

Tis ≥
Pisk

Yks

∀k, ∀is, (26)

Tif ≥
Pifk

Ykf

∀k, ∀if , (27)

Yks +Ykf ≤Mk ∀k, (28)

Yks, Ykf ≥ 1 and integer ∀k. (29)

Objective function (25) minimizes the total maximum amount of work for all forms. Constraints

(26) and (27) define the maximum amount of work for state and federal tax forms. Constraint (28)

shows resource availability.

Proposition 5. PLSP is binary NP-hard.

Unlike the previous models, we employ only the first approach to formulate the PLSP because∑I

i=1 Ti is an upper bound on the time to process all forms. Therefore, by dividing the resources,
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we minimize the upper bound on the completion time. On the other hand, if we were to formulate

and solve PLSP under the second approach, we would minimize a lower bound, which has no value.

5. Solution Procedures

The three models constituting the hierarchical approach provide an approximate solution for the

very difficult GRAP. Of the three, we needed the GIP solution in order to define Ri1i2 with which

we formulate the GP. The remaining problems require more elaborate solution procedures.

5.1. GP Solution

To solve the GP, we propose a decomposition procedure that provides both a lower bound and

feasible solutions. When we relax (16) by positive Lagrangian multipliers γi1i2g, we get

L(γ) = Min
I−1∑
i1=1

I∑
i2=i1+1

(
Ri1i2 −

G∑
g=1

γi1i2g

)
Xi1i2 +

G∑
g=1

I∑
i1=1

(
i1−1∑
i2=1

γi2i1g +
I∑

i2=i1+1

γi1i2g

)
Zi1g

−
G∑

g=1

I−1∑
i1=1

I∑
i2=i1+1

γi1i2g

s.t.

(17), (18), (19), (20)

For a vector of Lagrangian multipliers, γ, with γ ≥ 0, L(γ) can be decomposed into two problems:

L1(γ) = Min
I−1∑
i1=1

I∑
i2=i1+1

(
Ri1i2 −

G∑
g=1

γi1i2g

)
Xi1i2

s.t.
(19),

L2(γ) = Min
G∑

g=1

I∑
i1=1

θi1gZi1g

s.t.
(17), (18), (20),

in which θi1g =

i1−1∑
i2=1

γi2i1g +
I∑

i2=i1+1

γi1i2g.

In L1(γ), the optimal value of each Xi1i2 is equal to 0 if its coefficient in the objective function

is positive; otherwise it is equal to 1. L2(γ) is a packing-by-cost variation of the Bin Packing

Problem in which a set of items should be packed in bins (groups) of the same volume to minimize
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the total packing cost. We solve the Bin Packing subproblem using a dynamic program in which

Vi(U1,U2, ...,UG) denotes the minimum cost of assigning form i to one of the groups with sufficient

capacity, given that the remaining capacity of bin g is Ug and forms 1 to i−1 are already assigned.

The value functions can be calculated using the following recursive relation:

Vi(U1,U2, ...,UG) = min
{g|Ug≥Pi}

{θig +Vi+1(U1,U2, ...,Ug −Pi, ...,UG)} ∀i. (30)

To ensure feasibility, we set Vi(U1,U2, ...,UG) = +∞, if Ug < Pi for all g. The optimal solution to

L2(γ) is V1(Q,Q, ...,Q) and the complexity of the procedure is O (IQG).

Since L(γ) is a lower bound on (15), we solve the following dual problem to find the best of such

lower bounds:
Max L(γ)
s.t.

γi1i2g ≥ 0, ∀i1, i2, ∀g.

A subgradient optimization algorithm (Fisher 1981, 1985) is used to solve the dual problem.

In addition to obtaining a lower bound on the objective function, we also use the decomposition

procedure to find feasible solutions to the GP. In each iteration of the subgradient optimization

algorithm, we can construct a feasible solution to the GP by using the optimal values of Zig in

L2(γ) and setting Xi1i2 = max1≤g≤G{Zi1g + Zi2g − 1}. These feasible grouping scenarios become

inputs to the RAP for finding the optimum resource allocation.

We close this section by pointing out that the grouping procedure can also be applied to states

instead of forms. To calculate Rj1j2 for states j1 and j2, one should replace Pi1k and Pi2k with∑
ij1

Pij1k
and

∑
ij2

Pij2k
in which Pijk denotes the processing time for form i of state j at stage k.

5.2. RAP Solution

RAP1 can be transformed to a Shortest Path Problem. First, we find lower bound Y min
k and upper

bound Y max
k for Y ∗

k , the optimal solution, to limit the size of the network. A lower bound on

Y ∗
1 , . . . , Y

∗
K can be found by summing both sides of (22) over i and combining it with (23). Thus,

Y ∗
k ≥ Y min

k =
⌈∑I

i=1Pik

/
D
⌉
, for which ⌈x⌉ is the smallest integer larger than or equal to x. For an

upper bound, set Pik =maxk {Pik} for all k to inflate processing times to the maximum processing
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time over all stages. Then, if Yk = Y =
∑I

i=1maxk {Pik}
/
D for all k, the deadline will be met. There-

fore,
∑K

k=1wkY ≥
∑K

k=1wkY
∗
k which means Y ∗

k ≤ Y max
k =

⌈(
Y
∑K

k=1wk −
∑

r ̸=kwrY
min
r

)/
wk

⌉
.

The network for RAP1 has K layers and each node is represented by (k,Yk,E) where E =∑I

i=1 Ti −D given resources Y1, . . . , YK . The network is constructed using the following steps:

Step 0. Generate Start (0) and Finish (F) nodes.

Step 1. Generate nodes (1, Y1,E) starting from Y1 = Y min
1 and increasing it by 1 while setting

Yr = Y min
r for r > 1. The cost of arc (0)→ (1, Y1,E) is (Y1 −Y min

1 )ω1. Stop adding new nodes if

Y1 = Y max
1 or E ≤ 0. If E ≤ 0 occurs first, connect the last node to node F with cost 0.

Step 2. In layers k= 2, . . . ,K, generate the children of nodes in layer k−1 with E > 0 in the same

manner as Step 1. To be more specific, the value of E in node (k,Yk,E) is computed by setting Yr =

Y min
r for r > k and setting Yr for r ≤ k equal to their values on the path (1, Y1,E)→ (2, Y2,E)→

· · ·→ (k−1, Yk−1,E)→ (k,Yk,E). The cost of arc (k−1, Yk−1,E)→ (k,Yk,E) is (Yk −Y min
k )ωk. In

layer K, the cost of (K,YK ,E)→ F will be a very large number if E > 0 and 0 otherwise.

Step 3. Compute the shortest path of the network. The optimal solution to RAP1 is the sum of

the shortest path and the cost of allocating Y min
k to each stage. The optimal resource configuration

can be determined by traversing the shortest path.

The network is of order size complexity O
(
(maxk {Y max

k −Y min
k })K

)
. Appendix 2 provides an

example of the network construction. Finally, the solution to RAP2 is Y ∗
k =

⌈∑I

i=1Pik/D
⌉
.

5.3. PLSP Solution

To solve the PLSP, we propose a heuristic solution that relaxes the integrality of Ykg and then we

show its worst-case performance. We let Ỹks and Ỹkf be the solution to continuous PLSP, and we

find an integer solution using the following algorithm:

Step 1. For all k, set Yks = ⌊Ỹks⌋ and Ykf = ⌊Ỹkf⌋, for which ⌊x⌋ is the greatest integer less than

or equal to x and define Mk =max(0,Mk −Yks −Ykf ).

Step 2. Find the first stage k with Mk > 0. First compute TSk, the objective function of

PLSP for (Yks +1, Ykf ). Then compute TFk, the objective function of PLSP for (Yks, Ykf +1). If
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TSk <TFk, let Yks := Yks +1; otherwise, let Ykf := Ykf +1. Update Mk and repeat this step until

Mk = 0. Then find the next stage with Mk > 0 and repeat this step.

Let ϕH be the objective function value of the above heuristic. The next proposition provides a

bound on the worst-case performance of the heuristic.

Proposition 6. If ϕ∗ denotes the optimal value of PLSP, then
ϕH

ϕ∗ ≤ 2.

6. Numerical Experiments on Performance

Through extensive numerical experiments, we explore model and solution performance prior to

incorporating them into the company’s development processes. First, we show that the Lagrangian

heuristic provides a very good solution to the GP. Second, we compare the performance of the

hierarchical framework to the monolithic approach for small problems. These two experiments,

though limited in the size of problems solved, indicate that the hierarchical framework is an excel-

lent approach to the original problem. Third, we use detailed scheduling to check the performance

of the proposed resource configurations. Finally, we look at the effect of dynamically arriving forms

and feedback loops on the performance of our solutions.

We select experimental parameters based on our observations of the company. Historically,

approximately 50% of the forms are easy, 20% are time consuming, and the remaining 30% fall

somewhere in the middle. The categorization is based on processing time requirements. Table 2

shows the processing time intervals (in hours) for each category. The last row presents the resource

costs in tens of thousands of dollars. The process starts on August 1st and continues through

December 15th. Employees work 8 hours per day, Monday through Friday.

Table 2 Processing time intervals for form categories and resource costs at each stage

Form IDG IDG CALC CALC EF EF Interview Interview Integration Final

categories process test process test process test process test Test

Easy [2 5] [1 2] [3 6] [1 2] [2 5] [0.5 1] [1 3] [0.5 1] [0.5 1.5] [1 2]

Fairly hard [5 12] [1.5 2.5] [8 12] [2 3] [4 7] [0.5 1.5] [2 5] [0.5 1.5] [1 1.5] [2 3]

Hard [12 20] [2 3] [12 24] [3 4] [6 9] [1 1.5] [4 7] [1 1.5] [1.5 2] [3 4]

Cost 50 10 60 15 40 10 35 10 50 15
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6.1. Lagrangian Heuristic Performance

To evaluate the quality of the Lagrangian heuristic in solving the grouping problem (GP), we set

up the experiment as follows: (1) the number of groups, G, is set to 3, 4, and 5; (2) the number

of processing stages, K, is set to 8, 9, and 10; and (3) the number of forms is set to 30, 40, and

50. We have generated 10 problems for each category of problem type and reported the average

ratio of the Lagrangian heuristic to the lower bound (LH/LB). Note that at each iteration of the

subgradient method, we generate a heuristic solution. We report the result of the best heuristic

solution over the 35 iterations of the subgradient method.

Table 3 Performance of the Lagrangian heuristic for the GP

NO. G K I Ave(LH/LB) Wrst(LH/LB)

1 8 30 1.023 1.041
2 8 40 1.019 1.039
3 8 50 1.025 1.057
4 9 30 1.034 1.066
5 3 9 40 1.017 1.038
6 9 50 1.019 1.042
7 10 30 1.036 1.079
8 10 40 1.028 1.059
9 10 50 1.041 1.081
10 8 30 1.038 1.077
11 8 40 1.027 1.066
12 8 50 1.043 1.084
13 9 30 1.036 1.068
14 4 9 40 1.023 1.092
15 9 50 1.028 1.088
16 10 30 1.018 1.062
17 10 40 1.039 1.071
18 10 50 1.028 1.066
19 8 30 1.042 1.089
20 8 40 1.045 1.095
21 8 50 1.032 1.082
22 9 30 1.029 1.079
23 9 40 1.041 1.094
24 5 9 50 1.031 1.097
25 10 30 1.048 1.089
26 10 40 1.026 1.088
27 10 50 1.029 1.079

Average 1.031 1.072

Table 3 shows our computational results. For each category, we report two statistics for each of
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the ten problems solved: the average ratio, Ave(LH/LB), and the worst ratio, Wrst(LH/LB). The

average ratio of the best upper bound to the lower bound is quite good. On average, the heuristic is

only 3.1 percent above the lower bound. Note that this is a conservative estimate of the quality of

the Lagrangian heuristics since we do not have the optimum solution. Even in the worst scenario,

our procedure is on average 7.2 percent above the lower bound over the 270 problems solved.

6.2. Hierarchical Framework Performance

In this experiment, we evaluate the quality of the proposed hierarchical framework, the GP and

RAP1, and compare it to the monolithic approach for small problems. One drawback to this exper-

iment is that we were not able to solve large problems using the monolithic approach; therefore,

we cannot make any claims regarding the quality of the hierarchical approach for large problems.

We use the following parameters: (1) the number of groups is set to 2, 3, and 4; (2) the number of

stages is assumed to be 8, 9, and 10; and (3) the total number of forms ranges from 50 to 100.

Table 4 shows our computational results. We report Ave(HA/MO), which is the average ratio of

the total cost of resources allocated using the hierarchical approach to that using the monolithic

approach. In each category, ten problems were solved to optimality. The grand average of the

problems solved indicates that the hierarchical problem is at most 3.58 percent above the monolithic

approach.

Table 5 reports the average total time in seconds it takes to solve the hierarchical models (GIP,

GP, and RAP) for G= 3,4,5, K = 8,9,10, and I = 500,750,1000. The computation time for each

combination of G, K, and I shows the average time for solving 10 problem instances. It is evident

from the data that the hierarchical approach has a satisfactory runtime.

6.3. RAP Performance

In this section, we evaluate the performance of the two proposed resource allocation problems,

RAP1 and RAP2. The parameters used are as follows: (1) the number of stages, K, is set to 8, 9,

and 10; and (2) The total number of forms is set to 500, 750, and 1000. A total of 270 problems were

solved with 30 problems in each category. To report the results, we first solved RAP1 and RAP2
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Table 4 The hierarchical approach vs. the monolithic approach

I = 50 I = 60 I = 70 I = 80 I = 90 I = 100

NO. G K Ave(HA/MO) Ave(HA/MO) Ave(HA/MO) Ave(HA/MO) Ave(HA/MO) Ave(HA/MO)

1 8 1.0408 1.0298 1.0355 1.0227 1.0050 1.0433

2 8 1.0373 1.0252 1.0104 1.0183 1.0475 1.0280

3 8 1.0305 1.0236 1.0084 1.0301 1.0292 1.0451

4 9 1.0215 1.0254 1.0411 1.0267 1.0453 1.0544

5 3 9 1.0416 1.0157 1.0126 1.0393 1.0521 1.0038

6 9 1.0063 1.0427 1.0381 1.0412 1.0113 1.0394

7 10 1.0251 1.0096 1.0411 1.0462 1.0439 1.0024

8 10 1.0074 1.0429 1.0309 1.0278 1.0411 1.0239

9 10 1.0240 1.0099 1.0328 1.0014 1.0325 1.0462

10 8 1.0347 1.0395 1.0067 1.0288 1.0070 1.0308

11 8 1.0377 1.0159 1.0423 1.0431 1.0017 1.0155

12 8 1.0093 1.0455 1.0319 1.0368 1.0543 1.0327

13 9 1.0051 1.0232 1.0090 1.0035 1.0384 1.0234

14 4 9 1.0071 1.0209 1.0043 1.0248 1.0070 1.0546

15 9 1.0257 1.0408 1.0290 1.0494 1.0504 1.0299

16 10 1.0003 1.0431 1.0414 1.0212 1.0158 1.0551

17 10 1.0076 1.0059 1.0190 1.0309 1.0116 1.0087

18 10 1.0260 1.0289 1.0203 1.0229 1.0163 1.0395

19 8 1.0342 1.0270 1.0200 1.0450 1.0394 1.0452

20 8 1.0337 1.0380 1.0111 1.0340 1.0234 1.0435

21 8 1.0426 1.0347 1.0354 1.0171 1.0111 1.0578

22 9 1.0369 1.0215 1.0164 1.0292 1.0124 1.0339

23 9 1.0310 1.0332 1.0095 1.0006 1.0171 1.0598

24 5 9 1.0140 1.0238 1.0136 1.0397 1.0211 1.0346

25 10 1.0160 1.0226 1.0121 1.0148 1.0092 1.0303

26 10 1.0082 1.0423 1.0036 1.0240 1.0511 1.0558

27 10 1.0350 1.0445 1.0423 1.0251 1.0336 1.0292

Average 1.0237 1.0287 1.0229 1.0276 1.0270 1.0358

and obtained the resources allocated, Yk. Then, we computed the completion time of each form by

scheduling the tax forms using the resource configurations obtained from solving RAP1 and RAP2

and following the shortest total processing time (STPT) rule. We are interested in evaluating the

completion time of the forms for each case. In the next section we examine the effect of dynamic

arrival and feedback loops on system performance.
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Table 5 Computation time in seconds for the hierarchical approach

Average total

NO. G K I computation time

1 8 500 41
2 8 750 82
3 8 1000 106
4 9 500 60
5 3 9 750 85
6 9 1000 101
7 10 500 60
8 10 750 67
9 10 1000 94
10 8 500 65
11 8 750 78
12 8 1000 116
13 9 500 52
14 4 9 750 89
15 9 1000 95
16 10 500 42
17 10 750 82
18 10 1000 103
19 8 500 54
20 8 750 84
21 8 1000 101
22 9 500 45
23 5 9 750 69
24 9 1000 112
25 10 500 60
26 10 750 84
27 10 1000 104

Average 79

Table 6 shows the results of the experiments for static instances in which it is assumed that

all forms are available at the beginning of the planning horizon and that all processing times are

known. In this case, we report the average ratio of time needed to complete the total amount

of work over the system deadline given the resource profile from RAP1 and RAP2. As expected,

RAP1 always meets the system deadline and completes the processing of forms within 95 percent

of the deadline on average. However, this is achieved at a higher resource cost. On average, it costs

5.4 percent more to obtain the additional resources used under RAP1. Although RAP2 produces

mixed results, forms are completed after the deadline on average only 2.3 percent of the time . The

experimental results verify the appropriateness of the lower and upper bound approach for system
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Table 6 Performance of resource allocation models for static instances

Static case

Ratio of∑I

i=1 Ti

/
D optimal costs

NO. K I RAP1 RAP2 RAP2/RAP1

1 500 0.966 1.012 0.935
2 8 750 0.959 1.024 0.951
3 1000 0.957 1.037 0.938
4 500 0.947 0.977 0.939
5 9 750 0.938 1.025 0.965
6 1000 0.963 1.017 0.909
7 500 0.922 1.011 0.935
8 10 750 0.975 1.067 0.961
9 1000 0.925 1.039 0.979

Average 0.950 1.023 0.946

resource configuration.

6.4. Effects of Dynamic Arrivals and Feedback Loops on Performance

Now, we look at the effects of dynamic arrivals and feedback loops on system performance. Gen-

erating arrivals based on the three-year average of historical arrival patterns, we found, that the

dynamic arrival of IRS forms does not dramatically change the performance of the system (see

Table 7). Even though in some cases RAP1 requires overtime to complete the process, the max-

imum amount of overtime needed is only 3.7 percent and on average RAP1 meets the deadline.

Regarding RAP2, on average it requires only 3.5 percent more time to complete the forms. These

results indicate that assuming complete availability of the forms is a good approximation approach

and that one does not need to incorporate the dynamic characteristics of the tax forms explicitly.

Our results from examining the effect of approximating the feedback loops with the convolution

of processing time distributions are presented in Table 7 under feedback loops. By comparing the

ratios for feedback loops with Table 6, we see that the average ratio of the total completion time of

RAP1 and RAP2 to the deadline remains almost unchanged. This indicates that our approximation

for feedback loops performs well.

Finally, we look at the simultaneous effect of dynamic arrivals and feedback loops. The results

are reported under the last two columns of Table 7. We notice that the average of the ratio increases

to 1.044 for RAP1 and to 1.062 for RAP2, which means that employees need to work between 3.8
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Table 7 Performance of resource allocation models under dynamic arrival and feedback loops

Dynamic arrival

Dynamic arrival Feedback loops and feedback loops∑I

i=1 Ti

/
D

∑I

i=1 Ti

/
D

∑I

i=1 Ti

/
D

NO. K I RAP1 RAP2 RAP1 RAP2 RAP1 RAP2

1 500 0.995 1.042 0.949 1.021 1.052 1.047
2 8 750 0.988 1.056 0.936 1.025 1.051 1.043
3 1000 0.996 1.042 0.947 1.013 1.020 1.081
4 500 0.988 1.018 0.957 1.016 1.052 1.072
5 9 750 1.018 1.057 0.977 1.011 1.037 1.070
6 1000 1.003 1.033 0.931 1.012 1.051 1.051
7 500 1.004 1.024 0.953 1.013 1.054 1.078
8 10 750 0.991 1.024 0.946 1.025 1.035 1.070
9 1000 0.980 1.017 0.946 1.008 1.048 1.045

Average 0.996 1.035 0.949 1.016 1.044 1.062

to 9.8 percent overtime. Since we assumed five working days per week and eight hours per day,

these percentages translate to at most near four hours per week. Currently, the employees work

almost every Saturday and at least one hour overtime on weekdays. This means a total of 13 hours

of overtime per week, which is more than 5 times the overtime of our models. This difference shows

how our models can help the company reduce its overtime expenses significantly.

To examine these simultaneous effects further, we used the Wilcoxon signed–rank test (Lawler

et al. 1985) to test the null hypothesis that completion times obtained from our models and

completion times obtained from simulation for dynamic arrival and feedback loops belong to the

same population. Conducting the test with 270 observations and at a 5% level of significance, we

could not reject the null hypothesis that the two populations were the same.

In summary, these numerical experiments indicate that the hierarchical procedure proposed for

forming groups and allocating resources is an excellent approximation to the NP-hard monolithic

problem. Moreover, our treatment of two important features of the process, dynamic arrivals and

feedback loops, does not significantly affect the performance of our models and heuristics. Because

the system is sufficiently congested, assuming that an estimate of the amount of work is available

at the beginning of the planning horizon is not unreasonable. Also, using convolution of processing

time distributions is a good approximation for the effect of feedback loops on the completion time.
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7. Implementation

Directed by the vice president of Operations, the company implemented our models during the

summer and early fall of 2010 as a part of ongoing process improvement efforts. Prior efforts at

process improvement made the company receptive to our analytical solutions, and, after showing

our initial analysis of the problem and the potential benefits to the company, we were given the

green light to go ahead. Process managers were asked to fully cooperate with us and provide us

with the necessary data. The VP of Operations proved critical to project success by initiating the

implementation and removing internal obstacles as it proceeded. Her trust and full support made

it possible to test our solutions in a real-world situation.

The managers were interested in evaluating and implementing the models in two phases. The

idea behind phase 1 was to see how much the company could potentially benefit from the models

without altering the workforce level. In phase 2, our models were implemented during the 2010

production season when the company could hire and relocate its employees.

Phase 1 entailed analyzing the benefits of optimally dividing the existing workforce into two

designated groups: one for all state forms and one for all federal forms. We were given 2009 company

data for the number of resources at each stage, Mk, and length of time it took to process each form

at each stage, Pik. Because Pik already included all processing and reprocessing times, we did not

apply our approximation procedure for feedback loops in this phase. We used the PLSP to allocate

resources to these two predefined groups in order to minimize the total maximum amount of work

needed to process all forms. Next, we incorporated the actual arrival pattern of forms in 2009

and the solution from the PLSP into a scheduling simulator that evaluated the total time needed

to process the forms in each of the two groups. The simulator computed the project completion

time based on the exact allocation of tasks to each resource at each stage. We compared simulator

results with actual total amount of work in 2009 and found that the company could have reduced

the total amount of work by 23.5%.

The objective of phase 2 was to fully implement our models throughout the 2010 tax season.

For this purpose, we had to estimate the number of federal and state forms, the arrival pattern of
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the forms, and the processing times of forms at each stage. We also had to determine the number

of groups to be formed. First, we used a linear regression model to estimate the number of federal

and state forms to be processed for the 2010 tax year. To generate the arrival patterns of the

forms, we used the average cumulative arrivals of forms over the last three years (2007-2009) and

randomly assigned arrival dates to them such that their cumulative arrivals matched the historical

percentage of arrivals.

To estimate processing time distributions at each stage, we designed a questionnaire (see

Appendix 4). It requested estimates of the minimum, average, and maximum processing times

needed to complete the forms at each stage. It also asked for the percentage of forms that take

less than 25%, between 25% and 50%, between 50% and 75%, and above 75% of the maximum

processing time. Having found that employees tend to inflate processing times, we asked managers

to adjust and fine tune estimates based on their own judgment and experience. For each internal

test and Final Test, we asked respondents to estimate the percentage of forms that fail testing

and return for rework. After collecting the estimates, we followed the procedure in Section 3.2 to

calculate the no-loop approximate processing times needed to complete the forms at each stage. At

the end of the season, we found that the actual total processing times,
∑I

i=1

∑K

k=1Pik, was 3.6%

higher than our estimates.

To decide the number of groups, we discussed managerial aspects of organizing them, and the

process managers elected to use two groups for processing all forms. We then used GRAP1 and

GRAP2 to generate a range for the number of employees needed at each stage for each group.

Because GRAP1 and GRAP2 provide lower and upper bounds, the company decided to make hiring

and relocation decisions based on their average.

Using the new configuration of processing groups and comparing it with the 2009 resource deploy-

ment, the company relocated approximately 12% of the 237 employees to new job assignments and

hired 8 new employees (3% increase in workforce). Company employees can be classified into three

major skill categories: programmers, testers, and accountants. They cannot be relocated across

the categories, but they can be relocated within them. Of the 12% who were relocated, 8.5% were
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relocated within the same skill category, and 3.5% came from the same skill category in a different

product line.

To measure the savings obtained by implementing the hierarchical model, the company recorded

cumulative overtime used prior to taking the software to market. Comparing the data with the 2009

tax year, the company found that it enjoyed a 25.7% reduction in overtime and an 11.3% reduction

in the total workforce cost. The company also found that, even though hiring 8 new employees was

costly, the hiring and relocation decisions helped the company reduce overtime payments which

ultimately reduced the total workforce cost. When we considered the total amount of work before

and after the first release (subsequent upgrades), the savings were even higher. In 2009, the total

overtime was 59,439 hours, and the ratio of total overtime to regular hours was 22.5%. In 2010, the

total overtime declined by 31.6% to 40,656 hours, and the ratio of total overtime to regular hours

was 15.4%. The total workforce cost in 2010 was 13.6% lower than that of 2009, which roughly

translates into $960,000. The company did not allow us to report the absolute value of workforce

cost in 2009 and 2010, however. To the best of our knowledge, the financial savings were not the

result of external factors such as demand change, employee turnover, change in skills, or changes in

the structure of the software. In fact, the actual amount of work in 2010 was 1.8% higher compared

with 2009, meaning that the company had to do even more work in 2010. Also, the structure of

the software, its features, and interface did not change. Therefore, we can claim that the savings

were the result of using our decision-making tools.

In addition to saving money and completing the software on time, our models helped the com-

pany resolve some long-standing disagreements among the functional managers. Managers were

particularly amenable to the proposed solutions since they did not involve issuing any pink slips.

Also, establishing two processing lines created some healthy competition to complete tasks earlier

and with less overtime.

Motivated by the savings in overtime and total resource costs, the company has decided to

implement the models every tax year. Managers are also considering expanding the modeling

framework to other product lines in the future. One challenge to implementation was estimating
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processing times. In order to increase the accuracy of estimates used as inputs to the models, the

company is currently setting up a system to better record processing times and rework iterations.

8. Concluding Remarks

We studied a software development process at a large company that faces a tight deadline for

releasing its tax preparation software so that it retains its market share and avoids losses. Dynamic

arrivals, variable processing times, feedback loops, and high task volume make process manage-

ment a formidable undertaking. The same challenges are faced by many companies servicing other

domains that require them to routinely upgrade their software applications.

We used an approximation to capture the effect of feedback loops on the completion time. Then

we introduced a hierarchical framework to help the company manage the development process

more effectively. The framework focused on sorting tax forms to dedicated groups and finding the

right staffing levels to meet the release deadline. The computational experiments supported our

modeling assumptions and attested to the excellent quality of the hierarchical framework and the

solution procedures.

Implementing our models gave the company a 31% reduction in overtime. It also reduced the

total workforce cost by 13% or around $1 million. The company successfully completed the software

on time even though the amount of work to do was not less than the previous year. In the future,

we would like to study other product lines in the company and possibly expand our models to

manage more processes. Because some employees with certain skills (e.g., programmers) can work

in different software development processes, a consolidated workforce management system can help

the company more efficiently utilize its employees.
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Appendix 1. Proofs

Proof of Proposition 1. It is not difficult to see that the optimum schedule is a permutation

schedule; i.e., the sequence of processing jobs is the same on all machines. An upper bound on

the actual makespan is obtained by inflating the processing time of each job at each stage to its

maximum processing time across the stages. In this case, the longest job and all the jobs after it

are processed in stages 2, · · · ,K with no inserted idle time. Therefore, the makespan is equal to

the sum of the processing times plus the transition of the longest job on machines 2, · · · ,K, which

is
∑I

i=1max k {Pik}+(K−1)max i{max k {Pik}}. Note that the upper bound is independent of the

sequence of jobs. �

Proof of Proposition 2. We show that GRAP1 and GRAP2 are as hard as the 3-partition

problem, which is known to be strongly NP-hard (Garey and Johnson 1979). Assume that we are

given a general instance of the 3-partition problem consisting of an index set A = (1,2, ...,3m),

positive elements ai for i = 1,2, ...,3m, and a positive integer B such that B/4 < ai < B/2 and∑3m

i=1 ai = mB. We now introduce a specific instance of GRAP1 and GRAP2 as follows: K = 1,

G=m, I = 3m, Pik = ai for all i, k, D =B and wk = 1 for all k. We shall show that the optimal

solution of GRAP1 and GRAP2 takes valuem if and only if the 3m elements of A can be partitioned

into m disjoint subsets A1,A2, ...,Am such that
∑

i∈Ar
ai = B for r = 1, ...,m. If the 3-partition

problem has a solution, then it is easy to see that the elements of each subset Ar could be assigned

to one of the m groups and that the total amount of work for each group would be equal to

D. In this case, each group would have one resource assigned to it: Ykg = 1 for all k and g and∑K

k=1

∑G

g Ykg =m. If the 3-partition problem does not have a solution, then there is at least one

http://www.softwaremag.com/editors-desk/2010-software-500-another-good-year-for-outsourcers/
http://www.softwaremag.com/editors-desk/2010-software-500-another-good-year-for-outsourcers/
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subset Ar such that the total processing time in that group would be more than D. To meet the

deadline, D, more than one resource would have to be assigned to this group. All other subsets

would require one unit of resource, making the total resources greater than m. �

Proof of Proposition 3. We shall show that the recognition version of the GP is as hard as the 3-

partition problem, which is known to be strongly NP-complete. Assume that we are given a general

instance of the 3-partition problem consisting of an index set A= (1,2, ...,3m), positive elements

ai for i= 1,2, ...,3m, and a positive integer, B, such that B/4< ai <B/2 and
∑3m

i=1 ai =mB. We

now introduce a specific instance of the GP as follows: G=m, I = 3m, Pi = ai for all i, Ri1i2 = 0

for all i1, i2, and Q=B. We shall show that the GP has a feasible solution if and only if the 3m

elements of A can be partitioned into m disjoint subsets A1,A2, ...,Am such that
∑

i∈Ar
ai =B for

r = 1, . . . ,m. If the 3-partition problem has a solution, then it is easy to see that the elements of

each subset Ar could be assigned to each of the m groups and that the total processing time of

each group would be equal to B. If the 3-partition problem does not have a solution, then there

is at least one subset Ar such that the total processing time of that group would be more than B

and it is easily seen that the GP has no feasible solution. �

Proof of Proposition 4. We shall show that RAP1 is as hard as the equal-size, equal-number-

of-items partition problem, which is known to be binary NP-hard. Assume that we are given a

general instance of the equal-size, equal-number-of-items partition problem consisting of an index

set A = (1,2, ...,m), in which m is even and elements ai for i = 1,2, ...,m are positive. Consider

the following instance of RAP1 as follows: K = m, and Pik = 2ai if i = k; otherwise Pik = ai.

Also, D = 3
2

∑
r∈A ar, wk = 1 and 1 ≤ Yk ≤ 2 for all k. Finally, we consider an objective value of

D = 3
2

∑
r∈A ar. Note that in any feasible solution to RAP1, there exists a subset of stages, B,

such that Yk = 2 for all k ∈ B and Yk = 1 for all k ̸∈ B. If there exists a partition, B ⊂ A, such

that
∑

r∈B ar =
∑

r∈A−B ar and |B| = m/2, then setting Yk = 2 for all k ∈ B and Yk = 1 for all

k ∈A−B generates a feasible solution to RAP1 with the objective value of D = 3
2

∑
r∈A ar. If no

partition exists and there is a solution to RAP1 such that its objective value is less than or equal to

D= 3
2

∑
r∈A ar, then it is easy to see that there should exist a subset C ⊂A such that |C|< |A|/2.
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Setting Yk = 2 for all k ∈ C, and Yk = 1 for all k ∈A−C, does not provide a feasible solution to

RAP1. �

Proof of Proposition 5. We show that PLSP is as hard as the partition problem. Consider

the following instance of PLSP as follows: IS = IF =m, K =m, mk = 3, and Pik = 2ai if i = k;

otherwise, Pik = ai. Also, D= 1
2

∑
r∈A ar and consider an objective value of D= 3

2

∑
r∈A ar. If there

exists a partition B ⊂ A, such that
∑

r∈B ar =
∑

r∈A−B ar and |B| = m/2, then in each feasible

solution to PLSP, each stage in the federal or state process line will use either one or two resources.

Let B be the set of stages in the state process line that use two resources and let A−B be the

set of stages in the federal process line that use two resources. Then, the total maximum amount

of work is given by 2
∑

r∈B ar +
∑

r∈A−B ar for the state process line and 2
∑

r∈A−B ar +
∑

r∈B ar

for the federal process line. Consequently, the objective value will be 3
2

∑
r∈A ar. Conversely, if no

partition exists, we assume by contradiction that there is a solution to PLSP with the objective

value of 3
2

∑
r∈A ar. Then, we would have:

2
∑

r∈A−B

ar +
∑
r∈B

ar ≤
3

2

∑
r∈A

ar,

2
∑
r∈B

ar +
∑

r∈A−B

ar ≤
3

2

∑
r∈A

ar,

which completes the proof. �

Proof of Proposition 6. Let ϕf be the value of PLSP when Yks =
⌊
Ỹks

⌋
, Ykf =

⌊
Ỹkf

⌋
. Similarly,

let ϕc be the value of PLSP when Yks =
⌈
Ỹks

⌉
and Ykf =

⌈
Ỹkf

⌉
. Since the total maximum amount

of work is non-decreasing in the number of resources, we can write:

ϕH

ϕ∗ ≤ ϕf

ϕc
=

IS∑
i=1

max
{
Pi1/⌊Y1s⌋, ..., PiK/⌊YKs⌋

}
+

IF∑
i=1

max
{
Pi1/⌊Y1f⌋, ...,PiK/⌊YKf⌋

}
IS∑
i=1

max
{
Pi1/⌈Y1s⌉, ...,PiK/⌈Yks⌉

}
+

IF∑
i=1

max
{
Pi1/⌈Y1f⌉, ...,PiK/⌈YKf⌉

} .

For each is, define ηi =
max

{
Pi1/⌊Y1s⌋, ..., PiK/⌊YKs⌋

}
max

{
Pi1/⌈Y1s⌉, ..., PiK/⌈YKs⌉

} . Also, let k1 and k2 be the indices of

the stages that determine the maximum amount of work of form i in the numerator and denom-

inator, respectively. If k1 = k2, then ηi ≤ 2. If k1 ̸= k2, then we have Pik1

/
⌊Yk1s⌋ ≥ Pik2

/
⌊Yk2s⌋,
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and Pik1

/
⌈Yk1s⌉ ≤ Pik2

/
⌈Yk2s⌉ ⇒ ⌈Yk2s⌉ ≤ Pik2⌈Yk1s⌉

/
Pik1 . Thus, ηi = Pik1⌈Yk2s⌉

/
Pik2⌊Yk1s⌋ ≤

⌈Yk1s⌉
/
⌊Yk1s⌋ ≤ 2. The inequality also holds if ηi is defined for federal forms. Therefore, ηi ≤ 2 for

all forms which means ϕH
/
ϕ∗ ≤ 2. �

Appendix 2. An Example of the Shortest Path Algorithm for RAP1

Figure 5 illustrates a small example of the network construction for RAP1. Due to limited space,

we only considered five stages and did not generate all the nodes to Y max. The data are shown

in Table 8. Five forms with processing times are listed in columns two through six. The seventh

column shows the cost of hiring one employee for each stage. The eighth and ninth columns show

the lower and upper bounds for each stage. The deadline is 20, hence Y = 3.85. The shortest path

is shown with dashed arcs. Thus the optimal solution is (3,4,4,4,4), which incurs 675 units of cost.

Table 8 Data for the network example

Stage Form 1 Form 2 Form 3 Form 4 Form 5 wk Y Min
k Y max

k

1 10 12 10 14 6 25 3 8
2 14 9 10 17 7 30 3 7
3 14 10 13 12 11 45 3 6
4 13 16 15 10 5 35 3 7
5 12 13 14 7 15 40 4 7

Appendix 3. Questionnaire for collecting processing time estimates

Figure 6 shows the questionnaire we designed to obtain estimates of the processing time distri-

butions and the percentage of forms that require rework after internal tests. We asked the same

questions for all stages. Figure 7 shows the questions that we asked about Integration & Final Test

to estimate the distribution of the destination of feedback loops from the final test as well as the

percentage of forms that require one or more rounds of rework.
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Figure 5 An example of constructing a network for RAP1
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Figure 6 Question for Estimating the Processing Time Distribution and Rework Probabilities at Each Stage

Figure 7 Question for Estimating the Rework Probability Distribution for the Final Test
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