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Abstract

Rigid structures in traffic probability: with a view toward random matrices

by

Benson Au

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Steven N. Evans, Chair

Traffic probability is an operadic non-commutative probability theory recently introduced
by Male that generalizes the standard non-commutative probabilistic framework. This addi-
tional operad structure admits a corresponding notion of independence, the so-called traffic
independence. At the same time, traffic probability captures certain aspects of both classical
and free probability. An as yet incomplete understanding of this relationship yields insightful
feedback between the different theories. In this dissertation, we study this problem through
two complementary angles: first, in the context of the universal enveloping traffic space;
and second, in the context of large random matrices. For a tracial non-commutative prob-
ability space (A, ϕ), Cébron, Dahlqvist, and Male constructed an enveloping traffic space
(G(A), τϕ) that extends the trace. The CDM construction provides a universal object that
allows one to appeal to the traffic probability framework in generic situations, prioritizing
an understanding of its structure. In Chapter 3, we study the structure of the universal
enveloping traffic space (G(A), τϕ) as a general non-commutative probability space (B, ψ),
particularly in relation to non-commutative notions of independence. We show that (B, ψ)
admits a canonical free product decomposition B = A ∗ Aᵀ ∗ Θ(B), regardless of the choice
of (A, ϕ). If (A, ϕ) is itself a free product, then we show how this additional structure lifts
into (B, ψ). Here, we find a duality between classical independence and free independence.
Our proof relies on the existence of a natural homomorphic conditional expectation in (B, ψ)
that takes Θ(B) to a commutative subalgebra ∆(B). Up to degeneracy, we further show that
∆(B) is spanned by tree-like graph operations. In Chapter 4, we utilize the traffic frame-
work to study the asymptotics of large random multi-matrix models. As a starting point, we
compute the limiting traffic distribution of the classical ensembles of Wigner, Ginibre, and
Wishart-Laguerre. This allows us to apply our free product decomposition from Chapter 3
to prove the asymptotic freeness of a large class of dependent random matrices, generalizing
and providing a unifying framework for results of Bryc, Dembo, and Jiang and of Mingo and
Popa. We further prove general Markov-type concentration inequalities for the joint traffic
distribution of our matrices. We then extend our analysis to random band matrices and in-
vestigate the extent to which the joint traffic distribution of these matrices deviates from the
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classical case. We also pursue an orthogonal computation, namely, that of a Haar distributed
orthogonal random matrix. Altogether, our formulas suggest a convenient cactus-cumulant
correspondence, the details of which we commit in the last section. Our results related to the
universal enveloping traffic space form part of a joint work in progress with Camille Male.
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Chapter 1

Introduction

Non-commutative (NC) probability is a generalization of classical probability theory that
extends the probabilistic perspective to non-commuting random variables. To accommodate
this non-commutativity, one must first revisit the notion of a probability space (Ω,F ,P).
In the classical framework, a random variable simply corresponds to a measurable function
X : (Ω,F ,P)→ C. Here, one often restricts attention to a special class of random variables:
for example, Lp(Ω,F ,P) for some 1 ≤ p ≤ ∞ or

L∞−(Ω,F ,P) =
∞⋂
p=1

Lp(Ω,F ,P),

the space of random variables with finite moments of all orders. For such random variables,
one can define the expectation E[X], which encodes the probability measure P(E) = E[1E].
For p ∈ {∞−,∞}, Lp(Ω,F ,P) further possesses the additional structure of a C-algebra, one
that is both unital and commutative. One arrives at the NC framework by forgoing this
second property.

Definition 1.1 (NC probability space). A NC probability space is a pair (A, ϕ) consisting
of a unital NC C-algebra A together with a unital linear functional ϕ : A → C. We refer to
elements a ∈ A as NC random variables (or simply random variables) with ϕ playing the
role of the expectation.

One often works with additional structure in a NC probability space: for example, the
algebra A could be a ∗-algebra, a C∗-algebra, or a W ∗-algebra, while the functional ϕ could
be positive, tracial, or faithful. Surprisingly, even at the most basic level of this definition,
one sees the emergence of interesting and uniquely NC phenomena.

Naturally, the classical framework provides the first example. In particular, a probability
space (Ω,F ,P) begets a NC probability space (L∞−(Ω,F ,P),E). The fundamental notion
of independence, defined for sub-σ-fields (Fi)i∈I , amounts to an elementary factorization
property for the subalgebras (L∞−(Ω,Fi,P))i∈I over the expectation E. By adapting this
concrete example, one can formulate the notion of classical independence for subalgebras
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(Ai)i∈I of an abstract NC probability space (A, ϕ). Of course, in order to conform to the
classical notion, one requires that the subalgebras (Ai)i∈I commute as part of the definition.

At the same time, genuinely NC examples abound. Historically, operator algebras provide
the first avenue for such investigations. In this context, Voiculescu discovered a remarkable
analogue of classical independence for non-commuting random variables [Voi85]. In the
group von Neumann algebra (L(G), τG), a free product structure G = ∗i∈I Gi defines a
universal factorization property for the subalgebras (L(Gi))i∈I over the canonical trace τG,
the so-called free independence. By taking free independence as the fundamental concept,
Voiculescu developed what is now known as free probability. Free independence appears
as a ubiquitous phenomenon in many guises [Spe17], with myriad applications both pure
[VDN92,HP00,NS06,MS17] and applied [TV04,CD11]. One also finds free analogues of many
classical notions: for example, the free central limit theorem [Voi85], free cumulants [Spe94],
free entropy [Voi93,Voi94], a free stochastic calculus [BS98], and free extreme values [BAV06].

Yet, despite the parallels, free independence exists purely as a NC phenomenon, distinct
from the classical notion. One can justifiably ask if free independence deserves to occupy
such a distinguished role in the NC probabilistic framework. Is free independence truly the
NC analogue of classical independence? Voiculescu’s landmark paper [Voi91] answers this
question in the affirmative, establishing a connection between the two notions via random
matrices. Random matrices provide a fertile intermediate ground where one can consider
classical notions in a genuinely NC setting. In particular, one can lift the classical indepen-
dence of random variables

(L∞−(Ω,Fi,P))i∈I in (L∞−(Ω,F ,P),E)

to independent random matrices

(L∞−(Ω,Fi,P)⊗MatN(C))i∈I in

(
L∞−(Ω,F ,P)⊗MatN(C),E

1

N
tr

)
.

Naturally, one can ask what becomes of the independence relation (as NC random variables)
in the process. Does the E-factorization property give rise to a rigid E 1

N
tr behavior? Of

course, the answer depends on how one constructs the random matrices in question; however,
remarkably, free independence describes the asymptotic behavior of such matrices in many
generic situations. Wigner matrices provide an illustrative example of this phenomenon, a
fact first established in [Voi91] for the highly structured Gaussian Unitary Ensemble (GUE)
and later extended to general Wigner matrices in [Dyk93]. In the Wigner model, the entries
of the matrix form an independent family of random variables up to the symmetry constraint
on the matrix. The results of [Voi91,Dyk93] show that independent Wigner matrices become
freely independent in the large N limit. Thus, free independence emerges precisely from this
process of “non-commutification”: we formulate this relationship in the heuristic equation

classical independence
⊗

N→∞
===⇒ free independence. (1.1)
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On the other hand, one increasingly finds interest in models that lie beyond the scope
of the standard free probabilistic machinery. Nevertheless, one might reasonably expect to
still be able to apply the NC probabilistic perspective. At the combinatorial level, classical
independence and free independence simply amount to rules for calculating mixed moments
in independent random variables from the pure moments. The free probability heuristic
(1.1), while affirming the suitability of free independence, says nothing about the existence
of other NC notions of independence (i.e., other such rules). Of course, such a rule should
satisfy certain natural properties to warrant consideration as a probabilistic notion. In the
setting of Definition 1.1, Speicher showed that if one requires the rule to be suitably universal
in an algebraic sense, then in fact classical independence and free independence comprise the
full set of the possibilities [Spe97] (see also [BGS02] for a categorical axiomatization). One
can maneuver past this dichotomy by relaxing the requirements: in particular, eschewing
the unital framework allows for an additional possibility, the so-called Boolean independence
[Spe97, BGS02]. If one further allows for asymmetric notions of independence (i.e., X is
independent of Y 6⇐⇒ Y is independent of X), then monotone independence and anti-
monotone independence come into the picture [Mur02, Mur03]. Despite their seemingly
exotic nature, such notions of independence possess interesting structure in their own right,
particularly in relation to spectral graph theory [HO07,Oba17].

Up till now, the approach to Speicher’s dichotomy proceeds by opting for less (even
though often desirable) structure. In a different direction, one can consider enriching the
structure. Optimistically, the resulting framework would be sufficiently robust to accommo-
date a new notion of independence in addition to recovering features of the existing notions.
Traffic probability provides precisely such a framework. Motivated by the study of permuta-
tion invariant random matrices, Male introduced an operadic NC probability theory based on
graph operations that extends the usual NC probabilistic framework [Mal]. This additional
operad structure admits a new notion of independence, the so-called traffic independence.
Notably, independent permutation invariant random matrices provide a canonical model of
traffic independence in the large N limit.

Traffic independence circumvents Speicher’s dichotomy while retaining the desirable prop-
erties of a probabilistic notion. To accomplish this, one works in the setting of a traffic space,
which can be thought of as a NC probability space with additional structure. Informally, an
algebraic traffic space (A, τ) consists of a complex vector space A over the operad G of graph
operations together with a linear functional τ : CT 〈A〉 → C defined on a particular family
of graphs with edge labels in A satisfying certain compatibility conditions. This operad
structure further defines a unital C-algebra structure on A, while the functional τ defines
an expectation ϕτ : A → C, recovering the framework of Definition 1.1. The novelty of
traffic independence owes to its formulation in terms of the functional τ : whereas classical
independence and free independence correspond to polynomial relationships over the expec-
tation ϕ (relying on the algebra structure), traffic independence corresponds to a graphical
decomposition over the functional τ (relying on the operad structure).

Of course, one can still define the usual notions of independence in an algebraic traffic
space (A, τ) by virtue of the induced expectation ϕτ . In particular, this subsumption allows
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for an interplay between the different notions of independence in the traffic framework.
Indeed, one finds many striking relationships between them: for example, general criteria for
when traffic independence implies free independence or classical independence [Mal, CDM].
The reader will no doubt anticipate such a relationship based on the random matrix heuristic.
For example, unitarily invariant random matrices fall into the domain of free probability
[Voi91]. Of course, unitarily invariant random matrices are also permutation invariant, so
one sees an overlap for many classical random matrix ensembles. Similarly, diagonal matrices
with i.i.d. entries are also permutation invariant, bridging to the classical probabilistic
framework. Still, crucially, the notions far from align. For example, traffic independence
alone governs the behavior of heavy Wigner matrices [Mal17] and sparse random graphs [MP].
The traffic CLT further interpolates between the classical, free, and Boolean CLTs [Mal].
Even in the absence of any sort of strong distributional invariance, the traffic framework still
proves advantageous, particularly in the case of random band matrices [Au].

At this point, the reader should pause to ask a natural question: when can one actually
appeal to the traffic framework? For reference, the basic setting of Definition 1.1 requires
very little in the way of assumptions. Despite its merits, the operad structure of a traffic
space could in principle prove to be prohibitively specific, limiting the scope of the traffic
machinery. Fortunately, this is not the case. In practice, one often specializes Definition
1.1 to the case of a tracial ∗-probability space (A, ϕ). In this setting, Cébron, Dahlqvist,
and Male constructed a universal enveloping traffic space (G(A), τϕ) that extends the trace
ϕτϕ|A = ϕ [CDM]. Thus, effectively, one can always appeal to the traffic framework. In finite
dimensions, this extension corresponds to randomly rotating a matrix to bring it into generic
position. This construction even provides a concrete limit object for large random matrices:
if a family of unitarily invariant random matrices (M

(i)
N )i∈I converges in ∗-distribution to a

family of random variables (ai)i∈I in (A, ϕ) and satisfies a mild factorization condition, then

(M
(i)
N )i∈I further converges in traffic distribution to (ai)i∈I in (G(A), τϕ) [CDM].
In Chapter 3, we study the probabilistic structure of the universal enveloping traffic space,

but with minimal reference to traffic independence. Instead, we show that (G(A), τϕ) can be
viewed quite profitably as a general NC probability space, particularly in relation to the usual
notions of independence. Nevertheless, we make considerable use of the traffic framework.
Having hopefully convinced the reader of the merits of traffic probability, we delay the precise
statement of the main results until Section 3.1, after the necessary prerequisites. To this
end, we devote Chapter 2 to a crash course in traffic probability.

In Chapter 4, we study the asymptotics of large random multi-matrix models through
the lens of traffic probability. For concreteness, we revisit a number of classical random
matrix ensembles, only to find a departure from the usual free probabilistic universality. As
an application, we show how our structural results for the universal enveloping traffic space
can be realized in the large N limit of our matrices. We also consider band matrix variants
of our ensembles, which lack the homogeneity of their classical counterparts. Our analysis
suggests a correspondence between the free cumulants and the injective traffic distribution
in the case of cactus-type random variables. We explore this connection in the last section.
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Chapter 2

A crash course on traffic probability

For the convenience of the reader, we include a condensed exposition of traffic probability.
We refer the reader to [Mal,CDM] for the definitive references. Section 2.1 reviews the basic
framework of non-commutative probability, largely following [NS06]. Section 2.2 introduces
the operad of graph operations, which formalizes the additional algebraic structure in the
traffic probability framework. Section 2.3 then sets up the traffic probability machinery.
Finally, Section 2.4 revisits the CDM construction of the universal enveloping traffic space.

2.1 Non-commutative probability

We start by specializing Definition 1.1 to the setting of a tracial ∗-probability space, the
primary setting of the remainder of the article.

Definition 2.1.1 (∗-probability space). A ∗-probability space is a pair (A, ϕ) consisting of
a unital ∗-algebra A over C together with a state ϕ : A → C. Equivalently, (A, ϕ) is a NC
probability space equipped with a conjugate linear anti-isomorphic involution ∗ : A → A
such that ϕ(a∗a) ≥ 0 for every a ∈ A. The state ϕ is said to be tracial if it vanishes on the
commutators of A (i.e., ϕ(ab) = ϕ(ba) for every a, b ∈ A).

Example 2.1.2. In keeping with the introduction, a classical probability space (Ω,F ,P)
begets a ∗-probability space (L∞−(Ω,F ,P),E) under the complex conjugate X∗ = X. We
abstract another feature from the classical framework: in the setting of a ∗-probability space
(A, ϕ), we say that the state ϕ is faithful if ϕ(a∗a) = 0 implies a = 0. ♦

Example 2.1.3. Let MatN(C) denote the ∗-algebra of N × N complex matrices under
the usual matrix adjoint. The normalized trace 1

N
tr is clearly positive (indeed, faithful),

giving rise to the ∗-probability space (MatN(C), 1
N

tr). The trace of course vanishes on the
commutators. ♦



CHAPTER 2. A CRASH COURSE ON TRAFFIC PROBABILITY 6

Example 2.1.4. Combining the two previous examples, we obtain the ∗-probability space
(MatN(L∞−(Ω,F ,P)),E 1

N
tr) of random N ×N matrices whose entries have finite moments

of all orders. We leave it to the reader to verify that E 1
N

tr is indeed a faithful trace.
We alternate between the notation MatN(L∞−(Ω,F ,P)) = L∞−(Ω,F ,P) ⊗ MatN(C) as
convenient. ♦

In the NC framework, the distribution of a random variable simply corresponds to the
information of its moments. One records this data in a generic setting to facilitate the
comparison of such distributions. More precisely, for an index set I, we write C〈x,x∗〉 for
the free unital ∗-algebra on the indeterminates x = (xi)i∈I . For a family of random variables
a = (ai)i∈I in a ∗-probability space (A, ϕ), one can then define the natural evaluation map

C〈x,x∗〉 3 P 7→ P (a) ∈ A.

Definition 2.1.5 (Joint ∗-distribution). Let a = (ai)i∈I be a family of random variables in
a ∗-probability space (A, ϕ). The joint ∗-distribution of a is the linear functional

µa : C〈x,x∗〉 → C, P 7→ ϕ(P (a)).

A sequence of families an = (a
(i)
n )i∈I , each living in a ∗-probability space (An, ϕn), is said

to converge in ∗-distribution to a if the corresponding joint ∗-distributions µan converge
pointwise to µa, i.e.,

lim
n→∞

µan(P ) = µa(P ), ∀P ∈ C〈x,x∗〉.

For a family of self-adjoint random variables a∗i = ai, we simply refer to the joint distribution
µa : C〈x〉 → C, which is defined in the obvious way.

With distributions in mind, we segue into NC notions of independence. But first, we
introduce some notation to facilitate the definitions. For a collection of random variables
S ⊂ A in a NC probability space (A, ϕ), we write

◦
S = {a ∈ S : ϕ(a) = 0} for the

subcollection (possibly empty) of centered random variables.

Definition 2.1.6 (Classical independence). Let (A, ϕ) be a NC probability space. We say
that unital subalgebras (Ai)i∈I of A are classically independent if the (Ai)i∈I commute (i.e.,
[Ai,Aj] = 0 for i 6= j) and ϕ is multiplicative across the (Ai)i∈I in the following sense: for
any k ≥ 1 and distinct indices i(1), . . . , i(k) ∈ I,

ϕ

( k∏
j=1

ai(j)

)
=

k∏
j=1

ϕ(ai(j)), ∀ai(j) ∈ Ai(j). (2.1)

We note that the multiplicative property (2.1) is equivalent to

ϕ

( k∏
j=1

ai(j)

)
= 0, ∀ai(j) ∈

◦
Ai(j). (2.1′)

The reader should carefully compare this definition with
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Definition 2.1.7 (Free independence). Let (A, ϕ) be a NC probability space. We say that
unital subalgebras (Ai)i∈I of A are freely independent (or simply free) if for any k ≥ 1 and
consecutively distinct indices i(1) 6= i(2) 6= · · · 6= i(k) ∈ I,

ϕ

( k∏
j=1

ai(j)

)
= 0, ∀ai(j) ∈

◦
Ai(j). (2.2)

Independence (classical or free) for a collection of subsets (Si)i∈I of A is defined as
the independence of the generated unital subalgebras (alg(1A,Si))i∈I . To emphasize the ∗-
structure, we often use the terms ∗-classically independent and ∗-free as appropriate, which
refer to the independence of the generated unital ∗-subalgebras (∗-alg(1A,Si))i∈I .

The reader will no doubt notice that equations (2.1′) and (2.2) are identical; however,
the admissible indices i(j) to which they apply crucially differ. The corresponding CLTs,
recorded below, illustrate the considerable extent to which these two notions diverge.

Theorem 2.1.8 (CLTs, classical and free). Let (an) be a sequence of identically distributed
self-adjoint random variables in a ∗-probability space (A, ϕ). Assume that the an are centered
with unit variance, i.e., ϕ(an) = 0 and ϕ(a2

n) = 1, and write sn = 1√
n

∑n
i=1 ai for the

normalized sum. We consider two cases:

(i) If the an are classically independent, then (sn) converges in distribution to a standard
normal random variable, i.e.,

lim
n→∞

ϕ(smn ) =

∫
R
tm · 1√

2π
e−t

2/2 dt, ∀m ∈ N.

(ii) If the an are freely independent, then (sn) converges in distribution to a standard semi-
circular random variable, i.e.,

lim
n→∞

ϕ(smn ) =

∫ 2

−2

tm · 1

2π

√
4− t2 dt, ∀m ∈ N.

Proof. See Theorems 8.5 and 8.10 in [NS06]. �

An independence relation between collections of random variables, say S1 and S2, allows
us to determine the joint distribution from the marginals. This is perhaps less transparent in
the case of free independence, where one must iterate the defining property (2.2) to centered
shifts

k∏
j=1

ai(j) =
k∏
j=1

(
(ai(j) − ϕ(ai(j))) + ϕ(ai(j))

)
to reduce any mixed moment in S1 ∪ S2 into a polynomial of pure moments in S1 and
S2. Of course, freeness can also be characterized by precisely such a universal polynomial
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relationship between the pure moments, but the explicit determination of these polynomials
becomes highly intractable for large k. Instead, one can parameterize the moments using
a combinatorial gadget known as cumulants, which repackage the independence relation
in both an elegant and functional form. To this end, let (NC(n),≤) denote the poset of
non-crossing partitions of [n] with the reversed refinement order and µ the corresponding
Möbius function. We write 0n for the minimal element consisting of singletons and 1n for
the maximal element consisting of a single block.

Definition 2.1.9 (Free cumulants). Let (A, ϕ) be a NC probability space. For a partition
π ∈ NC(n), we define the multilinear functional ϕπ : An → C by

ϕπ[a1, . . . , an] =
∏
B∈π

ϕ(B)[a1, . . . , an],

where a block B = (i1 < · · · < ik) defines a partial product

ϕ(B)[a1, . . . , an] = ϕ

( k∏
j=1

ai(j)

)
.

The free cumulant κπ is the multilinear functional κπ : An → C given by the Möbius
convolution

κπ[a1, . . . , an] =
∑

σ∈NC(n)
s.t. σ≤π

ϕσ[a1, . . . , an]µ(σ, π).

One recovers the expectation from the free cumulants via the Möbius inversion

ϕπ[a1, . . . , an] =
∑

σ∈NC(n)
s.t. σ≤π

κσ[a1, . . . , an].

The free cumulants satisfy many other desirable properties [NS06], far too many to list here.
Instead, we will make do with just a few. To begin, we write κn(a1, . . . , an) := κ1n [a1, . . . , an].
Notably, the free cumulants are multiplicative, i.e.,

κπ[a1, . . . , an] =
∏
B∈π

κ(B)[a1, . . . , an],

where B = (i1 < · · · < ik) is a block as before and κ(B)[a1, . . . , an] = κk(ai(1), . . . , ai(k)).
Thus, the full set of free cumulants (κπ)π∈NC(n),n∈N can be recovered from (κn)n∈N. Further-
more, the vanishing of mixed cumulants characterizes free independence!

Proposition 2.1.10. Let (A, ϕ) be a NC probability space and (κn)n∈N its free cumulant
sequence. For unital subalgebras (Ai)i∈I of A, the following two conditions are equivalent:

(i) The (Ai)i∈I are freely independent;
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(ii) For any n ≥ 2 and a1, . . . , an such that aj ∈ Ai(j),

∃i(j) 6= i(k) =⇒ κn(a1, . . . , an) = 0.

Proof. See Theorem 11.16 in [NS06]. �

Naturally, the motivation for the free cumulant construction comes from the theory of
classical cumulants. More precisely, in the classical construction, one works with general
partitions P(n) instead of non-crossing partitions NC(n). Indeed, this changeover from
general partitions to non-crossing partitions when passing from the classical framework to
the free framework becomes a recurring theme [NS06]. In the traffic framework, one instead
considers partitions of vertices P(V ) of a graph G = (V,E), which allows for an intertwining
of the two notions. In anticipation of this discussion in Section 3.3, we recall the notion of
a NC conditional expectation.

Definition 2.1.11 (Conditional expectation). Let B ⊂ A be a unital ∗-subalgebra of a
∗-probability space (A, ϕ). A linear map E : A → B is said to be a conditional expectation
(onto B) if it satisfies:

(i) ϕ(E (a)) = ϕ(a) for every a ∈ A;
(ii) E (b) = b for every b ∈ B;

(iii) E (a∗) = E (a)∗ for every a ∈ A.
(iv) E (b1ab2) = b1E (a)b2 for every b1, b2 ∈ B and a ∈ A.

Example 2.1.12. Consider the ∗-probability space (L∞−(Ω,F ,P)⊗MatN(C),E 1
N

tr). The
projection onto the diagonal ∆ : L∞−(Ω,F ,P)⊗MatN(C)→ L∞−(Ω,F ,P)⊗DiagN(C),

Xij ⊗ eij 7→ δij(Xij ⊗ eij),

defines a conditional expectation onto the (commutative) unital ∗-subalgebra of diagonal
matrices. We come back to this example shortly. ♦

We assume hereafter that the state ϕ is tracial; however, in general, we do not assume
that ϕ is faithful. The traciality of ϕ implies that the subspace of degenerate elements

D = {a ∈ A : ϕ(ab) = 0 for every b ∈ A}

further has the structure of a two-sided ∗-ideal. We say that two random variables a, b ∈ A
are equal up to degeneracy if a − b ∈ D, for which we use the notation a ≡ b (mod ϕ).
This equivalence conforms with our intuition from the classical setting: for example, if
a ≡ b (mod ϕ), then one can interchange a and b in a joint ∗-distribution or free cumulant
without consequence.

Finally, we recall one of the most basic (and frequently appearing) families of random
variables in the NC framework.
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Definition 2.1.13 (Semicircular family). Let (βi,j)i,j∈I be a positive definite matrix. A
family of self-adjoint random variables (si)i∈I in a ∗-probability space (A, ϕ) is said to be a
semicircular family of covariance (βi,j)i,j∈I if for any n ≥ 1 and indices i(1), . . . , i(n) ∈ I,

ϕ(si(1) · · · si(n)) =
∑

π∈NC2(n)

κπ[si(1), . . . , si(n)],

where NC2(n) denotes the set of non-crossing pair partitions of [n] and

κπ[si(1), . . . , si(n)] =
∏

(j,k)∈B

βi(j),i(k).

In particular, if (βi,j)i,j∈I is the identity matrix, then the (si)i∈I are freely independent
standard semicircular random variables (a so-called semicircular system).

2.2 The operad of graph operations

An operad is an algebraic structure that formalizes the interaction of many natural math-
ematical operations in a unified setting. May first introduced the notion of an operad in a
purely topological context [May72], but this abstract framework is now employed in a num-
ber of different fields to great success [MSS02]. We recall the primary example of interest
for our purposes, the operad of graph operations [Mal].

Definition 2.2.1 (Graph operation). A multidigraph G = (V,E, src, tar) consists of a non-
empty set of vertices V , a set of edges E, and a pair of maps src, tar : E → V specifying
the source src(e) and target tar(e) of each edge e ∈ E. Such a graph G is said to be bi-
rooted if it has a pair of distinguished vertices (vin, vout) ∈ V 2, the coordinates of which
we term the input and the output respectively. A graph operation is a finite, connected,
bi-rooted multidigraph g = (V,E, src, tar, vin, vout, o) together with an ordering of its edges
o : E

∼→ [#(E)]. We interpret g = g(·1, . . . , ·K) as a function of K = #(E) arguments, one
for each edge e ∈ E, with coordinates specified by the ordering o. In particular, we call
such a graph g a K-graph operation. We write GK for the set of all K-graph operations and
G =

⋃
K≥0 GK for the graded set of all graph operations.

Example 2.2.2. We introduce some conventions for depicting graph operations that the
reader will hopefully discern from the examples below. In particular, we enumerate

G0 =

{
·

in/out

}
and

G1 =

{
·

out

1← ·
in

, ·
out

1→ ·
in

, ·
↑
·

1

in/out
, ·

↓
·

1

in/out
,

1

·

	

in/out

}
.

♦
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When there is little ambiguity, we omit the ordering of the edges in the figure. For
instance, this can done in the examples above. For a slightly less trivial example, consider
the graph operation g(·1, ·2) = ·

out
⇔ ·

in
. Nevertheless, we emphasize the importance of the

ordering in distinguishing distinct graph operations: for example,

·
out

1← · 2← ·
in
6= ·

out

2← · 1← ·
in

One can define an action of the symmetric group on the graph operations by permuting
the ordering of the edges. Formally, for a permutation σ ∈ SK and a K-graph operation g
as before, the permuted graph operation follows as gσ = (V,E, src, tar, vin, vout, σ ◦ o). Under
this action, the set of graph operations G carries the structure of a symmetric operad, namely,

Definition 2.2.3 (Operad of graph operations). Let g = (V,E, src, tar, vin, vout, o) be a
K-graph operation. For a K-tuple of graph operations (g1, . . . , gK) with

gi = (Vi, Ei, srci, tari, v
(i)
in , v

(i)
out, oi) ∈ GLi ,

we define the composite graph operation

g(g1, . . . , gK) ∈ G∑K
i=1 Li

by substitution. Formally, one removes each edge e ∈ E and installs a copy of go(e) in its

place by identifying the vertices src(e) ∼ v
(o(e))
in and tar(e) ∼ v

(o(e))
out . The composite graph

operation g(g1, . . . , gK) then inherits the obvious ordering and direction of its edges.
The reader can easily verify that this composition is associative, i.e.,

g(g1(g1,1, . . . , g1,L1), . . . , gK(gK,1, . . . , gK,LK )) = (g(g1, . . . , gK))(g1,1, . . . , g1,L1 , . . . , gK,1, . . . , gK,LK ),

and equivariant, i.e.,

gσ(g1, . . . , gK) = (g(gσ(1), . . . , gσ(K)))π(σ), ∀σ ∈ SK ,

and
g((g1)σ1 , . . . , (gK)σK ) = g(g1, . . . , gK)σ1⊕···⊕σK , ∀σi ∈ SLi ,

where ⊕ denotes the direct sum of permutations and

π(σ) =
K∏
i=1

(∑σ−1(i)−1
j=1 Lσ(j) + 1

∑σ−1(i)−1
j=1 Lσ(j) + 2 · · ·

∑σ−1(i)
j=1 Lσ(j)∑i−1

j=1 Lj + 1
∑i−1

j=1 Lj + 2 · · ·
∑i

j=1 Lj

)
∈ S∑K

i=1 Li
.

The graph operation idG = ·
out
← ·

in
∈ G1 is the unit for this composition, namely,

idG(g) = g(idG, . . . , idG) = g, ∀g ∈ G.
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Example 2.2.4. If

g = ·
out

1

�
2
· →

3

4

·

	

in
, g1 =

1

·

	

in/out
, g2 = ·

out

2→ · 1→ ·
in

, g3 = ·
out

1← ·
in

, g4 = ·
↑
·

1

in/out
,

then

g(g1, g2, g3, g4) = out
2

1

·

	

· �

3

4→
5

·

	

in

♦

Definition 2.2.5 (G-algebra). A G-algebra is a complex vector space A together with an
action (Zg)g∈G of the operad of graph operations. By this, we mean that each graph operation
g ∈ GK ⊂ G defines a linear map

Zg : A⊗K → A

satisfying the following properties:

(i) (Associativity) The action of the composite graph operation Zg(g1,...,gK) factors through
the action of the graph operation Zg via

Zg(g1,...,gK) = Zg ◦ (Zg1 ⊗ · · · ⊗ ZgK );

(ii) (Equivariance) The ordering of the edges only plays a formal role in defining the action
of a graph operation by assigning the location of each argument to a specific edge. Any
equivalent assignment of edge locations produces the same action, i.e.,

Zgσ = Zg ◦ Pσ, ∀σ ∈ SK ,

where
Pσ : A⊗K → A⊗K , a1 ⊗ · · · ⊗ aK 7→ aσ(1) ⊗ · · · ⊗ aσ(K);

(iii) (Identity) The operad unit idG = ·
out
← ·

in
defines the stable action

ZidG : A → A, a 7→ a.

A sub-G-algebra B is a subspace B ⊂ A that is closed under the action of the graph
operations. Similarly, the G-algebra generated by a subset S ⊂ A is the smallest G-algebra
containing S, which can be characterized as the span of

⋃
K≥0

⋃
g∈GK Zg(S

⊗K).
A morphism of G-algebras (or G-morphism) is a linear map f : A → B between G-algebras

that respects the action of the graph operations, namely,

f ◦ Zg = Zg(f ⊗ · · · ⊗ f), ∀g ∈ G.
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Symbolically, we represent the action Zg on a K-tuple a1 ⊗ · · · ⊗ aK by placing each
argument ai in the location prescribed by the ordering. For example, we can formulate the
identity axiom (iii) as

·
out

a← ·
in

= a, ∀a ∈ A.

A G-algebra structure on A defines a unital C-algebra structure on A via the product

a ·G b := ·
out

a← · b← ·
in
. (2.3)

In particular, the unit 1A = Z ·
in/out

(1) comes from the action Z ·
in/out

: C → A of the trivial

graph operation ·
in/out

∈ G0. The reader should verify that the axioms of a G-algebra ensure

the well-definedness of this unital C-algebra structure. When referring to a G-algebra, we
implicitly assume the additional C-algebra structure defined above. As such, a G-morphism
f : A → B also defines a morphism of unital C-algebras.

One can further define a pair of natural involutions on the operad of graph operations
through role reversals. In particular, for a graph operation g = (V,E, src, tar, vin, vout, o), one
obtains the transpose gᵀ = (V,E, src, tar, vout, vin, o) by interchanging the input and output.
Similarly, one obtains the flip g→ = (V,E, tar, src, vin, vout, o) by interchanging the maps src
and tar, reversing the direction of each edge e ∈ E. If our G-algebra also comes equipped
with an involution, then we can further ask that these operations obey a natural adjoint
relation. This leads us to

Definition 2.2.6 (G∗-algebra). Let A be a G-algebra with a conjugate linear involution
∗ : A → A. We say that A further has the structure of a G∗-algebra if

Zgᵀ→ ◦ (∗ ⊗ · · · ⊗ ∗) = ∗ ◦ Zg, ∀g ∈ G.

A sub-G∗-algebra B is a ∗-subspace B ⊂ A that is closed under the action of the graph
operations. The G∗-algebra generated by a subset S ⊂ A is the smallest G∗-algebra containing
S, which can characterized as the span of

⋃
K≥0

⋃
g∈GK Zg((S ∪ S

∗)⊗K).
A morphism of G∗-algebras (or G∗-morphism) is a G-morphism f : A → B between

G∗-algebras that further respects the involution operations, namely,

∗B ◦ f = f ◦ ∗A.

A G∗-algebra structure extends the involution ∗ : A → A to a conjugate linear anti-
isomorphism for the product defined by (2.3). Thus, as before, when referring to a G∗-
algebra, we implicitly assume the additional ∗-algebra structure so defined. In particular, a
G∗-morphism f : A → B also defines a morphism of unital ∗-algebras.

Our first example provides a useful backdrop for distributional considerations.

Example 2.2.7 (∗-graph polynomial). Let x = (xi)i∈I be a set of indeterminates. A ∗-
graph monomial t = (G, γ, ε) in x is a bi-rooted multidigraph G = (V,E, src, tar, vin, vout)
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with edge labels γ : E → I and ε : E → {1, ∗} in 〈x,x∗〉. We define the transpose tᵀ as
before, interchanging the input and the output. We also define the conjugate t as the ∗-flip
t = (V,E, tar, src, vin, vout, γ, ε

∗), which flips both the direction and the ∗-label of each edge.
Finally, we define the adjoint t∗ as the conjugate transpose t∗ = t

ᵀ
. We write G〈x,x∗〉 for

the set of all ∗-graph monomials and CG〈x,x∗〉 for the complex vector space spanned by
G〈x,x∗〉, the so-called ∗-graph polynomials. We extend the adjoint operation to a conjugate
linear involution ∗ : CG〈x,x∗〉 → CG〈x,x∗〉.

The reader should verify that the ∗-graph polynomials CG〈x,x∗〉 form a G∗-algebra under
the action of composition: for ∗-graph monomials t1, . . . , tK , we define Zg(t1⊗· · ·⊗tK) as the
∗-graph monomial obtained by concatenating the ti according to g as in the composite graph
construction g(g1, . . . , gK). The ∗-graph polynomials generalize the usual ∗-polynomials. In
particular, one obtains an embedding of unital ∗-algebras η : C〈x,x∗〉 ↪→ CG〈x,x∗〉 via

xi 7→ ·
out

xi←− ·
in

and 1 7→ ·
in/out

. (2.4)

♦

t =

in
ou

t

t∗ =

in
ou

t

x∗

x

x

x∗

x

y
y∗

y

x

y∗
x∗

x∗

x∗

x

y

y∗

Figure 2.1: An example of a ∗-graph monomial t (in the indeterminates {x, y}) and its
adjoint t∗. We adopt the convention in [Mal], plotting the graph G inside of a box for which
we then specify two sides to orient the distinguished vertices, right to left (hence the dashed
lines). We plot the distinguished vertices in solid black (the input with a cross) and use
different colors for edges labeled by different indeterminates.
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Earlier notions of our next example appear in the work [Jon] of Jones on planar algebras
and [MS12] of Mingo and Speicher on sums of products of matrix entries.

Example 2.2.8 (Graph of matrices). Let MatN(C) denote the ∗-algebra of N ×N matrices
over C. For a K-graph operation g, we define the graph of matrices

Zg : MatN(C)⊗K → MatN(C)

by the coordinate formula

Zg(A
(1)
N ⊗ · · · ⊗A

(K)
N )(i, j) =

∑
φ:V→[N ] s.t.

φ(vout)=i, φ(vin)=j

∏
e∈E

A
(o(e))
N (φ(tar(e)), φ(src(e))). (2.5)

For notational convenience, we often write φ(e) := (φ(tar(e)), φ(src(e))). The action (2.5)
defines a G∗-algebra structure on MatN(C) that recovers the usual matrix multiplication:

AN ·G BN = ·
out

AN←−− · BN←−− ·
in

= ANBN .

The action of the graph operations also produces matrices of additional linear algebraic
structure: for example,

1. (Transpose) For any g ∈ G,
Zgᵀ = Zᵀg ,

where on the right-hand side of the equality we have used the same notation ᵀ for the
usual matrix transpose. In particular,

·
out

AN−−→ ·
in

= AᵀN ;

2. (Hadamard-Schur product) Parallel edges correspond to entrywise products. In par-
ticular,

·
out

AN

⇔
BN

·
in

= AN ◦BN =
(
AN(i, j)BN(i, j)

)
1≤i,j≤N ;

3. (Diagonal) The action of a graph operation with vin = vout produces a diagonal matrix.
In particular,

AN

·

	

in/out
= ∆(AN) =

(
AN(i, i)

)
1≤i≤N ;

4. (Degree) Similarly, one can obtain the diagonal matrix of row sums (resp., column
sums) as

·
↓
·

AN

in/out
= rDeg(AN) =

( N∑
j=1

AN(i, j)

)
1≤i≤N
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(
resp., ·

↑
·

AN

in/out
= cDeg(AN) =

( N∑
j=1

AN(j, i)

)
1≤i≤N

)
.

♦

Remark 2.2.9. The trace tr of a graph of matrices Zg(A
(1)
N ⊗ · · · ⊗A

(K)
N ) only depends on

the graph operation g = (V,E, src, tar, vin, vout, o) up to the unrooted graph

T = ∆̃(g) := (Ṽ , E, src, tar, o)

obtained from g by identifying the input and the output vin ∼ vout and forgetting their
distinguished roles. Indeed,

tr
[
Zg(A

(1)
N ⊗ · · · ⊗A

(K)
N )

]
=

N∑
i=1

Zg(A
(1)
N ⊗ · · · ⊗A

(K)
N )(i, i)

=
N∑
i=1

∑
φ:V→[N ] s.t.

φ(vout)=φ(vin)=i

∏
e∈E

A
(o(e))
N (φ(e))

=
∑

φ:Ṽ→[N ]

∏
e∈E

A
(o(e))
N (φ(e))

=: tr
[
T (A

(1)
N ⊗ · · · ⊗A

(K)
N )

]
,

where in the last equality we define tr
[
T (A

(1)
N ⊗ · · · ⊗A

(K)
N )

]
as the appropriate sum. This

observation will motivate the traffic space construction in the next section.

Of course, the example above applies equally well to random matrices with the appro-
priate modifications, particularly L∞−(Ω,F ,P) ⊗MatN(C) with the expected trace E 1

N
tr.

We adapt the notation from the matricial setting to general G-algebras: for example,

aᵀ = ·
out

a→ ·
in

, a ◦ b = ·
out

a

⇔
b
·
in

, ∆(a) =
a

·

	

in/out
,

and so forth. In particular, the action ∆ defines a projection ∆ = ∆2 on a G-algebra (resp.,
G∗-algebra) A whose image ∆(A) is a commutative sub-G-algebra (resp., sub-G∗-algebra),
the so-called diagonal (sub)algebra of A.

2.3 Traffic probability

We are almost ready to define a traffic space. But first, we will need a few more definitions.
To capture the intuition behind Remark 2.2.9, we formalize
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Definition 2.3.1 (n-graph monomial). An n-graph monomial t = (G, γ,v) in S is a finite,
connected multidigraph G = (V,E, src, tar) with edge labels γ : E → S and an n-tuple of
distinguished (not necessarily distinct) vertices v = (v1, . . . , vn) ∈ V n. We write G(n)〈S〉 for
the set of all n-graph monomials in S and CG(n)〈S〉 for the complex vector space spanned
by G(n)〈S〉, the so-called n-graph polynomials.

Similarly, an n∗-graph monomial t = (G, γ, ε,v) in S is an n-graph monomial t in S
with the additional information of ∗-labels ε : E → {1, ∗}. We write G(n)〈S,S∗〉 for the set
of all n∗-graph monomials in S and CG(n)〈S,S∗〉 for the complex vector space spanned by
G(n)〈S,S∗〉, the so-called n∗-graph polynomials. We define the ∗-flip of an n∗-graph monomial
as before, namely, t = (V,E, tar, src, γ, ε∗,v) and extend this operation to a conjugate linear
involution on CG(n)〈S,S∗〉.

We highlight the special case of n = 0, in which there are no distinguished vertices. We
refer to 0-graph monomials (resp., 0∗-graph monomials) as test graphs (resp., ∗-test graphs)
and use the notation

T = (G, γ) ∈ T 〈S〉 = G(0)〈S〉 (resp., T = (G, γ, ε) ∈ T 〈S,S∗〉 = G(0)〈S,S∗〉)

as opposed to the lower case t.
For n ≥ 1, we define the bilinear gluing map

./n : CG(n)〈S,S∗〉 × CG(n)〈S,S∗〉 → CT 〈S,S∗〉

on pairs of n∗-graph monomials (t1, t2) = ((G1, γ1, ε1,v), (G2, γ2, ε2,w)) by identifying the
distinguished vertices v and w coordinatewise vi ∼ wi and then forgetting their distinguished
roles.

1 2

3 4

x∗

z

x∗

z
y∗

1

2

3
x

y∗

x

x

y∗

y∗

y∗ y∗

y∗

Figure 2.2: Examples of n∗-graph monomials. In the last example, we have a ∗-test graph.

The reader will note that a ∗-graph polynomial in x (Example 2.2.7) is just an n∗-graph
polynomial for n = 2. We often consider n∗-graph monomials in a set of indeterminates
x = (xi)i∈I , in which case it is important to separate the labels γ and ε. At the same time,
we will also consider n-graph monomials in sets that already carry a defined involution ∗ (for
example, a G∗-algebra). In this case, one can still define the ∗-flip of an n-graph monomial
by conjugating the labels t = (V,E, tar, src, γ∗,v). We can now finally set about
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Definition 2.3.2 (Traffic space). An algebraic traffic space is a pair (A, τ) consisting of a
G-algebra A together with a G-compatible linear functional τ : CT 〈A〉 → C as follows:

(i) (Unity) The trivial test graph consisting of a single isolated vertex evaluates to 1,

τ
[
·
]

= 1;

(ii) (Substitution) The functional τ respects the G-action: in particular, if a test graph
T = (V,E, src, tar, γ) ∈ T 〈A〉 has an edge e ∈ E with label

γ(e) = a = Zg(a1 ⊗ · · · ⊗ aK),

then τ returns the same value on the test graph Te,Zg(a1⊗···⊗aK) obtained from T by
substituting the graph represented by the action Zg(a1 ⊗ · · · ⊗ aK) in for the edge e.
Formally, one removes the edge e ∈ E and installs a copy of the graph Zg(a1⊗· · ·⊗aK)
in its place by identifying the vertices src(e) ∼ vin and tar(e) ∼ vout, in which case

τ
[
T
]

= τ
[
Te,Zg(a1⊗···⊗aK)

]
.

For example, if

a = ·
out

a1→
a2

·

	a3← ·
in

and b = rDeg(b1) = ·
↓
·
b1

in/out
,

then

τ

[ a

·

	

←
c
·
b

⇒
d
·
]

= τ

[
a2 ·	

a1

⇔
a3

· ←
c
·
↓
·

	
b1

d

]
;

(iii) (Multilinearity) For a fixed test graph, the functional τ is multilinear with respect to
the edge labels. Formally, fixing the underlying graph G = (V,E, src, tar) of a test
graph T = (G, γ) defines a #(E)-linear function

τ
[
T (×

e∈E
·e)
]

: AE → C

of the edges E via the labels γ : E → A.

A traffic space is pair (A, τ) consisting of a G∗-algebra A together with a G∗-compatible
linear functional τ : CT 〈A〉 → C, namely, in addition to (i)-(iii) above:

(iv) (Positivity) Recall that we can define the ∗-flip for n-graph polynomials in A. The
functional τ is positive with respect to the ∗-flip operation via the gluing map ./n:

τ
[
./n(p, p)

]
≥ 0, ∀p ∈ CG(n)〈A〉.
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Accordingly, we refer to τ as the traffic state. For convenience, we use the same term even
in the case of an algebraic traffic space, where we do not assume the positivity axiom.

1

2

3

x∗

x∗

x∗

yτ

[ ]
≥ 0

1

2

3
x

y∗

x

x

]
= τ

[
y∗

x

xx∗

x∗

yx∗ x

Figure 2.3: The positivity condition for the 3∗-graph monomial from Figure 2.2.

The traffic state τ of an algebraic traffic space (A, τ) defines a consistent unital linear
functional ϕτ : A → C in the form of

ϕτ (a) = ϕτ

(
·

out

a← ·
in

)
= τ

[ a

·
	

]
.

The reader should verify that the axioms of a traffic space ensure the well-definedness of
this functional ϕτ . In particular, the substitution axiom implies that the expectation ϕτ of
a random variable a = Zg(a1⊗ · · · ⊗ aK) only depends on the test graph obtained from a by
identifying the input of g with the output of g and forgetting their distinguished roles. In
the notation of Remark 2.2.9, this amounts to

ϕτ (a) = ϕτ (∆(a)) = τ
[
∆̃(a)

]
.

For example, this implies that the expectation ϕτ is necessarily tracial. Indeed,

ϕτ (ab) = ϕτ

(
·

out

a← · b← ·
in

)
= τ

[
·
a

�
b
·
]

= τ

[
·
b

�
a
·
]

= ϕτ

(
·

out

b← · a← ·
in

)
= ϕτ (ba).

Thus, when referring to an algebraic traffic space (A, τ), we implicitly assume the additional
tracial NC probability space structure (A, ϕτ ) defined above. When there is little ambiguity,
we omit the subscript τ and simply write ϕ. We refer to elements a ∈ A as traffic random
variables (or simply traffics) to emphasize the (algebraic) traffic space structure.

In the case of a traffic space (A, τ), the positivity axiom (iv) ensures that the induced
trace ϕτ is in fact a state:

ϕτ (a
∗a) = ϕτ

(
·

out

a∗←− · a← ·
in

)
= τ

[
·
a∗

�
a
·
]

= τ

[
./2

(
·
2

a∗−→ ·
1
, ·

2

a← ·
1

)]
≥ 0.
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As before, when referring to a traffic space, we implicitly assume the additional tracial ∗-
probability space structure (A, ϕτ ) so defined.

Note that the information of the trace ϕτ recovers the traffic state τ . We introduce an
additional parameterization of the traffic state, the so-called injective traffic state

τ 0 : CT 〈A〉 → C, T 7→
∑

π∈P(V )

τ
[
T π
]
µ(0V , π), (2.6)

where (P(V ),≤) is the poset of partitions of V with the reversed refinement order, µ is the
corresponding Möbius function, and T π is the test graph obtained from T by identifying the
vertices within each block B ∈ π. One recovers the traffic state via the inversion

τ
[
T
]

=
∑

π∈P(V )

τ 0
[
T π
]
. (2.7)

For example,

ϕτ (ab) = ϕτ

(
·

out

a← · b← ·
in

)
= τ

[
·
a

�
b
·
]

= τ 0

[
·
a

�
b
·
]

+ τ 0

[ a

·

�

�
b

]
.

The injective traffic state is unital (i) and edge-multilinear (iii), but in general it fails the
substitution axiom (ii) (but do see [Mal, Lemma 4.17])

Henceforth, we work in the context of a traffic space (A, τ). The notion of a distribution
in the traffic setting can pass through any of the three equivalent routes described above. To
make this precise, we will need a natural generalization of the usual polynomial evaluation
map C〈x,x∗〉 3 P 7→ P (a) ∈ A. In particular, for a family of traffics a = (ai)i∈I , one can
define an evaluation map on the ∗-graph polynomials

CG〈x,x∗〉 3 t 7→ t(a) ∈ A,

where t(a) represents the action of the graph operation Zg(a) with edge labels prescribed by
the substitution xi 7→ ai. In fact, the image of this evaluation map is precisely the G∗-algebra
generated by a. Similarly, one defines an evaluation on the ∗-test graphs

CT 〈x,x∗〉 3 T 7→ T (a) ∈ CT 〈A〉.

As a sanity check, note that we have a commutative diagram

CG〈x,x∗〉 A

C

CT 〈x,x∗〉 CT 〈A〉

t(·)

∆̃

ϕτ

T (·)

τ

(2.8)

This motivates the definition of the traffic distribution (cf. Definition 2.1.5).



CHAPTER 2. A CRASH COURSE ON TRAFFIC PROBABILITY 21

Definition 2.3.3 (Traffic distribution). Let a = (ai)i∈I be a family of random variables in
a traffic space (A, τ). The traffic distribution of a is the linear functional

νa : CT 〈x,x∗〉 → C, T 7→ τ
[
T (a)

]
.

A sequence of families an = (a
(i)
n )i∈I , each living in a traffic space (An, τn), is said to converge

in traffic distribution to a if the corresponding traffic distributions νan converge pointwise
to νa, i.e.,

lim
n→∞

νan(T ) = νa(T ), ∀T ∈ CT 〈x,x∗〉.

At times, it will be more convenient to consider the injective traffic distribution

ν0
a : CT 〈x,x∗〉 → C, T 7→ τ 0

[
T (a)

]
.

Of course, the relationships (2.6) and (2.7) imply that convergence in traffic distribution is
equivalent to convergence in injective traffic distribution, where the latter notion is defined
in the obvious way.

Remark 2.3.4. The diagram (2.8) shows that the information of the traffic distribution τa
is equivalent to that of the functional

µGa : CG〈x,x∗〉 → C, t 7→ ϕτ (t(a)),

which itself is a natural generalization of the ∗-distribution µa : C〈x,x∗〉 → C; however,
contrary to the functionals µa and µGa , the traffic distribution does not pass through the
traffic space t(a) ∈ A. Instead, it simply reads off the values of the traffic state τ on
test graphs T (a) ∈ T (A). For this reason, we sometimes refer to νa as the combinatorial
distribution of a.

Remark 2.3.5. One can always find a realization of a traffic convergent sequence (an)n∈N
via the family x = (xi)i∈I in the induced traffic space (CG〈x,x∗〉, limn→∞ νn). In particular,
the properties (i)-(iv) of a traffic state are preserved in the limit.

Example 2.3.6 (The traffic space of random matrices). As suggested by Remark 2.2.9, the
G∗-algebra MatN(L∞−(Ω,F ,P)) admits a traffic state

τ
[
T
]

= E
[

1

N
tr
[
T
]]

:= E
[

1

N

∑
φ:V→[N ]

∏
e∈E

γ(e)(φ(e))

]
, ∀T ∈ T 〈MatN(L∞−(Ω,F ,P))〉,

that recovers the trace

ϕτ (AN) = E
[

1

N
tr(AN)

]
, ∀AN ∈ MatN(L∞−(Ω,F ,P)).
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The injective traffic state τ 0 admits an explicit formula without reference to the Möbius
function in the matricial setting, namely,

τ 0
[
T
]

= E
[

1

N
tr0
[
T
]]

:= E
[

1

N

∑
φ:V→[N ] s.t.
φ is injective

∏
e∈E

γ(e)(φ(e))

]
= E

[
1

N

∑
φ:V ↪→[N ]

∏
e∈E

γ(e)(φ(e))

]
,

whence the name injective traffic state. ♦

The traffic framework provides a novel perspective on the spectral analysis of large ran-
dom matrices, including ensembles traditionally outside of the domain of free probability
(e.g., heavy Wigner matrices [Mal17], sparse random graphs [MP], and random band matri-
ces [Au]). In fact, the notion of traffic independence was first discovered in the context of
permutation invariant random matrices [Mal]. We review the definition.

Definition 2.3.7 (Graph of colored components). Let S =
⊔
i∈I Si be a disjoint union of

labeling sets Si, each thought of as a “color” i. For a test graph T ∈ T 〈S〉, we define the
graph of colored components χ(T ) as the simple bipartite graph obtained from T as follows.

For each i ∈ I, let (Ti,`)
k(i)
`=1 denote the connected components of the subgraph of T spanned

by the labels Si so that
Ti,` ∈ T 〈Si〉, ∀` ∈ [k(i)].

In other words, the (Ti,`)
k(i)
`=1 are the connected components of the test graph T restricted to

the color i. Note that
∑

i∈I k(i) < ∞ since T is a finite graph. We write (vm)nm=1 for the
vertices of T that belong to more than one of the components (Ti,`)i∈I,`∈[k(i)]. The components
(Ti,`)i∈I,`∈[k(i)] and the vertices (vm)nm=1 form the vertices of χ(T ) with edges determined by
inclusion, i.e.,

vm ∼χ(T ) Ti,` ⇐⇒ vm ∈ Ti,`.
In particular, we say that T is a free product in (Si)i∈I if the graph of colored components
χ(T ) is a tree.

χ7→ =z z∗

x y

x y

x∗ y∗

Figure 2.4: An example of the construction of a graph of colored components χ(T ) from a
test graph T . Here, we color the vertices of χ(T ) to clarify the construction. Note that T is
not a free product in this example.
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Definition 2.3.8 (Traffic independence). Let (A, τ) be a traffic space. We say that families
of random variables (ai)i∈I of A with union a =

⋃
i∈I ai = (ai,j)i∈I,j∈Ji are traffic independent

if for any T ∈ T 〈x,x∗〉 = T 〈
⊔
i∈I〈xi,x∗i 〉〉,

τ 0
[
T (a)

]
=

{∏
i∈I
∏k(i)

`=1 τ
0
[
Ti,`(ai)

]
if T is a free product in 〈xi,x∗i 〉i∈I ,

0 otherwise.
(2.9)

Similarly, suppose that for each n ∈ N we have families of random variables (a
(i)
n )i∈I of a

traffic space (An, τn) with union an =
⋃
i∈I a

(i)
n = (a

(i,j)
n )i∈I,j∈Ji . We say that the (a

(i)
n )i∈I

are asymptotically traffic independent if the joint traffic distributions νan : CT 〈x,x∗〉 → C
converge pointwise to a limit ν such that for any T ∈ T 〈x,x∗〉 = T 〈

⊔
i∈I〈xi,x∗i 〉〉,

ν0
[
T
]

=

{∏
i∈I
∏k(i)

`=1 ν
0
[
Ti,`
]

if T is a free product in 〈xi,x∗i 〉i∈I ,
0 otherwise.

(2.10)

Remark 2.3.9. The relationships (2.6) and (2.7) characterize the joint traffic distribution of
traffic independent random variables in terms of the corresponding marginal traffic distribu-
tions. Moreover, note that the traffic distribution of a family of random variables ai specifies
the traffic distribution of the generated traffic space Ai. In particular, the traffic indepen-
dence of the families (ai)i∈I extends to the generated traffic spaces (Ai)i∈I [Mal, Proposition
2.14]. In the context of Remark 2.3.5, this implies that we actually have the traffic indepen-
dence of the traffic spaces (CG〈xi,x∗i 〉)i∈I in (CG〈x,x∗〉, ν) in the asymptotic case.

For a family of traffic spaces (Ai, τi)i∈I , we can find a traffic independent realization of
the (Ai, τi)i∈I inside of a larger traffic space (A, τ). Intuitively, we imagine A as a suitable set
of graphs with edge labels in

⊔
i∈iAi, while equation (2.9) completely determines our choice

of τ = ∗i∈I τi. The formal construction involves a number of technical details: most notably,
in establishing the positivity of τ . We refer the reader to [CDM] for the existence of such a
(traffic) free product; however, one need not appeal to the free product construction in order
to find instances of traffic independence. More concretely, Theorem 1.8 in [Mal], recorded
below, shows that traffic independence describes the asymptotic behavior of permutation
invariant random matrices.

Theorem 2.3.10 (Criteria for asymptotic traffic independence). Let I be an index set. For

each i ∈ I and N ∈ N, let M(i)
N = (M

(i,j)
N )j∈Ji ⊂ MatN(L∞−(Ω,F ,P)) be a family of random

matrices satisfying the following properties:

(i) (Independence) The families (M(i)
N )i∈I are independent;

(ii) (Permutation invariance) The distribution of all but at most one of the families M(i)
N

is invariant under conjugation by the permutation matrices, i.e.,

PσM(i)
N P∗σ

d
=M(i)

N , ∀σ ∈ SN ;
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(iii) (Convergence in traffic distribution) For each i ∈ I, the sequence (M(i)
N )N∈N converges

in traffic distribution;

(iv) (Factorization) For any finite collection of ∗-test graphs T1, . . . , T` ∈ T 〈xi,x∗i 〉,

lim
N→∞

E
[ ∏̀
m=1

1

N
tr
[
Tm(M(i)

N )
]]

=
∏̀
m=1

(
lim
N→∞

E
[

1

N
tr
[
Tm(M(i)

N )
]])

, (2.11)

where the limits on the right-hand side exist by (iii).

Then the families (M(i)
N )i∈I are asymptotically traffic independent and satisfy the joint fac-

torization property

lim
N→∞

E
[ ∏̀
m=1

1

N
tr
[
Tm(MN)

]]
=
∏̀
m=1

(
lim
N→∞

E
[

1

N
tr
[
Tm(MN)

]])

for any finite collection of ∗-test graphs T1, . . . , T` ∈ T 〈x,x∗〉, where MN =
⋃
i∈IM

(i)
N .

The assumptions of Theorem 2.3.10 turn out to be surprisingly mild in practice and hold
for many classical random matrix ensembles: for example, Wigner matrices, Haar distributed
unitary random matrices, and uniformly distributed random permutation matrices [Mal].
Of course, these ensembles are already well-studied within the context of free probability,
but Theorem 2.3.10 also applies to random matrix ensembles outside of the scope of free
probability: for example, heavy Wigner matrices [Mal17].

We conclude with a central limit theorem for traffic independence. The version stated
below is contained in the more general Theorem 6.4 of [Mal] and interpolates between the
classical CLT and the free CLT (cf. Theorem 2.1.8).

Theorem 2.3.11 (Traffic CLT). Let (an) be a sequence of identically distributed self-adjoint
random variables in a traffic space (A, τ). Assume that the an are centered with unit variance,
i.e., ϕτ (an) = 0 and ϕτ (a

2
n) = 1, and write sn = 1√

n

∑n
i=1 ai for the normalized sum. We

split the variance of an as

1 = ϕτ (a
2
n) = ϕτ

(
·

out

an←− · an←− ·
in

)
= τ

[
·
an
�
an

·
]

= τ 0

[
·
an
�
an

·
]

+ τ 0

[ an

·

�

�
an

]
= α + (1− α).

If the (an) are traffic independent, then (sn) converges in distribution to the free convolution
µα = SC(0, α) � N (0, 1 − α) of the semicircle distribution of mean 0 and variance α with
the normal distribution of mean 0 and variance 1− α, i.e.,

lim
n→∞

ϕ(smn ) =

∫
R
tm µα(dt), ∀m ∈ N.
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Remark 2.3.12. We note that (2.6) and the positivity of the traffic state imply that both

α = τ 0

[
·
an
�
an

·
]

= τ

[
·
an
�
an

·
]
− τ
[ an

·

�

�
an

]
= ϕτ ((an −∆(an))2)

= ϕτ ((an −∆(an))∗(an −∆(an))) ≥ 0

and

1− α = τ 0

[ an

·

�

�
an

]
= τ

[ an

·

�

�
an

]
≥ 0.

Chapter 6 in [Mal] shows how one can realize the traffic CLT for the values α ∈ {0, 1},
recovering the usual CLTs. We show how one can realize the traffic CLT for the intermediate
values α ∈ (0, 1) in Section 4.2.

Remarkably, in the context of a tracial ∗-probability space, one can always appeal to the
traffic framework, bringing this seemingly specialized machinery to bear in generic situations,
with further implications for random matrices [CDM]. We revisit the CDM construction in
the next section.

2.4 The universal enveloping traffic space

The construction of the universal enveloping traffic space involves a number of technical
details, particularly in proving the positivity of the associated traffic state, but the basic
idea is quite intuitive. For a tracial ∗-probability space (A, ϕ), we would like to introduce a
consistent traffic space structure that extends the original ∗-probability space. For starters,
we must define a G∗-algebra structure on A. Of course, in general, we cannot expect to do
this without enlarging our space; however, to qualify as universal, this construction should
be kept to a minimum. Assuming an action of the graph operations (Zg)g∈G, the G∗-algebra
generated by A = A∗ (Definition 2.2.6) can be characterized as

span

( ⋃
K≥0

⋃
g∈GK

Zg(A⊗K)

)
,

and so it remains to define said action (Zg)g∈G.
Recall our earlier convention of depicting the action of a graph operation on a K-tuple

Zg(a1⊗· · ·⊗aK) by assigning each argument ai to the edge prescribed by the ordering. This
suggests the näıve approach of simply declaring the enlarged space to be the span of such
edge-labeled graphs ab initio. In particular, consider the set of 2-graph polynomials CG(2)〈A〉
(Definition 2.3.1), where we adopt the convention from before and refer to the coordinates of
the pair of distinguished vertices (v1, v2) = (vin, vout) as the input and the output respectively.
For simplicity, we drop the prefix 2- and simply refer to graph monomials/polynomials in A.



CHAPTER 2. A CRASH COURSE ON TRAFFIC PROBABILITY 26

The graph polynomials CG(2)(A) carry a natural G∗-algebra structure under the action of
composition, virtually identical to the ∗-graph polynomials (Definition 2.2.7). In fact, recall
that the ∗-graph polynomials generalize the usual ∗-polynomials via the embedding (2.4).
Similarly, we have a formal embedding

z : A ↪→ CG(2)〈A〉, a 7→ ·
out

a← ·
in
,

which is neither linear nor homomorphic. For example,

z1ab+ z2c+ z3 7→ ·
out

z1ab+z2c+z3←−−−−−−− ·
in
6= z1

(
·

out

a← · b← ·
in

)
+ z2

(
·

out

c← ·
in

)
+ z3

(
·

in/out

)
.

The obstruction comes from the basic definition of the 2-graph polynomials, which are
ultimately just linear combinations of formal objects (graphs) that do not remember much
of the structure of A beyond its involution ∗. To account for this defect, we must transfer
the algebraic structure of A to CG(2)〈A〉 on the level of graphs. To this end, for any graph
operation g ∈ G and polynomial a1 = P (b1, . . . , bn) ∈ A, we make the identification

Zg

(
·

out

a1←− ·
in
⊗ · · · ⊗ ·

out

aK←− ·
in

)
∼= Zg

(
P

(
·

out

b1←− ·
in
, . . . , ·

out

bn←− ·
in

)
⊗ · · · ⊗ ·

out

aK←− ·
in

)
,

where

P

(
·

out

b1←− ·
in
, . . . , ·

out

bn←− ·
in

)
∈ CG(2)〈A〉.

Recall that multiplication in CG(2)〈A〉 is defined simply as concatenation. So, for example,
if P (x, y) = cyx2y, then

P

(
·

out

b1←− ·
in
, ·

out

b2←− ·
in

)
= c

(
·

out

b2←− · b1←− · b1←− · b2←− ·
in

)
.

In particular, if P ≡ z ∈ C, then as a graph polynomial,

P = z

(
·

in/out

)
∈ CG(2)〈A〉.

We note that the equivariance property of a G∗-algebra allows us to formulate the desired
identifications entirely within the first argument of a graph operation. As a simple example,

·
out

z1ab+z2←−−−−− ·
↑
·

in

z3d+z4 ∼= z1z3

(
·

out

a← · b← ·
↑
·

in

d
)
+z2z3

(
·
↑
·
d

in/out

)
+z1z4

(
·

out

a← · b← ·
in

)
+z2z4

(
·

in/out

)
,

which conforms to our expectations for a suitable lifting of the algebraic structure of A.
We write G(A) for the quotient of CG(2)〈A〉 by these relations, the so-called free G∗-

algebra generated by A. Equivalently, G(A) is the quotient of CG(2)〈A〉 by the two-sided
∗-ideal I spanned by elements of the form

Zg

(
·

out

a1←− ·
in
⊗ · · · ⊗ ·

out

aK←− ·
in

)
− Zg

(
P

(
·

out

b1←− ·
in
, . . . , ·

out

bn←− ·
in

)
⊗ · · · ⊗ ·

out

aK←− ·
in

)
,
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from which the quotient G∗-algebra structure on G(A) becomes clear. In practice, we still
consider the elements of G(A) as (linear combinations of) graphs as opposed to equivalence
classes of such graphs, and we adopt the same conventions for their depictions. In fact,
for much of our analysis, the (multi)linearity of the object under consideration allows us to
restrict our attention to graph monomials G(2)〈A〉, viewed of course as elements in G(A).
When necessary, we address any issues of well-definedness, though this will often be self-
evident.

The formal embedding from before now becomes a genuine embedding of unital ∗-algebras

zG : A ↪→ G(A) = CG(2)〈A〉/I, a 7→ ·
out

a← ·
in
,

grace of the identifications I. This allows us to consider our original ∗-algebra A as a
canonical subalgebra of the enlarged space G(A). Indeed,

G(A) = span

( ⋃
K≥0

⋃
g∈GK

Zg(zG(A)⊗ · · · ⊗zG(A))

)
;

or, in words, G(A) is the G∗-algebra generated by the image zG(A). By a slight abuse of
notation, we identify A ∼= zG(A). Thus, moving forward,

A =

(
·

out

a← ·
in

∣∣∣∣ a ∈ A) ⊂ G(A).

Again, we note that in this notation, ·
out

a← ·
in

stands for an equivalence class of graphs.

The free G∗-algebra satisfies the following universal property, the proof of which we leave
as a simple but instructive exercise for the reader.

Proposition 2.4.1. Let A be a unital ∗-algebra, B a G∗-algebra, and f : A → B a morphism
of unital ∗-algebras. Then there exists a unique G∗-morphism G(f) : G(A)→ B such that

A B

G(A)

zG

f

G(f)

Remark 2.4.2. Starting with a C-algebra A, one can also define the free G-algebra gener-
ated by A in a similar manner. In fact, the same construction produces the correct object
G(A) except that we do not have an involution on G(A) coming from the ∗-flip/transpose
combination (since the ∗-flip cannot be defined without the involution on A).
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Example 2.4.3. The free G∗-algebra generated by the ∗-polynomials C〈x,x∗〉 is isomorphic
to the ∗-graph polynomials CG〈x,x∗〉. The reader should take care to understand why we
have phrased this as an isomorphism as opposed to an outright equality. Indeed, one can
think of CG〈x,x∗〉 as a canonical set of representatives in G(C〈x,x∗〉). This example high-
lights our perspective on elements of the free G∗-algebra as graphs (as opposed to equivalence
classes of graphs). ♦

Having defined the G∗-algebra extension of A, we now turn our attention to the matter of
the traffic state τϕ. As it turns out, the appropriate construction passes through the injective
traffic state τ 0

ϕ in the form of cactus graphs.

Definition 2.4.4 (Cactus graph). A finite, connected multigraph G = (V,E) is said to be a
cactus if every edge e ∈ E belongs to a unique simple cycle. A finite, connected, multidigraph
G = (V,E, src, tar) is said to be a cactus if the underlying undirected multigraph (V,E) is
a cactus and further an oriented cactus if each simple cycle is further a directed cycle. We
refer to the cycles of a cactus G as pads and denote the set of such cycles by Pads(G).

Figure 2.5: An example of a cactus and an oriented cactus respectively.

For reasons that will soon become apparent, we define a functional τ 0
ϕ : CT 〈A〉 → C that

is supported on oriented cacti and is further multiplicative with respect to the pads, namely,

(i) If T is a directed cycle of length n in the clockwise orientation with edges labeled by
a1, . . . , an counterclockwise, then

τ 0
ϕ

[
T
]

= κn(a1, . . . , an),

where κn is the nth free cumulant functional of (A, ϕ). For example,
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a1

a5

a4

a2

a3

a6

τ 0
ϕ

[ ]
= κ6(a1, a2, a3, a4, a5, a6).

(ii) If T is an oriented cactus, then

τ 0
ϕ

[
T
]

=
∏

C∈Pads(T )

τ 0
[
C
]
.

For example,

a4

a2

a3

τ 0
ϕ

[ ]
= κ1(a1)κ2(a2, a3)κ1(a4).a1

(iii) Otherwise,
τ 0
ϕ

[
T
]

= 0.

Since ϕ is a trace, the free cumulant functionals (κn)n∈N are cyclically invariant, i.e.,

κn(a1, . . . , an) = κn(a2, . . . , an, a1) = · · · = κn(an, a1, . . . , an−1).

This implies that the definition in (i) does not depend on where we choose to start reading
off the elements ai in the cycle as long as we proceed in a counterclockwise fashion, ensuring
that the construction is well-defined.

As advertised, we use the inversion (2.7) to define a functional τϕ : CT 〈A〉 → C. This
gives rise to a linear functional ϕτϕ : CG(2)〈A〉 → C through the now familiar route of
identifying the roots and forgetting their distinguished roles: formally,

ϕτϕ = τϕ ◦ ∆̃.

Proposition 4.4 in [CDM] shows that the functional ϕτϕ respects the identifications defining
G(A) = CG(2)〈A〉/I, namely,

I ⊂ ker(ϕτϕ).

Thus, by a slight abuse of notation, we also write ϕτϕ : G(A)→ C for the quotient functional.
In fact, the proof of this statement proceeds by showing that τϕ drops to a well-defined
(algebraic) traffic state on G(A), which we again denote by τϕ. Theorem 4.13 in [CDM]
further establishes the positivity of τϕ, which leads us to
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Proposition 2.4.5 (Universal enveloping traffic space [CDM]). Let (A, ϕ) be a tracial ∗-
probability space. We call (G(A), τϕ) the universal enveloping traffic space of (A, ϕ). In
particular, the embedding zG : A ↪→ G(A) further preserves the trace:

A C

G(A)

zG

ϕ

ϕτϕ

Thus, effectively, we can realize (A, ϕ) as a sub-∗-probability space of (G(A), τϕ). Since
ϕτϕ|A = ϕ, we unencumber the notation and simply write ϕ = ϕτϕ : G(A) → C when there
is no ambiguity.

Proof. It only remains to prove that zG preserves the trace, but this follows immediately
from the definitions:

ϕτϕ ◦zG(a) = ϕτϕ

(
·

out

a← ·
in

)
= τϕ

[ a

·

	

]
= κ1(a) = ϕ(a).

�

For the purposes of this article, we will not need the positivity of the traffic state in the
universal enveloping traffic space. Instead, we will do just fine with algebraic traffic space
structure. In the applications to random matrices, we inherit the positivity from the matricial
setting in the large N limit, and so we do not need to rely on the abstract construction.

The motivation behind the cactus structure of τ 0
ϕ comes from the one-to-one correspon-

dence between non-crossing partitions of [n] and cactus graphs obtained as quotients of
cycles of length n. In particular, consider a cycle graph C = (V,E) of length n with vertices

V = (v1, . . . , vn) in counterclockwise order and edges E = (e1, . . . , en) connecting vi
ei∼ vi+1.

The mapping [n] 3 i 7→ vi ∈ V induces a one-to-one correspondence

f : NC(n)→ NC(V )

between non-crossing partitions of [n] and non-crossing partitions of V , where the latter
notion comes from drawing C = (V,E) as a circle. Similarly, the mapping [n] 3 i 7→ ei ∈ E
induces a one-to-one correspondence

g : NC(n)→ NC(E)

between non-crossing partitions of [n] = {1 < · · · < n} and non-crossing partitions of E.
Furthermore, the Kreweras complement K : NC(n) → NC(n), defined as a non-crossing
partition of [n] = {1, . . . , n} via the interlacing

1 < 1 < · · · < n < n,
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corresponds to the Kreweras complement K : NC(V ) → NC(E) defined as a non-crossing
partition of the edges E of C via the interlacing

v1
e1∼ v2

e2∼ · · · en−1∼ vn
en∼ v1.

Formally, this amounts to the equality

g ◦K = K ◦ f.

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

7→

Figure 2.6: An example of the correspondence between non-crossing partitions on the line
and non-crossing partitions on the circle.

The following crucial observation is contained in Remark 4.5 of [CDM].

Proposition 2.4.6. Let C = (V,E) be a cycle graph, say of length n and with vertices

V = (v1, . . . , vn) in counterclockwise order and edges E = (e1, . . . , en) connecting vi
ei∼ vi+1.

For a partition π ∈ P(V ), the following two conditions are equivalent:

(i) The quotient graph Cπ is a cactus;

(ii) The partition π is non-crossing.

Furthermore, if π ∈ NC(V ), then the pads of the cactus Cπ correspond to the blocks of the
Kreweras complement K(π) ∈ NC(E) via the map

K(π) 3 B = (ei1 , . . . , eik) 7→ (vi1 , vi1+1
π∼ vi2 , . . . , vik−1+1

π∼ vik , vik+1
π∼ vi1) ∈ Pads(Cπ),

where (i1 < · · · < ik). In particular, assume that C = (V,E, src, tar) is also directed (though
not necessarily a directed cycle). We say that an edge ei is oriented counterclockwise if
src(ei) = vi; otherwise, src(ei) = vi+1 and we say that ei is oriented clockwise. For a
partition π ∈ P(V ), the following two conditions are equivalent:
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(I) The quotient graph Cπ is an oriented cactus;

(II) The partition π is non-crossing and each block of K(π) ∈ NC(E) only contains edges
of a uniform orientation.

7→

Figure 2.7: An example of Proposition 2.4.6 in action. Note that we can track the edges of
each pad in the resulting cactus via the Kreweras complement.

We prove Proposition 2.4.6 in Section 3.2 after developing the combinatorics of cactus
graphs. For now, we return to our discussion on the cactus structure of τ 0

ϕ. In particular,
note that

ϕτϕ

(
·

out

a1←− · a2←− · · · · an←− ·
in

)
= τϕ

[
C(a1, . . . , an)

]
, (2.12)

where C = (V,E, src, tar, γ) ∈ T 〈A〉 is a directed cycle of length n drawn with vertices
V = (v1, . . . , vn) ordered counterclockwise and edges E = (e1, . . . , en) satisfying

src(ei) = vi+1, tar(ei) = vi, and γ(ei) = ai.

We think of C as the underlying graph with the arguments a1, . . . , an indicating the edge
labels γ(ei), hence the notation C(a1, . . . , an). We continue the calculation in terms of τ 0

ϕ:

τϕ
[
C(a1, . . . , an)

]
=

∑
π∈P(V )

τ 0
ϕ

[
Cπ(a1, . . . , an)

]
=

∑
π∈NC(V )

τ 0
ϕ

[
Cπ(a1, . . . , an)

]
=

∑
π∈NC(V )

∏
B=(ei1 ,...,eik )∈K(π)

κ#(B)(ai1 , . . . , aik)
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=
∑

π∈NC(n)

κK(π)[a1, . . . , an]

=
∑

π∈NC(n)

κπ[a1, . . . , an] = ϕ(a1 · · · an).

The reader should take care to note that we have applied both Proposition 2.4.6 and the
discussion preceding it in this chain of equalities, thereby justifying the choice of τ 0

ϕ.
Of course, since (G(A), ϕτϕ) is also a ∗-probability space, we can likewise consider its free

cumulant sequence (κGn)n∈N. At a glance, we note that

ϕτϕ |A = ϕ =⇒ κGn|An = κn, ∀n ∈ N.

We can use this simple observation to compute the free cumulants of the transposed algebra

Aᵀ =

(
aᵀ = ·

out

a→ ·
in

∣∣∣∣ a ∈ A) ⊂ G(A).

In particular,

ϕ(aᵀ1 · · · aᵀn) = ϕ

(
·

out

a1−→ · · · · · an−→ ·
in

)
= τϕ

[
C→(a1, . . . , an)

]
= τϕ

[
C(an, . . . , a1)

]
= ϕ(an · · · a1),

where C→ = (V,E, tar, src, γ) is the flip of the cycle C = (V,E, src, tar, γ) in (2.12). It
follows that ᵀ : (A, ϕ) → (Aᵀ, ϕ) defines an involutive anti-isomorphism of ∗-probability
spaces such that

κGn(aᵀ1, . . . , a
ᵀ
n) = κn(an, . . . , a1).

In fact, the same argument shows that ᵀ : G(A) → G(A) defines an involutive anti-
automorphism of ∗-probability spaces such that

κGn(tᵀ1, . . . , t
ᵀ
n) = κGn(tn, . . . , t1), ∀ti ∈ G(A).

Based on the matrix heuristic, the transposed algebraAᵀ emerges as a natural ∗-subalgebra
of G(A). Similarly, one can also consider the degree algebras

rDeg(A) = C
〈(

·
↓
·
a

in/out

∣∣∣∣ a ∈ A)〉, cDeg(A) = C
〈(

·
↑
·
a

in/out

∣∣∣∣ a ∈ A)〉,
and

Deg(A) = C〈rDeg(A), cDeg(A)〉,
the ∗-subalgebra generated by rDeg(A) and cDeg(A). Here, we find the first indication of
rigidity in the universal enveloping traffic space.
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Proposition 2.4.7. The unital ∗-subalgebras A,Aᵀ, and Deg(A) are freely independent in
the universal enveloping traffic space (G(A), ϕ).

Proof. See Corollary 4.7 in [CDM]. �

The proof of this result in [CDM] proceeds by directly establishing the alternating mo-
ments characterization (2.2) of freeness. In particular, this free independence structure arises
regardless of the choice of tracial ∗-probability space (A, ϕ). We extend this result to gen-
eral graph operations in Section 3.3 to give a complete free product decomposition of the
universal enveloping traffic space. As a warm-up, we give a second proof of this result for A
and Aᵀ, relying on the cactus characterization in Proposition 2.4.6 to prove the vanishing of
mixed cumulants.

Proof. Let a1, . . . , an ∈ A with transpose labels ˆT : [n] → {1,ᵀ}. We compute the expecta-

tion of the product a
ˆT(1)
1 · · · aˆT(n)

n as before:

ϕ(a
ˆT(1)
1 · · · aˆT(n)

n ) = ϕ

(
·

out

a
ˆT(1)
1←−− · · · · a

ˆT(n)
n←−− ·

in

)
= τϕ

[
C(a

ˆT(1)
1 , . . . , aˆT(n)

n )
]
.

Consider the following modification of the usual directed cycle C = (V,E, src, tar, γ):
(i) If ˆT(i) = 1, then s̃rc(ei) = src(ei) and t̃ar(ei) = tar(ei);

(ii) If ˆT(i) = ᵀ, then s̃rc(ei) = tar(ei) and t̃ar(ei) = src(ei).

In words, C̃ = (V,E, s̃rc, t̃ar, γ) flips the original direction of an edge ei according to the
transpose label ˆT(i). By construction,

τϕ
[
C(a

ˆT(1)
1 , . . . , aˆT(n)

n )
]

= τϕ
[
C̃(a1, . . . , an)

]
.

For example,

aᵀ1

a5

aᵀ4

a2

a3

aᵀ6
C(aᵀ1, a2, a3, a

ᵀ
4, a5, a

ᵀ
6) = = = C̃(a1, a2, a3, a4, a5, a6).

a1

a5

a4

a2

a3

a6

We are now in a position to apply Proposition 2.4.6. Note that an edge ei ∈ C̃ is oriented
clockwise if ˆT(i) = 1 and counterclockwise if ˆT(i) = ᵀ. To separate the two cases, let E1

denote the subset of clockwise edges and E2 the subset of counterclockwise edges. This
allows us to continue the calculation along the lines

τϕ
[
C̃(a1, . . . , an)

]
=

∑
π∈P(V )

τ 0
ϕ

[
C̃π(a1, . . . , an)

]
=

∑
π∈NC(V ) s.t.

K(π)=σ∪ρ∈NC(E)
for some σ∈NC(E1)

and ρ∈NC(E2)

τ 0
ϕ

[
C̃π(a1, . . . , an)

]
.
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Putting this into the multiplicative cactus formula for τ 0
ϕ, this becomes∑

π∈NC(n) s.t.
π=σ∪ρ for some
σ∈NC(ˆT−1(1))

and ρ∈NC(ˆT−1(ᵀ))

∏
B1=(i1<···<ik)∈σ

κ#(B1)(ai1 , . . . , aik)
∏

B2=(j1<···<j`)∈ρ

κ#(B2)(aj` , . . . , aj1).

We can rewrite this in terms of the free cumulants of G(A) to obtain the equivalent expression∑
π∈NC(n) s.t.

π=σ∪ρ for some
σ∈NC(ˆT−1(1))

and ρ∈NC(ˆT−1(ᵀ))

∏
B1=(i1<···<ik)∈σ

κG#(B1)(ai1 , . . . , aik)
∏

B2=(j1<···<j`)∈ρ

κG#(B2)(a
ᵀ
j1
, . . . , aᵀj`),

and so
ϕ(a

ˆT(1)
1 · · · aˆT(n)

n ) =
∑

π∈NC(n) s.t.
π=σ∪ρ for some
σ∈NC(ˆT−1(1))

and ρ∈NC(ˆT−1(ᵀ))

κGπ [a
ˆT(1)
1 , . . . , aˆT(n)

n ].

In particular, we see that there are no contributions from mixed cumulants in A and Aᵀ. It
follows that mixed cumulants in A and Aᵀ vanish (see, e.g., Remarks 11.19 (2) in [NS06]),
as was to be shown. �

The choice of the traffic state τϕ is further justified by the following properties of the
universal enveloping traffic space (Proposition 4.8 and Theorem 4.9 in [CDM] respectively).

Proposition 2.4.8. Let (A, ϕ) be a tracial ∗-probability space. For unital ∗-subalgebras
(Ai)i∈I of A, the following two conditions are equivalent:

(i) The (Ai)i∈I are freely independent in (A, ϕ);
(ii) The (Ai)i∈I are traffic independent in (G(A), τϕ).

Of course, since ϕτϕ |A = ϕ, we could also state the first condition in the larger space
(G(A), ϕτϕ); however, we emphasize the crucial assumption that Ai ⊂ A. Furthermore,
because traffic independence is a property of G-algebras, the second condition is actually
equivalent to the traffic independence of the generated traffic spaces (G(Ai))i∈I . In Section
3.4, we show that one can also describe the independence structure between the sub-traffic
spaces (G(Ai))i∈I entirely in terms of the familiar notions of free independence and classical
independence.

The results above show that the cactus structure of τ 0
ϕ lifts the free independence structure

of (A, ϕ) to a canonical independence structure in (G(A), ϕτϕ). Even more, under some
further assumptions, convergence in ∗-distribution to a ⊂ (A, ϕ) can be lifted to convergence
in traffic distribution to a ⊂ (G(A), τϕ).

Proposition 2.4.9. LetMN = (M
(i)
N )i∈I ⊂ L∞−(Ω,F ,P)⊗MatN(C) be a family of random

matrices satisfying the following properties:
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(i) (Unitary invariance) For any unitary matrix UN ∈ U(N),

UNMNU∗N = (UNM
(i)
N U∗N)i∈I

d
= (M

(i)
N )i∈I =MN ;

(ii) (Convergence in ∗-distribution) For any ∗-polynomial P ∈ C〈x,x∗〉,

lim
N→∞

E
[

1

N
tr(P (MN))

]
∈ C;

(iii) (Factorization) For any ∗-polynomials P1, . . . , P` ∈ C〈x,x∗〉, we have the equality

lim
N→∞

E
[∏̀
k=1

1

N
tr(Pk(MN))

]
=
∏̀
k=1

lim
N→∞

E
[

1

N
tr(Pk(MN))

]
,

where the product on the right-hand side exists by (ii).

In particular, (ii) implies thatMN converges in ∗-distribution to a family of random variables
a = (ai)i∈I in a tracial ∗-probability space (A, ϕ). Under these assumptions, MN further
converges in traffic distribution to a in the universal enveloping traffic space (G(A), τϕ).

Let us discuss some immediate consequences of this convergence. A surprising result of
Mingo and Popa states that a unitarily invariant random matrix is asymptotically free from
its transpose [MP16]: this despite the complete lack of independence between the entries of
the two matrices. The [MP16] result operates under a bounded cumulants assumption (which
is absent in the traffic formulation) and further extends to the level of second-order freeness
(which is not addressed in the traffic formulation). At the level of (first-order) freeness, the
transpose phenomenon can be seen as a corollary of Propositions 2.4.7 and 2.4.9. Indeed,
Proposition 2.4.9 shows that the universal enveloping traffic space provides an extended
limit object for unitarily invariant random matrices. In particular, this extended limit object
captures the interaction with the transpose: this is encoded in the transpose graph operation

·
out

1→ ·
in

. The distinguishing feature of the transpose graph is that its direction is reversed,

and this reversal does not play well with the usual direction idG = ·
out

1← ·
in

, resulting in a

graphical analogue of the vanishing of mixed cumulants (Proposition 2.4.6), and hence the
observed freeness in Proposition 2.4.7. In this way, the traffic approach further provides a
top-level explanation of the transpose phenomenon in [MP16].

Moreover, by framing the result as a consequence of the structure in the limit ob-
ject (G(A), τϕ), we can easily obtain generalizations for random matrix ensembles that
lack the restrictive unitary invariance property. For example, the limiting traffic distri-
bution of the Wigner matrices WN subdivides according to the common pseudo-variance
β = N ·E[WN(i, j)2] of the strictly upper triangular entries. Since the GUE satisfies the as-
sumptions of Proposition 2.4.9 [Mal], we can conclude that WN and Wᵀ

N are asymptotically
free if the parameter β = 0. This line of reasoning suggests the following definition.
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Definition 2.4.10 (Unitarily invariant traffics). Let a = (ai)i∈I be a family of traffics in
a traffic space (A, τ). By forgetting the traffic space structure and simply considering the
underlying ∗-probability space (A, ϕτ ), we can construct the universal enveloping traffic
space (G(A), τϕτ ). Let us write b = (bi)i∈I for the image zG(a) ⊂ (G(A), τϕτ ). We say that
the family a is unitarily invariant in the traffic sense (or UIT for short) if a and b have the
same traffic distribution νa = νb.

Unitarily invariant traffics frequently appear as limit objects for a wide variety of random
matrix ensembles, including those quite far away from any such symmetry in the traditional
sense: for example, random band matrices of slow growth [Au].

Note that our analysis seemingly precludes random matrices over R. Indeed, one quickly
sees that the same results cannot possibly hold in this generality. For example, the transpose
result fails for real symmetric Wigner matrices Wᵀ

N = WN . Still, with some maneuvering,
one can interpret the structural results for (G(A), τϕ) in the real case: for example, to extend
the results of Bryc, Dembo, and Jiang on random Markov matrices [BDJ06]. We come back
to these ideas and give a precise statement for all of these results in Chapter 4 once we
have analyzed the structure of the universal enveloping traffic space. At this point, we are
sufficiently prepared to move onto the main part of the article.
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Chapter 3

Rigid structures in the universal
enveloping traffic space

The construction of the universal enveloping traffic space entails an unexpectedly rigid prob-
abilistic structure, the investigation of which we carry out in the remainder of this chapter.
We begin with a precise statement of the main results in Section 3.1. From there, we move
onto the combinatorics of cactus graphs in Section 3.2: the simple but surprisingly effective
tools developed here will be frequently employed in the sequel. Section 3.3 realizes the uni-
versal enveloping traffic space as a free product of three natural sub-∗-probability spaces via
a canonical conditional expectation onto a space spanned by elementary graph operations.
This motivates the direction of Section 3.4, which establishes a duality between classical
independence and free independence by way of the diagonal algebra. At the same time, our
conditional expectation suggests a great deal redundancy in the action of the graph opera-
tions. In fact, up to degeneracy, the universal enveloping traffic space is spanned by tree-like
graph operations: this follows from the cycle pruning algorithm in Section 3.5. The results
in this chapter form part of a joint work in progress with Camille Male [AM].

3.1 Introduction and main results

Our first result extends the inherent free independence structure in the universal enveloping
traffic space to general graph operations (cf. Proposition 2.4.7). For notational convenience,
we write (B, ψ) = (G(A), ϕτϕ) to emphasize the underlying ∗-probability space structure of
the universal enveloping traffic space. We distinguish two special classes of graph operations:

∆(GK) = {g ∈ GK : input(g) = output(g)}

and

Θ(GK) = {g ∈ GK : there exists an undirected cycle in g

that visits both the input and the output}.
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In particular, we allow for a repetition of vertices in the cycle, but not edges. For example,

·
out

1

⇔
2
·

3

⇔
4
·
in
∈ Θ(G4). In this notation, the diagonal algebra becomes

∆(B) = ∆(G(A)) = span

( ⋃
K≥0

⋃
g∈∆(GK)

Zg(A⊗K)

)
.

Similarly, we define the unital ∗-subalgebra

Θ(B) = Θ(G(A)) = span

( ⋃
K≥0

⋃
g∈Θ(GK)

Zg(A⊗K)

)
.

Note that
rDeg, cDeg ∈ ∆(GK) ⊂ Θ(GK),

and so
Deg(A) ⊂ ∆(B) ⊂ Θ(B).

Theorem 3.1.1. Let (A, ϕ) be a tracial ∗-probability space. Then the unital ∗-subalgebras
A, Aᵀ, and ∆(B) are freely independent in the universal enveloping traffic space (B, ψ).
Accordingly, we identify their free product as a sub-∗-probability space

(A, ψ|A) ∗ (Aᵀ, ψ|Aᵀ) ∗ (∆(B), ψ|∆(B)) ⊂ (B, ψ).

Moreover, there exists a homomorphic conditional expectation E : B → A ∗ Aᵀ ∗ ∆(B)
such that E −1(∆(B)) = Θ(B). In fact, the map E is the unique homomorphic conditional
expectation that satisfies the commutation

B ⊗ B B ⊗ B

B B

∆⊗∆

◦ ·G

E

(3.1)

where ◦(·1, ·2) = ·
out

·1
⇔
·2
·
in

and ·G is the standard multiplication induced by the graph operations.

Altogether, this further implies the free product decomposition

(B, ψ) = (A, ψ|A) ∗ (Aᵀ, ψ|Aᵀ) ∗ (Θ(B), ψ|Θ(B)). (3.2)
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Notably, Theorem 3.1.1 holds regardless of the choice of tracial ∗-probability space (A, ϕ).
Naturally, one can then ask how an existing free product structure

(A, ϕ) = ∗i∈I (Ai, ϕi) (3.3)

behaves in this construction. Proposition 4.8 in [CDM] shows that the free independence of
the (Ai)i∈I is equivalent to the traffic independence of the sub-traffic spaces

(G(Ai))i∈I ⊂ (G(A), τϕ).

From a different perspective, we can study these sub-traffic spaces as sub-∗-probability spaces

(Bi, ψ|Bi)i∈I = (G(Ai), ϕτϕ|G(Ai))i∈I .

Of course, the free product decomposition (3.2) still applies, and so we know the behavior
of the cross-terms in the decomposition

(Bi)i∈I = (Ai ∗ Aᵀi ∗Θ(Bi))i∈I

grace of the inclusions

Ai ⊂ A, Aᵀi ⊂ Aᵀ, and Θ(Bi) ⊂ Θ(B).

Thus, it remains to understand the relationship within each of the three “columns”

(Ai)i∈I , (Aᵀi )i∈I , and (Θ(Bi))i∈I .

By assumption, the (Ai)i∈I are freely independent, which is preserved in the universal en-
veloping traffic space since ψ|A = ϕ. Moreover, recall that the transpose map ᵀ : A → Aᵀ
defines an involutive anti-isomorphism of ∗-probability spaces. Thus, the free product struc-
ture (3.3) is directly transported to the transposed algebras

(Aᵀ, ψ|Aᵀ) = ∗i∈I (Aᵀi , ψ|Aᵀ
i
). (3.3ᵀ)

Finally, we come to the last column (Θ(Bi))i∈I . Applying our conditional expectation E ,
we can further reduce this problem to understanding the relationship between the diagonal
algebras

(E (Θ(Bi)))i∈I = (∆(Bi))i∈I .
Since the diagonal algebra ∆(Bi) ⊂ ∆(B) is commutative, the trend of free independence in
the first two columns cannot possibly continue. Instead, we find an interesting connection
to the classical framework.

Theorem 3.1.2. Let (A, ϕ) be a tracial ∗-probability space with freely independent unital
∗-subalgebras (Ai)i∈I . Then the commutative sub-traffic spaces (∆(Bi))i∈I are classically
independent in (B, ψ). We formulate this in the heuristic equation

classical independence
∆⇐= free independence. (3.4)
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Let us discuss the content of equation (3.4), particularly in relation to equation (1.1).
Before, starting with classical independence, we obtain free independence through a natural
process of “non-commutification,” namely, passing to a matrix algebra and taking a limit.
In the opposite direction, Theorem 3.1.2 starts with free independence; however, the route
back to the commutative world becomes unclear. We could hope to make use of the traffic
framework, where the diagonal algebra emerges as a natural “commutification” of our space.
In particular, by pushing (A, ϕ) up to the universal enveloping traffic space (G(A), τϕ), we
can project down to the diagonal algebra ∆(G(A)). As it turns out, the shadow cast by free
independence in this projection is precisely classical independence. In this way, equations
(1.1) and (3.4) establish a duality between classical independence and free independence.

Traditionally, we think of classical independence as the first concept with freeness arising
as a second concept when abstracting to the NC framework. Here, we take freeness as the
first concept and recover classical independence by projecting to the commutative world.
We can find a simple manifestation of this principle at the level of random matrices: for
example, independent GOE matrices (W

(i)
N )i∈I are asymptotically free semicircular random

variables, whereas their degree matrices (rDeg(W
(i)
N ))i∈I = (cDeg(W

(i)
N ))i∈I are asymptoti-

cally classically independent Gaussian random variables.
Theorem 3.1.2 completes the characterization of the joint ∗-distribution of the (Bi)i∈I .

In particular, we note that the (Θ(Bi))i∈I are not classically independent as they do not
commute. At the same time, the conditional expectation E allows us to compute the trace
on ∗-alg(

⋃
i∈I Θ(Bi)) as if they did: namely, for any t1, . . . , tn ∈ ∗-alg(

⋃
i∈I Θ(Bi)) ⊂ Θ(B),

ψ(t1 · · · tn) = ψ(E (t1 · · · tn))

= ψ(E (t1) · · ·E (tn))

= ψ(E (tπ(1)) · · ·E (tπ(n)))

= ψ(E (tπ(1) · · · tπ(n))) = ψ(tπ(1) · · · tπ(n)), ∀π ∈ Sn.

In fact, the conditional expectation E satisfies the stronger property

E (t) ≡ t (mod ψ), ∀t ∈ B.

Thus, from the distributional point of view, the reduction from Θ(B) to E (Θ(B)) = ∆(B)
comes without loss of generality. This redundancy in the action of the graph operations
extends a great deal further. To make this precise, we introduce a subclass of the diagonal
graph operations

∆tree(GK) = {g ∈ ∆(GK) : g is a tree},

with the obvious definition for the subalgebra ∆tree(B).

Theorem 3.1.3. For any t ∈ ∆(B), there exists a T(t) ∈ ∆tree(B) such that

T(t) ≡ t (mod ψ).
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We can apply Theorem 3.1.3 to each of the diagonal components in the free product
decomposition B ≡ A∗Aᵀ∗∆(B) (mod ψ) to show that a similar statement holds for general
graph polynomials t ∈ B. In this case, the graph polynomial of trees T(t) ≡ t (mod ψ) is
obtained as a linear combination of graph operations Zg such that g ∈ G is a tree. As
such, we think of the universal enveloping traffic space as being spanned by tree-like graph
operations.

To prove all of these results, we will need a better understanding of the structure of
cactus graphs, which we undertake in the next section.

3.2 The combinatorics of cactus graphs

To begin, we recall some basic notions from graph theory, largely following [Bol98,GR01].

Definition 3.2.1 (Connectivity). Let G = (V,E) be a finite multigraph. An edge cutset in G
is a subset of edges E ′ ⊂ E whose deletion increases the number of connected components.
In particular, a cut-edge is an edge e ∈ E such that the singleton {e} is an edge cutset.
Similarly, a vertex cutset in G is a subset of vertices V ′ ⊂ V whose deletion (along with
all edges adjacent to V ′) increases the number of connected components. A cut-vertex is
defined in the obvious way. A block of G is a maximal cut-vertex-free connected subgraph
H ⊂ G. Note that any two distinct blocks of G can only have at most one vertex in common
(necessarily a cut-vertex of G). Conversely, every cut-vertex of G belongs to at least two
distinct blocks.

Suppose now that G is further connected. The edge connectivity of G is the size of the
smallest edge cutset in G, which we denote by λ(G) ≥ 1. We say that G is k-edge-connected
if k ≤ λ(G): in words, deleting any ` < k edges of G does not affect its connectivity. In
particular, we say that G is two-edge-connected (or t.e.c. for short) if it has no cut-edges.

We can define a similar notion for vertices even if G is not connected. The edge con-
nectivity of two distinct vertices v, w ∈ V is the size of the smallest subset of edges whose
deletion disconnects v and w, which we denote by λ(v, w) ≥ 0. We say that v and w are
k-edge-connected if k ≤ λ(v, w).

We will need the following version of Menger’s theorem for edge connectivity [Men27].

Theorem 3.2.2. Let v and w be distinct vertices of a finite multigraph G. Then the edge
connectivity of v and w is equal to the maximum number of edge-disjoint paths from v to w.

In view of Menger’s theorem, we also say that k-edge-connected vertices v and w form
a k-connection, particularly when we want to emphasize the number of edge-disjoint paths
connecting v and w. We apply this to obtain a simple characterization of cactus graphs.

Proposition 3.2.3. A finite multigraph G = (V,E) is a cactus iff

λ(v, w) = 2, ∀v 6= w ∈ V.
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Proof. First, suppose that G is a cactus. Note that a cactus can be reconstructed from
its pads by “growing” the cactus as follows: start at level 0 by choosing an arbitrary pad
C(0) ∈ Pad(G) to be the base. At level 1, attach all of the remaining pads C

(1)
1 , . . . , C

(1)
`1

that share a vertex with C(0). Of course, each pad can only share at most one vertex with
another pad, so we imagine each C

(1)
i as growing from a vertex in C(0). Furthermore, note

that if any two pads at this level share a vertex, then it has to be the same vertex that they
each share with C(0). Otherwise, the cactus has grown in on itself and one can easily find an
edge that belongs to more than one simple cycle. At level n, we attach all of the remaining
pads that share a vertex with a pad at level n− 1. In particular, we can think of each pad
at level n − 1 as a new base and growing the remaining pads on each base. In this case,
we further note that a pad at level n can only be attached to a single pad at level n − 1;
otherwise, one can again find an edge that belongs to more than one simple cycle.

Now, since every edge belongs to a unique simple cycle, G is necessarily t.e.c. This implies
that

λ(v, w) ≥ λ(G) ≥ 2, ∀v 6= w ∈ V.

If v and w belong to a common pad, then we can assume that this pad is the base C(0). In
this case, deleting the two edges adjacent to v in C(0) clearly disconnects v and w in G. If
v and w do not belong to a common pad, then we can again take a pad containing v to be
the base C(0). In this case, w belongs to a pad that was successively grown from an ancestor
C

(1)
1 on level 1, say attached to a vertex u ∈ C(0). Deleting the two edges adjacent to u in

C
(1)
1 then clearly disconnects v and w in G. It follows that

λ(v, w) = λ(G) = 2, ∀v 6= w ∈ V.

=⇒

Figure 3.1: An example of the edge connectivity of two distinct vertices in the cactus from
Figure 2.5. Here, we disconnect the red vertex v ∈ C(0) and the blue vertex w ∈ C(1)

1 . The
green vertex denotes the ancestor vertex u ∈ C(0).
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In the opposite direction, assume that the edge connectivity of every pair of vertices in G
is equal to two. This implies that G is connected with λ(G) = 2, and so every edge belongs
to a simple cycle. For a contradiction, assume that there exists an edge e ∈ E that belongs
to two distinct simple cycles C1 and C2. Here, we allow for common edges between the two
cycles; however, there must be at least one edge e1 ∈ C1 \ C2 (and one edge e2 ∈ C2 \ C1).
Let E ′ be a separating pair of edges for the distinct vertices v and w adjacent to e (a loop
belongs to a unique simple cycle). Of course, it must be that e ∈ E ′. In fact, the second
edge in E ′ must be another edge in C1∩C2 since otherwise v and w are not separated. Thus,
deleting e and e1 from G does not separate v and w. Let P be a simple path from v to w
in the (e, e1)-deleted graph G̃. By construction, P cannot stay in C1. Let eP be the first
edge along the path P that leaves C1, and define vP to be the vertex in C1 adjacent to eP .
Similarly, let fP be the first edge along this path that returns to C1, and define wP to be
the vertex in C1 adjacent to fP . By construction, vP 6= wP form a 3-connection in G: two
edge-disjoint paths come from inside the cycle C1, while a third comes from the truncation
of P outside of C1. Menger’s theorem then implies that λ(vP , wP ) ≥ 3, a contradiction. �

Figure 3.2: Two representative cases of the contradiction argument in the above proof. Here,
we have colored the edge e belonging to two distinct simple cycles red, its adjacent vertices
v and w black, and the edge e1 ∈ C1 \ C2 blue. The reader should identify the vertices vP
and wP as well as the associated 3-connection.

As a first application, we use Proposition 3.2.3 to give a proof of Proposition 2.4.6.

Proof of Proposition 2.4.6. We will only prove the equivalence of (i) and (ii) as the rest
of the proposition follows almost immediately. First, suppose that Cπ is a cactus. For a
contradiction, assume that π 6∈ NC(V ). After a suitable rotation of the cycle, this implies
that there exist i1 < i2 < i3 < i4 ∈ [n] such that vi1

π∼ vi3 and vi2
π∼ vi4 belong to different

blocks of π. In this case, vi2 and vi3 form a 3-connection in Cπ, which is absurd.
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π7→ =

Figure 3.3: An example of a crossing leading to a 3-connection.

In the opposite direction, suppose that π ∈ NC(V ). Naturally, we can identify the blocks
B1, . . . , B#(π) ∈ π with the vertices of Cπ. Since the original graph C is a cactus, we know
that

λ(vi1 , vi2) = 2, ∀i1 6= i2 ∈ [n].

At the same time, edge-disjoint paths in C induce edge-disjoint paths in the quotient Cπ,
which implies that

λ(Bj1 , Bj2) ≥ 2, ∀j1 6= j2 ∈ [#(π)].

Now, because π is non-crossing, two distinct blocks Bj1 , Bj2 ∈ π can only take one of two
relative positions up to symmetry: in particular, after a suitable rotation of the cycle, either

v1 ∈ Bj1 and max{i ∈ [n] : vi ∈ Bj1} < min{i ∈ [n] : vi ∈ Bj2}

or
∃vi1 , vi2 ∈ Bj2 : ∀vi ∈ Bj1 i1 < i < i2.

In words, the first case corresponds to when Bj1 and Bj2 lie on two non-intersecting arcs of
the cycle C drawn as a circle, whereas the second case corresponds to when Bj1 lies on an
arc trapped between two vertices of Bj2 . In either case, deleting the edges

emin{i∈[n]:vi∈Bj1}−1 and emax{i∈[n]:vi∈Bj1}

disconnects Bj1 and Bj2 in Cπ. We think of the identification

vmin{i∈[n]:vi∈Bj1}
π∼ vmax{i∈[n]:vi∈Bj1}

as pinching off the arc supporting Bj1 . By removing the edges at the boundary of this arc,
we have separated the vertices lying on this arc from the rest of the vertices, even in the
quotient Cπ (any identification of vertices across the two arcs would be crossing). It follows
that

λ(Bj1 , Bj2) = 2, ∀j1 6= j2 ∈ [#(π)],

and so Cπ is a cactus. �
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π7→ =⇒

Figure 3.4: A depiction of the pinching argument and the corresponding edge removals that
disconnect the arc. Here, we color the vertices vmin{i∈[n]:vi∈Bj1} and vmax{i∈[n]:vi∈Bj1} red and
blue respectively.

We emphasize an important point in the proof above, namely, that edge-disjoint paths in a
graph G induce edge-disjoint paths in a quotient Gπ. Thus, if two vertices v 6= w in G are not

identified v
π

6∼ w in Gπ, then their edge connectivity (weakly) increases λGπ(v, w) ≥ λG(v, w).
This immediately implies the following useful lemma for verifying cactus quotients.

Lemma 3.2.4 (A 3-connection criteria for cacti). Let G = (V,E) be a finite multigraph,
and suppose that the vertices v 6= w ∈ V form a 3-connection in G. If a partition π ∈ P(V )
induces a cactus Gπ, then v

π∼ w.

We give a number of applications of the 3-connection lemma to computations in the
universal enveloping traffic space (G(A), τϕ).

Proposition 3.2.5. Let T = (V,E, γ) be a test graph in A, and suppose that the vertices
v 6= w ∈ V form a 3-connection in T . We write Tv∼w for the test graph obtained from T by
identifying the vertices v and w, in which case

τϕ
[
T
]

= τϕ
[
Tv∼w

]
.

Proof. Since τ 0
ϕ is supported on (oriented) cacti, the 3-connection lemma implies that

τϕ
[
T
]

=
∑

π∈P(V )

τ 0
ϕ

[
T π
]

=
∑

π∈P(V )

s.t. v
π∼w

τ 0
ϕ

[
T π
]

= τϕ
[
Tv∼w

]
.

�

Corollary 3.2.6. Let t ∈ G(A) be a graph monomial with vertices v 6= w that form a 3-
connection. We write tv∼w for the graph monomial obtained from t by identifying the vertices
v and w, in which case

tv∼w ≡ t (mod ψ).
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Proof. This amounts to proving that

ψ(tt′) = ψ(tv∼wt
′), ∀t′ ∈ G(A).

In particular, without loss of generality, we may assume that t′ is also a graph monomial. For
a graph monomial s, recall that ∆̃(s) denotes the test graph obtained from s by identifying
the input and the output and forgetting their distinguished roles. Then there are only two
possibilities: either v and w are identified in ∆̃(tt′) and ∆̃(tt′) = ∆̃(tv∼wt

′) outright, or v

and w are not identified in ∆̃(tt′) and (∆̃(tt′))v∼w = ∆̃(tv∼wt
′). In the second case, v 6= w

still form a 3-connection in ∆̃(tt′). Thus, in any event,

ψ(tt′) = τϕ
[
∆̃(tt′)

]
= τϕ

[
∆̃(tv∼wt

′)
]

= ψ(tv∼wt
′).

�

Iterating the 3-connection lemma, we arrive at the following definition.

Definition 3.2.7 (Quasi-cactus). A finite, connected multigraph G = (V,E) is said to be a
quasi-cactus if

λ(v, w) ≤ 2, ∀v 6= w ∈ V.

Equivalently, every edge e ∈ E belongs to at most one simple cycle.

Figure 3.5: Examples of quasi-cacti. We can think of a quasi-cactus as a wiring of cacti, as
in the first example above. Of course, a quasi-cactus could consist entirely of the wires, as
in the second example above.

Corollary 3.2.8. For every graph monomial t ∈ G(A), there exists a quasi-cactus quotient
tπ such that

tπ ≡ t (mod ψ).
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Graph monomials with a cycle that visits both the input and the output play a special role
in the free product decomposition of G(A). In particular, the construction of the conditional
expectation in Theorem 3.1.1 crucially relies on the following equivalence.

Corollary 3.2.9. Let t ∈ Θ(B) be a graph monomial. Then

t ≡ ∆(t) (mod ψ).

Proof. Of course, if t ∈ ∆(B), then ∆(t) = t and we are done. Otherwise, the cycle condition
ensures a 2-connection between v := vin 6= vout =: w in t. Let t′ ∈ G(A) be a graph monomial.

If t′ ∈ ∆(B), then ∆(tt′) = ∆(t)t′. Otherwise, v and w form a 3-connection in ∆̃(tt′) with
a third edge-disjoint path coming from the edges of t′ (“going out the back door”). In

particular, note that ∆̃(tt′)v∼w = ∆̃(∆(t)t′). Thus, in any event,

ψ(tt′) = ψ(∆(tt′)) = τϕ
[
∆̃(tt′)

]
= τϕ

[
∆̃(∆(t)t′)

]
= ψ(∆(t)t′).

�

Example 3.2.10. Let a, b ∈ A. Then a ◦ b ≡ ∆(a)∆(b) (mod ψ). Pictorially,

·
out

a

⇔
b
·
in
≡ out

a

·
	
�
b

in (mod ψ).

♦

In fact, we can even use the 3-connection lemma to outright prune t.e.c. subgraphs that
are attached at a single vertex. We generalize this idea to obtain a generic cycle pruning
algorithm in Section 3.5.

Lemma 3.2.11. Let T1 = (V1, E2, γ1) and T2 = (V2, E2, γ2) be test graphs in A, and suppose
that T2 is t.e.c. We write T1]T2 = (V1]V2, E1]E2, γ1]γ2) for the test graph obtained from T1

and T2 by identifying an arbitrary vertex v1 of T1 with an arbitrary vertex v2 of T2, in which
case

τϕ
[
T1]T2

]
= τϕ

[
T1

]
τϕ
[
T2

]
.

In particular, this factorization is independent of the choice of vertices v1 and v2.

Proof. To begin, note that V1]V2 = (V1 t V2)/(v1 ∼ v2), E1]E2 = E1 t E2, and

γ1]γ2 : E1]E2 → A, (γ1]γ2)|Ei = γi.

In particular, we denote the amalgamated vertex v1 ∼ v2 ∈ V1]V2 by ρ.
For any pair of partitions π1 ∈ P(V1) and π2 ∈ P(V2), we define the subset of partitions

Pρ(π1, π2) ⊂ P(V1]V2) by

Pρ(π1, π2) = {π ∈ P(V1]V2) : π|Vi = πi}.
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In words, Pρ(π1, π2) consists of the partitions π ∈ P(V1]V2) obtained from (π1, π2) by either
keeping a block Bi ∈ πi (so Bi ∈ π) or merging it with at most a single block Bj ∈ πj
where j 6= i (so Bi ∪ Bj ∈ π). Of course, the block in π1 containing v1 and the block in π2

containing v2 are necessarily merged. Indeed, the minimal element πρ(π1, π2) ∈ Pρ(π1, π2)
for the usual reversed refinement order keeps every block of π1 and π2 separate otherwise.

By construction, ⊔
(π1,π2)∈P(V1)×P(V2)

Pρ(π1, π2) = P(V1]V2),

and so we can compute

τϕ
[
T1]T2

]
=

∑
π∈P(V )

τ 0
ϕ

[
(T1]T2)π

]
=

∑
(π1,π2)∈P(V1)×P(V2)

∑
π∈Pρ(π1,π2)

τ 0
ϕ

[
(T1]T2)π

]
.

Assume that π ∈ Pρ(π1, π2)\{πρ(π1, π2)}. Then there exists a vertex v in T1 and a vertex
w in T2 such that

v
π∼ w

π

6∼ ρ.

Since T2 is t.e.c., w and ρ form a 2-connection in T2. But then v
π∼ w and ρ form a 3-

connection in (T1]T2)π with a third edge-disjoint path coming from the edges of T1. In this
case, the 3-connection lemma implies that τ 0

ϕ

[
(T1]T2)π

]
= 0, and so∑

π∈Pρ(π1,π2)

τ 0
ϕ

[
(T1]T2)π

]
= τ 0

ϕ

[
(T1]T2)πρ(π1,π2)

]
.

The cactus structure of τ 0
ϕ further implies that if S is a test graph composed of otherwise

disjoint test graphs S1, . . . , Sn all attached at a single vertex, then

τ 0
ϕ

[
S
]

=
n∏
i=1

τ 0
ϕ

[
Si
]
. (3.5)

In particular, τ 0
ϕ

[
(T1]T2)πρ(π1,π2)

]
= τ 0

ϕ

[
T π1

1

]
τ 0
ϕ

[
T π2

2

]
, and so

τϕ
[
T1]T2

]
=

∑
(π1,π2)∈P(V1)×P(V2)

τ 0
ϕ

[
T π1

1

]
τ 0
ϕ

[
T π2

2

]
=

( ∑
π1∈P(V1)

τ 0
ϕ

[
T π1

1

])( ∑
π2∈P(V2)

τ 0
ϕ

[
T π2

2

])
= τϕ

[
T1

]
τϕ
[
T2

]
.

�

Corollary 3.2.12. Let t ∈ G(A) be a graph monomial, and suppose that T is a t.e.c. test
graph in A. We write t]T for the graph monomial obtained from t and T by identifying an
arbitrary vertex v of t with an arbitrary vertex w of T , in which case

t]T ≡ τ
[
T
]
t (mod ψ).

In particular, this equivalence is independent of the choice of vertices v and w.
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Proof. As usual, let t′ ∈ G(A) be a graph monomial. We abbreviate T1 = ∆̃(tt′) and

T2 = ∆̃((t]T )t′). In the notation of Lemma 3.2.11, we can write

T2 = T1]T,

where we attach T to T1 by identifying the vertex w of T with the (image of the) vertex
v ∈ t in T1. Since T is t.e.c., this implies that

ψ((t]T )t′) = τϕ
[
T2

]
= τϕ

[
T1]T

]
= τϕ

[
T1

]
τϕ
[
T
]

= ψ(tt′)τϕ
[
T
]

= ψ((τϕ
[
T
]
t)t′).

�

Example 3.2.13. Suppose that t ∈ ∆(B) is a graph monomial such that the underlying
graph of t is a cactus. Then, up to degeneracy, t is a constant, namely,

t ≡
∏

C∈Pads(t)

τϕ
[
C
]

(mod ψ).

♦

Of course, all of these results follow more or less from the same basic idea as captured
in the 3-connection lemma, namely, that certain identifications must be made in order to
contribute to the calculation of the injective traffic state τ 0

ϕ, and so it makes no difference if
we make these identifications ahead of time. In a slightly different direction, we can also use
the edge connectivity characterization of cactus graphs to track the image of t.e.c. subgraphs
in a cactus quotient. In particular, we obtain the following simple but useful consequence.

Corollary 3.2.14. Let G be a finite multigraph (V,E) with a t.e.c. subgraph H = (W,F ).
If a partition π ∈ P(V ) induces a cactus Gπ, then the sub-quotient Hπ|W is also a cactus. In
particular, if G is further a multidigraph and Gπ an oriented cactus, then the sub-quotient
Hπ|W is also an oriented cactus.

Proof. We will only prove the first statement as the second statement follows almost imme-
diately. Since H is t.e.c., so too is the quotient Hπ|w = (W̃ , F ). At the same time, Hπ|W is

also a subgraph of the cactus Gπ = (Ṽ , E). Altogether, this implies that

2 ≤ λHπ|W (v, w) ≤ λGπ(v, w) = 2, ∀v 6= w ∈ W̃ ⊂ Ṽ .

�
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3.3 Free products and conditional expectations

We will prove Theorem 3.1.1 in steps.

Lemma 3.3.1. Let (A, ϕ) be a tracial ∗-probability space. Then the unital ∗-subalgebras A,
Aᵀ, and ∆(B) are freely independent in the universal enveloping traffic space (B, ψ).

Proof. We will show that any mixed cumulant in A, Aᵀ, and ∆(B) vanishes. To begin, let
t1 · · · t2n be an alternating product in the subalgebras A, Aᵀ, and ∆(B), namely,

t2i+1 ∈ ∆(B) and t2i ∈ A ∪Aᵀ.

In fact, we can always write a mixed product in A, Aᵀ, and ∆(B) in this form by strategically
inserting the identity element

·
out

1A←− ·
in

= ·
out

1A−→ ·
in

=
1A

·

	

in/out
= ·

in/out
= 1B ∈ A ∩Aᵀ ∩∆(B).

The multilinearity of the free cumulant functionals (κGn)n∈N allows us to further assume that
each ti is a graph monomial, and so we write

di = t2i+1 ∈ ∆(B) and a
ˆT(i)

i
= t2i ∈ AˆT(i),

where ˆT : [n] → {1,ᵀ} indicates the transpose label and the indices i ∈ [n] and i ∈ [n]
interlace as before. In particular, we write [n + n] = {1 < 1 < · · · < n < n}. The Kreweras
complement then defines a function

K : NC(n) ∪NC(n)→ NC(n) ∪NC(n)

such that
K(NC(n)) = NC(n), K(NC(n)) = NC(n), and K2 = id.

Let us compute the trace of our alternating product. Our first step takes the form

ψ(d1a
ˆT(1)

1
· · · dnaˆT(n)

n ) = τϕ
[
Tn
]

=
∑

π∈P(V )

τ 0
ϕ

[
T πn
]
, (3.6)

where Tn = ∆̃(d1a
ˆT(1)

1
· · · dnaˆT(n)

n ) ∈ T (A) with the vertex set V . In words, Tn consists of a

cycle Cn of length n with vertices v1, . . . , vn in counterclockwise order; edges vi
ei∼ vi+1 in

the clockwise orientation if ˆT(i) = 1 (resp., in the counterclockwise orientation if ˆT(i) = ᵀ);
labels γ(ei) = ai; and each monomial di attached at the vertex vi via the identification

input(di) = output(di) ∼ vi.

One can think of the notation Tn as a shortening of Tn(d1, a1, . . . , dn, an). In particular,
we visualize the test graph Tn as a cycle with a single loop (or “petal”) attached at each
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vertex and the arguments di, ai as indicating the edge labels: the loops are labeled by the
di and the edges of the cycle are labeled by the ai. In the case of a loop, the edge label
stands in for the graph monomial di that is to be rooted at that location (for example, by
substitution). We draw the loops as undirected since the orientation plays no role in the
substitution; the edges of the cycle are oriented according the transpose label ˆT (recall the
proof of Proposition 2.4.7).

1

1
2

6

4

3

8
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9

10

3

9

4 7

2

5

10

8

6

Figure 3.6: A visualization of the test graph Tn for n = 10. To highlight the relevant features,
we omit the ordering of the edges and their labels. We will see how a non-crossing partition
of the cycle Cn acts on the petals of Tn shortly.

Of course, not every partition contributes in the calculation of (3.6). We can narrow
down the summands by finding necessary conditions for π ∈ P(V ) to have τ 0

ϕ

[
T π
]
6= 0.

For starters, T πn must be an oriented cactus. If so, Corollary 3.2.14 implies that the sub-

quotient C
π|Cn
n is also an oriented cactus, in which case Proposition 2.4.6 already tells us

that π restricts to a non-crossing partition of Cn (that further satisfies condition (II)). The

enumeration of the vertices v1, . . . , vn (resp., edges vi
ei∼ vi+1) of the cycle Cn allows us to

consider π|Cn ∈ NC([n]) (resp., K(π|Cn) ∈ NC(n)) as convenient. The blocks

B = (i1 < · · · < i#(B)) ∈ π|Cn

then group the petals di into bunches (or “flowers”)(∏
i∈B

di

)
B∈π|Cn

,
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each attached at a single vertex B in C
π|Cn
n . Suppose that π makes an identification across

different flowers (“cross-pollinates”), i.e., there exist vertices u ∈ di and w ∈ dj such that

u
π∼ w and i

π|Cn
6∼ j. Then the vertices vi and vj of the cycle form a 3-connection in T πn : two

edge-disjoint paths come from the cactus C
π|Cn
n , and a third comes from the edges of di and

dj. In this case, T πn cannot possibly be a cactus, and so τ 0
ϕ

[
T πn
]

= 0.
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Figure 3.7: A visualization of the flowering process. The red dotted lines on the right indicate
identifications across different flowers. Such cross-pollination will not produce a cactus.

Thus, we are left to consider partitions π ∈ P(V ) such that π|Cn ∈ NC(n) and π does
not cross-pollinate. Iterating the vertex factorization property (3.5) of the injective traffic
state at each vertex B ∈ π|Cn in T πn , we can rewrite the sum in (3.6) as∑

π∈P(V )

τ 0
ϕ

[
T πn
]

=
∑

π∈NC(n)

(∏
B∈π

∑
ηB∈P(VB)

τ 0
ϕ

[
∆̃

(∏
i∈B

di

)ηB])(
τ 0
ϕ

[
Cn(a1, . . . , an)π

])
,

where VB is the vertex set of the test graph ∆̃
(∏

i∈B di
)
. Moreover, by definition,∑

ηB∈P(VB)

τ 0
ϕ

[
∆̃

(∏
i∈B

di

)ηB]
= τϕ

[
∆̃

(∏
i∈B

di

)]
= ψ

(
∆

(∏
i∈B

di

))
= ψ

(∏
i∈B

di

)
,

and so∏
B∈π

∑
ηB∈P(VB)

τ 0
ϕ

[
∆̃

(∏
i∈B

di

)ηB]
=
∏
B∈π

ψ

(∏
i∈B

di

)
= ψπ[d1, . . . , dn] =

∑
ω∈NC(n)
s.t. ω≤π

κGω[d1, . . . , dn].
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At the same time, condition (II) of Proposition 2.4.6 imposes an additional constraint on π.
Altogether, our expression for the trace becomes

ψ(d1a
ᵀ(1)

1
· · · dnaᵀ(n)

n ) =
∑

π∈NC(n) s.t.
K(π)=σ∪ρ∈NC(n)

for some σ∈NC(ˆT−1(1))
and ρ∈NC(ˆT−1(ᵀ))

( ∑
ω∈NC(n)
s.t. ω≤π

κGω[d1, . . . , dn]

)(
κGK(π)[a

ᵀ(1)

1
, . . . , a

ᵀ(n)
n ]

)

=
∑

π∈NC(n+n) s.t.
π=π1∪π2,

where π2=σ∪ρ∈NC(n)
for some σ∈NC(ˆT−1(1))

and ρ∈NC(ˆT−1(ᵀ))
and π1≤K(π2)∈NC(n)

κGπ [d1, a
ˆT(1)

1
, . . . , dn, a

ˆT(n)
n ],

where we have applied the Kreweras complement K to reindex the sum in the second equality.
In particular, we see that there are no contributions from mixed cumulants in A, Aᵀ, and
∆(B). It follows that mixed cumulants in A, Aᵀ, and ∆(B) vanish, as was to be shown. �

We move on to the construction of the conditional expectation E : B → A ∗ Aᵀ ∗∆(B).
For a finite, connected simple graph G = (V,E), we recall the construction of the block-cut
tree bc(G) of G. The vertices of bc(G) consist of both the cut-vertices of G and the blocks of
G with edges determined by inclusion: we connect a cut-vertex v to a block H if v ∈ H. As
the name suggests, the block-cut tree is indeed a tree. It will be convenient to distinguish
between the two different classes of vertices in bc(G). In particular, we use circular vertices
for the cut-vertices and square vertices for the blocks.

We will need a simple modification of the block-cut tree construction in the case of a
bi-rooted multidigraph G = (V,E, src, tar, vin, vout). Allowing for multiple (directed) edges
does not materially affect the construction; however, allowing for loops creates an issue when
determining the blocks. Specifically, a loop based at a cut-vertex will belong to more than
one block of G. To account for this, we temporarily remove any loop based at a cut-vertex
of G, resulting in a graph G̃. We reintroduce the loops in the block-cut tree bc(G̃) by adding
a single block for each set of loops based at a given cut-vertex with an edge between the
two to indicate the inclusion. This process ensures that we have a faithful reconstruction of
the original graph G from our modified block-cut tree. Furthermore, if either distinguished
vertex vin or vout is not a cut-vertex, then we add it to our tree as a circular vertex, colored
black, and attach it to its corresponding (unique) block (if vin = vout then we only add a
single vertex). A moment’s thought shows that the resulting graph, which we denote bcd(G),
is of course still a tree.

We apply our modified block-cut tree construction to graph monomials t ∈ B to prove

Lemma 3.3.2. There exists a homomorphic conditional expectation E : B → A∗Aᵀ ∗∆(B)
such that

E −1(A) = A, E −1(Aᵀ) = Aᵀ, E −1(∆(B)) = Θ(B),
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and
E (t) ≡ t (mod ψ), ∀t ∈ B. (3.7)

in
ou

t

bcd(G) =

G =

Figure 3.8: An example of the modified block-cut tree construction. Starting with a bi-
rooted multidigraph G, we color each of the non-root cut vertices. Note that in this case the
output vout is not a cut-vertex, and so we append it to the standard block-cut tree.
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Proof. Let t = (V,E, src, tar, vin, vout, γ) ∈ B be a graph monomial with modified block-cut
tree bcd(t). By construction, there exists a unique path P = (v1, B1, . . . , vn−1, Bn−1, vn)
from vin to vout in bcd(t) (in particular, v1 = vin and vn = vout). For each non-block vertex
vi on this path, we consider the connected component of vi in bcd(t) off of the path P ,

namely, let C̃(vi) denote the connected component containing vi after removing the edges

of the path P . Similarly, for each block Bi on the path P , let C̃(Bi) denote the connected
component containing Bi in bcd(t) off of the path P . Note that each connected component

C̃(vi) (resp., C̃(Bi)) corresponds to a connected edge-labeled subgraph C(vi) (resp., C(Bi))
of the original graph monomial t. Each of the subgraphs C(vi) (resp., C(Bi)) further defines
a graph monomial after a natural choice of distinguished vertices

di = (C(vi), vi, vi) ∈ ∆(B) (resp., mi = (C(Bi), vi, vi+1) ∈ B).

For example, if vin = vout ∈ t, then

P = (v1), C̃(v1) = bcd(t), and t = d1 ∈ ∆(B).

In fact, the last equality is simply a special case of the general factorization

t = dnmn−1dn−1 · · ·m1d1. (3.8)

Figure 3.9: Removing the edges of the path P . We apply this procedure to the block-cut
tree from Figure 3.8 to identify the components and produce the factorization (3.8).
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Suppose that a factor mi 6∈ A ∪ Aᵀ. Then there must be a simple cycle in mi that
visits both the input vi and the output vi+1. Indeed, this follows from the vertex version of
Menger’s theorem: if vi 6= vi+1 are the only vertices in mi, then mi 6∈ A ∪ Aᵀ implies that
there are multiple edges between vi and vi+1; if vi 6= vi+1 are not the only vertices in mi,
then the lack of cut-vertices in mi implies the existence of such a simple cycle. Corollary
3.2.9 then implies that

mi ≡ ∆(mi) (mod ψ).

To apply this to our factorization (3.8), we define a linear operator ∇ : B → B on graph
monomials m by the formula

∇(m) =

{
m if m ∈ A ∪Aᵀ,
∆(m) otherwise.

In particular, E (t) := dn∇(mn−1)dn−1 · · · ∇(m1)d1 ∈ A ∗ Aᵀ ∗∆(B) satisfies

E (t) ≡ t (mod ψ).

Extending E to B by linearity, properties (i)-(iii) of a conditional expectation (Definition
2.1.11) follow almost immediately. Moreover, property (iv) will follow if we can prove that
E is a homomorphism E (t1t2) = E (t1)E (t2). As before, we can assume that t1 and t2 are
graph monomials, say with block-cut tree factorizations

t1 = d(1)
n1
m

(1)
n1−1d

(1)
n1−1 · · ·m

(1)
1 d

(1)
1 and t2 = d(2)

n2
m

(2)
n2−1d

(2)
n2−1 · · ·m

(2)
1 d

(2)
1

coming from the paths

P1 = (v
(1)
1 , B

(1)
1 , . . . , v

(1)
n1−1, B

(1)
n1−1, v

(1)
n1

) and P2 = (v
(2)
1 , B

(2)
1 , . . . , v

(2)
n2−1, B

(2)
n2−1, v

(2)
n2

)

in bcd(t1) and bcd(t2) respectively. The reader will now see why we have insisted on including
the distinguished vertices in the modified block-cut tree. In particular, the amalgamated
vertex v

(2)
out = v

(1)
in ∈ t1t2 is either a cut-vertex of t1t2 or once again a distinguished vertex vin

or vout ∈ t1t2. The path from vin to vout in bcd(t1t2) can then be written as

P = (v
(2)
1 , B

(2)
1 , . . . , v

(2)
n2−1, B

(2)
n2−1, v

(2)
n2

= v
(1)
1 , B

(1)
1 , . . . , v

(1)
n1−1, B

(1)
n1−1, v

(1)
n1

),

which gives rise to the factorization

t1t2 = d(1)
n1
m

(1)
n1−1d

(1)
n1−1 · · ·m

(1)
1 (d

(1)
1 d(2)

n2
)m

(2)
n2−1d

(2)
n2−1 · · ·m

(2)
1 d

(2)
1 .

We conclude that

E (t1t2) = d(1)
n1
∇(m(1)

n1−1)d
(1)
n1−1 · · · ∇(m

(1)
1 )(d

(1)
1 d(2)

n2
)∇(m(2)

n2−1)d
(2)
n2−1 · · · ∇(m

(2)
1 )d

(2)
1

= (d(1)
n1
∇(m(1)

n1−1)d
(1)
n1−1 · · · ∇(m

(1)
1 )d

(1)
1 )(d(2)

n2
∇(m(2)

n2−1)d
(2)
n2−1 · · · ∇(m

(2)
1 )d

(2)
1 ) = E (t1)E (t2).

Finally, the equalities

E −1(A) = A, E −1(Aᵀ) = Aᵀ, and E −1(∆(B)) = Θ(B)

follow virtually by definition. �
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Remark 3.3.3. The construction of our conditional expectation E relies on taking a par-
ticular (graphical) realization of a graph monomial t ∈ B. Of course, one should then verify
that this construction is well-defined. We can restrict our attention to the monomials mi

coming from the blocks Bi since E only acts on these factors. Moreover, since the action of
E is defined on each factor individually, we can further restrict to a single factor mi. Here,
there are two cases to consider. First, suppose that a factor mi = P (a1, . . . , ak) ∈ A. Then

mi = ·
out

P (a1,...,ak)←−−−−−− ·
in

= P

(
·

out

a1←− ·
in
, · · · , ·

out

ak←− ·
in

)
.

Running through the algorithm for E on mi, we have the equality

E

(
P

(
·

out

a1←− ·
in
, · · · , ·

out

ak←− ·
in

))
= P

(
·

out

a1←− ·
in
, · · · , ·

out

ak←− ·
in

)
= ·

out

P (a1,...,ak)←−−−−−− ·
in

= E

(
·

out

P (a1,...,ak)←−−−−−− ·
in

)
,

and similarly for mi = P (a1, . . . , ak)
ᵀ.

Next, suppose that h ∈ B is a graph monomial such that h = zd ∈ ∆(B) for some z ∈ C
and graph monomial d ∈ ∆(B). For example, it could be that z ∈ R+ and

h = ·
out

√
z←− ·

√
z−→ ·

in
= z

(
·

in/out

)
.

A factor mi could then take the form

mi = ·
out

g

⇔
h
·
in

= z

(
out

g

·

	

�
d

in

)
,

where g stands in for an arbitrary graph monomial. Again, running through the algorithm
for E on mi,

E

(
·

out

g

⇔
h
·
in

)
= out

g

·

	

�
h

in = z

(
out

g

·

	

�
d

in

)
= E

(
z

(
out

g

·

	

�
d

in

))
.

Note that these are the only cases where the identifications defining B = CG(2)〈A〉/I can
affect the path P in bcd(t): the former by expanding the block bi by introducing cut vertices
in mi; the latter by compressing the block bi by identifying the vertices vi 6= vi+1 ∈ mi. In
any case, we see that the action of E is well-defined.

In general, a conditional expectation is only unique up to degeneracy. In particular, if
F : B → A ∗ Aᵀ ∗∆(B) is also a conditional expectation, then

F (t) ≡ E (t) (mod ψ), ∀t ∈ B.
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Indeed, even with the additional properties stated in Lemma 3.3.2, one can still find such
maps F 6= E . To see this, note that our algorithm for E only operates on the cut-vertices
of t along the path P . The map E satisfies the equivalence (3.7) precisely because it only
identifies redundant vertices (i.e., vertices that would need to be identified anyway in order
to contribute to the calculation of the injective traffic state). Yet, there can be many such re-
dundant vertices, whereas E only considers a “minimal” subset of them. One can modify the
map E while preserving all of the desired properties by specifying a more vigilant approach
to dealing with such redundancies within each component C(vi) and C(Bi) defined by the
path P . Doing so clearly defines other maps F 6= E . We encourage the reader to consider
the example in Figure 3.8. At the same time, we can formalize this notion of minimality to
characterize our map E .

Corollary 3.3.4. The map E is the unique homomorphic conditional expectation that sat-
isfies the commutation in (3.1):

E

(
·

out

t

⇔
t′
·
in

)
= out

t

·

	

�
t′

in , ∀t, t′ ∈ B.

Proof. Suppose that F is such a map. Then for a monomial t ∈ B with block-cut tree
factorization t = dnmn−1dn−1 · · ·m1d1,

F (t) = F (dn)F (mn−1)F (dn−1) · · ·F (m1)F (d1) = dnF (mn−1)dn−1 · · ·F (m1)d1,

and so it suffices to prove that F (mi) = ∇(mi). If mi ∈ A∪Aᵀ, then F (mi) = mi = ∇(mi)
and we are done. Otherwise, there is a simple in cycle in mi that visits both the input and
the output of mi (recall the proof of Lemma 3.3.2), which means that we can write

mi = ·
out

t

⇔
t′
·
in

for some t, t′ ∈ B. But then, by assumption,

F (mi) = F

(
·

out

t

⇔
t′
·
in

)
= out

t

·

	

�
t′

in = ∇(mi).

�

Finally, the last piece of Theorem 3.1.1 now follows almost immediately.

Corollary 3.3.5. The universal enveloping traffic space (B, ψ) = (G(A), ϕτϕ) admits the
free product decomposition

(B, ψ) = (A, ψ|A) ∗ (Aᵀ, ψ|Aᵀ) ∗ (Θ(B), ψ|∆(B).

Proof. Our modified block-cut tree algorithm already proves the algebraic free product de-
composition B = A ∗ Aᵀ ∗ Θ(B). We can further use our conditional expectation E to
pull back the free independence of A, Aᵀ, and ∆(B) to E −1(A) = A, E −1(Aᵀ) = Aᵀ, and
E −1(∆(B)) = Θ(B). �
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3.4 A duality between classical and free

It suffices to prove Theorem 3.1.2 for a pair of unital ∗-subalgebras A1,A2 ⊂ A.

Lemma 3.4.1. Let A1 and A2 be freely independent unital ∗-subalgebras of a tracial ∗-
probability space (A, ϕ). Then the commutative sub-traffic-spaces ∆(B1) = ∆(G(A1)) and
∆(B2) = ∆(G(A2)) are classically independent in (B, ψ).

Proof. Let ti ∈ ∆(Bi) be a graph monomial. Then

t1t2 = out

t1

·

	

�
t2

in and ∆̃(t1t2) =
t1

·

	

�
t2

,

and we can compute the trace as

ψ(t1t2) = τϕ
[
∆̃(t1t2)

]
=

∑
π∈P(V )

τ 0
ϕ

[
∆̃(t1t2)π

]
.

We think of the edges of t1 (resp., t2) as being colored black (resp., red) to indicate the edge

labels in A1 (resp., A2). Since A1 and A2 are freely independent, τ 0
ϕ

[
∆̃(t1t2)π

]
= 0 unless

∆̃(t1t2)π is an oriented cactus whose pads are each of a uniform color (a colored oriented

cactus). But this implies that ∆̃(ti)
π|

∆̃(ti) is a sub-cactus of ∆̃(t1t2)π. Moreover, note that

the sub-cacti ∆̃(t1)
π|

∆̃(t1) and ∆̃(t2)
π|

∆̃(t2) can only have one vertex in common as two such
vertices would form a 4-connection, with two edge-disjoint paths coming from the black edges
and two edge-disjoint paths coming from the red edges. Of course, this common vertex must
be

ρ := input(t1) = output(t1) = input(t2) = output(t2) ∈ ∆̃(t1t2),

in which case
τ 0
ϕ

[
∆̃(t1t2)π

]
= τ 0

ϕ

[
∆̃(t1)

π|
∆̃(t1)

]
τ 0
ϕ

[
∆̃(t2)

π|
∆̃(t2)

]
.

In particular, if ∆̃(t1t2)π is a colored oriented cactus with vi ∈ ∆̃(ti) such that v1
π∼ v2, then

it is necessarily the case that v1
π∼ ρ

π∼ v2. This allows us to factor the trace

ψ(t1t2) =
∑

π∈P(V )

τ 0
ϕ

[
∆̃(t1t2)π

]
=

( ∑
π1∈P(V1)

τ 0
ϕ

[
∆̃(t1)π1

])( ∑
π2∈P(V2)

τ 0
ϕ

[
∆̃(t2)π2

])
= τϕ

[
∆̃(t1)

]
τϕ
[
∆̃(t2)

]
= ψ(t1)ψ(t2),

as was to be shown. �

The general case of Theorem 3.1.2 now follows from the associativity of free independence.
Our proof relies on an explicit calculation made possible by the cactus structure of the injec-
tive traffic state τ 0

ϕ. At the same time, one can also realize this duality by appealing to the
relationship between traffic independence and classical/free independence. More precisely,
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Proposition 4.8 in [CDM] states that the free independence of the (Ai)i∈I in (A, ϕ) amounts
to the traffic independence of the (G(Ai))i∈I in (G(A), τϕ). We can specialize this to the
traffic independence of the sub-traffic-spaces (∆(G(Ai)))i∈I , where ∆(G(Ai)) ⊂ G(Ai). The-
orem 5.5 of [Mal] proves that traffic independence and classical independence are equivalent
for diagonal traffic random variables ∆(t) = t, and so the result follows.

3.5 A cycle pruning algorithm

In this section, we generalize the ideas of Section 3.2 and 3.3 to formulate a generic cycle
pruning algorithm. However, this generality comes at a cost: in contrast to our earlier
results, our equivalence now takes the form of a graph polynomial.

Theorem 3.5.1. Let t = ∆(d0a
ˆT(0)
0 · · · dnaˆT(n)

n ) be a graph monomial in B, where di ∈ ∆(B)
and ai ∈ A are graph monomials with the transpose labels ˆT(i) ∈ {1,ᵀ}. For any subset
A = {i1 < · · · < i#(A)} ⊂ [n], we define the A-segmented factors

mA,k = a
ˆT(ik)
ik

dik+1 · · · aˆT(ik+1−2)
ik+1−2 dik+1−1a

ˆT(ik+1−1)
ik+1−1

for 0 ≤ k ≤ #(A), where i0 = 0 and i#(A)+1 = n+ 1. In particular, note that

d0a
ˆT(0)
0 · · · dnaˆT(n)

n = d0mA,0di1mA,1 · · · di#(A)
mA,#(A).

Then

t ≡
∑
A⊂[n]

(
ψ(mA)(d0

∏
i∈A

di)

)
(mod ψ),

where

mA =
∑
B⊂[n]

s.t. A⊂B

(
(−1)#(B)−#(A)

∏
i∈B\A

di

#(B)∏
k=0

∆(mB,k)

)
.

Proof. If n = 0, then t = ∆(d0a
ˆT(0)
0 ) = d0∆(a

ˆT(0)
0 ). In this case, t has a loop e with edge label

γ(e) = a0. Corollary 3.2.12 then implies that

t ≡ ψ(a0)d0 (mod ψ),

and so we are done.
Otherwise, assume that n ≥ 1. As before, we think of t = ∆(d0a

ˆT(0)
0 · · · dnaˆT(n)

n ) as a
flower: in this case, a cycle of length n + 1 with the petals di based at each vertex vi. For
any subset A ⊂ [n], we define the graph monomial tA by the identifying the vertices v0 ∼ vi
for i ∈ A. As a sanity check, note that

tA = d0

∏
i∈A

di

#(A)∏
k=0

∆(mA,k).
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We further define the graph polynomials

pA(t) =
∑
B⊂[n]

s.t. A⊂B

(−1)#(B)−#(A)tB,

which satisfy the identity∑
A⊂[n]

pA(t) =
∑
A⊂[n]

∑
B⊂[n]

s.t. A⊂B

(−1)#(B)−#(A)tB =
∑
B⊂[n]

(∑
A⊂B

(−1)#(B)−#(A)

)
tB = t∅ = t.

So, the result will follow if we can show that

pA(t) ≡ ψ(mA)d0

∏
i∈A

di (mod ψ).

To this end, let t′ ∈ B be a graph monomial. We will prove that

ψ(pA(t)t′) =
∑
B⊂[n]

s.t. A⊂B

(−1)#(B)−#(A)ψ(tBt
′) = ψ(mA)ψ((d0

∏
i∈A

di)t
′).

For starters, note that we can factor

∆(tBt
′) =

(
d0

∏
i∈A

di∆(t′)

)( ∏
i∈B\A

di

#(B)∏
k=0

∆(mB,k)

)
=: lA(B)rA(B)

into a left side lA = lA(B) and a right side rA(B) joined at the single vertex

ρ := input(lA) = output(lA) = input(rA(B)) = output(rA(B)) ∈ ∆(tBt
′).

Similarly, we define the test graphs

LA = ∆̃(lA) = (VLA , ELA , γLA) and RA(B) = ∆̃(rA(B)) = (VRA(B), ERA(B), γRA(B)),

in which case

∆̃(tBt
′) = LA]RA(B) = (VLA]RA(B), ELA]RA(B), γLA]RA(B)).

Here, we use LA]RA(B) to denote the test graph obtained from LA and RA(B) by identifying
the vertices input(lA) = output(lA) ∈ LA and input(rA(B)) = output(rA(B)) ∈ RA(B). For
convenience, we write rA = rA(A) and RA = RA(A).

Now, by definition,

ψ(tBt
′) = ψ(lArA(B)) = τϕ

[
LA]RA(B)

]
=

∑
πB∈P(VLA]RA(B))

τ 0
ϕ

[
(LA]RA(B))πB

]
. (3.9)
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It will be convenient to reindex the sum in terms of partitions π ∈ P(VLA]VRA). For any
pair of partitions πL ∈ P(VLA) and πR ∈ P(VRA), we define the class of partitions

Pρ(πL, πR) = {π ∈ P(VLA]RA) : π|VLA = πL and π|VRA = πR}.

We recall the interpretation for Pρ(πL, πR) from Lemma 3.2.11: Pρ(πL, πR) consists of the
partitions π ∈ P(VLA]RA) obtained from (πL, πR) by either keeping a block V ∈ πL ∪ πR (so
V ∈ π) or merging it with at most a single block from V ′ from the other side (so V ∪V ′ ∈ π).
Of course, the block in πL containing input(lA) = output(lA) and the block in πR containing
input(rA) = output(rA) are necessarily merged. As before, we write πρ(πL, πR) for the
minimal element in Pρ(πL, πR) for the reversed refinement order. By construction,⊔

(πL,πR)∈P(VLA )×P(VRA )

Pρ(πL, πR) = P(VLA]VRA).

Moreover, note that for every partition πB ∈ P(VLA]VRA(B)), there exists a unique partition
π ∈ P(VLA]VRA) such that

(LA]RA(B))πB = (LA]RA)π.

Indeed, one can construct π from πB by simply expanding the amalgamated vertex vi ∼ vj
for i, j ∈ B in πB into the vertices vi ∼ vj for i, j ∈ A ⊂ B and vk for k ∈ B \ A. For a
partition πR ∈ P(VRA), we then define

BπR = {i : vi
πR∼ v0} ∪ A ⊂ [n].

This allows us to rewrite (3.9) as

ψ(tBt
′) =

∑
πB∈P(VLA]RA(B))

τ 0
ϕ

[
(LA]RA(B))πB

]
=

∑
πL∈P(VLA )

∑
πR∈P(VRA )
s.t. B⊂BπR

∑
π∈Pρ(πL,πR)

τ 0
ϕ

[
(LA]RA)π

]
,

in which case

ψ(pA(t)t′) =
∑
B⊂[n]

s.t. A⊂B

(−1)#(B)−#(A)
∑

πL∈P(VLA )

∑
πR∈P(VRA )
s.t. B⊂BπR

∑
π∈Pρ(πL,πR)

τ 0
ϕ

[
(LA]RA)π

]

=
∑

πL∈P(VLA )

∑
πR∈P(VRA )

∑
π∈Pρ(πL,πR)

( ∑
B⊂[n]

s.t. A⊂B⊂BπR

(−1)#(B)−#(A)

)
τ 0
ϕ

[
(LA]RA)π

]
=

∑
πL∈P(VLA )

∑
πR∈P(VRA )
s.t. BπR=A

∑
π∈Pρ(πL,πR)

τ 0
ϕ

[
(LA]RA)π

]

since ∑
B⊂[n]

s.t. A⊂B⊂BπR

(−1)#(B)−#(A) = 0
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unless A = BπR .
Continuing the calculation, suppose that π 6= πρ(πL, πR) ∈ Pρ(πL, πR), where BπR = A.

Then (LA]RA)π cannot possibly be a cactus. Indeed, since BπR = A, the vertices vi 6= ρ
form a 2-connection in (LA]RA)π for i ∈ B \ A via the edges of

∆̃(a
ˆT(ik)
ik
· · · aˆT(ik+1−1)

ik+1−1 ) ⊂ ∆̃(mA,k) ⊂ RA,

where A = {i1 < · · · < i#(A)} and
ik < i < ik+1.

Now since π 6= πρ(πL, πR), it must be that π identifies a vertex v in

∆̃(di) ⊂ ∆̃(mA,k) = ∆̃(a
ˆT(ik)
ik

dik+1 · · · aik+1−2dik+1−1a
ˆT(ik+1−1)
ik+1−1 )

with a vertex w in LA ⊂ LA]RA for some i ∈ B \ A. Of course, w is already connected to
ρ in LA, so this identification creates a path from vi to ρ using only the edges of LA and
∆̃(di), which implies that vi and ρ form a 3-connection in (LA]RA)π. The lone contribution
in our sum over Pρ(πL, πR) then comes from the minimum element πρ(πL, πR), and so∑

πL∈P(VLA )

∑
πR∈P(VRA )
s.t. BπR=A

∑
π∈Pρ(πL,πR)

τ 0
ϕ

[
(LA]RA)π

]
=

∑
πL∈P(VLA )

∑
πR∈P(VRA )
s.t. BπR=A

τ 0
ϕ

[
(LA]RA)πρ(πL,πR)

]
=

∑
πL∈P(VLA )

τ 0
ϕ

[
LπLA
] ∑
πR∈P(VRA )
s.t. BπR=A

τ 0
ϕ

[
RπR
A

]
.

Now, by definition, ∑
πL∈P(VLA )

τ 0
ϕ

[
LπLA
]

= ψ(lA) = ψ((d0

∏
i∈A

di)t
′),

whereas ∑
πR∈P(VRA )
s.t. BπR=A

τ 0
ϕ

[
RπR
A

]
=

∑
B⊂[n]

s.t. A⊂B

(
(−1)#(B)−#(A)

∑
πR∈P(VRA )
s.t. B⊂BπR

τ 0
ϕ

[
RπR
A

])

=
∑
B⊂[n]

s.t. A⊂B

(−1)#(B)−#(A)ψ(rA(B))

=
∑
B⊂[n]

s.t. A⊂B

(−1)#(B)−#(A)ψ

( ∏
i∈B\A

di

#(B)∏
k=0

∆(mB,k)

)
= ψ(mA).

We conclude that

ψ(pA(t)t′) =
∑
B⊂[n]

s.t. A⊂B

(−1)#(B)−#(A)ψ(tBt
′) = ψ(mA)ψ((d0

∏
i∈A

di)t
′),

as was to be shown. �
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In words, Theorem 3.5.1 says that the flower t = ∆(d0a
ˆT(0)
0 · · · dnaˆT(n)

n ) is equivalent to
a polynomial in the petals di. In fact, the result still holds even if input(t) = output(t) is

not located in the cycle ∆(a
ˆT(0)
0 · · · aˆT(n)

n ) ⊂ t. Indeed, suppose that t = ∆(t) has a simple
cycle C ⊂ t. Without loss of generality, we may assume that t is a quasi-cactus (Corollary
3.2.8). For any vertex v ∈ C, we define tv to be the graph monomial obtained from t
by changing both the input and the output to v. Since t is a quasi-cactus, we can write
tv = ∆(d0a

ˆT(0)
0 · · · dnaˆT(n)

n ) as a flower. Moreover, by construction,

∆̃(t) = ∆̃(tv) ∈ T 〈A〉, ∀v ∈ C.

Specifically, we choose the unique vertex v ∈ C such that the petal d0 ⊂ tv rooted at v
contains the original input/output of t. In the notation of Theorem 3.5.1, the vertex v now
becomes v0. We can then apply our cycle pruning algorithm to obtain a graph polynomial

p(tv) :=
∑
A⊂[n]

(
ψ(mA)(d0

∏
i∈A

di)

)
≡ tv (mod ψ).

For any subset A ⊂ [n], let d̂A be the unique graph monomial such that

∆̃(d̂A) = ∆̃

(
d0

∏
i∈A

di

)
with input(d̂A) = output(d̂A) = input(t) = output(t) ∈ d0. Then

p(t) :=
∑
A⊂[n]

(
ψ(mA)d̂A

)
≡ t (mod ψ). (3.10)

To see this, let t′ ∈ B be a graph monomial. Note that the construction of the polynomial
p(tv) leaves the initial petal d0 intact throughout. In particular, any modification to this
petal does not affect the coefficients ψ(mA), and so we only need to account for the change
in the terms d0

∏
i∈A di for A ⊂ [n]. This implies that

ψ(tt′) = τϕ
[
∆̃(tt′)

]
= τϕ

[
∆̃(tv)]∆̃(t′)

]
= ψ(tv]∆̃(t′))

=
∑
A⊂[n]

ψ(mA)ψ

(
(d0]∆̃(t′))

∏
i∈A

di

)

=
∑
A⊂[n]

ψ(mA)τϕ

[
∆̃(d0

∏
i∈A

di)]∆̃(t′)

]

=
∑
A⊂[n]

ψ(mA)τϕ

[
∆̃(d̂A)]∆̃(t′)

]
=
∑
A⊂[n]

ψ(mA)ψ(d̂At
′) = ψ(p(t)t′),
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where, in every case, ] denotes the appropriate object (test graph or graph monomial)
obtained by identifying the vertices input(t) = output(t) (seen as vertices of tv, d0, or d̂A)

and input(t′) = output(t′) ∈ ∆̃(t′). The equivalence (3.10) now follows.
Our work above commits the formal details of the proof, but it also suggests a simple

interpretation of the result. For simplicity, we think of every diagonal element di as a petal
of the flower ∆(d0a

ˆT(0)
0 · · · dnaˆT(n)

n ); however, this neglects the fact that d0 plays a special role
in the construction. Instead, we should think of d0 as the stem of the flower. Theorem 3.5.1
then tells us how to prune the flower before reattaching it to the stem. If input(t) = output(t)
is not located in the cycle, then we simply need to orient ourselves properly to apply the
algorithm. So, we designate the stem according to the location of the distinguished vertex,
in which case everything goes through as before. Iterating the algorithm, we can gradually
remove every cycle of t = ∆(t). Of course, the diagonality assumption greatly simplifies the
analysis, but we can always reduce to this case. Indeed, recall that B ≡ A∗Aᵀ∗∆(B) (mod ψ)
via the conditional expectation E . In the notation of Lemma 3.3.2, if t is a graph monomial
with block-cut tree factorization t = dnmn−1dn−1 · · ·m1d1, then

E (t) = dn∇(mn−1)dn−1 · · · ∇(m1)d1;

however, note that if ∇(mi) ∈ A ∪ Aᵀ, then ∇(mi) is a cut-edge. So, it must be that every
cycle in E (t) belongs to a factor ∇(mi) ∈ ∆(B) or di ∈ ∆(B). Passing to a quasi-cactus
equivalent, we can then apply our cycle pruning algorithm. Moreover, the quasi-cactus
property is preserved by our algorithm (remove the flower, attach petals); so, even though
passing to a quasi-cactus equivalent may create more cycles, this is a one-time cost that
then allows us to iterate our algorithm to eventually prune every cycle (recall that Corollary
3.2.12 already takes care of loops). Theorem 3.1.3 now follows, and so too does its extension
to B, namely,

Theorem 3.5.2. For any t ∈ B, there exists a graph polynomial T(t) of trees such that

T(t) ≡ t (mod ψ).
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Chapter 4

Applications to random multi-matrix
models

In this chapter, we apply the traffic framework to study the asymptotics of random multi-
matrix models. Random matrices provide the most salient source of applications for the
traffic framework. Here, the action of the graph operations provides a unified setting that
captures the interaction of a number of linear algebraic structures. For example, as opposed
to thinking of the transpose as an operation on the entries of a matrix, we can think of
the transpose as a particular graph operation, which allows us to consider its relation with
other graph operations. Naturally, the results in the previous chapter will come into play.
In particular, the results in this chapter combine work in both [AM] and [Au].

4.1 Introduction and main results

For a matrix AN ∈ MatN(C), let (λk(AN))1≤k≤N denote the eigenvalues of AN , counting
multiplicity, arranged in a radially non-increasing order. In particular, we write

µ(AN) =
1

N

N∑
k=1

δλk(AN )

for the empirical spectral distribution (or ESD for short) of AN , where

|λ1(AN)| ≥ · · · ≥ |λN(AN)|

and
0 ≤ arg(λk(AN)) ≤ arg(λk+1(AN)) < 2π if |λk(AN)| = |λk+1(AN)|.

For a random matrix AN , the ESD µ(AN) then becomes a random probability measure on
the complex plane. For the most part, we restrict to the case of a random real symmetric
or complex Hermitian matrix, in which case the ESD µ(AN) becomes a random probability
measure on the real line.
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Wigner initiated the modern study of random matrices by proving the weak convergence
of the ESD in the large N limit for a general class of random real symmetric matrices
[Wig55, Wig58]. We recall the so-called Wigner matrices, formulated deliberately in such
a way below in order to suit our purposes later. In particular, we consider a family of
independent Wigner matrices with a strong uniform control on the moments of the entries.

Definition 4.1.1 (Wigner matrix). Let I be an index set. For each i ∈ I and N ∈ N,

let (X
(i)
N (j, k))1≤j<k≤N and (X

(i)
N (j, j))1≤j≤N be independent families of random variables:

the former, real-valued (resp., complex-valued), centered, and of unit variance; the latter,
real-valued and of finite variance. We further assume that

sup
N∈N

sup
i∈I0

sup
1≤j≤k≤N

E[|X(i)
N (j, k)|`] ≤ m

(I0)
` <∞, ∀I0 ⊂ I : #(I0) <∞, (4.1)

where the random variables (X
(i)
N (j, k))1≤j≤k≤N, i∈I are independent with parameter

E[X
(i)
N (j, k)2] = βi, ∀j < k.

Taken together, the two families (X
(i)
N (j, k))1≤j<k≤N and (X

(i)
N (j, j))1≤j≤N define a random

real symmetric (resp., complex Hermitian) matrix X
(i)
N ∈ MatN(L∞−(Ω,F ,P)). We call such

a matrix X
(i)
N an unnormalized real (resp., complex) Wigner matrix.

We introduce the standard normalization via a Hadamard-Schur product: let JN denote
the N ×N all-ones matrix, and define NN = N−1/2JN . We call the random real symmetric
(resp., complex Hermitian) matrix W

(i)
N defined by

W
(i)
N = NN ◦X

(i)
N =

1√
N

X
(i)
N

a normalized real (resp., complex) Wigner matrix. We simply refer to Wigner matrices when
the context is clear, or when considering the definition altogether.

Remark 4.1.2. Note that a Wigner matrix is a real Wigner matrix iff its parameter β = 1
(i.e., the common pseudo-variance of its unnormalized strictly upper triangular entries), and
so we can specify a Wigner matrix by its parameter. We further note that the distribution
of a Wigner matrix is invariant under conjugation by the permutation matrices only if its
parameter β ∈ R (in general, β ∈ D ⊂ C.). This in turn is equivalent to the real and

imaginary parts of X
(i)
N (j, k) being uncorrelated.

Wigner identified the standard semicircle distribution µSC as the universal limiting spec-
tral distribution (or LSD for short) of the Wigner matrices, where

µSC(dx) =
1

2π
(4− x2)

1/2
+ dx. (4.2)
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Considerable work has since been done on the Wigner matrices and other classical random
matrix ensembles, e.g., on questions related to maximal eigenvalues, central limit theorems,
concentration inequalities, joint eigenvalue distribution, large deviations, eigenvalue spacing,
and free probability. The recent monograph [AGZ10] by Anderson, Guionnet, and Zeitouni
provides an excellent introduction to this end.

Our first result identifies the limiting traffic distribution (LTD) of the Wigner ensemble
in the large N limit in a slight generalization of Proposition 3.1 in [Mal]. In particular,
we allow for a general parameter β ∈ C; we do not assume that the entries are identically
distributed; and we allow the distribution of the entries to depend on N . As opposed to
the usual universality (4.2), the LTD of the Wigner ensemble subdivides according to the
parameter β. The precise form of this LTD requires a good deal of preparation, and we do
not state it here in the introduction (see Proposition 4.2.2). Instead, we use the support of
this LTD to apply our results from the previous chapter. To this end, let us introduce some
notation. For a matrix AN , we write

Θ(AN) = span

( ⋃
K≥0

⋃
g∈Θ(GK)

Zg({AN ,A
∗
N})
)
.

Theorem 4.1.3. Let WN be a Wigner matrix. If β ∈ R, then (WN ,W
ᵀ
N) and Θ(WN) are

asymptotically free. Furthermore, WN and Wᵀ
N are asymptotically free iff β = 0.

Theorem 4.1.3 generalizes the results of [BDJ06] on random Markov matrices and of
[MP16] on freeness from the transpose. In particular, for a real Wigner matrix WN , Bryc,
Dembo, and Jiang showed that the ESD µ(MN) of the random Markov matrix

MN = WN − rDeg(WN) = ·
out

WN←−− ·
in
− ·

↓
·

WN

in/out

converges weakly almost surely to the free convolution SC(0, 1)�N (0, 1). Individually, we
know that

µ(WN)
w−→ SC(0, 1) and µ(rDeg(WN))

w−→ N (0, 1) as N →∞,

but the two matrices are certainly not independent, so we would not expect that the free
convolution should appear. Even more surprising, Theorem 4.1.3 extends this result to the
asymptotic freeness of WN and rDeg(WN) ∈ Θ(WN). For example, as a consequence, this
implies that WN−rDeg(WN) and WN +rDeg(WN) have the same LSD, SC(0, 1)�N (0, 1),
if β = 1.

Similarly, for a GUE matrix WN , Mingo and Popa showed that WN and Wᵀ
N are asymp-

totically free: this despite the complete lack of independence between the two matrices. Of
course, a GUE matrix is a special case of a Wigner matrix with parameter β = 0. Theorem
4.1.3 extends this result to general Wigner matrices of parameter β = 0 and shows that this
is also a necessary condition for freeness from the transpose.
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Figure 4.1: Histograms of the ESDs of random matrices constructed from a single realization
of a normalized 10,000 by 10,000 GOE matrix. In the first two histograms, we overlay the
density of the LSD in red for comparison. In the last histogram, we overlay the ESDs of
the sum WN + rDeg(WN) and the difference WN − rDeg(WN), plotted in blue and red
respectively. The overlapping region is colored blue + red = purple and dominates the
graph, as predicted by the asymptotic freeness of WN and rDeg(WN).

Naturally, we extend our analysis to other well-studied ensembles. In particular, we recall

Definition 4.1.4 (Ginibre matrix). Let I be an index set. For each i ∈ I and N ∈ N, let

(Y
(i)
N (j, k))1≤j,k≤N be an independent family of random variables (real or complex) where the

off-diagonal entries are centered and of unit variance. We further assume that

sup
N∈N

sup
i∈I0

sup
1≤j,k≤N

E[|Y(i)
N (j, k)|`] ≤ m

(I0)
` <∞, ∀I0 ⊂ I : #(I0) <∞, (4.3)
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where the random variables (Y
(i)
N (j, k))1≤j≤k≤N, i∈I are independent with parameter

E[Y
(i)
N (j, k)2] = ζi, ∀j 6= k.

The family of random variables (Y
(i)
N (j, k))1≤j,k≤N defines a non-normal random matrix

Y
(i)
N ∈ MatN(L∞−(Ω,F ,P)). We call such a matrix Y

(i)
N an unnormalized Ginibre matrix.

The same normalization as in Definition 4.1.1 defines a normalized Ginibre matrix

G
(i)
N = NN ◦Y

(i)
N =

1√
N

Y
(i)
N .

We simply refer to Ginibre matrices when the context is clear, or when considering the
definition altogether.

Remark 4.1.5. As before, a Ginibre matrix is a real Ginibre matrix iff its parameter ζ = 1.
In contrast, a strictly complex ζ no longer precludes the permutation invariance of the matrix.

The spectral theory of non-normal matrices require a great deal more care. In particular,
the method of moments fails in this setting, and more sophisticated tools must be used to
carry out the analysis. In this case, the analogue of Wigner’s semicircle law for the Ginibre
ensemble, the so-called circular law, was only established recently in [TV10], which itself
builds on a long line of work. We refer the reader to the survey [BC12] for the history of
this problem and future directions.

Much like the method of moments, the traffic distribution fails to completely capture
the spectral behavior of non-normal matrices. Nevertheless, we can still apply the traffic
framework to study the asymptotic behavior of the Ginibre ensemble. We identify the LTD
of the Ginibre ensemble in the large N limit: as before, we save the precise statement of
this result for later (see Proposition 4.3.1). Instead, we use the support of this LTD to once
again apply the results of the previous chapter.

Theorem 4.1.6. Let GN be a normalized Ginibre matrix. Then (GN ,G
ᵀ
N) and Θ(GN) are

asymptotically ∗-free. Furthermore, GN and GᵀN are asymptotically ∗-free iff ζ = 0.

The graph operations allow us to easily extend the results above to the self-adjoint
Wishart-Laguerre ensemble LN = GNG∗N [Wis28]. For the convenience of the reader, we
state the conclusion separately.

Theorem 4.1.7. Let LN be a normalized Wishart-Laguerre matrix. Then (LN ,L
ᵀ
N) and

Θ(LN) are asymptotically free. Furthermore, LN and LᵀN are asymptotically free iff ζ = 0.

Theorem 4.1.7 generalizes another result in [MP16] on freeness from the transpose. In
particular, if the unnormalized entries of the matrix GN are i.i.d. standard complex normal
(a complex Gaussian Ginibre matrix), then Mingo and Popa showed that the matrices LN

and LᵀN are asymptotically free. As in the Wigner case, we extend this result to general
ζ = 0, which is again a necessary condition for freeness from the transpose.
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Figure 4.2: Histograms of the ESDs of random matrices constructed from a single realization
of a normalized 10,000 by 10,000 real Gaussian Ginibre matrix. As before, in the first two
histograms, we overlay the density of the LSD in red for comparison. In the last histogram,
we overlay the ESDs of the sum LN +rDeg(LN) and the difference LN−rDeg(LN), plotted in
blue and red respectively. The overlapping region is colored blue + red = purple, and we see
that the two ESDs appear to be translations of one another, as predicted by the asymptotic
freeness of LN and rDeg(LN).

We can also use Theorem 4.1.7 to prove the Wishart-Laguerre analogue of the Markov
matrix construction in [BDJ06]. More precisely, let LN be a real Wishart-Laguerre matrix
and rDeg(LN) = cDeg(LN) its degree matrix. Individually, we know that

µ(LN)
w−→MP(1, 1) and µ(rDeg(LN))

w−→ N (1, 1) as N →∞,
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whereMP(1, 1) denotes the Marčenko-Pastur of mean 1 and variance 1 [MP67]. The asymp-
totic freeness of LN and rDeg(LN) ∈ Θ(LN) then implies that

µ(LN − rDeg(LN))
w−→MP(1, 1)�N (−1, 1)

µ(LN + rDeg(LN))
w−→MP(1, 1)�N (1, 1)

as N →∞.

In particular, the two LSDs are simply translations of one another.
In a different direction, the universality of non-invariant ensembles constitutes a major

ongoing program of research. We recall one prominent model of interest: the random band
matrices.

Definition 4.1.8 (Band matrix). Let (bN) be a sequence of nonnegative integers. We write
BN for the corresponding N ×N band matrix of ones with band width bN , i.e.,

BN(i, j) = 1{|i− j| ≤ bN}.

Let XN be an unnormalized Wigner matrix. We call the random matrix ΞN defined by

ΞN = BN ◦XN

an unnormalized random band matrix. We introduce a normalization based on the growth
rate of the band width bN . We say that (bN) is of slow growth (resp., proportional growth) if

lim
N→∞

bN =∞ and bN = o(N)

(
resp., lim

N→∞

bN
N

= c ∈ (0, 1]

)
,

in which case we use the normalization

ΥN = (2bN)−1/2JN (resp., ΥN = (2c− c2)−1/2N−1/2JN).

We call c the proportionality constant : we say that (bN) is of full proportion if c = 1
and proper otherwise. For a fixed band width bN ≡ b, we use the normalization ΥN =
(2b+ 1)−1/2JN . In any case, we call the random matrix ΘN defined by

ΘN = ΥN ◦ΞN

a normalized random band matrix. We simply refer to random band matrices (or RBMs for
short) when the context is clear, or when considering the definition altogether.

Following Wigner, one expects universality to hold for any large quantum system of
sufficient complexity (see [Meh04] for more on this perspective; see [BEYY17,EY17] and the
references therein for progress in this direction). In particular, a fundamental conjecture of
Fyodorov and Mirlin proposes a dichotomy for the local spectral statistics of RBMs [FM91]:
random matrix theory statistics (weak disorder) for large band widths; Poisson statistics
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(strong disorder) for small band widths; and a sharp transition around the critical value
bN =

√
N (again, we refer the reader to [BEYY17,EY17] for progress in this direction).

At the macroscopic level, Bogachev, Molchanov, and Pastur proved that the classes
of band widths in Definition 4.1.8 determine the global universality classes of the RBMs
[BMP91]: for slow growth RBMs, µ(ΘN) converges to the semicircle distribution µSC ; for
proportional growth RBMs of proper proportion, µ(ΘN) converges to a non-semicircular
distribution µc of bounded support; and for fixed band width RBMs having a symmetric
distribution for the entries, µ(ΘN) converges to a non-universal symmetric distribution µb.
The authors further proved a continuity result for these distributions, namely,

lim
c→0+

µc = lim
c→1−

µc = µSC and lim
b→∞

µb = µSC . (4.4)

The work [BMP91] considered the distribution of a single RBM: naturally, this invites
the question of the joint distribution of such matrices. Shlyakhtenko showed that freeness
with amalgamation in the context of operator-valued free probability governs what he called
Gaussian RBMs [Shl96]; otherwise, to our knowledge, RBMs have not received much at-
tention from the non-commutative probabilistic perspective. Nevertheless, we show that
the framework of traffic probability allows for effective, tractable computations in multiple
RBMs. In particular, we identify the LTD of independent RBMs of possibly mixed band
width types.

Theorem 4.1.9. Let XN = (X
(i)
N )i∈I be a family of independent unnormalized Wigner matri-

ces. We assume that the parameters βi ∈ R and write WN = (W
(i)
N )i∈I for the corresponding

family of normalized Wigner matrices. Consider a family of band widths

(b
(i)
N )i∈I = (b

(i)
N )i∈I1 ∪ (b

(i)
N )i∈I2 ∪ (b

(i)
N )i∈I3 ∪ (b

(i)
N )i∈I4

of slow growth, proper proportion, full proportion, and fixed band width respectively, and form
the corresponding family of normalized RBMs ON = (Θ

(i)
N )i∈I . Then the family ON converges

in traffic distribution. In fact, the LTDs of the families (Θ
(i)
N )i∈I1∪I3 and (W

(i)
N )i∈I1∪I3 are

identical.

Knowledge of the traffic distribution, which is defined in terms of test graphs, can often
be difficult to interpret. At the same time, the equality of the LTD for (Θ

(i)
N )i∈I1∪I3 and

(W
(i)
N )i∈I1∪I3 allows us to transfer all of our results for (W

(i)
N )i∈I1∪I3 to (Θ

(i)
N )i∈I1∪I3 at no

additional cost. For example, this implies that the analogue of Theorem 4.1.3 holds for RBMs
of slow growth. We can even apply this to consider the joint distribution of independent
RBMs. We highlight one particular consequence.

Corollary 4.1.10. The mixed family of RBMs (Θ
(i)
N )i∈I1∪I3 converges in distribution to a

semicircular system.
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Remark 4.1.11. We do not make any assumptions on the relative rates of growth for the
band widths (b

(i)
N )i∈I1 ; thus, for example, it could be that (b

(i1)
N , b

(i2)
N , b

(i3)
N , b

(i4)
N ) are each of

slow growth with b
(i1)
N , b

(i2)
N �

√
N � b

(i3)
N , b

(i4)
N . In particular, perhaps not surprisingly,

we fail to observe any sort of transition around the conjectured critical value for the local
spectral statistics at the level of (first-order) freeness.
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Figure 4.3: Histograms of the ESDs of random matrices constructed from a single realization
of a 10,000 by 10,000 GOE matrix XN . We construct a RBM ΘN = ΥN ◦BN ◦XN of slow
growth bN =

√
N . The ESDs closely resemble those of the standard Wigner ensemble in

Figure 4.1, as predicted by LTD.

We note that the same analysis applies mutatis mutandis to band matrix versions of the
Ginibre ensemble.
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Figure 4.4: Histograms of the ESDs of random matrices constructed from a single realization
of a 10,000 by 10,000 real Gaussian Ginibre matrix YN . We construct a banded Ginibre
matrix ΓN = ΥN ◦BN ◦YN of slow growth bN =

√
N with the same normalization ΥN as

in Definition 4.1.8. We then consider the banded Wishart-Laguerre matrix ΛN = ΓNΓ∗N ,
which itself is a band matrix of band width 2bN . The ESDs closely resemble those of the
standard Wishart-Laguerre ensemble in Figure 4.2, as predicted by LTD.

Our results suggest a further investigation into the differences between the real and com-
plex versions of a random matrix ensemble. For the classical compact groups, this comparison
becomes that of Haar distributed orthogonal random matrices and Haar distributed unitary
random matrices. An analysis of the unitary case in the traffic framework can be found
in [Mal]. We consider the orthogonal case in Section 4.5.

Our formulas for the limiting traffic distribution evoke many of the formulas for free
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cumulants. This can be seen as a consequence of the correspondence between cactus graphs
and non-crossing partitions as spelled out in Proposition 2.4.6. In Section 4.6, we give a
simple procedure for determining the free cumulants from the injective traffic distribution
in the case of cactus-type random variables. For example, as a simple application of this
correspondence, we obtain the following corollary.

Corollary 4.1.12. Let WN be a Wigner matrix of parameter β ∈ R. Then (WN ,W
ᵀ
N)

converges in distribution to a semicircular family (s1, s2) of covariance

(
1 β
β 1

)
.

4.2 The Wigner ensembles

Let XN = (X
(i)
N )i∈I be a family of Wigner matrices as before. In particular, recall that

E[X
(i)
N (j, k)2] = βi, ∀j < k.

For technical reasons, we first assume that the real and imaginary parts of an off-diagonal
entry X

(i)
N (j, k) are uncorrelated so that

E[X
(i)
N (j, k)2] = βi = βi = E[X(i)

n (k, j)2]. (4.5)

For example, this includes the class of all real Wigner matrices (βi = 1), but also circularly-
symmetric ensembles such as the GUE (βi = 0). We comment on the general case of βi ∈ C
when possible, though the situation becomes much different and often intractable (especially
for RBMs). Thus, unless stated otherwise, we assume that βi = βi ∈ R.

Under this assumption, we prove the traffic convergence of the normalized Wigner ma-
trices WN = (W

(i)
N )i∈I . For simplicity, we restrict our attention to test graphs. The general

case of a ∗-test graph follows from the self-adjointness of our ensembles. To describe the
LTD, we will need some definitions.

Definition 4.2.1 (Colored double tree). Let T = (V,E, γ) be a test graph in x = (xi)i∈I .
We say that T is a fat tree if when disregarding the orientation and multiplicity of the edges,
T becomes a tree. We further specify that T is a double tree if there are exactly two edges
between adjacent vertices. We call the pair of edges connecting adjacent vertices in a double
tree twin edges : congruent if they have the same orientation, opposing otherwise. Finally,
we say that T is a colored double tree if T is a double tree such that each pair of twin edges
{e, e′} shares a common label γ(e) = γ(e′) ∈ I. We record the number ci(T ) of pairs of
congruent twin edges with the common label i in a colored double tree T .

We introduce some notation to emphasize the relevant features of our test graphs. This
notation will greatly simplify our analysis and features prominently in the remainder of
the article. We start with a finite (not necessarily connected) multidigraph G = (V,E).
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We partition the set of edges E = L ∪ N to distinguish between the loops L and the
non-loop edges N = Lc. As suggested by Definition 4.2.1, we define G̃ := (V, Ẽ) as the
undirected graph obtained from G by disregarding the orientation and multiplicity of the
edges. Formally, Ẽ = E/∼ consists of equivalence classes in E, where

e ∼ e′ ⇐⇒ {src(e), tar(e)} = {src(e′), tar(e′)}.

In this case, our partition E = L ∪ N projects down to a partition Ẽ = L̃ ∪ Ñ between
equivalence classes of loops and equivalence classes of non-loops respectively. We may then
write the underlying simple graph G of G = (V,E) as G = (V, Ñ ).

G G̃ G

Figure 4.5: Examples of the projections G̃ and G starting from a multidigraph G.

Now suppose that our graph G comes with edge labels γ : E → I. We count the
(undirected) multiplicity of a label i in a class of edges [e] = {e′ ∈ E : e ∼ e′} ∈ Ẽ with

mi,[e] = #(γ−1({i}) ∩ [e]) ≥ 0.

Summing this over the labels in I, we of course obtain the multiplicity of the class [e],

m[e] =
∑
i∈I

mi,[e] = #([e]).

If T = (G, γ) is a colored double tree, then

mi,[e] ∈ {0, 2} and m[e] = 2, ∀(i, [e]) ∈ I × Ẽ. (4.6)

In this case, we write
γ([e]) = γ(e) (4.7)

for the common label γ(e) = γ(e′) of twin edges [e] = {e, e′}. Conversely, if (4.6) and (4.7)

hold for a test graph T whose projection T̃ is a tree, then T is a colored double tree.
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Figure 4.6: Examples of a fat tree, a double tree, and a colored double tree respectively.

Proposition 4.2.2 (β-semicircular traffics). For any test graph T ∈ T 〈x〉,

lim
N→∞

τ 0
[
T (WN)

]
=

{∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise.
(4.8)

Proof. Suppose that T = (V,E, γ). By definition, we have that

τ 0
[
T (WN)

]
= E

[
1

N

∑
φ:V ↪→[N ]

∏
e∈E

W
(γ(e))
N (φ(e))

]

=
1

N1+
#(E)

2

∑
φ:V ↪→[N ]

E
[∏
e∈E

X
(γ(e))
N (φ(e))

]
. (4.9)

We analyze the asymptotics of (4.9) by working piecemeal in order to count the number of
contributing maps φ (i.e., maps such that the summand is nonzero). First, we note that the

independence of the random variables X
(i)
N (j, k) and the injectivity of the maps φ allow us

to factor the product over the expectation, provided that we take into account multi-edges.
The relevant information is precisely contained in the projected graph T̃ = (V, Ẽ), which
allows us to recast (4.9) as

1

N1+
#(E)

2

∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E
[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

E
[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
. (4.10)

For non-loop edges e′ ∈ N , the independence of the centered random variables X
(i)
N (φ(e′))

implies that the second expectation in (4.10) vanishes if there exists a lone edge e0 ∈ [e] with
the label γ(e0) = i0. Thus, in order for a summand to be non-zero, each label i present in a
class [e] must occur with multiplicity

mi,[e] ≥ 2. (4.11)
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This in turn implies that
#(N ) ≥ 2#(Ñ ). (4.12)

The underlying simple graph T = (V, Ñ ) is of course still connected, whence the inequality

#(Ñ ) ≥ #(V )− 1. (4.13)

Finally, we make use of our strong moment assumption (4.1) to bound the summands in
(4.10) uniformly in φ and N . In particular, our bound only depends on T , i.e.,( ∏

[`]∈L̃

E
[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

E
[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
≤ CT <∞. (4.14)

Putting everything together, we arrive at the asymptotic

τ 0
[
T (WN)

]
= OT (N−1−#(E)

2 N#(V )) = OT (N−(
#(N )

2
−(#(V )−1))N−

#(L)
2 ). (4.15)

The inequalities (4.11)-(4.13) then imply that τ 0
[
T (WN)

]
vanishes in the limit unless T is

a colored double tree. For such a test graph T , (4.10) becomes

N#(V )

N#(V )

∏
[e]∈Ẽ

(
1{[e] are opposing}+ βγ([e])1{[e] are congruent}

)
, (4.16)

where N#(V ) denotes the falling factorial N(N − 1) · · · (N − (#(V ) − 1)). The limit (4.8)
now follows. �

Equation (4.16) explains the apparent asymmetry in the LTD of the Wigner matrices. In
particular, if we record the number oi(T ) of pairs of opposing twin edges with the common
label i in a colored double tree T , then we can rewrite the nontrivial part of (4.8) as∏

i∈I

β
ci(T )
i =

∏
i∈I

1oi(T )β
ci(T )
i . (4.8′)

Working directly with this LTD, one can prove the asymptotic traffic independence of the
Wigner matricesWN . To the same end, we can instead appeal to Theorem 2.3.10 by choosing
a permutation invariant realization of our ensemble and concluding the general result by
universality.

The careful reader will notice that we have made use of (4.5) in formulating (4.16): by
assuming that βi = βi, we were able to disregard the ordering on the vertices induced by the
maps φ and conclude that congruent twin edges [e] always give a contribution of βγ([e]). In
general, for a colored double tree T , a summand Sφ(T ) of (4.10) will depend on φ, namely,

Sφ(T ) =
∏

[e]∈Ẽ

(
1{[e] are opposing}+ βγ([e])1{[e] are congruent and φ(tar([e])) < φ(src([e]))}

+ βγ([e])1{[e] are congruent and φ(tar([e])) > φ(src([e]))}
)
.
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To compute the limit, we must then keep track of the ordering ψφ on the vertices, where

ψφ : [#(V )]
∼−→ V, φ(ψφ(1)) > · · · > φ(ψφ(#(V ))).

Note that if φ1 : V ↪→ [N1] and φ2 : V ↪→ [N2] induce the same ordering ψφ1 = ψφ2 , then the
corresponding summands are equal, i.e.,

Sφ1(T ) = E
[∏
e∈E

X
(γ(e))
N1

(φ1(e))

]
= E

[∏
e∈E

X
(γ(e))
N2

(φ2(e))

]
= Sφ2(T ).

Thus, for an ordering ψ : [#(V )]
∼−→ V , we write Sψ(T ) for the common value of

{Sφ(T ) : ψφ = ψ}.

In this case, (4.16) becomes

∑
ψ:[#(V )]

∼→V

∑
φ:V ↪→[N ] 1{ψφ = ψ}

N#(V )
Sψ(T ). (4.17)

One can intuitively verify that

lim
N→∞

∑
φ:V ↪→[N ] 1{ψφ = ψ}

N#(V )
=

1

#(V )!
, ∀ψ : [#(V )]

∼−→ V ;

however, in anticipation of Section 4.4, we give a natural integral representation of this limit
instead. To this end, we introduce a set of indeterminates xV = (xv)v∈V indexed by the
vertices of our graph. A straightforward weak convergence argument then shows that

lim
N→∞

∑
φ:V ↪→[N ] 1{ψφ = ψ}

N#(V )
=

∫
[0,1]V

1{xψ(1) ≥ · · · ≥ xψ(#(V ))} dxV =
1

#(V )!
. (4.18)

Indeed, for each N ∈ N, we can scale a labeling φ : V ↪→ [N ] by N to associate the image
φ(V ) = (φ(v))v∈V with a point pφ of the latticed hypercube [0, 1]V , namely,

pφ =

(
φ(v)

N

)
v∈V

.

We imagine integrating the indicator 1{xψ(1) ≥ · · · ≥ xψ(#(V ))} against the atomic measure

µN =
1

N#(V )

∑
φ:V ↪→[N ]

δpφ

to obtain the left-hand side of (4.18) (up to an asymptotically negligible correction factor).
The limit N →∞ then converts this discretization into the uniform measure on [0, 1]V .
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Finally, we arrive at the analogue of (4.8) for general βi ∈ C,

lim
N→∞

τ 0
[
T (WN)

]
=


∑

ψ:[#(V )]
∼→V

1

#(V )!
Sψ(T ) if T is a colored double tree,

0 otherwise.

(4.19)

In contrast to Proposition 4.2.2, the LTD (4.19) does not necessarily describe asymptotically
traffic independent matrices WN . In fact, if we divide our index set I into two camps
I = IR ∪ IC = {i ∈ I : βi ∈ R} ∪ {i ∈ I : βi ∈ C \R}, then the two families WR

N = (W
(i)
N )i∈IR

and WC
N = (W

(i)
N )i∈IC are asymptotically traffic independent, but the matrices WC

N are not.
For the first statement, we need only to note that the representative value Sψ(T ) does

not depend on the ordering of the vertices that are only adjacent to edges with labels i ∈ IR,
for which βi = βi. We can formalize this by considering the subgraphs TR = (VR, ER) and
TC = (VC, EC) of T with edge labels in IR and IC respectively. We write TC = CC

1 ∪ · · · ∪CC
k1

for the connected components of TC, each of which is a colored double tree C` = (V C
` , E

C
` ),

and similarly for TR = CR
1 ∪ · · · ∪ CR

k2
. We call such a graph a forest of colored double trees.

It follows that a summand Sφ(T ) only depends on the orderings

ψ
(`)
φ : [#(V C

` )]
∼−→ V C

` , ` ∈ [k1],

on each component CC
` . In particular,

Sφ(T ) =

( k1∏
`=1

S
ψ

(`)
φ

(CC
` )

)( k2∏
`=1

∏
i∈IR

β
ci(C

R
` )

i

)
.

In this case, for a concatenation of orderings

ψ = ×k1
`=1ψ` :

k1×̀
=1

[#(V C
` )]

∼−→
k1×̀
=1

V C
`

with the restrictions
ψ` : [#(V C

` )]
∼−→ V C

` ,

we write Sψ for the common value of

{Sφ(T ) : ψ
(`)
φ = ψ` for all ` ∈ [k1]}.

We may then write

τ 0
[
T (WN)

]
=

∑
ψ:×k1

`=1[#(V C
` )]
∼→×k1

`=1 V
C
`

∑
φ:V ↪→[N ]

∏k1

`=1 1{ψ
(`)
φ = ψ`}

N#(V )
Sψ(T ),
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where

lim
N→∞

∑
φ:V ↪→[N ]

∏k1

`=1 1{ψ
(`)
φ = ψ`}

N#(V )
=

∫
[0,1]V

k1∏
`=1

1{xψ`(1) ≥ · · · ≥ xψ`(#(V C
` ))} dxV

=

k1∏
`=1

∫
[0,1]

V C
`

1{xψ`(1) ≥ · · · ≥ xψ`(#(V C
` ))} dxV C

`
(4.20)

=
1∏k1

`=1 #(V C
` )!

.

We conclude that

lim
N→∞

τ 0
[
T (WN)

]
=

∑
ψ:×k1

`=1[#(V C
` )]
∼→×k1

`=1 V
C
`

(
1∏k1

`=1 #(V C
` )!

( k1∏
`=1

Sψ`(C
C
` )

)( k2∏
`=1

∏
i∈IR

β
ci(C

R
` )

i

))

=

( k1∏
`=1

∑
ψ`:[#(V C

` )]→V C
`

1

#(V C
` )!

Sψ`(C
C
` )

)( k2∏
`=1

∏
i∈IR

β
ci(C

R
` )

i

)

=

( k1∏
`=1

lim
N→∞

τ 0
[
CC
` (WC

N)
])( k2∏

`=1

lim
N→∞

τ 0
[
CR
` (WR

N)
])
,

as was to be shown.
Intuitively, we imagine each pair of twin edges [e] imposing a constraint coming from

the ordering of its adjacent vertices {src([e]), tar([e])}. We gather these constraints in the
ordering ψφ to carry out the calculation of Sφ = Sψ(φ); however, if γ([e]) ∈ IR, the constraint
becomes vacuous and we can disregard it, which corresponds to discarding the edge [e] (but
keeping the adjacent vertices). In this way, we arrive at the integral (4.20) (and, after
discarding the isolated vertices, the forest of colored double trees TC). We return to this
notion of a “free” edge [e] in a slightly different context in Section 4.4.

T TR TC

xR1

xR1

xR1

xC2
xC2

xC3xC2

xR1

xR1

xR1

xC2
xC2

xC3xC2

Figure 4.7: An example of the forest subgraph construction starting from a colored double
tree T . For simplicity, we label twin edges [e] with a single common indeterminate γ([e]).
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For the second statement (about the lack of asymptotic traffic independence for WC
N),

we give a simple counterexample, namely, for βC
2 , β

C
3 ∈ C \ R,

lim
N→∞

τ 0

[
·

W
iC2
N

⇔
W

iC2
N

·
W

iC3
N

⇒
W

iC3
N

·
]

=
1

3
(βC

2 β
C
3 + βC

2 β
C
3 ) +

1

6
(βC

2 β
C
3 + βC

2 β
C
3 )

6=
(

1

2
(βC

2 + βC
2 )

)(
1

2
(βC

3 + βC
3 )

)

=

(
lim
N→∞

τ 0

[
·

W
iC2
N

⇔
W

iC2
N

·
])(

lim
N→∞

τ 0

[
·

W
iC3
N

⇒
W

iC3
N

·
])
.

Yet, we know that free independence describes the asymptotic behavior of the Wigner
matrices WN regardless of the parameters (βi)i∈I . Naturally, we would like to know how to
extract this information from the LTD (in particular, how this is consistent with the distinct
LTDs (4.8) and (4.19)). Again, we restrict our attention to the joint distribution, the general
case of the joint ∗-distribution following from the self-adjointness of our ensembles.

We know that the joint distribution µWN
of WN factors through the traffic distribution

νWN
of WN via

µWN
= νWN

◦∆ ◦ η,
where η is the embedding (2.4) of the ∗-polynomials into the ∗-graph polynomials. This
amounts to computing τ

[
C(WN)

]
for directed cycles C = (V,E). We use the injective

traffic state to rewrite this as

τ
[
C(WN)

]
=

∑
π∈P(V )

τ 0
[
Cπ(WN)

]
.

In the limit, the only contributions come from (colored) double trees Cπ. We claim that if Cπ

is a double tree, then it can only have opposing twin edges (an opposing double tree). Indeed,
assume that π ∈ P(V ) identifies the sources src(e1)

π∼ src(e2) and targets tar(e1)
π∼ tar(e2) of

two distinct edges e1, e2 ∈ E. We write Cρ for the graph intermediate to C and Cπ obtained
from C by only making these two identifications. If e1 and e2 are consecutive edges in the
cycle C, then Cρ consists of a directed cycle with two loops coming out of a particular vertex
(“rabbit ears”). Otherwise, Cρ consists of two almost disjoint directed cycles overlapping
in the twin edge [e] = {e1, e2} (a “butterfly”as in Figure 3.3). In both cases, we see that
no further identifications can possibly result in a double tree Cπ. In particular, note that a
double tree is a special case of a cactus graph. The butterfly construction then necessitates
a crossing partition, which we know fails to produce a cactus grace of Proposition 2.4.6.

Thus, from the perspective of the joint distribution, we need only to consider the behavior
of the LTD on opposing colored double trees T . In this case, we see that the LTDs (4.8) and
(4.19) agree on the value of

lim
N→∞

τ 0
[
T (WN)

]
= 1.
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Remark 4.2.3. An important application of traffic probability lies in the relationship be-
tween traffic independence and free independence. In certain situations, one can actually
deduce free independence from traffic independence [Mal, CDM], the advantage being that
the traffic setting might be more tractable. Of course, the two notions do not perfectly align,
as seen even in the case of the Wigner matrices (Lemma 3.4 in [Mal] gives yet another exam-
ple). In this case, we see that the traffic distribution specifies the behavior of our matrices
in situations that might not be relevant to their joint distribution: in a certain sense, traffic
independence asks for too much. Nevertheless, we can still use the traffic framework to make
free probabilistic statements, even when a LTD might not exist! In particular, from our work
above, we see that if a family of self-adjoint traffics an = (a

(i)
n )i∈I in a traffic space (An, τn)

satisfies

lim
n→∞

τ 0
n

[
T (an)

]
=


1 if T is an opposing colored double tree,

0 if T is an opposing double tree that is not colored,

0 if T is not a double tree,

(4.21)

then an converges in joint distribution to a semicircular system a = (ai)i∈I . Note that we
do not specify the behavior of τ 0

n

[
T (an)

]
on general double trees T (in particular, we do not

assume that the limit limn→∞ τ
0
n

[
T (an)

]
even exists). We will use this criteria in Section 4.4

to treat the case of RBMs of a general parameter βi ∈ C.
Of course, in the other direction, it is possible to have traffic independence without free

independence. We can see this in the context of the traffic CLT (Theorem 2.3.11) by realizing
the intermediate values α ∈ (0, 1).

With the LTD of the Wigner matrices in hand, we can now apply the free product
decomposition of the universal enveloping traffic space. In particular, Lemma 3.5 in [Mal]
shows that the Wigner matrices satisfy the factorization property (iii) of Proposition 2.4.9.
Moreover, since the LTD of WN is universal given the parameter β, we can take the GUE
ensemble as a representative for β = 0. In this case, we also have the unitary invariance
property (i). The free product structure of the universal enveloping traffic space (Theorem
3.1.1) then proves the if direction of the second statement of Theorem 4.1.3, namely, that
WN , Wᵀ

N , and Θ(WN) are asymptotically free if β = 0. One can again exploit this trick
of universality by taking the GOE as a representative for β = 1. Up to a normalization, a
GOE matrix W′

N can be written as the sum of a GUE matrix WN and its transpose Wᵀ
N ,

namely,

W′
N =

WN + Wᵀ
N√

2
.

The result for β = 0 then proves that (W′
N ,W

′ᵀ
N) and Θ(W′

N) are asymptotically free if
β′ = 1. The same tricks would seem to fail for general β ∈ R; however, note that the proof
of the freeness of (A,Aᵀ) and Θ(B) in Chapter 3 only relies on the cactus structure of the
traffic state τϕ. In particular, the fact that the cacti were oriented only mattered for proving
that A and Aᵀ are freely independent. Since double trees are a special case of cactus graphs,
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the same proof shows that (WN ,W
ᵀ
N) and Θ(WN) are asymptotically free if β ∈ R. In this

case, we are bypassing Proposition 2.4.9 altogether and simply working directly with the
LTD (4.8). Notably, the multiplicative structure of (4.8′) with respect to the twin edges of
the double tree combined with Proposition 2.4.6 supply the analogue of the cactus-cumulant
construction (i)-(iii) in the injective traffic state τ 0

ϕ of the universal enveloping traffic space
(except this now allows for possible contributions from undirected cycles and unoriented
cacti, which explains the lack of freeness from the transpose). To see that β = 0 is necessary
for freeness from the transpose, observe that

lim
N→∞

E
[

1

N
tr(WNWᵀ

N)

]
=
β + β

2

and

lim
N→∞

E
[

1

N
tr(WNWᵀ

NWNWᵀ
N)

]
=

2(β2 + β
2

+ ββ)

3
,

where we have used (4.19) for a general β ∈ C. If WN and Wᵀ
N are asymptotically free,

then both of these quantities must be zero. At the same time,

β + β

2
= 0 ⇐⇒ <(β) = 0,

while
2(β2 + β

2
+ ββ)

3
= 0 ⇐⇒ 4<(β) = |β|2.

This completes the proof of Theorem 4.1.3. Of course, since we know that the (W
(i)
N )i∈I are

asymptotically free, we can also apply the reasoning from Chapter 3 for the diagonal algebra
to conclude that the subalgebras (∆(W

(i)
N ))i∈I are asymptotically classically independent for

real parameters βi ∈ R.
As we mentioned in introduction, this generalizes the result of Bryc, Dembo, and Jiang

on the convergence of the ESD µ(MN)
w−→ SC(0, 1) � N (0, 1) as N → ∞ for a random

Markov matrix [BDJ06]. As an interesting aside, we show how the same convergence (but
not the asymptotic freeness) can be seen as an instance of the traffic CLT.

The traffic CLT

For simplicity, we restrict our attention to real Wigner matrices WN = (W
(`)
N )`∈N in this

section. A classical result of Dykema shows that the matrices WN are asymptotically free
[Dyk93], thus realizing both the free CLT and the traffic CLT (the latter, for α = 1).
Yet, Remark 2.3.9 extends the asymptotic traffic independence of WN to a much larger
class of matrices. In particular, we know that the corresponding family of degree matrices
DN = (D

(`)
N )`∈N are also asymptotically traffic independent, where

D
(`)
N = ·

↓
·

WN

in/out
=

1

2

(
·
↓
·

WN

in/out

)
+

1

2

(
·
↑
·

WN

in/out

)
∈ CG〈W(`)

N 〉. (4.22)
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A simple computation shows that the diagonal matrices DN realize the traffic CLT for α = 0,
in some sense recovering the classical CLT.

Taking linear combinations of the above, we obtain the (p, q)-Markov matrices :

M
(`)
N,p,q = pW

(`)
N + qD

(`)
N ∈ CG〈W(`)

N 〉, ∀p, q ∈ R.

Recall that the LSD of the Markov matrices is given by the free convolution SC(0, 1)�N (0, 1).

Naively, one may then hope that the interpolation between W
(`)
N and D

(`)
N given by M

(`)
N,p,q

passes to the traffic CLT, realizing the intermediate values α ∈ (0, 1). We show that this is
indeed the case.

Definition 4.2.4 (Stable traffic distribution). Let ν : CT 〈x,x∗〉 → C denote the traffic
distribution of some family of centered random variables. We say that ν is stable if there
exists a realization of ν by traffic independent families a1 = (a

(i)
1 )i∈I and a2 = (a

(i)
2 )i∈I in

a traffic space (A, τ) such that the sum a = a1 + a2 = (a
(i)
1 + a

(i)
2 )i∈I has the same traffic

distribution, up to scale. By this, we mean that

ν = νa1 = νa2

with a scaling parameter c ∈ R+ such that

νa(T ) = c#(E)/2ν(T ), ∀T = (V,E, γ, ε) ∈ T 〈x,x∗〉.

Lemma 4.2.5. The families (M(`)
N )`∈N = ((M

(`)
N,p,q)p,q∈R)`∈N are asymptotically traffic inde-

pendent with a stable universal limiting traffic distribution.

Proof. We need only to prove the stability of the limiting traffic distribution ν = limN→∞ νM(1)
N

as the rest follows from Proposition 4.2.2 and Remark 2.3.9. To this end, we model the limit
of our matrices (M(`)

N )`∈N within the traffic space (CG〈x,x∗〉, ν), where

ν = ∗`∈N
(

lim
N→∞

ν
W

(`)
N

)
and x` = x∗` .

By the universality of (4.8), the traffic state ν does not depend on the particular choice of

Wigner matrices W
(`)
N . We single out the Gaussian realization X

(`)
N (i, j)

d
= N (0,1{i 6= j})

for the distributional symmetry

S(k)
N =

1√
k

k∑
`=1

M(`)
N =

(
1√
k

k∑
`=1

M
(`)
N,p,q

)
p,q∈R

d
= (M

(1)
N,p,q)p,q∈R =M(1)

N .

This in turn implies the traffic distributional equality

S(k)
N

ν
=M(1)

N . (4.23)
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By construction, the family S(k)
N converges in traffic distribution to

sk =
1√
k

k∑
`=1

m` =

(
1√
k

k∑
`=1

p

(
·

out

x`←− ·
in

)
+
q

2

(
·
↓
·
x`

in/out

)
+
q

2

(
·
↑
·
x`

in/out

))
p,q∈R

in the traffic space (CG〈x,x∗〉, ν). Passing to the limit, (4.23) becomes

sk
ν
= m1 ⊂ CG〈x1, x

∗
1〉. (4.24)

Taking k = 2 in the above, we have that

s2 =
1√
2

(m1 + m2)
ν
= m1,

where m1 and m2 are traffic independent. We conclude that the limiting traffic distribution
ν = limN→∞ νM(1)

N
is stable with scaling parameter c = 2. �

Corollary 4.2.6. The ESDs µ(M
(1)
N,p,q) converge weakly in expectation to the free convolution

µp,q = SC(0, p2)�N (0, q2).

Proof. It suffices to prove the result for p, q ∈ R of the form p2 + q2 = 1. Proposition
A.3 in [BDJ06] shows that the free convolution µ1,1 is determined by its moments: the
same argument applies wholesale to the family of free convolutions (µp,q)p,q∈R. We may thus
proceed by the method of moments.

Using the same notation as before, we know that M
(`)
N,p,q converges in traffic distribution

to the self-adjoint traffic

a(`)
p,q = p

(
·

out

x`←− ·
in

)
+
q

2

(
·
↓
·
x`

in/out

)
+
q

2

(
·
↑
·
x`

in/out

)
∈m` ⊂ CG〈x`, x∗`〉 ⊂ (CG〈x,x∗〉, ν).

This reduces the problem to showing that the moments of a
(1)
p,q match those of µp,q. Now,

note that a special case of (4.24) implies that

s(k)
p,q =

1√
k

k∑
`=1

a(`)
p,q

ν
= a(1)

p,q. (4.25)

We calculate the mean and variance of a
(`)
p,q using the same Gaussian realization as before:

ϕν

(
·

out

a
(`)
p,q←−− ·

in

)
= lim

N→∞
E
[

1

N
tr(M

(`)
N,p,q)

]
= lim

N→∞
E
[

1

N

N∑
j=1

(
q

N∑
k 6=j

X
(`)
N (j, k)√
N

)]
= 0
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and

ϕν

(
·

out

a
(`)
p,q←−− · a

(`)
p,q←−− ·

in

)
= τ

[
·
a

(`)
p,q

�
a

(`)
p,q

·
]

= τ 0

[
·
a

(`)
p,q

�
a

(`)
p,q

·
]

+ τ 0

[ a
(`)
p,q

·

�

�
a

(`)
p,q

]
= α + (1− α).

A straightforward calculation then shows that

α = lim
N→∞

1

N

N∑
j 6=k

E[MN,p,q(j, k)2] = lim
N→∞

1

N
N(N − 1)

p2

N
= p2

and

1− α = lim
N→∞

1

N

N∑
j=1

E[M
(`)
N,p,q(j, j)

2] = lim
N→∞

E[M
(`)
N,p,q(1, 1)2]

= lim
N→∞

E
[(
q

N∑
j=2

X
(`)
N (1, j)√
N

)2]
= lim

N→∞
(N − 1)

q2

N
= q2.

Combining (4.25) with the traffic CLT, we obtain the distributional identity

a(1)
p,q

ν
= s(k)

p,q
d−→ µp,q = SC(0, p2)�N (0, q2) as k →∞,

as was to be shown. �

Taking (p, q) = (1,−1) in the above, we recover the special case of the Markov matrices
in [BDJ06]. Corollary 4.2.6 explains this convergence in the context of traffic probability, but
it also suggests a far more natural free probabilistic interpretation, namely, the asymptotic
freeness of W

(1)
N and D

(1)
N , which follows from Theorem 4.1.3.

For convenience, we restricted our attention to real Wigner matrices. One can easily
adapt the argument to complex Wigner matrices of a real parameter β` ∈ R by finding
an appropriate complex Gaussian realization. In this case, we must take care to choose an
analogue of the degree matrix D

(`)
N to ensure that we have a self-adjoint traffic (in particular,

we can use the second equality in (4.22) so that D
(`)
N now averages the row sums with the

column sums). We leave the relatively straightforward details to the interested reader.

Concentration inequalities for graphs of Wigner matrices

For a test graph T = (V,E, γ) ∈ T 〈x〉, we recall the random variable

tr
[
T (WN)

]
:=

∑
φ:V→[N ]

∏
e∈E

(W
(γ(e))
N )(φ(e)).
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For natural reasons, we are interested in bounding the deviation of tr
[
T (WN)

]
from its

mean. In particular, we would like to emulate the usual approach for the Wigner matrices to
show that the variance Var( 1

N
tr
[
T (WN)

]
) = OT (N−2), which would allow us to upgrade the

convergence in Proposition 4.2.2 to the almost sure sense. It turns out that this approach
will not work in general, but it will be instructive to see just how it falls short.

For notational convenience, we consider instead the deviation of tr
[
T (XN)

]
(recall that

XN =
√
NWN are the unnormalized Wigner matrices). To begin,

Var(tr
[
T (XN)

]
) = E

[∣∣∣∣ tr [T (XN)]− E tr
[
T (XN)

]∣∣∣∣2]
= E

[(
tr
[
T (XN)]− E tr

[
T (XN)

])(
tr
[
T (XN)]− E tr

[
T (XN)

])]
=

∑
φ1,φ2:V→[N ]

E
[ 2∏
`=1

(∏
e∈E

X
(γ(e))
N,` (φ`(e))− E

∏
e∈E

X
(γ(e))
N,` (φ`(e))

)]
, (4.26)

where

X
(i)
N,`(j, k) =

{
X

(i)
N (j, k) if ` = 1,

X
(i)
N (k, j) if ` = 2.

(4.27)

We again make use of our strong moment assumption (4.1), this time to bound our summands
uniformly in φ1, φ2, and N . In particular, our bound only depends on T , i.e.,

E
[ 2∏
`=1

(∏
e∈E

X
(γ(e))
N,` (φ`(e))− E

∏
e∈E

X
(γ(e))
N,` (φ`(e))

)]
≤ CT <∞. (4.28)

We are then interested in the number of pairs (φ1, φ2) that actually contribute in (4.26)
(i.e., such that the summand (4.28) is nonzero). To this end, note that the maps φ` induce

maps φ̃` : E → {{a, b} : a, b ∈ [N ]}, where

e 7→ {φ`(src(e)), φ`(tar(e))}.

In particular, if φ̃1(E) ∩ φ̃2(E) = ∅, then the independence of the X
(i)
N (j, k) implies that

the outermost product of (4.28) factors over the expectation, resulting in a zero summand.
Thus, we need only to consider so-called edge-matched pairs (φ1, φ2). For our purposes, it
will be convenient to incorporate the data of such a pair into the graph T itself.

For a pair (φ1, φ2), we construct a new graph Tφ1tφ2 by considering two disjoint copies
T1 and T2 of T (associated to φ1 and φ2 respectively), reversing the direction of the edges of
T2, and then identifying the vertices according to their images under the maps φ1 and φ2;
formally, the vertices of Tφ1tφ2 are then given by

Vφ1tφ2 = (φ−1
1 (m) ∪ φ−1

2 (m) : m ∈ [N ]).



CHAPTER 4. APPLICATIONS TO RANDOM MULTI-MATRIX MODELS 91

An edge match between φ1 and φ2 then corresponds to an overlay of edges, though not
necessarily in the same direction. Note that

(φ1, φ2) is edge-matched =⇒ Tφ1tφ2 is connected.

(T1, φ1) (T2, φ2) (Tφ1tφ2 , φ1 t φ2)

1 2

43

12

53

1

3

4 5

2

Figure 4.8: An example of the construction of the graph Tφ1tφ2 for an edge-matched pair
(φ1, φ2). Here, we omit the edge labels to emphasize the vertex labels φ`(v). In this case,
we use different colors for the edges of the two copies T1 and T2 of T to keep track of their
origins in the new graph Tφ1tφ2 . Recall that we reverse the direction of the edges of the
second copy T2 before identifying the vertices.

The sum over the set of edge-matched pairs (φ1, φ2) can then be decomposed into a
double sum: the first, over the set ST of connected graphs Tt = (Vt, Et, γt) obtained by
gluing the vertices of two disjoint copies of T with at least one edge overlay (we reverse the
direction of the edges of the second copy beforehand, and we keep track of the origin of the
edges Et = E

(1)
t t E

(2)
t ); the second, over the set of injective labelings φt : Vt ↪→ [N ] of the

vertices of Tt. We may then recast (4.26) as

∑
Tt∈ST

∑
φt:Vt↪→[N ]

E
[ 2∏
`=1

( ∏
e∈E(`)

t

X
(γt(e))
N (φt(e))− E

∏
e∈E(`)

t

X
(γt(e))
N (φt(e))

)]
. (4.29)

We defined ST by reversing the direction of the edges of the second copy of T before gluing
in order to write (4.29) without reference to the transposes (4.27). Moreover, by keeping
track of the origin of the edges, we ensure that ST does not conflate otherwise isomorphic
graphs, and so guaranteeing a faithful reconstruction of (4.26) from (4.29). The set ST is of
course a finite set whose size only depends on T .

We consider a generic Tt ∈ ST , iterating the proof of Proposition 4.2.2. We decompose
the set of edges Et = Lt ∪ Nt as before, and the same for Ẽt = L̃t ∪ Ñt (recall that

Ẽt denotes the set of equivalence classes in Et). Suppose that there exists a lone edge
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e0 ∈ [e] ∈ Ñt with the label γ(e0) = i0 ∈ I so that

γ(e′) 6= γ(e0), ∀e′ ∈ [e] \ {e0}.

Without loss of generality, we may assume that e0 ∈ E(1)
t . We write

P` =
∏
e∈E(`)

t

X
(γt(e))
N (φt(e)) and P

(0)
1 =

∏
e∈E(1)

t \{e0}

X
(γt(e))
N (φt(e)).

The independence of the centered random variables X
(i)
N (j, k) and the injectivity of the maps

φt imply that

E
[
(P1 − EP1)(P2 − EP2)

]
= E

[
(X

(γt(e0))
N (φt(e0))P

(0)
1 − EX

(γt(e0))
N (φt(e0))EP (0)

1 )(P2 − EP2)
]

= E
[
X

(γt(e0))
N (φt(e0))]E

[
(P

(0)
1 − EP (0)

1 )(P2 − EP2)
]

= 0.

Thus, for Tt ∈ ST to contribute, each label i ∈ I present in a class [e] ∈ Ñt must occur with
multiplicity

mi,[e] ≥ 2. (4.30)

This in turn implies that
#(Nt) ≥ 2#(Ñt). (4.31)

As before, the underlying simple graph Tt = (Vt, Ñt) is still connected, whence

#(Ñt) + 1 ≥ #(Vt). (4.32)

Of course, we also have the inherent bound

#(Nt) ≤ #(Et) = 2#(E). (4.33)

Recalling the uniform bound (4.28), we arrive at the asymptotic

Var(tr
[
T (XN)

]
) = OT (Nmax{#(Vt):Tt∈ST }) ≤ OT (N#(E)+1), (4.34)

or, equivalently,

Var

(
1

N
tr
[
T (WN)

])
= OT (N−1), (4.35)

falling short of our goal. Of course, one might hope that we were overly generous in our
bounds and that equality in

max{#(Vt) : Tt ∈ ST} ≤ #(E) + 1 (4.36)

is not attainable in practice. In fact, in the usual situation of traces of powers

tr
[
T (WN)

]
= tr((W

(i(1))
N )`1 · · · (W(i(m))

N )`m), (4.37)
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this is indeed the case; however, in general, (4.34) is tight. In particular, note that if we start
with a tree T , we can overlay two disjoint copies T1 and T2 of T , the second with reversed
edges, to obtain an opposing colored double tree Tt. In this case, we have equality in (4.30)-
(4.33). Proposition 4.2.2 then shows that the contribution of Tt in (4.29) is Θ(N#(E)+1).

T TtT1

T2

x1

x2
x3

x2

x1
x1

x2
x3

x2

x1

x2

x1

x3
x2

x1

x1

x2
x3

x2

x1

Figure 4.9: An example of an overlay of trees. Here, we consider two copies T1 and T2 of the
tree T . We depict the second copy T2 with the direction of its edges already reversed.

Working backwards, we identify the worst case scenario: for (4.30)-(4.33) to hold with
equality, we need to glue (not necessarily overlay) disjoint copies T1 and T2 of T with at least
one edge overlay to obtain a colored double tree Tt (though T itself need not be a tree in
general). In the classical case (4.37), T corresponds to a cycle of length `1 + · · · + `m and
such a gluing does not exist: starting with an edge overlay between two copies of the cycle,
we obtain a butterfly as in Figure 3.3, leading to a strict inequality in (4.36) (and hence the
usual asymptotic O(N−2) in place of (4.35)).

The careful reader will notice that we have actually proven a stronger result in the
presence of loops L 6= ∅: in place of (4.33), we can instead use the tighter bound

#(Nt) ≤ 2#(N ).

We summarize our findings thus far.

Lemma 4.2.7. For a family of Wigner matrices XN = (X
(i)
N )i∈I , we have the asymptotic

Var(tr
[
T (XN)

]
) = OT (N#(N )+1), ∀T ∈ T 〈x〉.

The bound is tight in the sense that there exist test graphs T in x with

Var(tr
[
T (XN)

]
) = ΘT (N#(N )+1).
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The colored double tree obstruction in Lemma 4.2.7 ramifies into a forest of colored
double trees for higher powers, but this construction remains the lone outlier (in particular,
things do not get any worse). Drawing inspiration from Proposition 4.15 of [BDJ06], we
prove

Theorem 4.2.8. For a family of Wigner matrices XN = (X
(i)
N )i∈I , we have the asymptotic

E
[∣∣∣∣tr[T (XN)

]
− E tr

[
T (XN)

]∣∣∣∣2m] = OT (Nm(#(N )+1)), ∀T ∈ T 〈x〉.

The bound is tight in the sense that there exist test graphs T in x with

E
[∣∣∣∣tr[T (XN)

]
− E tr

[
T (XN)

]∣∣∣∣2m] = ΘT (Nm(#(N )+1)).

Proof. The concrete case of m = 2 contains all of the essential ideas; we encourage the reader
to follow through the proof with this simpler case in mind.

To begin, we expand the absolute value as in (4.26) to obtain

∑
φ1,...,φ2m:V→[N ]

E
[ 2m∏
`=1

(∏
e∈E

X
(γ(e))
N,` (φ`(e))− E

∏
e∈E

X
(γ(e))
N,` (φ`(e))

)]
, (4.38)

where

X
(i)
N,`(j, k) =

{
X

(i)
N (j, k) if ` is odd,

X
(i)
N (k, j) if ` is even.

Our strong moment assumption (4.1) again ensures that we can bound the summands in
(4.38) uniformly in (φ1, . . . , φ2m) and N with a dependence only on T , i.e.,

E
[ 2m∏
`=1

(∏
e∈E

X
(γ(e))
N,` (φ`(e))− E

∏
e∈E

X
(γ(e))
N,` (φ`(e))

)]
≤ CT <∞. (4.39)

We proceed to an analysis of contributing 2m-tuples Φ = (φ1, . . . , φ2m). Using the same
notation as before, we say that a coordinate φ` in a 2m-tuple Φ is unmatched if

φ̃`(E) ∩ φ̃`′(E) = ∅, ∀`′ 6= `.

Similarly, we say that the distinct coordinates φ` and φ`′ (i.e., ` 6= `′) are matched if

φ̃`(E) ∩ φ̃`′(E) 6= ∅.

We further say that a 2m-tuple Φ is unmatched if it has an unmatched coordinate φ`;
otherwise, we say that Φ is matched.



CHAPTER 4. APPLICATIONS TO RANDOM MULTI-MATRIX MODELS 95

We define an equivalence relation ∼ on the coordinates of Φ by matchings; thus,

φ` ∼ φ`′ ⇐⇒ ∃`1, . . . `k ∈ [2m] : φ`j and φ`j+1
are matched for j = 0, . . . , k,

where `(0) = ` and `(k+ 1) = `′. We write Φ̃ for the set of equivalence classes in Φ, in which
case (4.39) becomes∏

[φ̃]∈Φ̃

E
[ ∏
φ∈[φ̃]

(∏
e∈E

X
(γ(e))
N,`(φ)(φ(e))− E

∏
e∈E

X
(γ(e))
N,`(φ)(φ(e))

)]
.

For an unmatched Φ, this product includes a zero term; henceforth, we only consider matched
2m-tuples. We incorporate the data of such a tuple into the graph T as before.

For a 2m-tuple Φ, we construct a new graph TtΦ by considering 2m disjoint copies
(T1, . . . , T2m) of T (associated to Φ = (φ1, . . . , φ2m) respectively), reversing the direction of
the edges of (T2, T4, . . . , T2m), and then identifying the vertices according their images under
the maps Φ; formally, the vertices of TtΦ are then given by

VtΦ = (∪2m
`=1φ

−1
` (m) : m ∈ [N ]).

Note that
Φ is matched =⇒ TtΦ has ≤ m connected components.

The sum over the set of matched 2m-tuples Φ can then be decomposed into a double sum:
the first, over the set ST of (not necessarily connected) graphs Tt = (Vt, Et, γt) obtained
by gluing the vertices of 2m disjoint copies of T such that each copy has at least one edge
overlay with at least one other copy (we reverse the direction of the edges of the even copies

beforehand, and we again keep track of the origin of the edges Et = E
(1)
t t · · · tE

(2m)
t ); the

second, over the set of injective labelings φt : Vt ↪→ [N ] of the vertices of Tt. We write
C(Tt) = {C1, . . . , CdTt} for the set of connected components of Tt. We emphasize that

dTt ≤ m. (4.40)

Note that the edges Ep of each connected component Cp consists of a union

Ep = E
(jp(1))
t t · · · t E(jp(kp))

t .

We may then recast (4.38) as

∑
Tt∈ST

∑
φt:Vt↪→[N ]

dTt∏
p=1

E
[ kp∏
`=1

( ∏
e∈E(jp(`))

t

X
(γt(e))
N (φt(e))− E

∏
e∈E(jp(`))

t

X
(γt(e))
N (φt(e))

)]
. (4.41)

We consider a generic Tt ∈ ST . Note that our analysis from before applies to each of the
connected components Cp = (Vp, Ep, γp). In particular, using the same notation as before,
we know that the components of a contributing Tt must satisfy

mi,[e] = 0 or mi,[e] ≥ 2, ∀(i, [e]) ∈ I × Ñp, (4.42)



CHAPTER 4. APPLICATIONS TO RANDOM MULTI-MATRIX MODELS 96

#(Np) ≥ 2#(Ñp), (4.43)

#(Ñp) + 1 ≥ #(Vp). (4.44)

Of course, we also have the inherent (in)equalities

dTt∑
p=1

#(Vp) = #(Vt),

dTt∑
p=1

#(Np) = #(Nt) ≤ 2m#(N ). (4.45)

Putting everything together, we arrive at the asymptotic

E
[∣∣∣∣ tr [T (XN)

]
− E tr

[
T (XN)

]∣∣∣∣2m] = OT (Nmax{#(Vt):Tt∈ST })

≤ OT (Nm#(N )+dTt ) ≤ OT (Nm(#(N )+1)).

The tightness of our bound follows much as before. If we start with a tree T , we can
overlay pairs of the 2m-disjoint copies (T1, . . . , T2m) of T to obtain a forest of dTt = m
opposing colored double trees. In this case, we have equality in (4.40) and (4.42)-(4.45).
Once again, Proposition 4.2.2 shows that the contribution of Tt in (4.41) is Θ(Nm(#(N )+1)).
As was the case for m = 1, a forest of m colored double trees Tt corresponds to the worst
case scenario. �

Reintroducing the standard normalization WN = N−1/2XN , we obtain the asymptotic

E
[∣∣∣∣ 1

N
tr
[
T (WN)

]
− E

1

N
tr
[
T (WN)

]∣∣∣∣2m] = OT (N−m(#(L)+1)), ∀T ∈ T 〈x〉, (4.46)

which bounds the deviation

P
(∣∣∣∣ 1

N
tr
[
T (WN)

]
− E

1

N
tr
[
T (WN)

]∣∣∣∣ > ε

)
= OT,m(N−m(#(L)+1)), ∀T ∈ T 〈x〉. (4.47)

We chose to work with the random variable tr
[
T (XN)

]
, but virtually the same proof

applies to the injective version

tr0
[
T (XN)

]
=

∑
φ:V ↪→[N ]

∏
e∈E

(X
(γ(e))
N )(φ(e)).

In particular, Theorem 4.2.8 holds with tr0
[
T (XN)

]
in place of tr

[
T (XN)

]
, and so too do

its implications (4.46) and (4.47). Of course, one could also deduce this from the relations
(2.6) and (2.7) between tr

[
T (XN)

]
and tr0

[
T (XN)

]
, which still hold at the level of random

variables (i.e., before taking the expectation). This shows that the two results are in fact
equivalent. We may then apply the usual Borel-Cantelli machinery to prove the almost
sure version of Proposition 4.2.2 (and, as a special case, the almost sure version of Corollary
4.2.6). The results in this section apply just as well to Wigner matrices of a general parameter
βi ∈ C. In this case, we do not need a separate statement for the general situation.
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4.3 Classical ensembles beyond Wigner: Ginibre and

Wishart-Laguerre

Let YN = (Y
(i)
N )i∈I be a family of Ginibre matrices as before. In particular, recall that

E[Y
(i)
N (j, k)2] = ζi, ∀j 6= k. (4.48)

In contrast to the Wigner matrices, we can treat the general case of ζi ∈ D ⊂ C without any
additional precautions. Indeed, recall that the obstruction in the Wigner ensemble comes
from the ordering of adjacent vertices, a consequence of the symmetry class of the matrix.
In the Ginibre ensemble, the entries of the matrix are entirely independent, so the ordering
of the vertices plays no role in the calculation of twin edges. Otherwise, virtually the same
analysis applies to prove the traffic convergence of the normalized family of Ginibre matrices
GN = (G

(i)
N )i∈I . Of course, since the Ginibre ensemble is not self-adjoint, we must now

consider ∗-test graphs T 〈x,x∗〉. We state the result below, the proof of which essentially
repeats that of Proposition 4.2.2. In particular, we still have convergence to colored double
trees, but now with three different twin edge types:

(i)

·
xi
⇔
xi

· ,

which we call congruent ;

(ii)

·
x∗i
⇔
x∗i

· ,

which we call ∗-congruent ;

(iii) and

·
xi
�
x∗i

· ,

which we call ∗-opposing.

We say that a double tree T ∈ T 〈x,x∗〉 is a Ginibre double tree if its twin edges each belong
to one of the three types above. In particular, we allow for a mixture of different twin edge
types. Let ci(T ) (resp., si(T )) denote the number of pairs of congruent (resp., ∗-congruent)
twin edges in T with the common label i. We then have the analogue of Proposition 4.2.2
for the Ginibre ensemble.

Proposition 4.3.1 (ζ-circular traffics). For any ∗-test graph T ∈ T 〈x,x∗〉,

lim
N→∞

τ 0
[
T (GN)

]
=

{∏
i∈I ζ

ci(T )
i ζ

si(T )

i if T is a colored Ginibre double tree,

0 otherwise.
(4.49)
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Proof. The result follows from a straightforward modification of the proof of Proposition
4.2.2. �

As in the Wigner case, we have seemingly left out the contribution of ∗-opposing twin
edges. In particular, if we write oi(T ) for the number of pairs of ∗-opposing twin edges in T
with the common label i, then we can write the nontrivial part of (4.49) as∏

i∈I

ζ
ci(T )
i ζ

si(T )

i 1oi(T ). (4.49′)

Once again, the multiplicative double tree structure of the LTD (4.49) allows us to appeal
to the results of Chapter 3 while bypassing Proposition 2.4.9. We conclude that (GN ,G

ᵀ
N)

and Θ(GN) are asymptotically ∗-free for general ζ. In the case of ζ = 0, we can appeal to
Proposition 2.4.9 by taking a standard complex Gaussian Ginibre matrix as a representative.
The factorization property (iii) follows much as in the Wigner case [Mal, Lemma 3.5]. This
shows that GN , GᵀN , and Θ(GN) are asymptotically ∗-free if ζ = 0. To see that ζ = 0 is
necessary for freeness from the transpose, observe that

lim
N→∞

E
[

1

N
tr(GNGᵀN)

]
= ζ,

where we have used (4.49) to compute the limit. Of course, if GN and GᵀN are asymptotically
free, then this limit must be equal to zero, and so the necessity follows. Even in the case
of ζ = 0, we can bypass Proposition 2.4.9 to prove Theorem 4.1.6. We explain this line of
reasoning in Section 4.6 using the cactus-cumulant correspondence.

The traffic distribution of the Ginibre matrices (G
(i)
N )i∈I also includes the information

of the traffic distribution of the Wishart-Laguerre matrices (L
(i)
N )i∈I = (G

(i)
N G

(i)
N
∗)i∈I . This

already almost proves Theorem 4.1.7. To see that ζ = 0 is necessary for freeness from the
transpose, observe that

lim
N→∞

E
[

1

N
tr(LNLᵀN)

]
= lim

N→∞
E
[

1

N
tr(GNG∗N(G∗N)ᵀGᵀN)

]
= lim

N→∞
E
[

1

N
tr

(
·

out

GN←−− ·
G∗N←−− ·

G∗N−−→ · GN−−→ ·
in

)]
= 1 + ζζ = 1 + |ζ|2,

where we have again used (4.49) to compute the limit. If LN and LᵀN are asymptotically
free, then this limit must be equal to 1, and so the necessity follows.

As an aside, note that we can further use (4.49) to give a quick proof of the Marčenko-
Pastur law

µ(LN)
w−→MP(1, 1) as N →∞.

In particular, let us compute the limiting moments

lim
N→∞

E
[

1

N
tr(Lm

N)

]
= lim

N→∞
E
[

1

N
tr

(
·

out

GN←−− ·
G∗N←−− · · · · · GN←−− ·

G∗N←−− ·
in

)]
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= lim
N→∞

τ
[
C2m(GN ,G

∗
N , . . . ,GN ,G

∗
N)
]

= lim
N→∞

∑
π∈P(V )

τ 0
[
C2m(GN ,G

∗
N , . . . ,GN ,G

∗
N)π
]

=: µm,

where C2m = C2m(GN ,G
∗
N , . . . ,GN ,G

∗
N) is the directed cycle with 2m edges labeled by GN

and G∗N in alternating order. Our formula (4.49) tells us that Cπ
2m must be a Ginibre double

tree to contribute in the limit; moreover, since C2m is directed, we know that

Cπ
2m is a double tree =⇒ Cπ

2m is an opposing double tree

(recall the butterfly obstruction). To contribute, every twin edge of Cπ
2m must then be of

type (iii): ∗-opposing. We consider the possible identifications π ∈ P(V ) that create such
a double tree. To this end, it will be convenient to enumerate the vertices V = (vi)

2m
i=1 and

edges E = (ei)
2m
i=1 of C2m. In particular, we fix the labeling

src(ei) = vi, tar(ei) = vi+1, and γ(ei) =

{
GN if i ∈ 2N + 1,

G∗N if i ∈ 2N,

where v2m+1 = v1. We focus on the first edge e1 with label γ(e1) = GN . To create a ∗-
opposing twin edge with e1, we need to identify v1 with a vertex v2k+1 and v2 with a vertex
v2k for some k ∈ [m]. But this pinches off our cycle: we have a directed cycle of length 2k−2
attached at the vertex v2 ∼ v2k and a directed cycle of length 2m−2k attached at the vertex
v1 ∼ v2k+1 (a “dumbbell”).

∼7→

Figure 4.10: An example of an admissible identification pinching off a cycle and creating an
uneven dumbbell with shorter cycles attached at each end.

We repeat the same procedure for each of the two cycles created by this identification,
which we can think of as C2k−2 and C2m−2k. In this way, we arrive at the recurrence

µ0 = 1 and µm =
m∑
k=1

µk−1µm−k,
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which is of course the defining recurrence relation of the Catalan numbers ck =
(2k
k )

k+1
. Since the

moments of the Marčenko-Pastur distributionMP(1, 1) correspond to the Catalan numbers,
the result now follows.

Concentration inequalities for graphs of Ginibre matrices

The same adaptations that produce Proposition 4.3.1 from Proposition 4.2.2 also work to
prove the Ginibre analogue of Theorem 4.2.8.

Theorem 4.3.2. For a family of Ginibre matrices YN = (Y
(i)
N )i∈I , we have the asymptotic

E
[∣∣∣∣tr[T (YN)

]
− E tr

[
T (YN)

]∣∣∣∣2m] = OT (Nm(#(N )+1)), ∀T ∈ T 〈x,x∗〉.

The bound is tight in the sense that there exist ∗-test graphs T ∈ T 〈x,x∗〉 with

E
[∣∣∣∣tr[T (YN)

]
− E tr

[
T (YN)

]∣∣∣∣2m] = ΘT (Nm(#(N )+1)).

Proof. The result follows from a straightforward modification of the proof of Theorem 4.2.8.
�

Reintroducing the normalization GN = N−1/2YN , we obtain the asymptotic

E
[∣∣∣∣ 1

N
tr
[
T (GN)

]
− E

1

N
tr
[
T (GN)

]∣∣∣∣2m] = OT (N−m(#(L)+1)), ∀T ∈ T 〈x,x∗〉, (4.50)

which bounds the deviation

P
(∣∣∣∣ 1

N
tr
[
T (GN)

]
−E

1

N
tr
[
T (GN)

]∣∣∣∣ > ε

)
= OT,m(N−m(#(L)+1)), ∀T ∈ T 〈x.x∗〉. (4.51)

Once again, this allows us to apply the Borel-Cantelli lemma to upgrade our convergences
to the almost sure sense.

4.4 Band matrix variants

Our analysis of the Wigner matrices WN in Section 4.2 crucially relies on two important
features of our ensemble, namely, the homogeneity of the vertices in our graphs T and
the divergence of our normalization

√
N . By the first property, we mean that the label

φ(v) ∈ [N ] of a vertex v ∈ V does not constrain our choice of a contributing label φ(w) for
an adjacent vertex w ∼e v (or, in the case of an injective labeling φ, does so uniformly in
the choice of φ(v)). At the level of the matrices XN , this corresponds to the fact that any
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given row (resp., column) of a Wigner matrix looks much the same as any other row (resp.,
column). For example, if we consider a real Wigner matrix as in Definition 4.1.1 with i.i.d.
upper triangular entries, then the rows (resp, columns) each have the same distribution up
to a cyclic permutation of the entries. More generally, there exists a permutation invariant
realization of our ensemble XN iff βi ∈ R. This property of course does not hold for the
random band matrices ΞN = BN ◦XN (recall Definition 4.1.8): rows (resp, columns) near
the top or the bottom (resp., the far left or the far right) of our matrix will in general
have fewer nonzero entries. This in turn owes to the asymmetry of the band condition BN .
We can recover the homogeneity of our ensemble by reflecting the band width across the
perimeter of the matrix to obtain the so-called periodic random band matrices, providing an
intermediate model between the Wigner matrices and the random band matrices. We start
with this technically simpler model and work our way up to the RBMs. We summarize the
main results at the end of the section on proportional growth RBMs.

Remark 4.4.1. The so-called homogeneity property mentioned above and the corresponding
periodization technique first appeared in the work [BMP91] of Bogachev, Molchanov, and
Pastur. The authors used this intermediate model to transfer Wigner’s semicircle law to
random band matrices of slow growth. We employ the same periodization technique to
identify the joint limiting traffic distribution of independent random band matrices.

Periodic random band matrices

To begin, we formalize

Definition 4.4.2 (Periodic RBM). Let (bN) be a sequence of nonnegative integers. We
write PN for the corresponding N × N periodic band matrix of ones with band width bN ,
i.e.,

PN(i, j) = 1{|i− j|N ≤ bN},

where
|i− j|N = min{|i− j|, N − |i− j|}.

Let XN be an unnormalized Wigner matrix. We call the random matrix ΓN defined by

ΓN = PN ◦XN

an unnormalized periodic RBM. Using the normalization ΥN = (2bN)−1/2JN , we call the
random matrix ΛN defined by

ΛN = ΥN ◦ ΓN

a normalized periodic RBM. We simply refer to periodic RBMs when the context is clear, or
when considering the definition altogether.
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(ΓN ,ΛN)(ΞN ,ΘN)

Figure 4.11: An example of the periodization of a random band matrix. Here, we scale
the matrix to the unit square [0, 1]2. The (i, j)-th entry then corresponds to the subsquare
[ j−1
N
, j
N

]× [N−i
N
, N−i+1

N
], which we then fill in provided the band width condition |i− j| ≤ bN

(resp., |i− j|N ≤ bN) is satisfied.

Let XN = (X
(i)
N )i∈I be a family of unnormalized Wigner matrices as before. We consider

a family of divergent band widths (b
(i)
N )i∈I such that

lim
N→∞

b
(i)
N =∞, ∀i ∈ I, (4.52)

for which we form the corresponding family of periodic RBMs, unnormalized RN = (Γ
(i)
N )i∈I

and otherwise PN = (Λ
(i)
N )i∈I . We identify the LTD of the family PN with that of the familiar

Wigner matrices WN from Proposition 4.2.2.

Lemma 4.4.3. For any test graph T in x = (xi)i∈I ,

lim
N→∞

τ 0
[
T (PN)

]
=

{∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise.
(4.53)

Proof. The proof follows much along the same lines as Proposition 4.2.2 except that we
must take care to account for the differing rates of growth in the band widths b

(i)
N . To begin,

suppose that T = (V,E, γ). By definition, we have that

τ 0
[
T (PN)

]
= E

[
1

N

∑
φ:V ↪→[N ]

∏
e∈E

Λ
(γ(e))
N (φ(e))

]

=
1

N
∏

e∈E

√
2b

(γ(e))
N

∑
φ:V ↪→[N ]

E
[∏
e∈E

Γ
(γ(e))
N (φ(e))

]
. (4.54)
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Using our earlier notation, we can recast the sum in (4.54) as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E
[ ∏
`′∈[`]

Γ
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

E
[ ∏
e′∈[e]

Γ
(γ(e′))
N (φ(e′))

])
. (4.55)

Whereas before the label φ(v) of a vertex v does not constrain our choice of label φ(w)
for an adjacent vertex w ∼e v (beyond the injectivity requirement), we note that in this case
a summand of (4.55) equals zero if

∃e0 ∈ [e] : |φ(src(e0))− φ(tar(e0))|N > b
(γ(e0))
N .

In fact, we see that such a summand equals zero as soon as

∃e0 ∈ [e] : |φ(src(e0))− φ(tar(e0))|N > min
e′∈[e]

b
(γ(e′))
N .

To keep track of these constraints, we define

|φ(e)|N = |φ(src(e))− φ(tar(e))|N .

Note that |φ(·)|N is constant on equivalence classes [e] ∈ Ñ , and so we further write |φ([e])|N
for the common value of

{|φ(e′)|N : e′ ∈ [e]}.
We use the function |φ(·)|N to define the band width condition

C[e] = 1{|φ([e])|N ≤ min
e′∈[e]

b
(γ(e′))
N },

which allows us to rewrite (4.55) as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E
[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

C[e]E
[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
(4.56)

in terms of the usual Wigner matrices XN = (X
(i)
N )i∈I (cf. (4.10)). We may then apply our

analysis from Proposition 4.2.2 to conclude that a contributing graph T satisfies

mi,[e] = 0 or mi,[e] ≥ 2 ∀(i, [e]) ∈ I × Ñ . (4.57)

The band width condition

|φ([e])|N ≤ min
e′∈[e]

b
(γ(e′))
N , ∀[e] ∈ Ñ , (4.58)

bounds the number AN(T ) of contributing maps φ : V ↪→ [N ] by

AN(T ) ≤ N
∏

[e]∈Ñ

min
e′∈[e]

2b
(γ(e′))
N .
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Indeed, fixing an arbitrary vertex v0 ∈ V , we have N choices for φ(v0) ∈ [N ]; but, having
made this choice, we must take into account the band widths in traversing the remaining
edges of the simple graph T = (V, Ñ ). In fact, we can apply the same reasoning to any

spanning tree T0 = (V, Ñ0) of T since any edge [ek] ∈ Ñ in a cycle ([e1], . . . , [ek]) will have
already had the admissible range of labels for its incident vertices determined by the band
width conditions coming from the other edges ([e1], . . . , [ek−1]). This leads to the refinement

AN(T ) ≤ N
∏

[e]∈Ñ0

min
e′∈[e]

2b
(γ(e′))
N , (4.59)

where
#(Ñ0) ≤ #(Ñ ) ≤ #(Ẽ). (4.60)

Recycling the bound (4.14) for the summands of (4.56), we arrive at the asymptotic

τ 0
[
T (PN)

]
= OT

(
N
∏

[e]∈Ñ0
mine′∈[e] 2b

(γ(e′))
N

N
∏

e∈E

√
2b

(γ(e))
N

)

= OT

( ∏
[e]∈Ñ0

mine′∈[e] 2b
(γ(e′))
N∏

e∈N

√
2b

(γ(e))
N

∏
`∈L

√
2b

(γ(`))
N

)
.

For the sake of comparison, we draw the reader’s attention to (4.15) for the analogous

asymptotic in the case of the Wigner matrices WN (note that #(Ñ0) = #(V ) − 1). The

divergence (4.52) of the band widths b
(i)
N and the inequalities (4.57) and (4.60) then imply

that τ 0
[
T (PN)

]
vanishes in the limit unless T is a colored double tree, in which case one

clearly obtains the prescribed limit (4.53). �

Here, the situation for general βi ∈ C becomes much different. For a single periodic RBM
ΛN of divergent band width bN → ∞, the LTD again follows (4.19) as in the Wigner case;
however, the joint LTD of PN might not exist depending on the fluctuations of the band
widths b

(i)
N . In this case, we need to make additional assumptions on the band widths (e.g.,

proportional growth) to ensure the existence of an asymptotic proportion for an ordering ψ
of the vertices (i.e., the analogue of (4.18)). We comment more on this situation later.

On the other hand, the orderings ψ play no role in the calculation of τ 0
[
T (PN)

]
for an

opposing colored double tree T . Consequently, we can apply the criteria (4.21) in Remark

4.2.3 to conclude that PN = (Λ
(i)
N )i∈I converges in joint distribution to a semicircular system

a = (ai)i∈I regardless of (βi)i∈I .
Note that a periodic RBM ΛN with band width bN = N/2 corresponds to a standard

Wigner matrix WN . As such, we can view Lemma 4.4.3 as a generalization of Proposition
4.2.2. We extend the result to include RBMs of slow growth in the next section.
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Slow growth

To begin, we partition the index set I of our matrices XN = (X
(i)
N )i∈I into two camps

I = I1∪I2. We consider a class of divergent band widths (b
(i)
N )i∈I as in (4.52) with the added

condition of slow growth for (b
(i)
N )i∈I2 , i.e.,

lim
N→∞

b
(i)
N

N
= 0, ∀i ∈ I2. (4.61)

We form the corresponding family of periodic RBMs as before,

RN = R(1)
N ∪R

(2)
N = (Γ

(i)
N )i∈I1 ∪ (Γ

(i)
N )i∈I2 , PN = P(1)

N ∪ P
(2)
N = (Λ

(i)
N )i∈I1 ∪ (Λ

(i)
N )i∈I2 .

For i ∈ I2, we also form the corresponding family of slow growth RBMs (see Definition 4.1.8),

S(2)
N = (Ξ

(i)
N )i∈I2 = (B

(i)
N ◦X

(i)
N )i∈I2 , O(2)

N = (Θ
(i)
N )i∈I2 = (Υ

(i)
N ◦Ξ

(i)
N )i∈I2 .

Lemma 4.4.4. The family MN = P(1)
N ∪ O

(2)
N converges in traffic distribution to the limit

lim
N→∞

τ 0
[
T (MN)

]
=

{∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise.
(4.62)

Proof. In view of Lemma 4.4.3, it suffices to show that

lim
N→∞

∣∣∣∣τ 0
[
T (PN)

]
− τ 0

[
T (MN)

]∣∣∣∣ = 0, ∀T ∈ T 〈x〉. (4.63)

Of course, the only difference between the families PN andMN comes from the periodization
of the slow growth RBMs S(2)

N . Equation (4.63) then asserts that the contribution of the
additional entries arising from this periodization becomes negligible in the limit.

For convenience, we write UN = (U
(i)
N )i∈I for the unnormalized version of MN so that

U
(i)
N =

{
Γ

(i)
N if i ∈ I1,

Ξ
(i)
N if i ∈ I2.

Expanding τ 0
[
T (MN)

]
, we obtain the analogue of (4.54),

1

N
∏

e∈E

√
2b

(γ(e))
N

∑
φ:V ↪→[N ]

E
[∏
e∈E

U
(γ(e))
N (φ(e))

]
.

Our notation works just as well in this case to produce the analogue of (4.55) for our sum,∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E
[ ∏
`′∈[`]

U
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

E
[ ∏
e′∈[e]

U
(γ(e′))
N (φ(e′))

])
.
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Naturally, we then look for the analogue of (4.56). Note that the corresponding version of
the band width condition (4.58) must now take into account the index γ(e′) ∈ I1 ∪ I2 of

e′ ∈ [e]. We partition the equivalence classes [e] = [e]1 ∪ [e]2 in Ñ accordingly, where

[e]j = [e] ∩ γ−1(Ij).

For an edge e ∈ N , we define

|φ(e)| = |φ(src(e))− φ(tar(e))|.

As before, |φ(·)| is constant on equivalence classes [e] ∈ Ñ , and so we write |φ([e])| for the
common value of

{|φ(e′)| : e′ ∈ [e]}.

More specifically, we write |φ([e]2)| for the common value of

{|φ(e′)| : e′ ∈ [e]2}.

Note that [e]2 may be empty, in which case we define |φ(∅)| = 0. We use the same convention
for |φ([e]1)|N to define the band width condition

C ′[e] = 1{|φ([e]1)|N ≤ min
e′∈[e]1

b
(γ(e′))
N }1{|φ([e]2)| ≤ min

e′∈[e]2
b

(γ(e′))
N }, ∀[e] ∈ Ñ .

We may then write the analogue of (4.56) for our family MN as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E
[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

C ′[e]E
[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
. (4.64)

Of course, the inherent inequality | · |N = min{| · |, N − | · |} ≤ | · | implies that

C ′[e] ≤ 1{|φ([e])|N ≤ min
e′∈[e]

b
(γ(e′))
N } = C[e], ∀[e] ∈ Ñ ,

which bounds the number BN(T ) of maps φ : V ↪→ [N ] satisfying the band width condition

|φ([e]1)|N ≤ min
e′∈[e]1

b
(γ(e′))
N and |φ([e]2)| ≤ min

e′∈[e]2
b

(γ(e′))
N , ∀[e] ∈ Ñ (4.65)

by
BN(T ) ≤ AN(T ). (4.66)

Recall that AN(T ) is the number of maps φ : V ↪→ [N ] satisfying the weaker condition

|φ([e])|N ≤ min
e′∈[e]

b
(γ(e′))
N , ∀[e] ∈ Ñ (4.67)
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present in Lemma 4.4.3. In view of (4.66), our work in this previous case implies that

lim
N→∞

τ 0
[
T (MN)

]
= 0

unless T is a colored double tree. Thus, it remains to prove (4.63) for such a test graph T .
Comparing the two equations (4.56) and (4.64), we arrive at the asymptotic∣∣∣∣τ 0

[
T (PN)

]
− τ 0

[
T (MN)

]∣∣∣∣ = OT

(
DN(T )

N
∏

e∈E

√
2b

(γ(e))
N

)
, (4.68)

where DN(T ) = AN(T )− BN(T ) is the number of maps φ : V ↪→ [N ] that satisfy the band
width condition (4.67) but not the stronger condition (4.65). This formalizes the observation
that we made at the beginning of the proof about the only difference between the families PN
andMN . In particular, for i ∈ I2, note that the periodic version Γ

(i)
N of a slow growth RBM

Ξ
(i)
N only differs in the entries within band width’s distance of the perimeter; otherwise, the

two matrices are identical. For a map φ : V ↪→ [N ], this means that if φ stays sufficiently
far away from the endpoints of the interval [N ], then the two conditions (4.65) and (4.67)
are actually equivalent. In particular, this holds if

φ(V ) ⊂ [1 + max
e∈E2

b
(γ(e))
N , N −max

e∈E2

b
(γ(e))
N ],

where E2 = γ−1(I2) is of course a finite set. In this case, we have the bound

DN(T ) = AN(T )−BN(T ) ≤ A∗N(T ),

where A∗N(T ) is the number of maps φ : V ↪→ [N ] satisfying (4.67) with range

φ(V ) 6⊂ [1 + max
e∈E2

b
(γ(e))
N , N −max

e∈E2

b
(γ(e))
N ]. (4.69)

We give a simple bound on A∗N(T ) as follows: set aside a vertex v0 ∈ V (for which

there are #(V ) choices) to satisfy (4.69) (for which there are 2 max
e∈E2

b
(γ(e))
N choices) and pick

the labels φ(v) of the remaining vertices according to (4.67) (for which there are at most∏
[e]∈Ẽ mine′∈[e] 2b

(γ(e′))
N choices) to see that

A∗N(T ) = OT

(
max
e∈E2

b
(γ(e))
N

∏
[e]∈Ẽ

min
e′∈[e]

2b
(γ(e′))
N

)
. (4.70)

We may then recast (4.68) as∣∣∣∣τ 0
[
T (PN)

]
− τ 0

[
T (MN)

]∣∣∣∣ =
maxe∈E2 b

(γ(e))
N

N
OT

(∏
[e]∈Ẽ mine′∈[e] 2b

(γ(e′))
N∏

e∈E

√
2b

(γ(e))
N

)
. (4.71)
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T being a colored double tree, we know that∏
[e]∈Ẽ mine′∈[e] 2b

(γ(e′))
N∏

e∈E

√
2b

(γ(e))
N

= 1.

Moreover, since #(E2) <∞, the slow growth (4.61) still holds for the maximum over E2,

max
e∈E2

b
(γ(e))
N = o(N). (4.72)

(ΓN ,ΛN)

(ΞN ,ΘN)

bN
N

bN
N

⇒

⇒ ⇒

⇒

Figure 4.12: An illustration of the “interior” region of a random band matrix (resp., periodic
random band matrix) at band width’s distance bN

N
= o(1) from the perimeter. Here, we cut

off the boundary to see that the two interior regions are indeed identical.
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Equations (4.70)-(4.72) formalize our intuition from before: the periodic version of a RBM
only differs within band width’s distance of the perimeter; for a slow growth RBM, one then
needs to be very close to the perimeter to realize this difference; as such, the corresponding
interior region accounts for the bulk of the calculations. The result now follows. �

Remark 4.4.5. If we think of choosing a map φ : V ↪→ [N ] satisfying (4.65) as starting
at an arbitrary vertex v0, making a choice φ(v0) ∈ [N ], and then choosing the labels of
the remaining vertices in a manner compatible with the band width conditions, then each
choice of φ(v) after φ(v0) can be thought of as an incremental walk of distance at most

mine′∈[e] b
(γ(e′))
N for some [e] ∈ Ñ . If I = I2, then starting from a “deep” vertex

φ(v0) ∈ [1 + #(E) max
e∈E

b
γ(e))
N , N −#(E) max

e∈E
b

(γ(e))
N ],

the walk never has a chance to loop across the perimeter of the matrix. This line of reasoning
can be used to give a more intuitive geometric proof of Lemma 4.2.1 in the simpler case of
I = I2. This notion of a deep vertex originates in the work [BMP91].

If I 6= I2, then we need to account for the possibility of the band widths of the periodic
RBMs being large enough to bring us close to the perimeter so that the walk crosses over
with a step from a periodized version of a slow growth RBM. Taking inspiration from the
simpler case of I = I2, our analysis shows that a generic walk stays within a region in which
the slow growth RBMs and their periodized versions are identical.

We encounter the same problem from before when considering general βi ∈ C: without
further assumptions on the band widths b

(i)
N , their fluctuations could possibly preclude the

existence of a joint LTD. In general, we must again settle for the convergence of MN =
(Λ

(i)
N )i∈I1 ∪ (Θ

(i)
N )i∈I2 in joint distribution to a semicircular system a = (ai)i∈I .

Recall that the Wigner matrices WN are asymptotically traffic independent iff βi ∈ R,
and that a permutation invariant realization of our ensemble WN exists iff βi ∈ R. In view
of Theorem 2.3.10, one might then expect that permutation invariance is also a necessary
condition for matricial asymptotic traffic independence; however, we see that this is not
the case. In particular, one cannot find a permutation invariant realization of the periodic
RBMs (except in the trivial case of bN ∼ N/2), nor of the slow growth RBMs. Instead, we
relied on the aforementioned homogeneity property and the divergence of our normalization.
Taken alone, neither of these two properties suffices, as we shall see in the proportional
growth regime (which lacks homogeneity) and the fixed band width regime (which has a
fixed normalization).

Proportional growth

Not surprisingly, the periodization trick from the previous section fails for proportional
growth RBMs unless c = 1 (recall that c = limN→∞

bN
N
∈ (0, 1]). In the case of proper

proportion c ∈ (0, 1), the entries in the matrix introduced by reflecting the band width



CHAPTER 4. APPLICATIONS TO RANDOM MULTI-MATRIX MODELS 110

across the perimeter now account for an asymptotically nontrivial region in the unit square
and so no longer represent a negligible contribution to the calculations. Nevertheless, we
can adapt our work from before to prove the existence of a joint LTD supported on colored
double trees T , though in general the value of this limit will depend on the degree structure
of T .

bN
N

bN
N

c

c

⇒

Figure 4.13: An illustration of the limit shape of our scaled matrix in the unit square [0, 1]2.
Here, we distinguish the periodized version of our matrix with the additional grey area. In
the limit, the shape corresponds to the banded region |x− (1− y)| ≤ c (resp., the periodic
banded region min(|x− (1− y)|, 1− |x− (1− y)|) ≤ c). In contrast to slow growth regime,
we see a nontrivial contribution from the periodization due to the nonvanishing scale of the
band width limN→∞

bN
N

= c ∈ (0, 1).

To formalize our result, we now split the index set I = I1 ∪ I2 ∪ I3 ∪ I4 into four camps.
We consider a class of divergent band widths (b

(i)
N )i∈I as in (4.52) with the added conditions

of slow growth for b
(2)
N = (b

(i)
N )i∈I2 , full proportion for b

(3)
N = (b

(i)
N )i∈I3 , and proper proportion

for b
(4)
N = (b

(i)
N )i∈I4 so that

lim
N→∞

b
(i)
N

N
= 0, ∀i ∈ I2

lim
N→∞

b
(i)
N

N
= ci = 1, ∀i ∈ I3,

lim
N→∞

b
(i)
N

N
= ci ∈ (0, 1), ∀i ∈ I4.

For i ∈ I1 ∪ I2, we form the corresponding families of periodic RBMs and slow growth
RBMs as before,

RN = R(1)
N ∪R

(2)
N = (Γ

(i)
N )i∈I1 ∪ (Γ

(i)
N )i∈I2 , PN = P(1)

N ∪ P
(2)
N = (Λ

(i)
N )i∈I1 ∪ (Λ

(i)
N )i∈I2 ;

S(2)
N = (Ξ

(i)
N )i∈I2 = (B

(i)
N ◦X

(i)
N )i∈I2 , O(2)

N = (Θ
(i)
N )i∈I2 = (Υ

(i)
N ◦Ξ

(i)
N )i∈I2 .
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For i ∈ I3 ∪ I4, we form the corresponding families of proportional growth RBMs,

F (3)
N = (Ξ

(i)
N )i∈I3 = (B

(i)
N ◦X

(i)
N )i∈I3 , O(3)

N = (Θ
(i)
N )i∈I3 = (Υ

(i)
N ◦Ξ

(i)
N )i∈I3 ;

C(4)
N = (Ξ

(i)
N )i∈I4 = (B

(i)
N ◦X

(i)
N )i∈I4 , O(4)

N = (Θ
(i)
N )i∈I4 = (Υ

(i)
N ◦Ξ

(i)
N )i∈I4 .

We start with the simpler case of the single family O(4)
N of (proper) proportional growth

RBMs. In this case, the LTD of O(4)
N only depends on the band widths b

(4)
N up to the limiting

proportions
c4 = (ci)i∈I4 .

Lemma 4.4.6. For any test graph T in x4 = (xi)i∈I4,

lim
N→∞

τ 0
[
T (O(4)

N )
]

=

{
pT (c4)

∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise,
(4.73)

where pT (c4) > 0 only depends on the test graph T and the proportions c4 = (ci)i∈I4.

Proof. As usual, we begin by expanding

τ 0
[
T (O(4)

N )
]

=
1

N1+
#(E)

2

∏
e∈E

√
2cγ(e) − c2

γ(e)

∑
φ:V ↪→[N ]

E
[∏
e∈E

Ξ
(γ(e))
N (φ(e))

]

and rewriting the sum as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E
[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

1{|φ([e])| ≤ min
e′∈[e]

b
(γ(e′))
N }E

[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
.

At this point, we can already conclude the second half of (4.73). Hereafter, T denotes a
colored double tree. In this case, we have the equality

τ 0
[
T (O(4)

N )
]

=
CN(T )

N1+#(Ẽ)
∏

[e]∈Ẽ (2cγ([e]) − c2
γ([e]))

∏
i∈I

β
ci(T )
i

=
CN(T )

N#(V )

1∏
[e]∈Ẽ (2cγ([e]) − c2

γ([e]))

∏
i∈I

β
ci(T )
i ,

where CN(T ) is the number of maps φ : V ↪→ [N ] satisfying the band width condition

|φ([e])| ≤ b
(γ([e]))
N , ∀[e] ∈ Ẽ. (4.74)

We may think of the ratio
CN(T )

N#(V )
∼ CN(T )

N#(V )
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as the proportion of admissible maps φ : V ↪→ [N ]. Unfortunately, the vertices of our graph
T lack the homogeneity property from before due to the asymmetry of the band condition
(4.74). This makes the task of computing CN(T ) extremely tedious (and highly dependent
on T ). Nevertheless, we can give an integral representation of the limit of this ratio much
as in [BMP91]. In particular, a straightforward weak convergence argument shows that

lim
N→∞

CN(T )

N#(V )
=

∫
[0,1]V

∏
[e]∈Ẽ

1{|xsrc([e]) − xtar([e])| ≤ cγ([e])} dxV . (4.75)

The remaining term in (4.73) follows as

pT (c4) =

∫
[0,1]V

∏
[e]∈Ẽ 1{|xsrc([e]) − xtar([e])| ≤ cγ([e])} dxV∏

[e]∈Ẽ (2cγ([e]) − c2
γ([e]))

> 0.

�

Remark 4.4.7. For general βi ∈ C, we must again keep track of the orderings ψ of the
vertices. In this case, we combine the integrands of (4.18) and (4.75) to define

pT (c4, ψ) =

∫
[0,1]V

1{xψ(1) ≥ · · · ≥ xψ(#(V ))}
∏

[e]∈Ẽ 1{|xsrc([e]) − xtar([e])| ≤ cγ([e])} dxV∏
[e]∈Ẽ (2cγ([e]) − c2

γ([e]))
,

which replaces the 1
#(V )!

term in (4.19). In particular, we can then write the LTD of O(4)
N as

lim
N→∞

τ 0
[
T (O(4)

N )
]

=


∑

ψ:[#(V )]
∼→V

pT (c4, ψ)Sψ(T ) if T is a colored double tree,

0 otherwise.

Naturally, we are interested in the behavior of pT (c4) as the proportions c4 approach the
boundary values {0, 1}. To this end, we fix some notation. Recall that T = (V,E, γ, src, tar)

is a colored double tree. We record the labels L(F̃ ) appearing in any subset F̃ ⊂ Ẽ of twin
edges so that

L(F̃ ) = {γ([e]) : [e] ∈ F̃} ⊂ I4.

We write {src([e]), tar([e])} for the pair of vertices adjacent to twin edges [e] = {e, e′}, which

allows us to further record the vertices V (F̃ ) appearing in F̃ as

V (F̃ ) = {src([e]), tar([e]) : [e] ∈ F̃}.

For any collection of real numbers r = (rj)j∈J in [0, 1] with L(F̃ ) ⊂ J , we define the function

CutF̃ ,r : [0, 1]V (F̃ ) → [0, 1]
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by the product

CutF̃ ,r(xV (F̃ )) =
∏

[e]∈F̃

1{|xsrc([e]) − xtar([e])| ≤ rγ([e])}.

We note that CutF̃ ,r is simply the indicator on the banded region cut out of the hypercube

[0, 1]V (F̃ ) by the constraints |xsrc([e]) − xtar([e])| ≤ rγ([e]). For example, our notation allows us
to succinctly write the integral

IntT (c4) = lim
N→∞

CN(T )

N#(V )
=

∫
[0,1]V

CutẼ,c4
(xV ) dxV .

Similarly, we group the normalizations coming from the twin edges F̃ ⊂ Ẽ with

NormF̃ (c4) =
∏

[e]∈F̃

(2cγ([e]) − c2
γ([e])). (4.76)

If F̃ = Ẽ, we write CutT,r = CutẼ,r (resp., NormT (c4) = NormẼ(c4)). In this case,

pT (c4) =
IntT (c4)

NormT (c4)
.

We will need some simple bounds on the integral IntT (c4). We start with an easy upper
bound. Consider a leaf vertex v0 of our colored double tree T . Let v1 ∼[e0] v0 denote the
unique vertex v1 adjacent to v0. We compute the diameter f(xv1) of a cross section in the
banded strip of the unit square [0, 1]2 defined by |xv0 − xv1| ≤ cγ([e0]),

f(xv1) =

∫ 1

0

1{|xsrc([e0]) − xtar([e0])| ≤ cγ([e0])} dxv0

=

∫ 1

0

1{|xv0 − xv1| ≤ cγ([e0])} dxv0

=


xv1 + cγ([e0]) if xv1 ∈ [0, cγ([e0]) ∧ (1− cγ([e0]))]

2cγ([e0]) ∧ 1 if xv1 ∈ [cγ([e0]) ∧ (1− cγ([e0])), cγ([e0]) ∨ (1− cγ([e0]))]

1 + cγ([e0]) − xv1 if xv1 ∈ [(cγ([e0]) ∨ (1− cγ([e0])), 1]

(4.77)

cγ([e0])

cγ([e0])

f(xv1)

xv1

= .
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In particular,
cγ([e0]) ≤ f(xv1) ≤ 2cγ([e0]) ∧ 1.

It follows that

IntT (c4) =

∫
[0,1]V

CutT,c4(xV )dxV

=

∫
[0,1]V \{v0}

CutẼ\{[e0]},c4
(xV \{v0})

(∫ 1

0

1{|xv0 − xv1| ≤ cγ([e0])} dxv0

)
dxV \{v0}

≤
∫

[0,1]V \{v0}
CutẼ\{[e0]},c4

(xV \{v0})

(
2cγ([e0]) ∧ 1

)
dxV \{v0}

= (2cγ([e0]) ∧ 1) IntT\[e0](c4),

where T \ [e0] is the colored double tree obtained from T by removing the leaf v0 and its
adjacent twin edges [e0]. Iterating this construction, we obtain the upper bound

IntT (c4) ≤
∏

[e]∈Ẽ

(2cγ([e]) ∧ 1).

The same reasoning of course shows that

IntT (c4) ≥ cγ([e0]) IntT\[e0](c4) ≥ · · · ≥
∏

[e]∈Ẽ

cγ([e]),

but we can do much better for small proportions c4. In particular, assume that

ĉ = max
[e]∈Ẽ

cγ([e]) <
1

2
.

Then

IntT (c4) =

∫
[0,1]V

CutT,c4(xV ) dxV ≥
∫

[ĉ,1−ĉ]V
CutT,c4(xV ) dxV

=

∫
[ĉ,1−ĉ]V \{v0}

CutẼ\{[e0]},c4
(xV \{v0})

(∫ 1−ĉ

ĉ

1{|xv0 − xv1| ≤ cγ([e0])} dxv0

)
dxV \{v0}

=

∫
[ĉ,1−ĉ]V \{v0}

CutẼ\{[e0]},c4
(xV \{v0})

(
(1− 2ĉ)2cγ([e0])

)
dxV \{v0}

= · · · = (1− 2ĉ)#(Ẽ)
∏

[e]∈Ẽ

2cγ([e]).

Thus, for ĉ < 1
2
, we have the bounds

(1− 2ĉ)#(Ẽ)
∏

[e]∈Ẽ 2cγ([e])∏
[e]∈Ẽ (2cγ([e]) − c2

γ([e]))
≤ IntT (c4)

NormT (c4)
≤

∏
[e]∈Ẽ 2cγ([e])∏

[e]∈Ẽ (2cγ([e]) − c2
γ([e]))

,
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which imply that

lim
ĉ→0+

pT (c4) = lim
ĉ→0+

IntT (c4)

NormT (c4)
= 1. (4.78)

We view the limit ĉ→ 0+ as approaching the slow growth regime. In view of (4.78), we see
that the LTD (4.73) of the proportional growth RBMs behaves accordingly (in particular,
we have convergence to the LTD (4.62) of the slow growth RBMs).

In an easier direction, we can also consider the limit

c = min
[e]∈Ẽ

cγ([e]) → 1−.

One then clearly has
lim
c→1−

CutT,c4(xV ) = 1, ∀xV ∈ [0, 1]V . (4.79)

We can push this limit through the integral by dominated convergence to obtain

lim
c→1−

IntT (c4) =

∫
[0,1]V

lim
c→1−

CutT,c4(xV ) dxV = 1. (4.80)

Of course, the same convergence also holds for the normalizations (4.76),

lim
c→1−

NormF̃ (c4) = 1, ∀F̃ ⊂ Ẽ, (4.81)

and so

lim
c→1−

pT (c4) = lim
c→1−

IntT (c4)

NormT (c4)
= 1. (4.82)

We view the limit c → 1− as approaching the usual Wigner matrices WN , or, more
generally, the full proportion RBMs. Again, our limit (4.82) shows that the LTD (4.73)
behaves accordingly (in particular, we have convergence to the LTD (4.8) of the Wigner
matrices).

Up to now, our analysis of the integral IntT (c4) essentially follows [BMP91]. We take
care to account for possibly different band widths by grouping them in the min c or the max
ĉ, but in both cases we indiscriminately send the proportions to a single boundary value
{0, 1}. From this point of view, we fail to perceive any differences in the limits

lim
ĉ→0+

pT (c4) = 1 = lim
c→1−

pT (c4); (4.83)

yet, the two cases actually differ quite considerably. To see this, we will need to refine
our analysis of pT (c4) to consider sending only a subset of the proportions c4 to possibly
different boundary values. The results will greatly inform our treatment of the joint LTD of
the combined families P(1)

N ∪ O
(2)
N ∪ O

(3)
N ∪ O

(4)
N .

We start with the simpler case of sending the band width ci0 of a single label i0 ∈ I4 in
our colored double tree T to 1−. We write Ti0 = (Vi0 , Ei0) for the subgraph of T with edge
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labels in i0. In general, Ti0 is a forest of colored double trees (in the single “color” i0). We

define T̃i0 = (Vi0 , Ẽi0) as before. We remove the twin edges Ẽi0 from T to obtain a forest

of colored double trees T \ Ẽi0 (say, with connected components T1, . . . , Tk). We emphasize

that we only remove the edges Ẽi0 ; in particular, we keep any resulting isolated vertices. We
then have the analogues of (4.79)-(4.81):

lim
ci0→1−

CutT,c4(xV ) = CutẼ\Ẽi0 ,c4
(xV ) =

k∏
`=1

CutT`,c4(xV`), ∀xV ∈ [0, 1]V , (4.84)

lim
ci0→1−

IntT (c4) =

∫
[0,1]V

lim
ci0→1−

CutT,c4(xV ) dxV

=
k∏
`=1

∫
[0,1]V`

CutT`,c4(xV`) dxV` =
k∏
`=1

IntT`(c4),

(4.85)

and

lim
ci0→1−

NormT (c4) = NormẼ\Ẽi0
(c4) lim

ci0→1−
NormẼi0

(c4) =
k∏
`=1

NormT`(c4). (4.86)

It follows that

lim
ci0→1−

pT (c4) = lim
ci0→1−

IntT (c4)

NormT (c4)
=

∏k
`=1 IntT`(c4)∏k

`=1 NormT`(c4)
=

k∏
`=1

pT`(c4). (4.87)

Of course, if T` consists of an isolated vertex, then pT`(c4) = 1. One can then effectively

discard the isolated vertices of T \ Ẽi0 and just consider the resulting forest of nontrivial
colored double trees. We choose to keep these vertices in writing a simple, consistent formula
for our limit.

The reader will no doubt be easily convinced of (4.87), but we give here some intuition
for the sake of comparison later. We imagine each vertex v as a country in a league of allied
nations V . Each value xv ∈ [0, 1] represents a proposed amount of aid to be sent by country
v to every other country. To avoid showing favoritism, the same amount of aid xv is sent to
each ally w 6= v; however, to ensure goodwill, a country can opt to cap the disparity in the
amount of aid they exchange with a given ally. We view these restrictions as coming from
the edges Ẽ, where an edge v ∼[e] w corresponds to a bound |xv − xw| ≤ cγ([e]).

We can then interpret the integral IntT (c4) as the percentage of universally acceptable
proposals xV ∈ [0, 1]V . Each term in our normalization

NormT (c4) =
∏

[e]∈Ẽ

(2cγ([e])−c2
γ([e])) =

∏
[e]∈Ẽ

∫ 1

0

∫ 1

0

1{|xsrc([e])−xtar([e])| ≤ cγ([e])} dxsrc([e])dxtar([e])
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corresponds to the local situation of a single pair of constrained allies {src([e]), tar([e])}. Of
course, each such pair must agree to a proposal xV for it to be universally acceptable, though
in general this is not sufficient. We can then think of the ratio

pT (c4) =
IntT (c4)

NormT (c4)

as conditioning on the proposals that, at the very least, pass at the local level (though it

is possible for pT (c(4)) > 1). In the limit ci0 → 1−, the twin edges [e] ∈ Ẽi0 with label i0
represent negotiations between increasingly amicable nations, insomuch that they no longer
care to keep track of the disparity in the aid exchanged between them. Here, we again
encounter the notion of a free edge. In this case, the proposal xV need only to satisfy the
constraints coming from the remaining edges Ẽ \ Ẽi0 , which explains the limit (4.87).

Of course, there is nothing special about only sending one of the band widths ci0 → 1−.
In fact, the same argument clearly applies to any collection of labels i0, . . . , ij in a colored
double tree T . We state the full result later once we have also considered the behavior of
pT (c4) for band widths ci0 → 0+, but first we must introduce some more notation.

For any pair of subsets W ⊂ V and F̃ ⊂ Ẽ, we define the conditional expectation

IntF̃ (c4|W ) : [0, 1]W → [0, 1]

by

IntF̃ (c4|W )(xW ) =

∫
[0,1]V \W

CutF̃ ,c4
(xV ) dxV \W .

For example, the reader can easily verify that∫
[0,1]W

IntT (c4|W )(xW ) dxW = IntT (c4).

As before, we start with a single label i0 ∈ I4 in T , for which we now consider the limit
ci0 → 0+. To simplify the argument, we first assume that there is a unique pair of twin edges
[ei0 ] with the label γ([ei0 ]) = i0. For notational convenience, we write

{a, b} = {src([ei0 ]), tar([ei0 ])}.

We condition on the vertices {a, b} to obtain

pT (c4) =
IntT (c4)

NormT (c4)
=

∫
[0,1]V

CutT,c4(xV )

NormT (c4)
dxV

=

∫
[0,1]2

IntẼ\{[ei0 ]}(c4|{xa, xb})(xa, xb)
NormẼ\{[ei0 ]}(c4)

(
1{|xa − xb| ≤ ci0}

2ci0 − c2
i0

dxadxb

)
=

∫
[0,1]2

f(xa, xb)µci0 (dxa, dxb), (4.88)
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where

f(xa, xb) =
IntẼ\{[ei0 ]}(c4|{xa, xb})(xa, xb)

NormẼ\{[ei0 ]}(c4)

is a bounded continuous function that does not depend on ci0 and

µci0 (dxa, dxb)

is the uniform (probability) measure on the banded strip in unit square [0, 1]2 defined by
|xa − xb| ≤ ci0 . In the limit, we have the weak convergence

µci0
w−→ µ∆ as ci0 → 0+,

where µ∆ is the uniform measure on the diagonal {(x, x) : x ∈ [0, 1]} ⊂ [0, 1]2. In particular,
this implies that

lim
ci0→0+

pT (c4) = lim
ci0→0+

∫
[0,1]2

f(xa, xb)µci0 (dxa, dxb)

=

∫
[0,1]2

f(xa, xb)µ∆(dxa, dxb) =

∫ 1

0

f(x, x) dx = pT/[ei0 ](c4),

where T/[ei0 ] is the colored double tree obtained from T by contracting the twin edges [ei0 ]
(i.e., we remove the edges [ei0 ] and merge the vertices {a, b}). We note the contrast to the
situation in (4.87) in the limit ci0 → 1−, where we remove the edges but do not otherwise
modify the vertices.

We must take care if the label i0 appears in more than one set of twin edges. In any
case, we can always identify the subgraph Ti0 of T with edge labels in i0. In general,
Ti0 = (Vi0 , Ei0) is a forest T1 t · · · t Tk of colored double trees T` = (V`, E`) (in the single
color i0). Conditioning on the vertices Vi0 = V1 t · · · t Vk of Ti0 , we obtain

pT (c4) =

∫
×k`=1[0,1]V`

f(xV1 , . . . ,xVk)
k∏
`=1

(
CutT`,ci0 (xV`)

NormT`(ci0)
dxV`

)
(4.89)

where

f(xV1 , . . . ,xVk) =
IntẼ\Ẽi0

(c4|Vi0)(xV1 , . . . ,xVk)

NormẼ\Ẽi0
(c4)

is again a bounded continuous function that does not depend on ci0 . In this case, we cannot
immediately write (4.89) in terms of probability measures

µ(`)
ci0

(dxV`) =
CutT`,ci0 (xV`)

NormT`(ci0)
dxV`

as we did in (4.88) since, in general,

IntT`(ci0) =

∫
[0,1]V`

CutT`,ci0 (xV`) dxV` 6= (2ci0 − c2
i0

)#(Ẽ`) = NormT`(ci0);
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however, our work (4.78) from before shows that

lim
ci0→0+

IntT`(ci0)

NormT`(ci0)
= 1.

Thus, we can instead write

pT (c4) = δ(ci0)

∫
×k`=1[0,1]V`

f(xV1 , . . . ,xVk)

(
⊗k`=1 µ

(`)
ci0

(dxV`)

)
, (4.90)

where δ(ci0) is a real number depending on ci0 such that

lim
ci0→0+

δ(ci0) = 1

and µ
(`)
ci0

is the uniform measure on the banded region R` ⊂ [0, 1]V` defined by the constraints

|xsrc([e]) − xtar([e])| ≤ ci0 , ∀[e] ∈ Ẽ`.

As before, we note that
lim

ci0→0+
µ(`)
ci0

= µ
(`)
∆ ,

where µ
(`)
∆ is the uniform measure on the diagonal {(x, . . . , x) : x ∈ [0, 1]} ⊂ [0, 1]V` . It

follows that

lim
ci0→0+

pT (c4) = lim
ci0→0+

∫
×k`=1[0,1]V`

f(xV1 , . . . ,xVk)
k∏
`=1

(
CutT`,ci0 (xV`)

NormT`(ci0)
dxV`

)
=

∫
×k`=1[0,1]V`

f(xV1 , . . . ,xVk)

(
⊗k`=1 µ

(`)
∆ (dxV`)

)
=

∫
[0,1]k

f(x1, . . . , x1, . . . , xk, . . . , xk) dx1 · · · dxk = pT/Ti0 (c4),

where T/Ti0 is the colored double tree obtained from T by contracting the edges of Ti0 (i.e.,

for each ` ∈ [k], we remove the edges Ẽ` and merge the vertices V` into a single vertex).
We can easily adapt our argument to accommodate multiple band widths ci0 , . . . , cij in

the limit max(ci0 , . . . , cij)→ 0+. In this case, we replace Ti0 with Ti, the subgraph of T with
edge labels in i = {i0, . . . , ij}; otherwise, the same argument goes through just as well.

Returning to our intuition from before, we think of the limit ci0 → 0+ as representing
negotiations between increasing acrimonious nations, insomuch that they become completely
intransigent and insist on absolute parity in the aid exchanged between them. Negotiations
along such an edge γ([e]) = i0 then stall a proposal xV unless |xsrc([e]) − xtar([e])| = 0. In
this case, we can effectively consider the two countries src([e]) and tar([e]) as a single entity
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sending the aid xsrc([e]) = xtar([e]) to the remaining allies. Our normalization then allows us
to recast the problem as the proportion of acceptable proposals in this new world order.

T T \ Ẽi0

xi0

xi1

xi2

xi1

xi1

xi0

xi0
xi1

xi2

xi1

xi1

T/Ti0

xi1

xi1

xi2

xi1

Figure 4.14: A comparison of the resulting graphs in the limits ci0 → 1− and ci0 → 0+

respectively. Here, we start with a colored double tree T and remove (resp., contract) the

edges with label xi0 to obtain the limit graph T \ Ẽi0 (resp., T/Ti0). In particular, we note
that the two operations can produce substantially different graphs.

At this point, we see how the limits (4.83) come about in different ways: in the limit
c → 0+, we contract all of the edges, leaving a single isolated vertex; in the limit ĉ →
1−, we remove all of the edges, leaving #(V ) isolated vertices. Finally, the result for a
collection of band widths sent to possibly different boundary values should come as no
surprise. We combine our work in the two previous cases taking care to account for parts
moving simultaneously in different directions.

To begin, let J0 (resp., J1) denote the collection of labels in our colored double tree T
whose band widths are to be sent to 0+ (resp., 1−). We define

c0 = (ci)i∈J0 , c1 = (ci)i∈J1 ;

c0 = max
i∈J0

ci, c1 = min
i∈J1

ci,

and write c2 = c4 \ (c0 ∪ c1) for the remaining band widths. We are then interested in the
limit

lim
(c0,c1)→(0+,1−)

pT (c4).

We decompose our graph as before. We write T0+ for the subgraph of T with edge labels in
J0. In general, T0+ = (V0+ , E0+) is a forest T0+ = T+

1 t · · ·tT+
k of colored double trees T+

` =
(V +

` , E
+
` ) (except now possibly with multiple colors). Similarly, we write T1− = (V1− , E1−)

for the subgraph of T with edge labels in J1. Finally, we write E2 = E \ (E0 ∪ E1) for the
remaining edges.
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Conditioning on the vertices V0+ = V +
1 t · · · t V +

k of T0+ , we obtain the analogue of
(4.90),

pT (c4) = δ(c0)

∫
×k`=1[0,1]

V+
`

fc1(xV +
1
, . . . ,xV +

k
)

(
⊗k`=1 µ

(`)
c0

(dxV +
`

)

)
,

where δ(c0) is a real number depending on c0 such that

lim
c0→0+

δ(c0) = 1

and µ
(`)
c0 is the uniform measure on the banded region R` in [0, 1]V

+
` defined by the constraints

|xsrc([e]) − xtar([e])| ≤ cγ([e]) ∈ c0, ∀[e] ∈ Ẽ+
` .

Despite considering multiple band widths c0, we still have the weak convergence

lim
c0→0+

µ(`)
c0

= µ
(`)
∆ .

As before,

fc1(xV +
1
, . . . ,xV +

`
) =

IntẼ\Ẽ0+
(c4|V0+)(xV +

1
, . . . ,xV +

k
)

NormẼ\Ẽ0+
(c4)

=

∫
[0,1]

V \V
0+

CutẼ1− ,c1
(xV )

NormẼ1−
(c1)

CutẼ2,c2
(xV )

NormẼ2
(c2)

dxV \V0+

is a bounded continuous function that does not depend on c0; however, fc1 does depend on
c1. In particular, the function

CutẼ1− ,c1
: [0, 1]V → [0, 1]

is monotonic in c1 with

lim
c1→1−

CutẼ1− ,c1
(xV ) = 1, ∀xV ∈ [0, 1]V .

Since
lim
c1→1−

NormẼ1−
(c1) = 1,

it follows that

f(xV +
1
, . . . ,xV +

k
) = lim

c1→1−
fc1(xV +

1
, . . . ,xV +

k
) =

∫
[0,1]V \V

+
0

CutẼ2,c2
(xV )

NormẼ2
(c2)

dxV \V0+ .
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The monotonicity of CutẼ1− ,c1
in the proportions c1 then allows us to conclude that

lim
(c0,c1)→(0+,1−)

pT (c4) = lim
(c0,c1)→(0+,1−)

∫
×k`=1[0,1]

V+
`

fc1(xV +
1
, . . . ,xV +

k
)

k∏
`=1

(CutẼ+
` ,c0

(xV +
`

)

NormT+
`

(c0)
dxV +

`

)
=

∫
×k`=1[0,1]

V+
`

f(xV +
1
, . . . ,xV +

k
)

(
⊗k`=1 µ

(`)
∆ (dxV +

`
)

)
=

∫
[0,1]k

f(x1, . . . , x1, . . . , xk, . . . , xk) dx1 · · · dxk = pF (c2) =
s∏
r=1

pTr(c2),

where F is the forest of colored double trees F = T1 t · · · t Ts obtained from T by removing
the edges E1− and contracting the edges E0+ .

Our treatment of pT (c4) suggests the following form for the joint LTD of the matrices

O(2)
N ∪ O

(3)
N ∪ O

(4)
N . We leave the by-now familiar details of the proof to the diligent reader.

Theorem 4.4.8. For any test graph T in x2 ∪ x3 ∪ x4 = (xi)i∈I2∪I3∪I4,

lim
N→∞

τ 0
[
T (O(2)

N ∪O
(3)
N ∪O

(4)
N )
]

=

{
pF (c4)

∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise,
(4.91)

where F = T1 t · · · t Ts is the forest of colored double trees obtained from T by contracting
the edges with labels in I2 and removing the edges with labels in I3 and

pF (c4) =
s∏
r=1

pTr(c4). (4.92)

Corollary 4.4.9. The full proportion RBMs O(3)
N and the proper proportion RBMs O(4)

N

are asymptotically traffic independent, as are the full proportion RBMs O(3)
N and the slow

growth RBMs O(2)
N . The slow growth RBMs O(2)

N and the proper proportion RBMs O(4)
N

are not asymptotically traffic independent, nor are independent proper proportion RBMs
O(4)
N = (Θ

(i)
N )i∈I4.

Proof. The statements about asymptotic traffic independence follow from the calculation of
F from our colored double tree T (we simply remove the edges with labels in I3) and the
multiplicativity of (4.92). For the statements about non-asymptotic traffic independence,
we give a simple counterexample, namely, for i2 ∈ I2 and i4, j4 ∈ I4 with 0 < ci4 ≤ cj4 < 1,

lim
N→∞

τ 0

[
·

Θ
(i4)
N

�
Θ

(i4)
N

·
Θ

(i2)
N

�
Θ

(i2)
N

·
Θ

(j4)
N

�
Θ

(j4)
N

·
]

= lim
N→∞

τ 0

[
·

Θ
(i4)
N

�
Θ

(i4)
N

·
Θ

(j4)
N

�
Θ

(j4)
N

·
]

= lim
N→∞

τ 0
[
S(Θ

(i4)
N ,Θ

(i4)
N ,Θ

(j4)
N ,Θ

(j4)
N )

]
= pS({ci4 , cj4}),
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where

pS({ci4 , cj4}) =



−1
3
c3
i4
− c2

i4
cj4 − 2ci4c

2
j4

+ 4ci4cj4
(2ci4 − c2

i4
)(2cj4 − c2

j4
)

if ci4 ≤ cj4 ≤
1

2
,

1
3
c3
j4
− ci4c2

j4
− c2

i4
− c2

j4
+ 2ci4cj4 + ci4 + cj4 − 1

3

(2ci4 − c2
i4

)(2cj4 − c2
j4

)
if 1− cj4 ≤ ci4 ≤

1

2
,

−1
3
c3
i4
− c2

i4
cj4 − 2ci4c

2
j4

+ 4ci4cj4
(2ci4 − c2

i4
)(2cj4 − c2

j4
)

if ci4 ≤ 1− cj4 ≤
1

2
,

1
3
c3
j4
− ci4c2

j4
− c2

i4
− c2

j4
+ 2ci4cj4 + ci4 + cj4 − 1

3

(2ci4 − c2
i4

)(2cj4 − c2
j4

)
if

1

2
≤ ci4 ≤ cj4 .

In particular,

pS({ci4 , cj4}) 6= 1 =

(
lim
N→∞

τ 0
[
·

Θ
(i4)
N

�
Θ

(i4)
N

·
])(

lim
N→∞

τ 0
[
·

Θ
(j4)
N

�
Θ

(j4)
N

·
])

=

(
lim
N→∞

τ 0
[
·

Θ
(i4)
N

�
Θ

(i4)
N

·
])(

lim
N→∞

τ 0
[
·

Θ
(i2)
N

�
Θ

(i2)
N

·
])(

lim
N→∞

τ 0
[
·

Θ
(j4)
N

�
Θ

(j4)
N

·
])
,

which covers both statements. �

Remark 4.4.10. One can also deduce the lack of asymptotic traffic independence for inde-
pendent proper proportion RBMs O(4)

N = (Θ
(i)
N )i∈I4 of the same proportion ci ≡ c from the

traffic CLT. Indeed, if the family O(4)
N were asymptotically traffic independent, then we could

adapt the traffic CLT argument from Section 4.2 to identify the LSD of a single proper pro-
portion RBM Θ

(i)
N as a free convolution SC(0, p2)�N (0, q2) of the form p2 + q2 = 1. On the

contrary, the actual LSD is known to be non-semicircular and of bounded support [BMP91],
which simultaneously implies that both q2 6= 0 and q2 = 0 respectively.

The careful reader will notice that the periodic RBMs P(1)
N are conspicuously absent in

Theorem 4.4.8. Again, we have the familiar obstruction: without any further assumptions
on the band widths b

(1)
N = (b

(i)
N )i∈I1 , their fluctuations could preclude the existence of a

joint LTD. For example, if a periodic band width b
(i)
N has a subsequence of slow growth and

another subsequence of proportional growth, then the LTDs along these two subsequences
will be different. If we assume that the band widths b

(1)
N = (b

(i)
N )I′1 ∪ (b

(i)
N )i∈I′′1 fall into one of

these two regimes, slow growth or proportional growth respectively, then we can prove the
extension of Theorem 4.4.8 to P(1)

N ∪ O
(2)
N ∪ O

(3)
N ∪ O

(4)
N . In this case, the LTD essentially

follows (4.91) except that we must now also contract the edges with labels in I ′1 and remove

the edges with labels in I ′′1 (regardless of the limiting proportions limN→∞
b
(i)
N

N
for i ∈ I ′′1 ).

The contraction of the edges with labels in I ′1 should come as no surprise given Lemma
4.4.4, where we saw that periodizing a slow growth RBM does little to affect the calculations.
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Just as we contract the labels in I2, we should then also expect to contract the labels in I ′1.
On the other hand, as we noted before, periodizing a proportional growth RBM changes the
situation entirely. Formally, we need to work with the periodic absolute value

|x|p = min(x, 1− x), ∀x ∈ [0, 1]

in our integral to account for the edges with labels in I ′′1 ; however, the analogue of (4.77)
does not depend on where we measure the diameter of our cross section,

g(xv1) =

∫ 1

0

1{|xv0 − xv1|p ≤ cγ([e0])} dxv0 = 2cγ([e0]), ∀xv1 ∈ [0, 1].

This balances out perfectly with the normalization of the periodic RBMs,

Λ
(γ([e0]))
N = Υ

(γ([e0]))
N ◦ Γ

(γ([e0]))
N =

1√
2b

(γ([e0]))
N

Γ(γ([e0])),

so we can integrate out the vertices that are only adjacent to edges with labels in I ′′1 without
changing the value of the integral. This of course corresponds to simply removing the edges
with labels in I ′′1 when calculating pF (c4). In this case, we then know that the periodic

RBMs P(1′′)
N = (Λ

(i)
N )i∈I′′1 and the proportional growth RBMs O(4)

N are asymptotically traffic

independent, whereas the periodic RBMs P(1′)
N = (Λ

(i)
N )i∈I′1 and the proportional growth

RBMs O(4)
N are not.

For general βi ∈ C, we must again settle for convergence in joint distribution.

Theorem 4.4.11. Assume that the band widths (b
(i)
N )i∈I1 of the periodic RBMs fall into one

of two categories I1 = I ′1∪I ′′1 as before. For general βi ∈ C, the families P(1)
N ∪O

(2)
N ∪O

(3)
N ∪O

(4)
N

converge in joint distribution to a family

a = (ai)i∈I = (ai)i∈I′1 ∪ (ai)i∈I′′1 ∪ (ai)i∈I2 ∪ (ai)i∈I3 ∪ (ai)i∈I4 = a1′ ∪ a1′′ ∪ a2 ∪ a3 ∪ a4.

The family a1′ ∪ a1′′ ∪ a2 ∪ a3 is a semicircular system; the families a1′′, a3, and a4 are
free; the families a2 and a4 are not free, nor are the families a1′ and a4; finally, the family
a4 = (ai)i∈I4 is not free.

Proof. The convergence in joint distribution follows from a modified version of the criteria
(4.21) in Remark 4.2.3. In particular, we do not actually need to know the value of

lim
N→∞

τ 0
[
T (P(1)

N ∪ O
(2)
N ∪ O

(3)
N ∪ O

(4)
N )
]

for an opposing colored double tree T , just that it exists. In this case, we know that the
value of this limit is equal to pF (c4), which in turn is equal to 1 if there are no edges with
labels in I4. This proves the first statement, about a1′ ∪ a1′′ ∪ a2 ∪ a3.
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For the second statement, about a1′′ ∪a3∪a4, it suffices to prove that a3 and a4 are free.
Indeed, this follows from the calculation of pF (c4): edges with labels in either I1′′ or I3 are
both treated just the same and simply removed. In particular, this implies that the joint
distributions µa1′′∪a3∪a4 and µa3′′∪a3∪a4 = µb3∪a4 are identical, where a3′′ is the limit of the full

proportion RBMs O(3′′)
N = (Θ

(i)
N )i∈I′′1 and b3 = a3′′ ∪ a3 is simply the limit of a larger family

of independent full proportion RBMs. Now, since the joint distribution µa3∪a4 is universal
independent of the parameters βi, we can calculate µa3∪a4 via a unitarily invariant realization

of O(3)
N . The standard techniques then apply to show that a3 and a4 are free [Voi91].

Similarly, the joint distributions µa2∪a4 and µa1′∪a4 are also identical, so we need only to
consider the families a2 and a4. Let ai2 ∈ a2 and ai4 ∈ a4. If ai2 and ai4 were free, then

ϕ(a2
i4
ai2a

2
i4
ai2) = ϕ(a2

i4
)2ϕ(a2

i2
) = 1;

however, one can easily calculate

lim
N→∞

E
[

1

N
tr

(
(Θ

(i4)
N )2Θ

(i2)
N (Θ

(i4)
N )2Θ

(i2)
N

)]
= pT (ci4)

=


8c2
i4

(1
2
− ci4) + 14

3
c3
i4

(2ci4 − c2
i4

)2
if ci4 ≤

1

2
,

2ci4 − 1 + 2
3
(1− c3

i4
)

(2ci4 − c2
i4

)2
if ci4 ≥

1

2

6= 1

for ci4 ∈ (0, 1), where

T (Θ
(i4)
N ,Θ

(i4)
N ,Θ

(i4)
N ,Θ

(i4)
N ) = ·

Θ
(i4)
N

�
Θ

(i4)
N

·
Θ

(i4)
N

�
Θ

(i4)
N

· .

Finally, suppose that ai4 6= aj4 ∈ a4 with 0 < ci4 ≤ cj4 < 1. If ai4 and aj4 were free, then

ϕ(a2
i4
a2
j4

) = ϕ(a2
i4

)ϕ(a2
j4

) = 1;

however, one can again show that

lim
N→∞

E
[

1

N
tr

(
(Θ

(i4)
N )2(Θ

(j4)
N )2

)]
= pS({ci4 , cj4}) 6= 1,

where pS({ci4 , cj4}) is as in the proof of Corollary 4.4.9. �

Remark 4.4.12. We need the assumption on the band widths (bN)i∈I1 of the periodic RBMs

to handle the interaction with the proper proportional growth RBMs O(4)
N . The families

P(1)
N ∪ O

(2)
N ∪ O

(3)
N converge in joint distribution to a semicircular system regardless, even

without this assumption.
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Finally, the same considerations that allow us to translate Proposition 4.2.2 to Theorem
4.4.8 also work to prove the RBM version of the concentration inequalities in Theorem 4.2.8.
Here, we do not make any assumptions on the band widths (b

(i)
N )i∈I1 beyond their divergence

(4.52), nor on the parameters βi ∈ C.

Theorem 4.4.13. Let QN = P(1)
N ∪ O

(2)
N ∪ O

(3)
N ∪ O

(4)
N . For any test graph T in x,

E
[∣∣∣∣ 1

N
tr
[
T (QN)

]
− E

1

N
tr
[
T (QN)

]∣∣∣∣2m] = OT (N−m).

The bound is tight in the sense that there exist test graphs T such that

E
[∣∣∣∣ 1

N
tr
[
T (QN)

]
− E

1

N
tr
[
T (QN)

]∣∣∣∣2m] = ΘT (N−m).

As before, we can use Theorem 4.4.13 to upgrade the convergence in Theorems 4.4.8 and
4.4.11 to the almost sure sense.

Remark 4.4.14. In the case of a diverging band width bN → ∞, the bottleneck (4.65)

can even compensate for a lack of independence. For example, let b
(1)
N be a band width

of slow growth or proportional growth, and suppose that b
(2)
N → ∞ satisfies b

(2)
N = o(b

(1)
N ).

For independent Wigner matrices X
(1)
N and X

(2)
N of the same parameter β ∈ R, we form the

normalized RBMs

Θ
(1)
N = Υ

(1)
N ◦B

(1)
N ◦X

(1)
N , Θ

(2)
N = Υ

(2)
N ◦B

(2)
N ◦X

(2)
N , and Θ

(1,2)
N = Υ

(2)
N ◦B

(2)
N ◦X

(1)
N .

In particular, note that Θ
(1)
N and Θ

(1,2)
N are not independent: we use the same Wigner

matrix X
(1)
N , but with different band widths b

(1)
N and b

(2)
N . Since b

(2)
N = o(b

(1)
N ), the band

width conditions (4.65) show that a twin edge with mixed labels in Θ
(1)
N and Θ

(1,2)
N does not

contribute in the limit. Indeed, the minimum of the band widths will be b
(2)
N = o(b

(1)
N ), but

we have carried the cost of the normalization of the larger band width in Θ
(1)
N . In this case,

we cannot have twin edges with mixed labels in Θ
(1)
N and Θ

(1,2)
N , but this is precisely the

limiting condition for the independent RBMs Θ
(1)
N and Θ

(2)
N . It follows that (Θ

(1)
N ,Θ

(1,2)
N )

and (Θ
(1)
N ,Θ

(2)
N ) have the same LTD. The heuristic is that most of the entries of Θ

(1)
N are

independent from the entries of Θ
(1,2)
N , so the calculation goes through as usual (the nonzero

entries of Θ
(1,2)
N form a vanishingly small proportion of the entries of Θ

(1)
N since b

(2)
N = o(b

(1)
N )).

An almost Gaussian degree matrix

As an application of Theorem 4.4.8, we consider the analogue of the random Markov matrix
problem for proportional growth RBMs. In particular, we are interested in the LSD of the
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degree matrix DN = rDeg(ΘN) of a proportional growth RBM ΘN , as well as the joint
distribution of (ΘN ,DN). Here, we find that the free product decomposition of Chapter 3
cannot be extended to the proportional growth regime (in contrast to the periodic regime
and the slow growth regime).

For simplicity, we restrict our attention to real Wigner matrices XN . As before, we form
the corresponding proportional growth RBMs, unnormalized ΞN and otherwise ΘN . Let
c ∈ (0, 1] denote the limiting proportion of the band width bN , i.e.,

lim
N→∞

bN
N

= c.

The entries of the degree matrix DN = rDeg(ΘN) can then be written as

DN(i, j) = 1{i = j}
N∑
k=1

ΘN(i, k)

= 1{i = j}
N∑
k=1

ΞN(i, k)√
N
√

2c− c2
= 1{i = j}

N∑
k=1

1{|i− k| ≤ bN}XN(i, k)√
N
√

2c− c2
.

One can then use the asymptotics of partial sums of falling factorials to compute the limits

lim
N→∞

E
[

1

N
tr(Dm

N)

]
, ∀m ∈ N,

for example, by choosing a convenient realization of the random variables XN(i, k) and then
appealing to the universality of (4.91); however, one can avoid such a tedious calculation and
obtain the answer from (4.91) directly. In particular, we can factor the expected moments
of the spectral distribution µDN

through the traffic distribution of ΘN via

E
[

1

N
tr(Dm

N)

]
= τ
[
Cm(DN , . . . ,DN)

]
= τ
[
Sm(ΘN , . . . ,ΘN)

]
,

where Cm is the directed cycle with m edges and Sm = (V,E) is the inward facing directed
m-star graph, i.e.,

Cm(DN , . . . ,DN) = Sm(ΘN , . . . ,ΘN) =

· · ·

and

ΘN

ΘN

ΘN

ΘN

ΘN ΘN

DN

DN

DN

DN

· · ·

DN

DN

.
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Here, we have made the substitution

DN = ·
↓
·

ΘN

in/out
.

We rewrite this in terms of the injective traffic state to obtain

τ
[
Sm(ΘN , . . . ,ΘN)

]
=

∑
π∈P(V )

τ 0
[
Sπm(ΘN , . . . ,ΘN)

]
.

In the limit, (4.91) tells us that the only contributions come from double trees. For odd m,
this is not possible since a double tree has an even number of edges, while Sm has m edges.
This implies that

lim
N→∞

E
[

1

N
tr(Dm

N)

]
= 0 if m is odd. (4.93)

Henceforth, we assume that m = 2`. Let v1, . . . , v2` denote the leaf vertices of S2` with the
internal node v0. We see that

Sπ2` is a double tree ⇐⇒ π = {{v0}} ∪ ρ,

where ρ is a pair partition of {v1, . . . , v2`}. In particular, each such π produces the same
double tree T`(ΘN , . . . ,ΘN) = Sπ2`(ΘN , . . . ,ΘN), where T` is the inward facing double `-star
graph. It follows that

lim
N→∞

E
[

1

N
tr(D2`

N )

]
= lim

N→∞

∑
π∈P(V )

τ 0
[
Sπ2`(ΘN , . . . ,ΘN)

]
= #(P2(2`))pT`(c) = (2`− 1)!!

IntT`(c)

NormT`(c)

= (2`− 1)!!

∫
[0,1]`+1

∏`
k=1 1{|x0 − xk| ≤ c} dx` · · · dx0

(2c− c2)`

= (2`− 1)!!

∫ 1

0

(∫ 1

0
1{|x0 − x1| ≤ c} dx1

)`
dx0

(2c− c2)`

= (2`− 1)!!
2
`+1

((2c ∧ 1)`+1 − c`+1) + |2c− 1|(2c ∧ 1)`

(2c− c2)`
, (4.94)

where we have made use of (4.77) in the last equality. We recognize the double factorial
(2` − 1)!! as the 2`-th moment of the standard normal distribution. In view of Theorem
4.4.13, the limits (4.93) and (4.94) then show that µDN

converges weakly almost surely to
a symmetric distribution νc of unit variance with almost Gaussian moments (if c = 1, then
these moments are precisely Gaussian). In particular, we can compute the limits

lim
c→0+

2
`+1

((2c ∧ 1)`+1 − c`+1) + |2c− 1|(2c ∧ 1)`

(2c− c2)`
= 1, ∀` ∈ N,
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and

lim
c→1−

2
`+1

((2c ∧ 1)`+1 − c`+1) + |2c− 1|(2c ∧ 1)`

(2c− c2)`
= 1, ∀` ∈ N,

both of which are special cases of (4.83). The moments (4.94) further imply that the limiting
spectral distribution νc has unbounded support.

ρ7→

S2`(ΘN , . . . ,ΘN) T`(ΘN , . . . ,ΘN)

ΘN

ΘN

ΘN

Θn

ΘN ΘN

ΘN

ΘN

ΘN

Figure 4.15: An example of a pair partition ρ of the leaf vertices of S2` giving rise to an
inward facing double `-star graph T` for ` = 3. Here, we use different colors for the different
blocks of the pair partition. Note that any pair partition of the leaf vertices gives rise to the
same double tree T`.

We note that ΘN and DN are asymptotically free iff c = 1. Indeed, this follows from the
calculation

lim
N→∞

E
[

1

N
tr(Θ2

ND2
N)

]
= lim

N→∞
τ 0

[
·

ΘN

�
ΘN

·
ΘN

⇔
ΘN

·
]

=
2((2c ∧ 1)3 − c3)− 3|2c− 1|(2c ∧ 1)2

(2c− c2)2

6= 1 =

(
lim
N→∞

E
[

1

N
tr(Θ2

N)

])(
lim
N→∞

E
[

1

N
tr(D2

N)

]) (4.95)

unless c = 1. In this case, we see that the free product decomposition of Chapter 3 cannot
be extended to the proper proportional growth regime.

Fixed band width

We have much less to say in the fixed band width regime. For starters, we cannot work in
the generality of the Wigner matrices of Definition 4.1.1. Instead, we must further assume
that the off-diagonal entries (resp., the diagonal entries) of XN are identically distributed,
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independent of N ; otherwise, in general, the LSD of even a single fixed band width RBM
ΘN = ΥN ◦ ΞN = ΥN ◦ (BN ◦ XN) might not exist, never mind the LTD. We assume
hereafter that any fixed band width RBM arises from this restricted setting.

Assuming a symmetric distribution for the entries of XN , Section 6 in [BMP91] proves
the existence of a symmetric non-universal LSD µb for a real symmetric RBM ΘN of fixed
band width bN ≡ b. The authors further prove that the distribution µb converges weakly to
the standard semicircle distribution µSC in the limit b → ∞. We consider the joint LTD of
independent fixed band width RBMs (real and complex) without this symmetry assumption
and prove the analogous convergence to the semicircular traffic distribution in the large band
width limit.

To formalize our result, we consider a class of fixed band widths b = (b
(i)
N )i∈I = (bi)i∈I .

We form the corresponding family of fixed band width RBMs

JN = (Ξ
(i)
N )i∈I = (B

(i)
N ◦X

(i)
N )i∈I , ON = (Θ

(i)
N )i∈I = (Υ

(i)
N ◦Ξ

(i)
N )i∈I .

We write µi (resp., νi) for the distribution of the strictly upper triangular entries X
(i)
N (j, k)

(resp., the diagonal entries X
(i)
N (j, j)) so that

µi = L(X
(i)
N (j, k)) and νi = L(X

(i)
N (j, j)), ∀j < k.

In contrast to the previous sections, our fixed normalizations Υ
(i)
N = (2bi + 1)−1/2JN force us

to also consider non-tree-like test graphs T in the limit N →∞.

Theorem 4.4.15. The family of fixed band width RBMs ON converges in traffic distribution;
moreover, for any test graph T = (V,E, γ) in x, we have the bound

lim
N→∞

τ 0
[
T (ON)

]
= OT,µ,ν

(∏
[e]∈Ñ0

mine′∈[e] 2bγ(e′)∏
e∈E
√

2bγ(e) + 1

)
, (4.96)

where (V, Ñ0) is any spanning tree of (V, Ñ ) and

µ = (µi)i∈I , ν = (νi)i∈I .

Proof. We have the familiar expansion

τ 0
[
T (ON)

]
=

1

N
∏

e∈N
√

2bγ(e) + 1

∑
φ:V ↪→[N ]

E
[∏
e∈E

Ξ
(γ(e))
N (φ(e))

]
, (4.97)

where the sum can be written as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E
[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

1{|φ([e])| ≤ min
e′∈[e]

bγ(e′)}E
[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
.
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Note that an injective map φ : V ↪→ [N ] satisfying the band width condition

|φ([e])| ≤ min
e′∈[e]

bγ(e′), ∀[e] ∈ Ñ

might not exist (e.g., if ON consists of a single RBM ΘN of fixed band width b and T is a
star graph Sk with k > 2b); however, we can certainly bound the number of such maps by

N
∏

[e]∈Ñ0

min
e′∈[e]

2bγ(e′),

where (V, Ñ0) is any spanning tree of (V, Ñ ). Here, we are simply recycling the bound (4.59).
Our strong moment assumption (4.1) then already proves (4.96).

As before, we see that τ 0
[
T (ON)

]
vanishes unless

mi,[e] = 0 or mi,[e] ≥ 2, ∀(i, [e]) ∈ I × Ñ .

Unfortunately, our fixed normalizations
√

2bi + 1 allow τ 0
[
T (ON)

]
to survive in the limit for

test graphs T with mi,[e] > 2. In this case, the assumption that βi ∈ R no longer suffices to

spare us the consideration of the ordering ψφ : [#(V )]
∼−→ V on the vertices. Nevertheless,

our i.i.d. assumption ensures that if φ1 : V ↪→ [N1] and φ2 : V ↪→ [N2] satisfy the band
width condition and induce the same ordering ψφ1 = ψφ2 , then the corresponding summands
of (4.97) are equal, i.e.,

Sφ1(T ) = E
[∏
e∈E

Ξ
(γ(e))
N1

(φ1(e))

]
= E

[∏
e∈E

Ξ
(γ(e))
N2

(φ2(e))

]
= Sφ2(T ).

For an ordering ψ : [#(V )]
∼−→ V , we can again write Sψ for the common value of

{Sφ : ψφ = ψ and |φ([e])| ≤ min
e′∈[e]

bγ(e′) for all [e] ∈ Ñ}.

This allows us to rewrite (4.97) as

τ 0
[
T (ON)

]
=

∑
ψ:[#(V )]

∼→V

p
(ψ)
N∏

e∈E
√

2bγ(e) + 1
Sψ(T ) =

∑
ψ:[#(V )]

∼→V

q
(ψ)
N Sψ(T ),

where

p
(ψ)
N =

∑
φ:V ↪→[N ]

(
1{ψφ = ψ}

∏
[e]∈Ñ 1{|φ([e])| ≤ mine′∈[e] bγ(e′)}

)
N

.

We note the contrast to the situation in (4.17). In particular, we cannot use the same weak

convergence argument to give an integral representation of limN→∞ p
(ψ)
N as in (4.18) due to

the vanishing scales limN→∞
bi
N

= 0. Instead, we must opt for a discrete approach.
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Let (a
(ψ)
N ) denote the sequence defined by the numerator of p

(ψ)
N so that

a
(ψ)
N =

∑
φ:V ↪→[N ]

(
1{ψφ = ψ}

∏
[e]∈Ñ

1{|φ([e])| ≤ min
e′∈[e]

bγ(e′)}
)
.

By considering a map φ1 : V ↪→ [N ] (resp., φ2 : V ↪→ [M ]) as a map Φ1 : V ↪→ [N + M ]
(resp., Φ2 : V ↪→ [N +M ]) of the form

Φ1(v) = φ1(v) (resp., Φ2(v) = φ2(v) +N),

we see that the sequence (a
(ψ)
N ) is superadditive:

a
(ψ)
N+M ≥ a

(ψ)
N + a

(ψ)
M .

Fekete’s lemma then implies that

pψ = lim
N→∞

p
(ψ)
N = sup

N

a
(ψ)
N

N
≤
∏

[e]∈Ñ

min
e′∈[e]

2bγ(e′),

which proves the convergence

lim
N→∞

τ 0
[
T (ON)

]
=

∑
ψ:[#(V )]

∼→V

pψ∏
e∈E
√

2bγ(e) + 1
Sψ(T ) =

∑
ψ:[#(V )]

∼→V

qψSψ(T ). (4.98)

�

Note that our bound (4.96) implies the convergence

lim
b→∞

∑
ψ:[#(V )]

∼→V

qψSψ(T ) =

{∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise,
(4.99)

where
b = min

e∈E
bγ(e).

Theorem 4.4.15 still holds for general βi ∈ C: in fact, since we already keep track of
the orderings ψ, the same proof goes through just as well (except with different values for
Sψ(T )). In this case, the limit (4.99) might not exist depending on the relative rates of
growth in the band widths bi. If we assume that the band widths grow at the same rate
in the limit b → ∞, then the proportions q

(ψ)
N will tend to 1

#(V )
as in (4.19), but one can

skew these proportions along different subsequences to create an obstruction. One can also
periodize the fixed band width RBMs without affecting the calculations (a fixed band width
is in some sense the slowest growth possible, and so we can adapt the techniques from the
slow growth case).
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At this point, we can combine everything into a result for the joint (traffic) distribution
of periodic RBMs, slow growth RBMs, proportional growth RBMs, and fixed band width
RBMs; however, the result is not much more interesting than what is already known from
the previous section due to the form of the LTD (4.98). In particular, we do not have any
interesting asymptotic independences arising between the fixed band width RBMs and those
of the previously considered regimes, nor amongst the fixed band width RBMs themselves
(except in the trivial case bi = 0 of the diagonal matrices, which are permutation invariant
and satisfy the conditions of Theorem 2.3.10).

Banded Ginibre matrices

The same analysis applies equally well to prove the analogue of Theorem 4.4.8 for banded
Ginibre matrices. In particular, let YN = (Y

(i)
N )i∈I be a family of unnormalized Ginibre

matrices as in Definition 4.1.4. For a family of band widths (b
(i)
N )i∈I such that

lim
N→∞

b
(i)
N =∞, ∀i ∈ I,

lim
N→∞

b
(i)
N

N
= 0, ∀i ∈ I1,

lim
N→∞

b
(i)
N

N
= 1, ∀i ∈ I2,

lim
N→∞

b
(i)
N

N
= ci ∈ (0, 1), ∀i ∈ I3,

we form the normalized banded Ginibre matrices

HN = (H
(i)
N )i∈I = (Υ

(i)
N ◦B

(i)
N ◦Y

(i)
N )i∈I ,

where I = I1 ∪ I2 ∪ I3 and we use the same normalizations as in Definition 4.1.8.

Theorem 4.4.16. For any ∗-test graph T ∈ T 〈x,x∗〉,

lim
N→∞

τ 0
[
T (HN)

]
=

{
pF (c)

∏
i∈I ζ

ci(T )
i ζ

si(T )

i if T is a colored Ginibre double tree,

0 otherwise,
(4.100)

where F = T1 t · · · t Ts is the forest of colored Ginibre double trees obtained from T by
contracting the edges with labels in I1 and removing the edges with labels in I2 and

pF (c) =
s∏
r=1

pTr(c). (4.101)

Proof. The result follows from a straightforward modification of the proof of Theorem 4.4.8.
�
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Here, we use the notation c = (ci)i∈I3 with the same interpretation for pF (c) as before.
In particular, we see that a banded Ginibre matrix of slow growth has the same LTD as a
regular Ginibre matrix. Of course, since the matrices HN are non-normal, this falls short of
establishing the circular law in the slow growth regime. At the same time, it already disproves
the circular law in the proportional growth regime. In particular, if HN is a banded Ginibre
matrix of limiting proportion c, then Theorem 4.4.16 tells us that

lim
N→∞

E
[

1

N
tr(HNH∗NHNH∗N)

]
= 2

2
3
((2c ∧ 1)3 − c3) + |2c− 1|(2c ∧ 1)2

(2c− c2)2
.

At the same time, a simple computation shows that

2
2
3
((2c ∧ 1)3 − c3) + |2c− 1|(2c ∧ 1)2

(2c− c2)2
= 2 ⇐⇒ c = 1.

We can use the LTD (4.100) for banded Wishart-Laguerre matrices to greater effect:
for example, it follows that µ(HNH∗N)

w−→ MP(1, 1) as N → ∞ if HN is of slow growth.
The convergence of the ESD µ(HNH∗N) in this single matrix case is already known from
the work [JS17] of Jana and Soshnikov via Stieltjes transform methods; however, our result
extends to the full traffic distribution in the multi-matrix case much as in Section 4.3. For
example, this proves the analogue of Theorem 4.1.7 for banded Wishart-Laguerre matrices
of slow growth. To see this in action, the reader should compare Figure 4.2 and Figure 4.4.

4.5 Haar distributed orthogonal random matrices

Let ON denote an N×N Haar distributed orthogonal random matrix, for which we compute
the limiting traffic distribution. Our proof derives from the analogous result for the unitary
case [Mal, Proposition 3.7]. We commit the formal details here for comparison. As usual,
we restrict our attention to test graphs T ∈ T 〈x〉. The general case of a ∗-test graph
T = (V,E, γ, ε) follows from the relation O∗N = OᵀN , which allows us to freely interchange
any edge e with ∗-label ε(e) = ∗ with an edge e′ with ∗-label ε(e′) = 1 in the opposite
direction, i.e.,

(src(e), tar(e)) = (tar(e′), src(e′)).

In this case, we suppress the map γ since there is only one indeterminate x in consideration.

Definition 4.5.1 (Orthogonal cactus). For a test graph T = (V,E) ∈ T 〈x〉, we write
◦
T = (V,

◦
E) for the underlying undirected multigraph. We further write P : E →

◦
E for the

canonical projection onto the undirected edge set. As before, we say that T is a cactus if

each edge e̊ of
◦
T belongs to a unique simple cycle Ce̊. We further say that T is an orthogonal

cactus if T is a cactus such that each cycle Ce̊ corresponds to an anti-directed cycle P−1(Ce̊)
in T . By an anti-directed cycle, we mean that P−1(Ce̊) = (e1, . . . , ek) alternates in direction
(as opposed to a directed cycle), i.e.,

∃j ∈ [k] : tar(ej) = tar(ej+1), src(ej+1) = src(ej+2), tar(ej+2) = tar(ej+3), . . . (4.102)
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where ek+1 = e1, ek+2 = e2, and so on.

Figure 4.16: For comparison, examples of a cactus and an orthogonal cactus respectively.

For a cactus T , we record the length #(C) of each of its simple (undirected) cycles C in
◦
T . By a slight abuse of notation, we also write C for the corresponding pullback P−1(C)
in T . For an orthogonal cactus, we know that #(C) ∈ 2N for each such cycle C due to the
anti-directedness (4.102)

Recall that we can reconstruct a cactus T from its simple cycles (or “pads”) by starting
with an arbitrary simple cycle C of T (level 0), reintroducing the simple cycles that share
a common vertex with C (level 1), reintroducing the simples cycles that share a common
vertex with a simple cycle from level 1 (level 2), and so on. We imagine this process as
“growing” the cactus T .

Theorem 4.5.2. For any test graph T in x,

lim
N→∞

τ 0
[
T (ON)

]
=


∏

C∈Pads(T )

(−1)
#(C)

2
−1c#(C)

2
−1

if T is an orthogonal cactus,

0 otherwise,

(4.103)

where the product is over the pads Pads(T ) of T and ck =
(2k
k )

k+1
is the kth Catalan number.

Proof. We start with the usual expansion of the injective trace

τ 0
[
T (ON)

]
=

1

N

∑
φ:V ↪→[N ]

E
[∏
e∈E

ON(φ(e))

]

=
1

N

∑
φ:V ↪→[N ]

E
[ ∏

(v,w)∈E

ON(φ(w), φ(v))

]
,
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where we now consider E as a multiset to do away with the source and target functions. In
particular, src((v, w)) = v and tar((v, w)) = w. Note that the distributional invariance of
ON under conjugation by the permutation matrices implies that the value of a summand

Sφ(T ) = E
[ ∏

(v,w)∈E

ON(φ(w), φ(v))

]
= E

[#(E)∏
`=1

ON(φ(w`), φ(v`))

]
does not depend on the particular choice of labeling φ : V ↪→ [N ] of the vertices. In this
case, we can fix a labeling φ0 : V ↪→ [N ] for all large N (for example, by enumerating the
vertices V = (ur)

s
r=1 and defining φ0(ur) = r) to obtain

τ 0
[
T (ON)

]
=
N#(V )

N
E
[#(E)∏

`=1

ON(φ0(w`), φ0(v`))

]
∼ N#(V )−1E

[
ON(i1, j1) · · ·ON(im, jm)

]
, (4.104)

where (i`, j`) = (φ0(w`), φ0(v`)) and m = #(E). The string i = (i1, . . . , im) defines a partition
ker(i) of [m] by

ker(i) = {{`′ : i` = i`′} : ` ∈ [m]},
and similarly for j = (j1, . . . , jm). The orthogonal Weingarten calculus (in the form of [CŚ06,
Corollary 3.4]) tells us that the expectation in (4.104) equals 0 if m is odd; otherwise, m = 2k
and

E
[
ON(i1, j1) · · ·ON(i2k, j2k)

]
=

∑
p1,p2∈P2(2k)

δi(p1)δj(p2)〈p1,WgN(p2)〉, (4.105)

where P2(2k) is the set of pair partitions of [2k], WgN is the N ×N orthogonal Weingarten
function, and

δk(p) =

{
1 if p ≤ ker(k),

0 otherwise.

Here, we use the usual reversed refinement order ≤ on the set of partitions P(2k).
Of course, the injectivity of the map φ0 implies that

i` = i`′ ⇐⇒ w` = w`′ ,

j` = j`′ ⇐⇒ v` = v`′ .

We use this correspondence to interpret a pair partition

p1 = {{a`, b`} : ` ∈ [k]} ∈ P2(2k) (resp., p2 = {{α`, β`} : ` ∈ [k]} ∈ P2(2k))

such that δi(p1) = 1 (resp., δj(p2) = 1) as a pair partition

π1 = {{(va` , wa`), (vb` , wb`)} : ` ∈ [k]} (resp., π2 = {{(να` , ωα`), (νβ` , ωβ`)} : ` ∈ [k]})
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of the edges E such that the two edges

(va` , wa`) and (vb` , wb`) (resp., (να` , ωα`) and (νβ` , ωβ`))

in any block of the partition have a common target wa` = wb` (resp., a common source
να` = νβ`). We further interpret the pair partition π1 as a permutation of the edges E by
considering each block {(va` , wa`), (vb` , wb`)} as a transposition ((va` , wa`) (vb` , wb`)). In this
case, π1 corresponds to a product of disjoint transpositions

π1 =
k∏
`=1

((va` , wa`) (vb` , wb`)),

and similarly for

π2 =
k∏
`=1

((να` , ωα`) (νβ` , ωβ`)).

A pair (p1, p2) such that δi(p1) = δj(p2) = 1 then partitions the edges of T into anti-directed
cycles

C(π1, π2) = {(e, π2(e), π1π2(e), π2π1π2(e), . . .) : e ∈ E}, (4.106)

where we of course assume that cycles are only defined up to a cyclic ordering of the edges.
We note that a cycle C ∈ C(π1, π2) need not be simple.

As a sanity check, one can verify the following equivalent construction of C(π1, π2). We
consider a partition p ∈ P(2k) as an element of the symmetric group S2k by associating
a block b = {`1 < · · · < `q(b)} with the cycle (`1 · · · `q(b)). A pair (p1, p2) as before then
partitions the edges of T into anti-directed cycles

C(π1, π2) = {((v`, w`),(vp2(`), wp2(`)),

(vp1p2(`), wp1p2(`)), (vp2p1p2(`), wp2p1p2(`)), . . .) : ` ∈ [2k]}.
(4.107)

Note that the cycle decomposition of the permutation p1p2 ∈ S2k further splits each cycle
C in (4.107) into a pair

(w`, wp1p2(`), w(p1p2)2(`), . . .) and (vp2(`), vp2p1(p2(`)), v(p2p1)2(p2(`)), . . .).

In terms of (4.106), this corresponds to the cycle decomposition of the permutation π1π2 of
the edges, namely,

(e, π1π2(e), (π1π2)2(e), . . .) and (π2(e), (π2π1)π2(e), (π2π1)2π2(e), . . .).

This implies that
#(p1p2)

2
=

#(π1π2)

2
= #(C(π1, π2)), (4.108)

where #(p1p2) denotes the number of cycles of p1p2. We assume hereafter that the partitions
p1 and p2 satisfy δi(p1) = δj(p2) = 1.
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e1

e2

e3

e4

e5

e6

v6 = v1

w1 = w2 = v2 = v3

w3 = w4

v4 = v5 = w5 = w6

Figure 4.17: An example of the construction of C(π1, π2). Here, we start with a test graph T
that itself is already a (non-simple) anti-directed cycle C = (e1, . . . , e6), where e` = (v`, w`).
Any injective labeling (i`, j`) = (φ(w`), φ(v`)) of the vertices then generates the partitions
ker(i) = {{1, 2}, {3, 4}, {5, 6}} and ker(j) = {{1, 6}, {2, 3}, {4, 5}}. In this case, there is a
unique pair partition p1 ≤ ker(i), namely p1 = ker(i), and similarly for p2 ≤ ker(j). One
can then easily verify the corresponding permutation of the edges π1 = (e1 e2)(e3 e4)(e5 e6)
(resp., π2 = (e6 e1)(e2 e3)(e4 e5)), from which it follows that C(π1, π2) = {C}.

Strictly speaking, we should consider a pair partition p ∈ P2(2k) as a basis element of
the Brauer algebra (see, e.g., [HR05]); however, we will only need the very basics of this
structure. In particular, we consider a partition p as a graph on 2k vertices. We arrange the
vertices into two evenly distributed rows, the first of which we consider as given by 1, 2, . . . , k;
the second by k + 1, k + 2, . . . , 2k. We then connect the vertices in a given block of p with
a line. In this way, we obtain a graph with k connected components, each of size two. For
two pair partitions p1, p2 ∈ P2(2k), we define p1 ◦ p2 as the graph obtained by overlaying
the two graphs corresponding to p1 and p2 respectively, which we can again interpret as
a partition p1 ◦ p2 ∈ P(2k). The correspondence (4.106) and (4.107) between the pairs
(p1, p2) and (π1, π2) pushes forward to a correspondence between the blocks of p1 ◦ p2 and
the anti-directed cycles C(π1, π2). In particular, we have a cardinality-preserving bijection

blocks(p1 ◦ p2) ∼= C(π1, π2), b 7→ Cb, (4.109)

where #(b) = #(Cb). Indeed, we construct this bijection as follows. For the partition p1

(resp., p2), we imagine the vertices ` ∈ [2k] in its graph as the vertices w` ∈ V (resp., v` ∈ V ).
In this way, a block b of p1 ◦ p2 then naturally corresponds to a cycle C ∈ C(π1, π2) in the
form of (4.107). We encourage the reader to work out a special case of this correspondence
for the example in Figure 4.17, where #(blocks(p1 ◦ p2)) = #(C(π1, π2)) = 1.

Finally, we need to understand the asymptotics of the Weingarten term 〈p1,WgN(p2)〉 in
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(4.105). Theorem 3.13 in [CŚ06] shows that

〈p1,WgN(p2)〉 =

(
N−2k+

#(p1p2)
2

∏
b∈blocks(p1◦p2)

(−1)
#(b)

2
−1c#(b)

2
−1

)
+O(N−2k+

#(p1p2)
2
−1).

We can rewrite this in terms of C(π1, π2) grace of (4.108) and (4.109) to obtain the equivalent
asymptotic

〈p1,WgN(p2)〉 =

(
N−2k+#(C(π1,π2))

∏
C∈C(π1,π2)

(−1)
#(C)

2
−1c#(C)

2
−1

)
+O(N−2k+#(C(π1,π2))−1).

At this point, we reintroduce this asymptotic for our matrix integral (4.105) back into the
injective trace (4.104). This reduces the problem to computing

S(π1,π2) = lim
N→∞

N#(V )−1−2k+#(C(π1,π2))

( ∏
C∈C(π1,π2)

(−1)
#(C)

2
−1c#(C)

2
−1

+O(N−1)

)
(4.110)

for a given pair (π1, π2) as before. To this end, we introduce the bipartite multigraph
G = (V,E), where V = V ∪C(π1, π2) is the union of the vertices of our original graph T and
the anti-directed cycle partition C(π1, π2) of the edges E of T . We draw an edge between
a vertex v ∈ V and a cycle C ∈ C(π1, π2) if v is a vertex in the cycle C, in which case the
edge comes with multiplicity equal to the number of occurrences of v in C as an undirected
cycle. For example, if C is a simple cycle, then we only draw one edge between v and C.

C(π, π2) G

⇒

Figure 4.18: An example of the construction of the graph G = (V,E). Here, we start with
the anti-directed cycle C(π1, π2) = {C} from Figure 4.17. We color the vertices to clarify the
construction.

By construction,

#(V) = #(V ) + #(C(π1, π2)) and #(E) = #(E) = 2k.
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Moreover, the graph G is clearly connected (by virtue of the connectedness of T ), whence

#(V) ≤ #(E) + 1.

This allows us to recast (4.110) as

S(π1,π2) = lim
N→∞

N#(V)−(#(E)+1)

( ∏
C∈C(π1,π2)

(−1)
#(C)

2
−1c#(C)

2
−1

+O(N−1)

)
= 1{G is a tree}

∏
C∈C(π1,π2)

(−1)
#(C)

2
−1c#(C)

2
−1
.

Assume that G is a tree. Of course, in this case, G cannot have any multi-edges, which
implies that each cycle C ∈ C(π1, π2) is simple. In fact, the treeness of G implies that T is
an orthogonal cactus. Indeed, the tree G contains all of the information for how to properly
grow the cactus T from the simple anti-directed cycles C(π1, π2). We describe this algorithm,
as suggested at the beginning of the section. Start with an arbitrary pad C0 ∈ C(π1, π2) (level
0) and grow (i.e., attach) the pads C1 ∈ C(π1, π2) at distance two away from C0 in G. Note
that the pads introduced at level 1 cannot intersect outside of C0 (this would contradict the
treeness of G). We then introduce the pads C2 ∈ C(π1, π2) at distance four away from C0

in G (level 2). Each pad at level 2 is only attached to a single pad at level 1 and can only
intersect another pad at level 2 in a vertex of a pad C1. We continue this process until we
run out of pads. If we imagine rooting the graph G at the vertex C0 and orienting the rest
of the graph upwards, then this process simply amounts to contracting the edges of V as we
move up.

On the other hand, if T is an orthogonal cactus, then there is a unique pair of pair
partitions (p1, p2) such that δi(p1) = δj(p2) = 1 in (4.105). The associated pair of partitions
(π1, π2) will then correspond precisely to the cycles of T . In this way, we finally arrive at the
prescribed limit (4.103). �

Naturally, one can ask the same question for a family of independent N × N Haar
distributed orthogonal random matrices (O

(i)
N )i∈I . We can use the same approach to prove

the existence of a joint LTD, now supported on colored orthogonal cacti (i.e., cacti with anti-
directed pads such that each pad is of a uniform color). We leave the details to the interested
reader. Instead, we note that the same result can be obtained via Theorem 2.3.10. One need
only to prove the factorization property (iv) for ON , which now follows as in the unitary

case [Mal, Proposition 3.7]. In particular, we note that the family (O
(i)
N )i∈I is asymptotically

traffic independent.
As before, the cactus structure of (4.103) allows us to apply our reasoning from Chapter

3 to prove the asymptotic ∗-freeness of ON and Θ(ON). In particular, note that

(
Eµ
(

·
↓
·

ON

in/out

)
,Eµ

(
·
↑
·

ON

in/out

))
w−→ N

((
0
0

)
,

(
1 0
0 1

))
as N →∞,
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where we have applied (4.103) to compute the joint moments in the limit.
Once again, we see that the real case precludes freeness from the transpose OᵀN = O∗N ,

whereas Haar distributed unitary random matrices UN are asymptotically ∗-free from the
transpose UᵀN [MP16,Mal,CDM].

T G

Figure 4.19: An example of the construction of the graph G for a colored version T of the
orthogonal cactus in Figure 4.16. We color the edges of the tree G to clarify the construction.

4.6 The cactus-cumulant correspondence

The reader will no doubt notice that many our formulas for the traffic distribution resemble
well-known free cumulant formulas in free probability. For example, if s ∈ (A, ϕ) is a
standard semicircular random variable, then

κn(s, . . . , s) =

{
1 if n = 2,

0 otherwise.
(4.111)

At the same time, the LTD (4.8) of the Wigner matrices only allows for twin edges, which,
in the opposing direction, give a contribution of 1. Moreover, recall that the distribution
of a random variable a corresponds to the information of the traffic state on directed cycles
with edges labeled by a, and that a double tree constructed from a directed cycle can only
have opposing twin edges (see the butterfly obstruction in Figure 3.3). We further note that
(4.8) is multiplicative with respect to the twin edges of a double tree, where the contribution
of opposing twin edges can be seen in (4.8′).
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Similarly, a circular random variable c is defined as the sum

c =
1√
2

(s1 + is2),

where s1 and s2 are freely independent standard semicircular random variables. In this case,

κn(cε(1), . . . , cε(n)) =

{
1 if n = 2 and ε(1) 6= ε(2),

0 otherwise,
(4.112)

where ε : [n] → {1, ∗} denotes the ∗-label. Again, we note the resemblance to the LTD
(4.49), which only allows for twin edges. Moreover, the only opposing twin edges in a
Ginibre double tree are ∗-opposing, which give a contribution of 1. As before, we note that
(4.49) is multiplicative with respect to the twin edges of a double tree, where the contribution
of ∗-opposing twin edges can be seen in (4.49′).

Our last example is that of a Haar unitary random variable. Recall that a Haar unitary
random variable u in a ∗-probability space (A, ϕ) is a unitary element such that

ϕ(um) = 0, ∀m ∈ Z6=0.

The only nontrivial cumulants of a Haar unitary random variable are those that alternate
equally in u and u∗:

κn(uε(1), . . . , uε(n))

{
(−1)

n
2
−1cn

2
−1 if n ∈ 2N and ε alternates,

0 otherwise,
(4.113)

where we recall that ck =
(2k
k )

k+1
denotes the kth Catalan number. Of course, this closely

resembles the LTD (4.103) of a Haar distributed orthogonal random matrix: the pads of an
orthogonal cactus must be alternating (and hence of even length). Once again, we note that
the formula (4.103) is multiplicative, this time in the pads of the cactus.

The careful reader will anticipate this correspondence based on Proposition 2.4.6. More
precisely, Remark 11.19 in [NS06] provides a simple criteria for recognizing the free cumulants
of random variables (ai)i∈I . For the convenience of the reader, we quote the result:

Assume we are given some complex numbers κ̃π[ai(1), . . . , ai(n)] for all n ∈ N,
π ∈ NC(n), i(1), . . . , i(n) ∈ I such that:

(i) the κ̃π are multiplicative in the sense

κ̃π[ai(1), . . . , ai(n)] =
∏
V ∈π

κ̃(V )[ai(1), . . . , ai(n)],

where, for V = (r1 < · · · < rs) ∈ π, we use the notation (11.2),

κ̃(V )[ai(1), . . . , ai(n)] := κ̃1s(ai(r1), . . . , ai(rs));
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(ii) we can write the moments of (ai)i∈I as

ϕ(ai(1) · · · ai(n)) =
∑

π∈NC(n)

κ̃π[ai(1), . . . , ai(n)]

for all n ∈ N and all i(1), . . . , i(n) ∈ I.

Then these κ̃ are the cumulants of (ai)i∈I , i.e.,

κπ[ai(1), . . . , ai(n)] = κ̃π[ai(1), . . . , ai(n)]

for all n ∈ N and π ∈ NC(n).

If the random variables (ai)i∈I belong to a traffic space (A, τ), then we can compute the
expectation

ϕτ (ai(1) · · · ai(n)) = ϕτ

(
·

out

ai(1)←−− · · · · ·
ai(n)←−− ·

in

)
= τ
[
Cn(ai(1), . . . , ai(n))

]
,

where Cn = Cn(ai(1), . . . , ai(n)) = (V,E, γ) is a directed cycle of length n in the usual sense:
we enumerate the vertices V = (vk)

n
k=1

and the edges E = (ek)
n
k=1, where

src(ek) = vk+1, tar(ek) = vk, and γ(ek) = ai(k).

We think of a partition π ∈ P(V ) ∼= P(n) (and vice versa) as convenient. Similarly, we think
of a partition of σ ∈ P(E) ∼= P(n) (and vice versa) as convenient. For π ∈ NC(n)∪NC(n),
we can define the usual Kreweras complement K(π) ∈ NC(n) ∪ NC(n) as before, but we
now consider the interlacing

1 < 1 < · · · < n < n

for [n + n] = {1, 1, . . . , n, n} in a slight modification of the argument preceding Proposition
2.4.6. In particular, if π ∈ NC(V ) (resp., σ ∈ NC(E)), then K(π) ∈ NC(E) (resp.,
K(σ) ∈ NC(V )).

If the injective traffic distribution of the (ai)i∈I is supported on cacti (not necessarily
oriented cacti), then Proposition 2.4.6 tells us that

τ
[
Cn(ai(1), . . . , ai(n))

]
=

∑
π∈P(V )

τ 0
[
Cπ
n (ai(1), . . . , ai(n))

]
=

∑
π∈NC(V )

τ 0
[
Cπ
n (ai(1), . . . , ai(n))

]
.

If we further assume that the injective traffic distribution of the (ai)i∈I is multiplicative with
respect to the pads of a cacti, then Proposition 2.4.6 further tells us that for π ∈ NC(V ),

τ 0
[
Cπ
n (ai(1), . . . , ai(n))

]
=

∏
B∈K(π)

τ 0
[
C#(B)(ai(j1), . . . , ai(j#(B)))

]
,
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where on the right-hand side we think of π as an element of NC(n) so that K(π) ∈ NC(n)
and B ∈ K(π) is a block of the form B = (j1 < · · · < j#(B)). In that case, Remark 11.19
in [NS06] allows us to conclude that

κσ[ai(1), . . . , ai(n)] = τ 0
[
CK(σ)
n (ai(1), . . . , ai(n))

]
,

where on the left-hand side we think of σ ∈ NC(n) and on the right-hand side we think of
σ ∈ NC(E) so that K(σ) ∈ NC(V ).

The LTDs (4.8), (4.49), and (4.103) then recover all of the well-known cumulant formulas
(4.111)-(4.113) from before. At the same time, this approach also reveals new relationships
for such cactus-type random variables. For example, let sβ be a β-semicircular traffic in a
traffic space (A, τ), where β ∈ R (i.e., sβ has the traffic distribution (4.8)). We can then
compute

κσ[s
ˆT(1)
β , . . . , s

ˆT(n)
β ] = τ 0

[
CK(σ)
n (s

ˆT(1)
β , . . . , s

ˆT(n)
β )

]
, ∀σ ∈ NC(n),

where ˆT : [n] → {1,ᵀ} denotes the transpose label. We can rewrite this in terms of a cycle
with edge labels only in sβ by reversing the direction of the edges whose transpose label

ˆT(i) = ᵀ (recall our proof of Proposition 2.4.7). If we write C̃ for this modified cycle, then

κσ[s
ˆT(1)
β , . . . , s

ˆT(n)
β ] = τ 0

[
C̃K(σ)
n (sβ, . . . , sβ)

]
.

The traffic distribution (4.8) tells us that only cycles of length two, or twin edges, contribute.
It follows that

κn(s
ˆT(1)
β , . . . , s

ˆT(n)
β ) =


1 if n = 2 and ˆT(1) = ˆT(2),

β if n = 2 and ˆT(1) 6= ˆT(2),

0 otherwise.

(4.114)

We invite the reader to compare this to the usual free cumulant formula (4.111) for a standard
semicircular random variable. The β-semicircular cumulant formula implies that (sβ, s

ᵀ
β) is

a semicircular family of covariance

(
1 β
β 1

)
, which generalizes the transpose relation for

Wigner matrices of a real parameter β ∈ R (and proves Corollary 4.1.12).
The same idea allows us to compute the free cumulants of a ζ-circular traffic cζ and its

transpose cᵀζ for general ζ ∈ C. In particular,

κn((c
ˆT(1)
ζ )ε(1), . . . , (c

ˆT(n)
ζ )ε(n)) =


1 if n = 2, ˆT(1) = ˆT(2), and ε(1) 6= ε(2),

ζ if n = 2, ˆT(1) 6= ˆT(2), and ε(1) = ε(2) = 1,

ζ if n = 2, ˆT(1) 6= ˆT(2), and ε(1) = ε(2) = ∗,
0 otherwise.

(4.115)

Similarly, this implies that (cζ , c
ᵀ
ζ) is a circular family with covariance matrix(

κ2[cζ , c
∗
ζ ] κ2[cζ , (c

ᵀ
ζ)
∗]

κ2[cᵀζ , c
∗
ζ ] κ2[cᵀζ , (c

ᵀ
ζ)
∗]

)
=

(
1 0
0 1

)
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and pseudo-covariance matrix(
κ2[cζ , cζ ] κ2[cζ , c

ᵀ
ζ ]

κ2[cᵀζ , cζ ] κ2[cᵀζ , c
ᵀ
ζ ]

)
=

(
0 ζ
ζ 0

)
,

which generalizes the transpose relation for Ginibre matrices of a general parameter ζ ∈ C.
In fact, a simple calculation shows that we can realize such a circular family as

(cζ , c
ᵀ
ζ) =

(
1√
2

(sβ1 + isβ2),
1√
2

(sᵀβ1
+ isᵀβ2

)

)
,

where sβ1 and sβ2 are traffic independent β-semicircular traffics with β1, β2 ∈ R iff

ζ = β1 = −β2.

Indeed,

κ2

[
1√
2

(sβ1 + isβ2),

(
1√
2

(sᵀβ1
+ isᵀβ2

)

)∗]
=

1

2
(β1 + β2),

whereas

κ2

[
1√
2

(sβ1 + isβ2),
1√
2

(sᵀβ1
+ isᵀβ2

)

]
=

1

2
(β1 − β2).

For example, in the case of ζ = 0, we can construct a standard complex Gaussian Ginibre
matrix GN as the sum

GN =
1√
2

(W
(1)
N + iW

(2)
N ),

where W
(1)
N and W

(2)
N are independent GUE matrices (β1 = β2 = 0). Similarly, in the case

of ζ = 1, we can construct a standard real Gaussian Ginibre matrix GN as the sum

GN =
1√
2

(W
(1)
N + iW

(2)
N ),

where W
(1)
N and W

(2)
N are now independent Wigner matrices with

W
(1)
N (j, k)

d
= N (0, 1) and W

(2)
N (j, k)

d
=

{
N (0, 1) if j = k

iN (0, 1) if j 6= k,

which corresponds to β1 = −β2 = 1.
In the case of Haar unitary elements, we distinguish between Haar distributed orthogonal

random traffics o (4.103) and Haar distributed unitary random traffics u [Mal, Proposition
3.7]. In particular, the traffic distribution in the latter case is only supported on oriented
cacti with edges alternating in u and u∗. This implies that

κn[(u
ˆT(1))ε(1), . . . , (uˆT(n))ε(n)] =

{
(−1)

n
2
−1cn

2
−1 if n ∈ 2N, ˆT is constant, and ε alternates,

0 otherwise,
(4.116)
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whereas

κn[(o
ˆT(1))ε(1), . . . , (oˆT(n))ε(n)] =

{
(−1)

n
2
−1cn

2
−1 if n ∈ 2N and ˆT × ε cross-alternates,

0 otherwise,
(4.117)

where we say that ˆT × ε : [n]→ {1,ᵀ} × {1, ∗} cross-alternates if adjacent pairs (ˆT(i), ε(i))
and (ˆT(i + 1), ε(i + 1)) differ in exactly one coordinate for each i ∈ [n] with the convention
that (ˆT(n+1), ε(n+1)) = (ˆT(1), ε(1)). This gives another proof of the asymptotic ∗-freeness
of a Haar distributed unitary random matrix UN from its transpose UᵀN [MP16,Mal,CDM],
which certainly does not hold in the orthogonal case OᵀN = O∗N .

Our cumulant formulas allow us to bypass Proposition 2.4.9 for traffic random variables
(ai)i∈I whose injective traffic distribution is supported on cacti and is further multiplica-
tive with respect to the pads. In particular, note that we can define the injective traffic
distribution of such random variables using a slight generalization of the same process that
defines the injective traffic distribution of the universal enveloping traffic space. For a cycle
(possibly undirected), we simply return the free cumulant of the edge labels after choosing
an arbitrary orientation with which to read off the cycle: if an edge goes in the direction of
our orientation, it comes with a transpose label; if an edge goes against the direction of our
orientation, it comes without a transpose label. For example

τ 0

[
·
a

⇔
b
·
]

= κ2(a, bᵀ) = κ2(aᵀ, b),

τ 0

[
·
a

�
b
·
]

= κ2(a, b) = κ2(bᵀ, aᵀ),

and

a1

a5

a4

a2

a3

a6

τ 0

[ ]
= κ6(aᵀ1, a2, a3, a

ᵀ
4, a5, a6) = κ6(aᵀ6, a

ᵀ
5, a4, a

ᵀ
3, a

ᵀ
2, a1).

Of course, the choice of orientation does not matter since

κn(a
ˆT(1)
1 , . . . , aˆT(n)

n ) = κn((aˆT(n)
n )ᵀ, . . . , (a

ˆT(1)
1 )ᵀ),

which follows from the fact that ᵀ : A → A defines an involutive anti-isomorphism of
∗-probability spaces

ϕτ

(
·

out

a←− ·
in

)
= τ

[ a

·

	

]
= ϕτ

(
·

out

a−→ ·
in

)
.
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For a cactus, we simply multiply the contribution from each pad. Finally, for all other test
graphs, we assign the value 0. We invite the reader to compare this to the construction (i)-
(iii) of the injective traffic state in the universal enveloping traffic space. The assumptions
on our random variables (ai)i∈I tell us that this process reconstructs the injective traffic
distribution of the (ai)i∈I . Thus, given such cactus-type traffic random variables (ai)i∈I , the
information of the free cumulants(

κn((a
ˆT(i(1))
i(1) )ε(1), . . . , (a

ˆT(i(n))
i(n) )ε(n))

∣∣∣∣ n ∈ N, ˆT : [n]→ {1,ᵀ}, ε : [n]→ {1, ∗}
)

(4.118)

is a determining sequence for the injective traffic distribution. We can then apply our analysis
from Chapter 3 to the (ai)i∈I to prove the ∗-freeness of (ai)i∈I∪(aᵀi )i∈I and Θ((ai)i∈I), whereas
freeness from the transpose can be judged from the determining sequence (4.118).

We have already encountered a number of examples of cactus-type random variables:
namely, β-semicircular traffics of a real parameter β ∈ R; ζ-circular traffics of a general
parameter ζ ∈ C; and Haar distributed orthogonal random traffics. Let us work through
the construction for a β-semicircular traffic. Since such a random variable is self-adjoint,
equation (4.114) contains all of the information that we need. In particular, since the only
non-vanishing cumulants are of order two, every cycle in our cactus must be a twin edge
(a double tree). The contribution from such a twin edge is then given according to the
orientation. In this way, we recover the original traffic distribution (4.8) from (4.114).

It is important to note when this line of reasoning also fails. For a strictly complex
parameter β ∈ C, a β-semicircular traffic is still supported on cacti; however, the formula
(4.19) is not multiplicative with respect to the pads. For the same reason, RBMs of proper
proportional growth, even with a real parameter, do not qualify as cactus-type. This can
already be seen from our calculation of the almost Gaussian degree matrix (4.95). On the
other hand, RBMs of slow growth with a real parameter do qualify as cactus-type, and so
we can state the analogous asymptotic freeness results for this regime as well.
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[CDM] Guillaume Cébron, Antoine Dahlqvist, and Camille Male. Universal constructions
for spaces of traffics. Preprint available at https://arxiv.org/abs/1601.00168v1.
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[MP] Camille Male and Sandrine Péché. Uniform regular weighted graphs with large
degree: Wigner’s law, asymptotic freeness and graphons limit. Preprint available
at https://arxiv.org/abs/1410.8126v1.
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