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Abstract

Exploring Multivariate Extreme Value Theory with Applications to Anomaly

Detection

by

Peter Trubey

Significant work has been done in the field of extreme analysis in the form of generalization

of the univariate generalized Pareto distribution to a multivariate setting. We consider the

constructive definition of the multivariate Pareto that factorizes a Pareto random vector into

independent radial and angular components; the former following a Pareto distribution, the

latter following a distribution with no closed form with support on the surface of the positive

orthant of the L∞-norm unit hypercube. In this document, we propose a method of inferring

this angular distribution, as a realization of a Bayesian non-parametric mixture of independent

random gamma vectors, projected onto an arbitrary Lp-norm unit hypersphere; the support of

which will approach the support of the angular component as p→ ∞.

We explore applications of this BNP mixture of projected gammas in characterizing the

dependence structure of extremes; the motivating example of such we examine is the integrated

vapor transport, data pertaining to an atmospheric river transporting moisture from the Pacific

ocean across California. We observe clear but heterogeneous geographic dependence. Second,

we consider the application of the BNP mixture of projected gammas to a novelty detection

setting, developing novelty scores appropriate to the support. To expand the applicability of

our methods, we develop a categorical data model, and consider the extension of the angular

novelty scores to categorical, and mixed data settings. We find that our model and scores

compare favorably to canonical novelty scores on canonical novelty detection datasets. Finally,

vii



we seek to understand the limitations of BNP mixture of projected gammas, by attempting to

apply the model at a large scale—applied to storm surge data at specified locations, as simulated

under the Sea, Lakes, and Overland Surges due to Hurricanes (SLOSH) model. We observe issues

in model fidelity, in terms of recovering the marginal distributions, or capturing the dependence

structure in a highly multivariate setting. We observe that as dimensionality increases, the

number of extant clusters decreases. To ameliorate this loss of granularity, a regression model

is proposed, that invokes a low-dimensional representation of the output space. We use these

models to explore storm surge at sites of critical infrastructure in the Delaware Bay watershed.
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Chapter 1

Introduction

The statistical analysis of extreme values focuses on inference for rare events that

correspond to the tails of probability distributions. As such, it is a key ingredient in the risk

assessment of phenomena that can have strong societal impacts including floods, heat waves, high

concentration of pollutants, crashes in the financial markets, among others. The fundamental

challenge of extreme value theory (EVT) is to use information, collected over limited periods

of time, to extrapolate to long time horizons. This sets EVT apart from most of statistical

inference, where the focus is on the bulk of the distribution. Extrapolation to the tails of the

distributions is possible thanks to theoretical results that give asymptotic descriptions of the

probability distributions of extreme values.

Inferential methods for the extreme values of univariate observations are well estab-

lished and software is widely available (see, for example, Coles, 2001). For variables in one

dimension the application of EVT methods considers the asymptotic distribution of either the

maxima calculated for regular blocks of data, or the values that exceed a certain threshold. The

former leads to a Generalized Extreme Value (GEV) distribution, that depends on three param-

eters. The latter leads to a Generalized Pareto (GP) distribution, that depends on a shape and
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a scale parameter. Likelihood-based approaches to inference can be readily implemented in both

cases. In the multivariate case the GEV theory is well developed (see, for example De Haan

and Ferreira, 2006), but the inferential problem is complicated by the fact that there is no para-

metric representation of the GEV. This problem is inherited by the peaks over threshold (PoT)

approach and compounded by the fact that there is no unique definition of an exceedance of a

multivariate threshold, as there is an obvious dependence on the norm that is used to measure

the size of a vector.

During the last decade or so, much work has been done in the exploration of the

definition and properties of an appropriate generalization of the univariate GP distribution to

a multivariate setting. To mention some of the papers on the topic, the work of Rootzén and

Tajvidi (2006) defines the generalized Pareto distribution, with further analysis on these classes

of distributions presented in Falk and Guillou (2008) and Michel (2008). A recent review of

the state of the art in multivariate peaks over threshold modeling using generalized Pareto is

provided in Rootzén et al. (2018) while Rootzén et al. (2018) provides insight on the theoretical

properties of possible parametrizations. These are used in Kiriliouk et al. (2019) for likelihood-

based models for PoT estimation. A frequently used method for describing the dependence in

multivariate distributions is to use a copula. Renard and Lang (2007), and Falk et al. (2019)

provide successful examples of this approach in an EVT framework.

Ferreira and de Haan (2014) presents a constructive definition of the Pareto process,

that generalizes the GP to an infinite dimensional setting. It consists of decomposing the

process into independent radial and angular components. Such an approach can be used in the

finite dimensional case, where the angular component contains the information pertaining to the

dependence structure of the random vector. Based on this definition, we present a novel approach

for modeling the angular component with families of distributions that provide flexibility and

can be applied in a moderately large dimensional setting. Our focus on the angular measure
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is similar to that in Boldi and Davison (2007), Sabourin and Naveau (2014) and Hanson et al.

(2017), that consider Bayesian non-parametric approaches. Yet, our approach differs in that

it is established in the peaks-over-threshold regime, and uses a constructive definition of the

multivariate GP, based on the infinity norm. The approach explored in the following chapters

adds to the growing literature on Bayesian models for multivariate extreme value analysis (see,

for example, Boldi and Davison (2007), Guillotte et al. (2011), Sabourin and Naveau (2014),

Hanson et al. (2017)), providing a model that has strong computational advantages due its

structural simplicity, achieves flexibility using a mixture model, and scales well to moderately

large dimensions. We consider applications of this model to inference on multivariate extremes,

as well as anomaly detection, and evaluate limitations of this model as well.

Throughout this document, we adopt the operators ∧ to denote minima, and the ∨

to denote maxima. Thus ∧isi = mini si, and ∨isi = maxi si. These operators can also be

applied component-wise between vectors, such as a ∧ b = (a1 ∧ b1, a2 ∧ b2, . . .). Similarly, we

apply inequality and arithmetic operators to vectors, for example a ≤ b, and interpret them

component-wise. We use uppercase to indicate random variables, lowercase to indicate points,

and bold-face to indicate vectors or matrices thereof.

1.1 A multivariate PoT model

To develop a multivariate PoT model for extreme values, consider a D-dimensional

random vector W = (W1, . . . ,WD) with cumulative distribution F . A common assumption on

W is that it is in the so called domain of attraction of a multivariate max-stable distribution, G.

Thus, following Rootzén et al. (2018), assume that there exists sequences of vectors an and bn,

such that lim
n→∞

Fn(anw + bn) = G(w). G is a D-variate generalized extreme value distribution.

Notice that, even though the univariate marginals are obtained from a three parameter family,
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there is no parametric form to represent G. Taking logarithms and expanding, we have that

lim
n→∞

n(1 − F (anw + bn)) = − logG(w) ∀w ∈ RD,

such that G(w) > 0. It follows that

lim
n→∞

Pr
[
a−1
n (W − bn) ≤ w |W ̸≤ bn

]
=

− logG(w ∧ 0) − (− logG(w))

− logG(0)

=
logG(w ∧ 0) − logG(w)

logG(0)
= H(w)

where a−1
n indicates element-wise inversion, and {W ̸≤ bn} denotes the set where at least one

component of W is above the corresponding component of bn. Rootzén et al. (2018) define H as

a multivariate Pareto distribution.. It corresponds to a joint distribution conditional on exceed-

ing a multivariate threshold, defined by a non-parametric function governing the multivariate

dependence, and two D-dimensional vectors of parameters that control the shapes and scales of

the marginals. We denote these as ξ for the shapes and σ for the scales. Rootzén et al. (2018)

provides a number of stochastic representations for H. Throughout this work, we focus on a

particular representation proposed in Ferreira and de Haan (2014). To this end, we denote as Z

a random variable with distribution H where ξ, and σ both equal 1. Then, Z = RV , where R,

the radial component, and V , the angular component, are independent. R = ∥Z∥∞ = ∨D
d=1Zi

is distributed as a univariate standard Pareto random variable, and V = Z/∥Z∥∞ is a random

vector in SD−1
∞ , the positive orthant of the unit sphere under L∞ norm, with distribution Φ.

This representation is central to the methods proposed in this work. R and V are referred to,

respectively, as the radial and angular components of H. The angular measure controls the

dependence structure of Z in the tails. In view of this, to obtain a PoT model we seek a flexible

model for the distribution of V ∈ SD−1
∞ , based on a Bayesian non-parametric model.

The approach considered in Rootzén et al. (2018) focuses on the limiting conditional

distribution H. An alternative approach to obtaining a limiting PoT distribution consists of as-

suming that regular variation (see, for example, Resnick, 2008) holds for the limiting distribution
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of W , implying that

lim
n→∞

nPr
[
n−1W ∈ A

]
= µ(A),

for some measure µ that is referred to as the exponent measure. µ has the homogeneity property

µ(tA) = t−1µ(A). Letting ρ = ∥W∥p, p > 0 and θ = W /ρ, define

Ψ(B) = µ({w : ρ > 1, θ ∈ B}),

, which is referred to as the angular measure. After some manipulations, we obtain that

lim
r→∞

Pr [θ ∈ A|ρ > r] =
Ψ(A)

Ψ(SD−1
p )

. (1.1)

Thus, a model for the exponent measure induces a model for the limiting distribution conditional

on the observations being above a threshold defined with respect to their p-norm. The constraint

that all marginals of µ correspond to a standard Pareto distribution leads to the so called moment

constraints on Ψ, consisting of

∫
SD−1
p

wd dΨ(w) =
1

D
, d = 1, . . . , D.

Inference for the limiting distribution of the exceedances needs to account for the normalizing

constant in Equation (1.1), as well the moment constraints. Because of these issues, we prefer

to follow the limiting conditional distribution approach. An example of the application of the

regular variation approach, using p = 1 is developed in Sabourin and Naveau (2014).

A brief rundown of this document is as follows: This chapter has established the theo-

retical basis to separate the independent radial and angular measures of extreme random vectors.

Chapter 2 builds on this separation of radial and angular components by creating an angular

distribution on an arbitrary p-norm unit sphere, and using it to model the angular component

of extreme random vectors. In particular, Section 2.1 establishes an angular distribution based

on a projection of independent gamma variables as a base of a BNP mixture model; Section 2.2
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introduces an efficient means of evaluating model fidelity in SD1
∞ ; and Section 2.3 explores the

application of this model to extreme values in the integrated vapor transport, an atmospheric

river carrying moisture off the Pacific ocean over California and inland. Chapter 3 explores the

application of the aforementioned model and kernel metric in a novelty detection setting. In

particular, Section 3.3 establishes the novelty detection setting and assumptions used, and the

methods applied; Section 3.4, expands those methods to include categorical and multinomial

data; along with the unification of both scoring regimes. Chapter 4 attempts to explore limi-

tations of the model developed in Chapter 2, by employing it on a greater scale than has been

previously attempted. In particular, it considers a variational approximation of the model, and

evaluates model fidelity under a significantly increased scale in terms of number of observations,

and number of dimensions; Section 4.3 expands on previous work by developing a regression

model by using a BNP mixture of projected gammas as its base; and Section 4.4 applies the

model to extreme values in storm surge, as simulated using the SLOSH model. Finally, Chapter 5

summarizes the conclusions we reached in Chapters 2–4, and explores possible ameliorations of

the shortcomings we observed in Chapter 4.
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Chapter 2

Bayesian Non-Parametric Inference for

Multivariate Peaks-Over-Threshold

Models

2.1 Estimation of the angular measure

To infer the PoT distribution we consider two steps: First we estimate the shape and

scale parameters for the multivariate Pareto distribution, using the univariate marginals; Then

we focus on the dependence structure in extreme regions by proposing a flexible model for the

distribution of V . Consider wn, n = 1, . . . , N a collection of realizations of W . We start by

setting a large threshold. We define the threshold using the empirical (1 − 1/t)-quantile of the

dth marginal, for a large t. Then t corresponds to the so called “return period”, and we take the

threshold as bt,d = F̂−1
d (1 − 1/t) for the dth marginal, d = 1, . . . , D. Then, the distribution of

Wd, conditional on exceeding the threshold, can be approximated with a generalized univariate

7



Pareto. Thus,

Pr[Wd > wnd |Wd > bt,d] =

(
1 + ξd

wnd − bt,d
σd

)−1/ξd

+

where (·)+ indicates the positive part function. We then estimate ξd and σd, for each d, using

likelihood based methods. To estimate the angular distribution, we standardize each of the

marginals. The standardization yields

znd =

(
1 + ξd

wnd − bt,d
σd

)1/ξd

+

; zn = [zn1, . . . , znD]
T
. (2.1)

Note that znd > 1 implies that wnd > bt,d, meaning that the observation wn is extreme in

the dth dimension. Thus, rn = ∥zn∥∞ > 1 implies that at least one dimension has an extreme

observation, and corresponds to a very extreme observation when t is large. We focus on the

observations that are such that rn > 1. These provide a sub-sample of the standardized original

sample. We define vn = zn/rn ∈ SD−1
∞ . These vectors are used for the estimation of Φ.

2.1.1 Projected gamma family

At the core of our PoT method is the development of a distribution on

SD−1
p =

{
y : y ∈ Rd

+, ∥y∥p = 1
}
,

where, for p > 0, ∥ · ∥p is the Lp-norm, of a vector x ∈ RD, defined as

∥x∥p =
(∑S

d=1|xd|
p
) 1

p

.

The absolute and Euclidean norms are obtained for p = 1 and p = 2 respectively, and the L∞

norm can be obtained as a limit,

∥x∥∞ = lim
p→∞

∥x∥p =

D∨
d=1

xd.

To obtain a distribution on SD−1
p we start with a vector in x ∈ RD

+ , and normalize it to obtain

y = x/∥x∥p ∈ SD−1
p . A natural distribution to consider in RD

+ is given by a product of indepen-

dent univariate Gamma distributions. Let X ∼
∏D

d=1 G (Xd | αd, βd), where αs and βs are the

8



shape and scale parameters, respectively. For any finite p > 0, letting yd = (1 −
∑D−1

d=1 y
p
d)1/p,

the transformation

T (x1, . . . , xd) =

(
∥x∥p ,

x1
∥x∥p

, . . . ,
xD−1

∥x∥p

)
= (r, y1, . . . , yD−1) (2.2)

is invertible with

T−1 (r, y1, . . . , yD−1) =

(
ry1, . . . , ryD−1, r

(
1 −

∑D−1
d=1 y

p
d

) 1
p

)
. (2.3)

The Jacobian of the transformation takes the form

rD−1

[(
1 −

∑D−1
d=1 y

p
d

) 1
p

+
∑D−1

d=1 y
p
d

(
1 −

∑D−1
l=1 y

p
d

) 1
p−1
]
. (2.4)

The normalization provided by T maps a vector in RD
+ onto SD−1

p . With a slight abuse of

terminology we refer to it as a projection. Using Equations (2.2)–(2.4) we have the joint density

f(r,y) =

d∏
d=1

[
βαd

d

Γ(αd)
(ryd)αd−1 exp{−βdryd}

]
× rD−1

[
yD +

∑D−1
d=1 y

p
dy

1−p
D

]
. (2.5)

Integrating out r yields the resulting Projected Gamma density

PG(y | α,β) =

D∏
d=1

[
βαd

d

Γ(αd)
yαd−1
d

]
×
[
yD +

∑D−1
d=1 y

p
dy

1−p
D

]
×

Γ(
∑D

d=1αd)(∑D
d=1βdyd

)∑D
d=1 αd

, (2.6)

defined for y ∈ SD−1
p , and for any finite p > 0. To avoid identifiability problems when estimating

the shape and scale parameters, we set β1 = 1. Núñez-Antonio and Geneyro (2019) obtain the

density in Equation (2.6) for p = 2 as a multivariate distribution for directional data, using

spherical coordinates. For y ∈ SD−1
1 , and βd = β for all d, the density in Equation (2.6)

corresponds to that of a Dirichlet distribution.

The projected gamma family is simple to specify and has very tractable computational

properties. Thus, we use it as a building block for the angular measure Φ models. To build

a flexible family of distributions in SD−1
p we consider mixtures of projected gamma densities

defined as

f(y) =

∫
Θ

PG(y | θ)dG(θ), (2.7)

9



where θ = (α,β). Following a Bayesian non-parametric approach (Ferguson, 1974; Antoniak,

1974; Müller et al., 2015), we assume that G is drawn from a random measure. In particular,

assuming a Dirichlet process prior for G, we have a hierarchical formulation of the mixture

model that, for a vector of observations yn, is given by

yn ∼ PG(yn | θn); θn ∼ G; G ∼ DP(η,G0) (2.8)

where DP denotes a Dirichlet process, with η as the precision parameter, and G0 the centering

distribution.

Unfortunately, in the limit when p→ ∞, the normalizing transformation is not differ-

entiable. Thus, a closed form expression like Equation (2.6) for the projected gamma density

on SD−1
∞ is not available. Instead, we observe that for a sufficiently large p, SD−1

p will approach

SD−1
∞ . With that in mind, our strategy consists of describing the angular distribution Φ using a

sample based approach with the following steps: (i) Apply the transformation in Equation (2.1)

to the original data; (ii) Obtain the subsample of the standardized observations that satisfy

R > 1; (iii) Take a finite p and project the observations onto SD−1
p ; (iv) Fit the model in

Equation (2.7) to the resulting data and obtain samples from the fitted model; (v) Project the

resulting samples onto SD−1
∞ . For step (iv) we use a Bayesian approach that is implemented

using a purposely developed Markov chain Monte Carlo sampler described in the next section.

2.1.2 Tail probabilities for the PoT model

A measure that is used to characterize the strength of the dependence, in the tail, for

two random variables Z1 and Z2, with marginal distributions F1 and F2 is given by Coles (2001):

χ12 = lim
u↑1

Pr [F1(Z1) > u | F2(Z2) > u] .

χ12 provides information about the distribution of extremes for the variable Z1 given that Z2

is very large. When χ12 > 0, Z1 and Z2 are said to be asymptotically dependent, otherwise
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Figure 2.1: The positive orthant of the p-norm sphere for D = 2.

they are asymptotically independent. The following result provides the asymptotic dependence

coefficient between two components of Z for our proposed PoT model.

Proposition 1. Suppose that Z = RV with R = ||Z||∞ ∼ Pa(1), Pr [Vd > 0] = 1 and E [Vd]

exists, for d = 1, . . . , D, then

χde = E

[
Vd

E [Vd]
∧ Ve

E [Ve]

]
(2.9)

Proof: Denote as Fd the marginal distribution of Zd. Observe that

Pr (Zd > zd) = Pr (RVd > zd) = Pr

(
R >

zd
Vd

)
= E

[
Vd
zd

∧ 1

]
,

where the expectation is taken with respect to Vd. Recall that 0 < Vd ≤ 1, almost surely. We

are looking at the limiting behavior as zd → ∞, thus

Pr (Zd > zd) =
E [Vd]

zd
=⇒ Fd (zd) = Pr (Zd ≤ zd) = 1 − E [Vd]

zd
= u

=⇒ zd = F−1
d (u) =

E [Vd]

1 − u
.

To obtain χde we need Pr(Zd > zd, Ze > ze), where zd = E [Vd] /(1 − u), d = 1, . . . , D. Using

the fact that Vd > 0, ∀ d almost surely, we have that the former is equal to

Pr

[
R >

zd
Vd

∨ ze
Ve

]
= E

[
1 ∧

(
zd
Vd

∨ ze
Ve

)−1
]

= E

[
Vd
zd

∧ Ve
ze

]
= (1 − u)E

[
Vd

E [Vd]
∧ Ve

E [Ve]

]
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where the second identity is justified by the fact that Vd, Ve are bounded and zd, ze → ∞. The

proof is completed by noting that, for the denominator in the conditional probability, and ∀d,

Pr [Fd(Zd) > u] = 1 − u. □

Equation (2.9) implies that χde > 0, and so, no asymptotic independence is possible

under our proposed model. For the analysis of extreme values it is of interest to calculate the

multivariate conditional survival function. The following result provides the relevant expression,

as a function of the angular measure.

Proposition 2. Assume the same conditions of Proposition 1. Let α ⊂ {1, . . . , D} be a collec-

tions of indexes. Then

Pr

⋂
d∈α

Zd > zd |
⋂
d̸∈α

Zd > zd

 =
E
[∧D

d=1 1 ∧ Vd

zd

]
E
[∧

d̸∈α 1 ∧ Vd

zd

] . (2.10)

The proof uses a similar approach to the proof of Proposition 1.

Equations (2.9) and (2.10) provide relevant tools for inference on the tail behavior of

the joint distribution of the observations. The expressions can be readily calculated within a

sample-based inferential approach like the one considered in the following section.

2.1.2.1 Inference for the projected Gamma mixture model

To perform inference for our proposed PoT model we develop a iterative sample-based

approach. We implement a Markov chain Monte Carlo method that, for a given iteration, groups

observations into stochastically assigned clusters, where members of a cluster share distributional

parameters (Müller et al., 2015; Ascolani et al., 2022). Building out the methods of inference for

Equation (2.8), let C
(−n)
ȷ be the number of observations in cluster ȷ not including observation n.

Let J (−n) be the number of extant clusters, not including any singleton containing observation n.

Under this model, the probability of cluster membership for a given observation is proportional

12



to

Pr [γn = ȷ | . . .] ∝


C

(−n)
ȷ PG (yn | αȷ,βȷ) for ȷ = 1, . . . , J (−n)

η
∫
PG (yn | αȷ,βȷ) dG0(αȷ,βȷ) for ȷ = J (−n) + 1,

where the top case is iterating over extant clusters, and the bottom case is for a new cluster.

If G0 is not a conjugate prior for the kernel density, the integral in the above formula may not

be available in closed form. We sidestep this using Algorithm 8 from Neal (2000): by Monte

Carlo integration, we draw m candidate clusters, αȷ,βȷ for ȷ = J (−n) + 1, . . . , J (−n) + m from

G0. Then, we sample the cluster indicator γn from extant or candidate clusters, where the

probability of cluster membership is proportional to

Pr [γn = ȷ | . . .] ∝


C

(−n)
ȷ PG (yn | αȷ,βȷ) for ȷ = 1, . . . , J (−n)

η
mPG (yn | αȷ,βȷ) for ȷ = J (−n) + 1, . . . , J (−n) +m.

(2.11)

Again, the top case is iterating over extant clusters, and now the bottom case is iterating over

new candidate clusters. If a candidate cluster is selected, then γn = J = J (−n) + 1, and the

associated cluster parameters are saved.

A key feature of the the projected Gamma distribution is its computational properties.

We augment PG(yn | αγn
,βγn

) by introducing a latent radial component rn, for each observa-

tion. Using Equation (2.5) we observe that the full conditional of rn is easy to sample from, as

it is given as

rn | αγn
,βγn

∼ G

(
rn

∣∣∣∣∣
D∑

d=1

αγnd,

D∑
d=1

βγndynd

)
. (2.12)

Moreover, the full conditional for αȷ,βȷ is then proportional to

f(αȷ,βȷ | Y , r,γ, . . .) ∝
∏

n:γn=ȷ

D∏
d=1

G (rnynd | αȷd, βȷd) × dG0(αȷ,βȷ). (2.13)

Note that the ordering of the products can be reversed in Equation (2.13), indicating that with

appropriate choice of centering distribution, the full conditionals for αȷ,βȷ can become separable
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by dimension, and thus inference on αȷd, βȷd can be done in parallel for all ȷ, d. We first consider

a centering distribution given by a product of independent Gammas:

G0(αȷ,βȷ | ξ, τ , ζ,σ) =

D∏
d=1

G(αȷd | ξd, τd) ×
D∏

d=2

G(βȷd | ζd, σd). (2.14)

This model is completed with independent Gamma priors on ξd, τd, ζd, σd. We also assume

a Gamma prior on η, that is updated via the procedure outlined in Escobar and West (1995).

We refer to this model as the projected gamma–gamma (PG-G) model. An advantage of the

PG-G model is that, thanks to conjugacy, the rate parameters βȷd can easily be integrated out

for inference on αȷ. Then, the full conditional for αȷd takes the form

π(αȷd | r,Y ,γ, ξd, τd, ζd, σd) ∝


(∏

n:γn=ȷ rnynd

)αȷd−1

αξd−1
ȷd e−τdαȷd

ΓCȷ(αȷd)


×

 Γ (Cȷαȷd + ζd)(∑
n:γn=ȷ rnynd + σd

)Cȷαȷd+ζd


(2.15)

for d = 2, . . . , D. For d = 1, as β1 := 1, the full conditional takes the simpler form

π(αȷ1 | r,Y ,γ, ξ1, τ1) ∝

(∏
n:γn=ȷ rnyn1

)αȷ1−1

αξ1−1
ȷ1 e−τ1αȷ1

ΓCȷ(αȷ1)
. (2.16)

Samples of αȷd can thus be obtained using a Metropolis step. In our analysis, we first transform

αȷd to the log scale, and use a normal proposal density. The full conditional for βȷd is

βȷd | r,Y , α, ζd, σd ∼ G

(
βȷd

∣∣∣∣∣Cȷαȷd + ζd,
∑

n:γn=ȷ

rnynd + σd

)
, (2.17)

for d = 2, . . . , D. Updating βȷd is done via a Gibbs step. The hyper-parameters ξd, τd, ζd, σd

follow similar gamma-gamma update relationships. We also explore a restricted form of this

model, where βd = 1 for all d. Under this model, we use the full conditional in Equation (2.16)

for all d, and omit inference on ζ,σ. We refer to this model as the projected restricted gamma-

gamma (PRG-G) model.
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The second form of centering distribution we explore is a multivariate log-normal dis-

tribution on the shape parameters αȷ, with independent gamma βȷd rate parameters.

G0 (αȷ,βȷ | µ,Σ, ζ, σ) = LN (αȷ | µ,Σ) ×
D∏

d=2

G (βȷd | ζd, σd) . (2.18)

This model is completed with a normal prior on µ, an inverse Wishart prior on Σ, and Gamma

priors on ζd, σd, and η. This model is denoted as the projected gamma–log-normal (PG-LN)

model. We also explore a restricted Gamma form of this model as above, where βd = 1 for all

d. This is denoted as the projected restricted gamma–log-normal (PRG-LN) model. Updates

for α can be accomplished using a joint Metropolis step, where βȷd for d = 2, . . . , D have been

integrated out of the log-density. That is,

π(αȷ | Y , r,γ,µ,Σ, ζ,σ) ∝ exp

{
−1

2
(logαȷ − µ)TΣ−1(logαȷ − µ)

}

×

(∏
n:γn=ȷ rnyn1

)αȷ1−1

∏D
d=1 αȷdΓCȷ(αȷd)

×
D∏

d=2

Γ (Cȷαȷd + ζd)(∑
n:γn=ȷ rnynd + σd

)Cȷαȷd+ζd

(2.19)

The inferential forms for βȷd and its priors are the same as for PG-G. The normal prior for µ

is conjugate for the log-normal αȷ, and can be sampled via a Gibbs step. Finally, the inverse

Wishart prior for Σ is again conjugate to the log-normal αȷ, implying that it can also be sampled

via a Gibbs step.

To effectively explore the sample space with a joint Metropolis step, as well as to speed

convergence, we implement a parallel tempering algorithm(Earl and Deem, 2005) for the log-

normal models. This technique runs parallel MCMC chains at ascending temperatures. That

is, for chain i, the posterior density is exponentiated to the reciprocal of temperature ti. For

the cold chain, t1 := 1. Let Ei be the log-posterior density under the current parameter state

for chain i, and θi the current state of chain i. Then states between chains i, k are exchanged
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via a Metropolis step with probability

Pr [θi ↔ θk ] = min
[
1, exp

{
(t−1

i − t−1
k )(Ei − Ek)

}]
.

Higher temperatures serve to flatten the posterior distribution, meaning hotter chains have a

higher probability of making a given transition, or will make larger transitions. As such, they

will more quickly explore the parameter space, and share information gained through state

exchange.

2.2 Scoring criteria for distributions on the infinity-norm

sphere

In order to assess and compare the estimation of a distribution on SD−1
∞ we consider

the theory of proper scoring rules developed in Gneiting and Raftery (2007). As mentioned

in Section 2.1.1, our approach does not provide a density on SD−1
∞ , restricting our ability to

construct model selection criteria to sample-based approaches. To this end, we employ the

energy score criterion introduced therein.

The energy score criterion defined for a general probability distribution P , with finite

expectation, is developed as

SES (P,xn) = Ep [g (Xn,xn)] − 1

2
Ep [g (Xn,X

′
n)] , (2.20)

where g is a kernel function. The score defined in Equation (2.20) can be evaluated using

samples from P , with the help of the law of large numbers. Moreover, Theorem 4 in Gneiting

and Raftery (2007), states that if g(·, ·) is a negative definite kernel, then S(P,x) is a proper

scoring rule. Recall that a real valued function g is a negative definite kernel if it is symmetric

in its arguments, and
∑N

n=1

∑N
m=1 anamg(xn, xm) ≤ 0 for all positive integers N , and any

collection a1, . . . , aN ∈ R such that
∑N

n=1 an = 0.
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In a Euclidean space, these conditions are satisfied by the Euclidean distance (Berg

et al., 1984). However, for observations on different faces of SD−1
∞ , the Euclidean distance will

under-estimate the geodesic distance, the actual distance required to travel between the two

points. Let

CD−1
d = {x : x ∈ SD−1

∞ , xd = 1}

comprise the dth face. For points on the same face, the Euclidean distance corresponds to the

length of the shortest possible path in SD−1
∞ . For points on different faces, the Euclidean distance

is a lower bound for that length.

For a finite p, the shortest connecting path between two points in SD−1
p is the mini-

mum geodesic; its length satisfying the definition of a distance. Thus its length can be used as

a negative definite kernel for the purpose of defining an energy score. Unfortunately as p→ ∞

the resulting surface SD−1
∞ is not differentiable, implying that routines to calculate geodesics

are not readily available. However, as SD−1
∞ is a portion of a D-cube, we can borrow a re-

sult from geometry (Pappas, 1989) stating that the length of the shortest path between two

points on a geometric figure corresponds to the length of a straight line drawn between the

points on an appropriate unfolding, rotation, or net of the figure from a D-dimensional to a

(D − 1)-dimensional space. The optimal net will have the shortest straight line between the

points, as long as that line is fully contained within such net. As SD−1
∞ has D faces—each face

pairwise adjacent, there are D! possible nets. However, we are only interested in nets that begin

and end on the source and destination faces respectively, reducing the number of nets under

consideration to
∑D−2

k=0

(
D−2
k

)
. This is still computationally burdensome for a large number of

dimensions. However, we can efficiently establish an upper bound on the geodesic length. We

use this upper bound on geodesic distance as the kernel function for the energy score.
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To calculate the energy score we define the kernel

g(a, b) = min
c∈CD−1

d ∩CD−1
e

{∥c− a∥2 + ∥b− c∥2} . (2.21)

where a ∈ CD−1
d , and b ∈ CD−1

e , for d, e ∈ {1, . . . , D}. Evaluating g as described requires the

solution of a (D − 2)-dimensional optimization problem. The following proposition provides a

straightforward approach.

Proposition 3. Let a ∈ CD−1
d , and b ∈ CD−1

e , for d, e ∈ {1, . . . , D}. For d ̸= e, the transfor-

mation Pde(·) required to rotate the eth face along the dth axis produces the vector b′, where

b′n = Pde(b) =



bi for i ̸= d, e

1 for i = d

2 − bd for i = e

. (2.22)

Then g(a, b) = ∥a− b′∥2.

Proof: Notice that for c ∈ CD−1
d ∩ CD−1

e , ∥b− c∥2 = ∥b′ − c∥2. We then have that

g(a, b) = min
c∈CD−1

d ∩CD−1
e

{∥c− a∥2 + ∥b− c∥2}

= min
c∈CD−1

d ∩CD−1
e

{∥c− a∥2 + ∥b′ − c∥2}

= ∥a− b′∥2 .

The last equality is due to the fact that a and b′ belong to the same hyperplane. □

Using the rotation in Proposition 3 we obtain the following result.

Proposition 4. g is a negative definite kernel.

Proof: For a given N consider an arbitrary set of points a1, . . . ,aN ∈ SD−1
∞ , and

α1, . . . , αN ∈ R, such that
∑N

n=1 αn = 0. Then

∑
n,m

αnαmg(an,am) =
∑
n,m

αnαm∥an − a′
m∥2 ≤ 0,
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where a′
ȷ is defined as in Proposition 3. The last equality holds as ∥x− x′∥2, x,x′ ∈ Rd is

negative definite (Gneiting and Raftery, 2007) □

Proposition 3 provides a computational efficient way to evaluate the proper scoring rule

SES defined on SD−1
∞ , for each observation. For the purpose of model assessment and comparison,

we report the average SES taken across all observed data, and notice that the smaller the score,

the better.

2.3 Data illustrations

We apply the aforementioned models to simulated angular data. We then consider the

analysis of atmospheric data. To tackle the difficult problem of assessing the convergence an

MCMC chain for a large-dimensional model, we monitor the log-posterior density. In all the

examples considered, MCMC samples produced stable traces of the log-posterior in less than

40 000 iterations. We use that as a burn-in, and thereafter sample 10 000 additional iterations.

We then thin the chain by retaining one every ten samples, to obtain 1000 total samples. These

are used to generate samples from the posterior predictive densities. We used two different

strategies to implement the MCMC samplers. For the models whose DP prior is centered

around a log-normal distribution we used parallel tempering. This serves to overcome the very

slow mixing that we observed for these cases. The temperature ladder was set as ti = 1.3i,

for i ∈ {0, 1, . . . , 5}. This was set empirically in order to produce acceptable swap probabilities

both for the simulated data, and real data. Parallel tempering produces chains with good mixing

properties, but has a computational cost that grows linearly with the number of temperatures.

Thus, for the gamma-centered models, we used a single chain. We leverage the fast speed of

each iteration, to obtain a large number of samples, that are appropriately thinned to deal with

a mild autocorrelation. In summary, the strategy for log-normal centered models is based on
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Figure 2.2: Average energy score rise over baseline (on SD−1
∞ ) for various models fitted to simulated data, with

ascending count of mixture components (indicated by plot heading) and number of dimensions (indicated by

horizontal axis). Note that pairwise betas is a moment-restricted model.

a costly sampler with good mixing properties. The strategy for the gamma-centered models is

based on a cheap sampler that can be run for a large number of iterations.

Our hyperprior parameters are set as follows: for the gamma-centered models (PG-G,

PRG-G), the shape parameter for the centering distribution ξd ∼ G (1, 1), and rate parame-

ter τd ∼ G (2, 2). For the log-normal centered models (PG-LN, PRG-LN), the centering distri-

bution’s log-mean µ ∼ ND (0, ID), and covariance matrix Σ ∼ IW (D + 10, (D + 10)ID). These

values are intended such that draws from the prior for Σ will weakly tend towards the identity

matrix. For models learning rate parameters βȷd (PG-G, PG-LN), the centering distribution’s

shape parameter ζd ∼ G (1, 1) and rate parameter σd ∼ G (2, 2) for d = 2, . . . , D. The choice of

the G(2, 2) for rate parameters places little mass near 0, in order to draw estimates for the value

away from 0 for numerical stability.
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Algorithm 1 Simulated Angular Dataset Generation Routine. µȷ, Σȷ are the parameters

of the mixture component distribution; π is the probability vector assigning weight mixture

components; γn is the mixture component identifier for each simulated observation.

for siter in [1, . . . , 10] do

for smix in [1, 2, 4, 8] do

for ȷ in 1, . . . , smix do

Generate µȷ ∼ N32 (0, I)

Generate Σȷ ∼ IW32 (70, 70I)

end for

Generate π ∼ Dirichlet(10smix
)

for n in 1, . . . , 1000 do

Generate γn ∼ Categorical(π)

Generate Xn ∼ LN
(
µ[γn],Σ[γn]

)
end for

for Dcol in [2, 4, 8, 16, 24, 32] do

Project columns 1 to Dcol of X onto SDcol−1
∞ and save.

end for

end for

end for
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2.3.1 Simulation Study

The challenging problem in multivariate EVT is to capture the dependence structure of

the limiting distribution. To this end, we focus our simulation study specifically on the angular

component. To evaluate our proposed approach for angular measure estimation we consider

simulated datasets on SD−1
∞ , for values of D ranging between 2 and 32. We generated each

dataset as a mixture of multivariate log-normal distributions, projected onto SD−1
∞ . The gener-

ation procedure is detailed in Algorithm 1. We produced ten replicates of each configuration.

We consider two gamma-centered and two log-normal centered DP mixture models, with and

without restrictions in each case. To perform a comparative analysis we fitted the pairwise betas

model proposed in Cooley et al. (2010). We chose this model for comparison as it is similarly

works to capture a complex dependence structure on an SD−1
p sphere, albeit with p = 1, and is

implemented in the readily available package BMAmevt in R (Sabourin, 2023), which can provide

samples from the posterior predictive distribution. These samples are needed for the calculation

of the energy scores that are at the basis of our comparison. In addition, BMAmevt can be fitted

to moderately large multivariate observations. For the DP mixture models, the data are pro-

jected onto SD−1
10 . For the Dirichlet and pairwise betas models, they are projected on SD−1

1 . We

sampled each model for 50,000 iterations, dropping the first 40,000 as burn-in, and thinning to

keep every 10th iteration after. These settings were intended to provide a consistent sampling

strategy that would work with every model, even if inefficient for some.

Figure 2.2 shows the average rise over baseline in energy score as calculated on SD−1
∞

using the kernel metric described in Proposition 3, for models trained on simulated data. After

training a model, a posterior predictive dataset is generated, and the energy score is calculated

as a Monte Carlo approximation of Equation (2.20). In our analysis, after burn-in and thinning,

we had 1,000 replicates from the posterior distribution, and generated 10 posterior predictive

22



replicates per iteration. The baseline value is the energy score of a new dataset from the same

generating distribution as the training dataset, evaluated against the training dataset. For the

simulated data, we observe that the projected gamma models dominate the other two options

considered, regardless of the choice of centering distribution. The projected restricted gamma

models with a multivariate log-normal centering distribution appears to be dominated by the

models based on the alternative centering distributions. Moreover, the performance deterio-

rates with the increase in dimensionality. Additionally, models centered around the log-normal

distribution incur in the computational cost of multivariate normal evaluation and parallel tem-

pering, taking approximately six times longer to sample relative to the gamma models. We also

note that the computational cost of the pairwise betas model grows combinatorically, with a

sample space of dimension
(
D
2

)
+ 1. By comparison, the sample space for PG-G and PRG-G

are 2(J + 1)d and (J + 1)d respectively, where J is the number of extant clusters, with much of

that inference able to be done in parallel. In our testing, for low-dimensional problems, BMAmevt

was substantially faster than any of our proposed DP mixture models. However, for examples

with high numbers of dimensions, the computational time for BMAmevt was greater than that

for PG-G. We compare computing times in our data analysis in Table 2.1b.

2.3.2 Integrated Vapor Transport

The integrated vapor transport (IVT) is a two component vector that tracks the flow

of the total water volume in a column of air over a given area (Ralph et al., 2017). IVT is

increasingly used in the study of atmospheric rivers because of its direct relationship with oro-

graphically induced precipitation (Neiman et al., 2009). Atmospheric rivers (AR) are elongated

areas of high local concentration of water vapor in the atmosphere that transport water from

the tropics around the world. AR can cause extreme precipitation, something that is usually

associated with very large values of the IVT magnitude over a whole geographical area. In spite
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Figure 2.3: Grid cell locations for ERA-Interim (left) and ERA5 (right).

of this, AR are fundamental for the water supply of areas like California. Thus the importance

of understanding the extreme behavior of IVT, including extreme tail dependence. We con-

sider datasets that correspond to IVT estimated at two different spatial resolutions. The coarse

resolution dataset is obtained from the European Centre for Medium-Range Weather Forecasts

(ECMWF) Interim reanalysis (ERA-Interim) (Berrisford et al., 2011; Dee et al., 2011). The high

resolution dataset corresponds to the latest ECMWF observational product, ERA5 (Hersbach

et al., 2020).

Our data correspond to daily average values for the IVT magnitude along the coast of

California. The ERA-Interim data used covers the time period 1979 through 2014 (37 years)

omitting leap days, and eight grid cells that correspond to the coast of California. The ERA5

data cover the time period 1979 through 2019 (42 years) with the same restriction, and 47 grid

cells for the coast of California. This gives us the opportunity to illustrate the performance of

our method in multivariate settings of very different dimensions. Figure 2.3 provides a visual

representation of the area these grid cells cover.

Fitting our models to the IVT data requires some pre-processing. First, we subset the

data to the rainy season, which in California runs roughly from November to March. Following

the approach described in Section 2.1 we estimate the shape and scale parameters of a univariate
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Algorithm 2 Data preprocessing to isolate and transform data exhibiting extreme behavior.

rn represents the radial component, and vn the angular component. The declustering portion

is relevant for data correlated in time.

for d = 1, . . . , D do

Set bt,d = F̂−1
d

(
1 − 1

t

)
.

With xd > bt,d, fit σd, ξd via MLE according to generalized Pareto likelihood.

end for

for n = 1, . . . , N do

Define znd =
(

1 + ξd
xnd−bt,d

σd

)1/ξd
+

; then rn = ∥zn∥∞, vn = zn
∥zn∥∞

end for

Subset r,v such that rn ≥ 1

if declustering then

for n = 1, . . . , N do

If rn ≥ 1 and rn−1 ≥ 1, drop the lesser (and associated vn) from data set.

end for

end if

GP, in each dimension, using maximum likelihood. We set the threshold in each dimensions d

as bt,d = F̂−1
d (1 − t−1), where F̂ is the empirical CDF and t = 20, that corresponds to the 95

percentile. We then use the transformation in Equation (2.1) to standardize the observations.

Dividing each standardized observation by its L∞ norm, we obtain a projection onto SD−1
∞ . As

the data correspond to a daily time series, the observations are temporally correlated. For each

group of consecutive standardized vectors zn such that ∥zn∥∞ > 1, we retain only the vector

with the largest L∞ norm. The complete procedure is outlined in Algorithm 2.

After subsetting the ERA-Interim data to the rainy season we have 5587 observations.

After the processing and declustering described in Algorithm 2, this number reduces to 511
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Figure 2.4: Pairwise plots from ERA-Interim data after transformation and projection to S7∞. Down the diagonal

are marginal kernel densities, with two-dimensional histograms on the off-diagonal. In those plots, red indicates

a higher density. All data are between 0 and 1.

observations. A pairwise plot of the transformed data after processing and declustering is

presented in Figure 2.4. From this, we note that the marginal densities display strong similarities,

with a large spike near 0 and a small spike near 1. A value of 1 in a particular axis indicates

that the standardized threshold exceedance was largest in that dimension. The off-diagonal plots

correspond to pairwise density plots. We observe that some site pairs, such as (1, 2), (7, 8), and

especially (4, 5) have the bulk of their data concentrated in a small arc along the 45◦, while other

site combinations such as (3, 6), (2, 7), or (1, 8) the data are split, favoring one side or the other

of the 45◦ line. For the ERA5 data, after subsetting we have 6342 observations, which reduces

to 532 observations after processing and declustering. We fit the PG-G, PRG-G, PG-LN, and
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Table 2.1: Model fit assessment and computation time on ERA-Interim and ERA5 data.

Source
Pairwise

Betas

PG-G PG-LN PRG-G PRG-LN

ERA-Interim 0.8620 0.8003 0.7986 0.7966 0.7970

ERA5 2.0311 1.6404 1.5576 1.4349 1.5051

(a) Energy score criterion from fitted models against the IVT data. Lower is

better.

Source
Pairwise

Betas

PG-G PG-LN PRG-G PRG-LN

ERA-Interim 1.5 16.3 66.5 14.8 52.9

ERA5 53.1 19.4 153.4 24.6 121.4

(b) Time to sample (in minutes) 50,000 iterations for various models

PRG-LN models to both datasets.

Table 2.1a shows the values of the estimated energy scores for the different models

considered. We observe that, contrary to the results in the simulation study in Figure 2.2, the

preferred model is the projected restricted gamma models, though for the lower-dimensional

ERA-Interim data, all models perform comparably. Table 2.1b shows the computing times

needed to fit the different models to the two datasets. We see the effect of dimensionality on

the various models; for gamma centered models it grows linearly; for the log-normal centered

model, it will grow superlinearly as matrix inversion becomes the most costly operation. For

BMAmevt, its parameter space grows combinatorically with the number of dimensions, and thus

so does computational complexity and sampling time.

27



1

2

3

4

5

6

7

8

5

10

15

20

25

30

35

40

45

ERA−Interim ERA5

0.2

0.4

0.6

0.8

χ

Figure 2.5: Pairwise extremal dependence coefficients for IVT data using the PRG-G model.

We consider an exploration of the pairwise extremal dependence using Monte Carlo

estimates of the coefficients in Equation (2.9). For this we use samples obtained from the PRG-

G model. Figure 2.5 provides a graphical analysis of the results. The coefficients achieve values

between 0.286 and 0.759 for the ERA-Interim data and between 0.181 and 0.840 for the ERA5

data. The greater range in dependence scores observed with the ERA5 data versus ERA-Interim

speaks to the greater granularity of the ERA5 data, indicating that distance between locations

is a strong contributor to the strength of the pairwise asymptotic dependence. The highest

coefficients are 0.759 for locations 4 and 5 in the ERA-Interim data and 0.840 for locations 1

and 2 in the ERA5 data. Clearly, pairwise asymptotic dependence coefficients tell a limited

story, as a particular dependency may include more than two locations. We can, however, glean

some information from the patterns that emerge in two dimensions. For the ERA-Interim data,

we observe a possible cluster between cells 5-8, indicating a strong dependence among these

cells. Analogously, for the ERA5 data, we observe three possible groups of locations.

Figure 2.6 shows, for the ERA-Interim data under the PRG-G model, the conditional

survival curve defined in Equation (2.10), for one dimension, conditioned on all other dimensions

being greater than their (fitted) 90th percentile. Figure 2.7 presents the bi-variate conditional
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Figure 2.6: Conditional survival curves for selected locations, using ERA-Interim, and PRG-G model, condition-

ing on all other dimensions at greater than 90th percentile (fitted). The left panel uses original units. Right

panel uses standardized units.

survival function, conditioning on all other dimensions. These results illustrate quantitatively

how extremal dependence affects the shape of the conditional survival curves. The two top

panels represent the joint survival function between grid locations 4 and 5, which are shown in

Figure 2.5 to exhibit strong extremal dependence. We observe that the joint survival surface is

strongly convex. The bottom panels represent the joint survival surface between grid locations

1 and 5, which exhibited low extremal dependence. In this case the shape of the contours tend

to be concave, quite different from the shapes observed in the top panels.

Using our proposed scoring criteria, we explored the effect of the choice of p on the

final results. Using the simulated data, generated from a mixture of projected Gammas, we were

unable to observe sizeable differences in the scores for p ranging between 1 and 15. However, for

the IVT data, we observed a drop in the energy score associated with higher p, with diminishing

effect as p increased. We observed no significant differences in the performance of the model

that uses p = 10, which corresponds to the analysis presented, relative to the one that uses

p = 15.

29



4 & 5   Original Scale 4 & 5   Standardized

1 & 5   Original Scale 1 & 5   Standardized

400 600 800 0 50 100 150

400 500 600 700 800 0 50 100 150

0

50

100

0

50

100

400

600

800

400

600

800

Figure 2.7: Pairwise conditional survival curves for selected locations, using ERA-Interim, and PRG-G model,

conditioning on all other dimensions at greater than 90th percentile (fitted).

2.4 Conclusion

In this chapter, we have built upon the definition of the multivariate Pareto described

in Ferreira and de Haan (2014) to establish a useful representation of its dependence structure

through the distribution of its angular component, which is supported on the positive orthant of

the unit hypersphere under the L∞ norm, SD−1
∞ . Due to the inherent difficulty of obtaining the

likelihood of distributions with support on SD−1
∞ our method transforms data to SD−1

p , fits them

using mixtures of products of independent gammas, then transforms the predictions back to

SD−1
∞ . As SD−1

p converges to SD−1
∞ as p→ ∞, we expect the proposed resampling to be efficient

for large enough p. In fact, our exploration of the simulated and real data indicates that the
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procedure is robust to the choice of moderately large values of p. Our method includes two

inferential steps. The first consists of the estimation of the marginal Pareto distributions; the

second consists of the estimation of the angular density. Parameter uncertainty incurred in the

former is not propagated to the latter. Conceptually, an integrated approach that accounts for

all the estimation uncertainty is conceivable. Unfortunately, this leads to posterior distributions

with complex data dependent restrictions that are very difficult to explore, especially in large

dimensional settings. In fact, our attempts to fit a simple parametric model for the marginals

and the angular measure jointly in several dimensions were not successful.

In this chapter we have focused on a particular representation of the multivariate

Pareto distribution for PoT inference on extreme values. To this end, our model provides a

computationally efficient and flexible approach. An interesting extension of the proposed model

is to consider regressions of extreme value responses, due to extreme value inputs following

the ideas in de Carvalho et al. (2022). This will produce PoT based Bayesian non-parametric

extreme value regression models. More generally, models that allow for covariate-dependent

extremal dependence (Mhalla et al., 2019) could be considered. In addition, we notice that our

approach is based on flexibly modeling angular distributions for any p-norm. As such, it can

be applied to other problems focused on high dimensional directional statistics constrained to a

cone of directions.

Developing an angular measure specifically in SD−1
∞ provides two benefits over SD−1

p .

First, the transformation to SD−1
∞ is unique. Recall that Equation (2.3) gives yd as a function

of y1, . . . , yD−1. An analogous expression can be obtained for any yd. This indicates that

there are D equivalent transformations, each yielding a different Jacobian and, for p > 1,

potentially resulting in a different density. Second, evaluation of geodesic distances on SD−1
p is

not straightforward. However, we have demonstrated a computationally efficient upper bound

on geodesic distance on SD−1
∞ . Accepting these foibles, it would be interesting to explore the
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distribution on SD−1
p ,

The computations in this chapter were performed on a desktop computer with an

AMD Ryzen 5000 series processor. The program is largely single-threaded, so computation time

is not dependent on available core count. In each case, we run the MCMC chain for 50 000

iterations, with a burn-in of 40 000 samples. Fitting the PG-G model on the ERA5 dataset took

approximately 15 minutes. Work is in progress to optimize the code, and explore parallelization

where possible. We are also exploring alternative computational approaches that will make it

feasible to tackle very high dimensional problems, such as variational Bayes. In fact, to elaborate

on the study of IVT, there is a need to consider several hundreds, if not thousands, of grid cells

over the Pacific Ocean in order to obtain a good description of atmospheric events responsible

for large storm activity over California.
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Chapter 3

Anomaly Detection in

Peaks-over-Threshold Settings and

Angular Representations of Categorical

Data

3.1 Introduction

Anomaly detection, describes a field of methods for identifying observations as anoma-

lous; a term that requires defining. For this chapter following the general trend in the literature,

we define anomalies as observations that are in some manner different than non-anomalous data.

We interpret this to say that anomalies are data that were not produced by the same generating

distribution as non-anomalous data, and as such, we would expect observations found in regions

of relative data sparsity to be more likely to be anomalous than those observations found in

regions of high data abundance. We characterize this assumption as anomalies stand apart. In
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the literature as here, the term normal data is used to refer to data which are not anomalous.

Normal data tend to cluster into homogenous groups, but anomalous data are heterogenous in

their differences.

Alternative names for the field of anomaly detection include outlier detection, and

novelty detection, though these terms have their own nuances. Outliers are characterized as

observations that are in some manner far from normal data. In a regression context, they may

have large fitted residuals, or exert large influence on model fits. Novelties in contrast are data

coming from a distribution that has not been seen before. A novelty detection application will

then assume a clean training data set containing no anomalies, and identify observations not

belonging to the distribution as trained. Chandola et al. (2009) refer to this practice as semi-

supervised anomaly detection. For our purpose, we do not assume the existence of labels in the

training dataset, and seek an algorithm that can produce anomaly scores in the absence of class

labels. As such, we will offer a brief overview of unsupervised anomaly detection methods, as

well as discussion of the methods we are proposing here as competing models.

The complete field of anomaly detection is vast. However, most methods can be roughly

grouped into three core ideas: statistical model approaches, non-statistical model approaches,

and clustering methods. Common to all approaches is the assumption that anomalous data will

tend to stand apart from normal data.

Statistical models for anomaly detection attempt to model the distribution of data,

with the goal of estimating the data density around an observation. In specific applications,

one might make assumptions about the parametric form of the generating distribution of the

data, but for general application, a non-parametric density estimator is frequently used. This

might include algorithms such as k-Nearest Neighbors k-NN (Kramer, 2013); kernel density

estimation approaches such as the Parzen-Rosenblatt windowing method (Rosenblatt, 1956;

Parzen, 1962); or even semi-parametric density estimation methods, such as Gaussian mixture
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models (McNicholas, 2010). Local Outlier Factor (Breunig et al., 2000) is an example of an

anomaly score using a non-parametric density estimator.

Clustering methods group data into clusters of similar observations. The grouping

methods tend to rely on distance metrics and generally make no assumptions regarding the

underlying distribution of the data. We can further sub-divide this sub-field into types of

clustering methods: linkage-based, centroid-based, and density-based. These methods as applied

to the field of anomaly detection assume that anomalous observations tend to stand apart from

non-anomalous data.

Linkage-based clustering methods group data based on pairwise distance point-to-

point, or between elements of clusters. Ackerman et al. (2010) offers a review of the topic.

An illustrative example is single linkage, where the distance between two clusters is defined

as the minimum distance between a point in each set. Similarly, complete linkage defines the

metric to be the maximum pairwise between a point in each set. The goal of the linkage-based

clustering algorithm is to maximize the total distance between clusters under whatever metric

of distance is used, along with minimizing distance within clusters. An observation’s anomaly

score might be a function of distance to its nearest neighbor within its assigned cluster.

Centroid based clustering methods instead generate cluster centroids according to some

metric. The algorithm used to find the cluster centroids depends on a chosen metric. The very

popular k-Means (Hartigan and Wong, 1979) is an example of this approach. Under k-Means,

cluster assignment is determined by minimizing within-cluster distance among k clusters, which

simultaneously maximizes between-cluster distance. For each observation, and anomaly score

may be obtained as a function of its distance to the nearest cluster centroid.

Density based clustering methods use pairwise distances between observations to es-

tablish a measure of local density, then establish local modes as clusters. DBSCAN (Ester et al.,

1996) follows this approach, forming neighborhoods of observations and assigning labels based
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on the neighborhood.

Non-statistical—or algorithmic—models beyond clustering are generally adaptations of

general classification methods, applied to unsupervised learning. The Isolation Forest (Liu et al.,

2008), adapted from random forests (Breiman, 2001), uses decision trees to isolate observations.

Those observations that are more easily isolable are regarded as more anomalous. One-class

Support Vector Machines (Chang and Lin, 2011) is a variant of the support vector machine

classification system, optimized for anomaly detection. One-class SVM uses support vectors to

describe a decision boundary in kernel space around normal behavior. A higher distance to that

decision boundary on the anomalous side is regarded as more anomalous.

The intersection of extreme value theory and anomaly detection is a current topic of

research. Some methods employ univariate EVT on estimated densities calculated via other

means, such as Clifton et al. (2011) using a Gaussian Mixture model, and Gu et al. (2021)

using a Gaussian process. Both then employ EVT on the estimated densities to establish a

decision threshold theoretically, avoiding the process of determining said threshold heuristically.

Beyond these applications, the applicability of extreme value theory to anomaly detection is

predicated on the assumption that extreme observations are more likely to be anomalous. A

discussion on this point is provided by Goix et al. (2017), stating that extreme observations

exist at the border between anomalous and non-anomalous regions. Indeed, for most datasets in

our testing, the probability an individual observation is anomalous is higher for data in the tails

of the distribution. This relative abundance of anomalies among extremes might cause a naive

classifier that does not take into account the dependence structure of extremes to classify all

extremes as anomalous. If we follow the assumption that anomalies stand apart, then extreme

observations that cluster into a homogenous group should not be considered anomalous. For this

reason, we desire a classifier that considers the dependence structure of the extremes as well.

Goix et al. (2017) offers one such example. Their method is based on transforming the data to a
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standard Pareto suing the transformation T (x) = 1/(1 − F̂ (x)) ∈ [1,∞), where F̂ corresponds

to the empirical distribution function. Then the the space [1,∞)d is partitioned into α-cones,

defined as subsets where in each dimension the observations are in excess of a α. α-cones with

few observations correspond to lower-density regions, so observations falling into these cones are

considered more likely to be anomalous.

A central result of multivariate EVT is that, conditional on an observation being ex-

treme, its radial component—or magnitude—is independent of its angular component. In this

chapter, following Trubey and Sansó (2024), we fit a Bayesian non-parametric mixture of pro-

jected gammas to the angular component, and use samples from its posterior predictive distri-

bution to compute an estimate of the density of the angular component. Direct estimation of

density via a fitted model is difficult, owing to the bounded nature of the angular distribution.

Instead, we employ non-parametric density estimators including k-nearest neighbors and kernel

density estimation to produce estimates of angular density. Further, to expand the applicabil-

ity of this algorithm, we produce an extension of the BNP projected gamma model to include

categorical data. Standing alone, this component represents a highly flexible density model for

categorical data, and it efficiently pairs with the projected gamma model for angular data. We

develop several anomaly scoring metrics applicable to the angular data, categorical data, and

mixed data regimes. The major contributions of this chapter are thus three-fold: We develop

an anomaly detection algorithm for extreme data that accounts for the dependence structure

between extremes, approaching density estimation in a continuous space rather than discrete

binning in a partition of the space. We obtain a flexible model for multivariate categorical data

that efficiently captures the dependence structure between categories in multiple variables, as

well as anomaly scores in this setting. Finally, we provide a model that links the scores developed

in these two cases, tackling multivariate observations with components of different types.

The chapter proceeds as follows: Section 3.2 provides a reintroduction of the angular
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data model adapted for novelty detection. Section 3.3 introduces our anomaly scores for angular

data, describing the density estimation methods employed, as well as how radial information is

incorporated. Section 3.4 introduces our flexible categorical data model, along with anomaly

scores based on it. Section 3.4.3 provides a link between the two regimes; anomaly scores that

include information from both categorical and angular data. Section 3.4.4 employs the same rank

transformation used in Goix et al. (2017) to apply the angular data model to data not already

assumed to be in excess of a threshold, widening the applicability of our metrics. Section 3.5

provides the resulting performance of our anomaly scores as applied to seven reference anomaly

detection datasets, as well as comparing to three canonical anomaly scoring methods. Finally,

Section 3.6 provides concluding remarks and discussion.

3.2 The Angular Data Model

In Chapter 1, we discussed the separation of the extreme vector Z into its radial and

angular components, R following a standard Pareto, and V following a distribution Φ, with

support on SD−1
∞ . To obtain a flexible model for Φ we use the projected gamma density as the

kernel of a random measure mixture model, based on the Pitman-Yor (PY) process introduced

in Perman et al. (1992). Pitman-Yor processes are fully atomic random measures that are

specified by two parameters and a centering distribution. They can be formulated, using a

stick-breaking representation (Ishwaran and James, 2001a), as

Pr [α | · · · ] =

∞∑
ȷ=1

πȷδαȷ ;

∞∑
ȷ=1

πȷ = 1, πȷ := ρȷ
∏
k<ȷ

(1 − ρk)

where δαȷ
indicates a point mass at αȷ, and αȷ are sampled independently from G0. The stick-

breaking proportions ρȷ ∼ Beta(1 − ω, η + ȷω). Observe ω ∈ [0, 1), and η > −ω are referred

to as the discount and the concentration parameters, respectively. Pitman-Yor processes have

the advantage over the more commonly used Dirichlet processes (Ferguson, 1974) of including
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a discount parameter along with the concentration parameter, allowing greater control over the

formation of new clusters. A hierarchical formulation of the model for observations yn ∈ SD−1
p ,

n = 1, . . . , N , is

yn | αn ∼ PGp (y | αn,1)

αn ∼ G

G ∼ PY (ω, η,G0)

G0 = LND (α | µ,Σ)

µ ∼ ND (0,1)

Σ ∼ IWD (ν,Ψ) .

(3.1)

Here LN denotes a log-normal, N a normal, and IW an inverse Wishart. We refer to this model

as a Pitman-Yor mixture of projected gammas (PYPG). As a kernel density, it was observed in

Chapter 2 that the unrestricted form of the PGp with both shape and rate parameters offered

no improvement in model fidelity on real data compared to the restricted form, where the rate

parameters are fixed at 1. For a more parsimonious model, and for compatibility with the

categorical model that will be developed in Section 3.4, we choose to use the restricted form.

Mixtures of Pitman-Yor processes can be used to group observations into stochastically

assigned clusters, where all observations within a cluster share a set of parameters. Cluster

assignment is accomplished through data augmentation, where γn, the cluster identifier for

observation n, is sampled according to both cluster weight and kernel density of observation

n given cluster parameters. We make use of the blocked-Gibbs sampler on a truncated stick-

breaking representation of the Pitman–Yor model. Cluster weights are then sampled as

ρȷ | n ∼ Beta

1 + Cȷ − ω, η +
∑
k>ȷ

Ck + ȷω

 for j = 1, . . . , J − 1

πȷ :=


ρȷ
∏

k<ȷ(1 − ρk) for j = 1, . . . , J − 1

∏J−1
k=1 (1 − ρk) for j = J

(3.2)

where Cȷ is the number of observations in cluster ȷ. In this form, the Dirichlet process is a
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special case of the Pitman-Yor process where the discount parameter ω := 0. Then γn is sampled

Pr [γn = ȷ | ρ,α] =
πȷ PGp (yn | αȷ,1)∑J

k=1 πk PGp (yn | αk,1)
. (3.3)

Within the blocked-Gibbs algorithm, ρ | γ are mutually independent, as are γ | ρ. This condi-

tional independence offers an opportunity for parallelization, increasing the speed of sampling.

The approach proposed in this section produces a sample of the angular measure of

the distribution of the tails of the sample. The method has a number of advantages for anomaly

detection: it focuses on the tails, which is where we are more likely to find anomalous behavior;

it accounts for asymptotic dependence between the different components of the observation

vector; it reduces the computational burden, by thinning the sample using thresholding; and it

decouples the radial component to the angular component, thanks to independence.

3.3 Novelty Detection Methods

As previously stated, a novelty detection algorithm produces an anomaly score which

provides a ranked ordering of observations in their likelihood of being anomalous, with higher

scores indicating more likely anomalous. Building on the notion that anomalies occur in areas

of low density, a general Bayesian anomaly score for observation xn, can be defined as

Sn =

[∫
Θ

f(xn | θ)dG(θ | D)

]−1

where D is the observed data and θ the distributional parameters. That is, the reciprocal of the

posterior predictive density at observation xn.

Given the independence between the angular and radial components of an extreme

observation, we can consider sub-scores for the radial and angular components independently.

That is,

Sn = Sn,r × Sn,v = fr(rn)−1 ×
[∫

Ω

fv(vn | α) dG(α | D)

]−1

. (3.4)
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By construction rn follows a standard Pareto distribution, so its density is fr(rn) = r−2
n . As

previously discussed in Section 3.2, the kernel PG∞, needed for density estimation on the surface

of SD−1
∞ is not available in analytic form, thus, we resort to transforming the data to SD−1

p for

a large but finite p. This makes estimation of distributional parameters possible, but in the

context of anomaly detection, a score based on PGp, for any p, is problematic. In fact, the

transformation from RD
+ to SD−1

p is not unique, as we can take any of the components of the

original vector as a reference. This implies that under uniform α, the density can be changed

by permuting the order of components. This is not appropriate for anomaly detection, because

a relative ordering of density between observations is specifically what we’re trying to calculate.

In addition we have observed instabilities in the evaluation of (2.6) for small arguments, when

the shape parameter is small. On the other hand, we notice that T∞ is unique, as the reference

is the largest value of the array. Thus, we fit the mixture model in SD−1
p , generate posterior

predictive samples, and transform those samples to SD−1
∞ .

To avoid the problems of angular density evaluation in SD−1
∞ we use a non-parametric

angular density estimator based on a sample from the posterior predictive distribution of the

model described in Section 3.2. Here, we consider two well-established methods: k–nearest neigh-

bors, or kNN (Mack and Rosenblatt, 1979), and kernel density estimation, or KDE (Parzen,

1962). For both of these methods we make use of pairwise distances between observations from

the dataset, and replicates from a posterior predictive sample.

As described in Chapter 2.1, geodesic distance on SD−1
∞ is expensive to evaluate, as the

computational burden grows combinatorically with the number of dimensions. As an alternative,

we proposed a kernel metric, described in Equation 2.21 that serves as an upper bound to of

geodesic distance that is computationally cheap to evaluate, bearing a cost equivalent to that

of a Euclidean norm.
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3.3.1 Nearest Neighbor Density estimation

We use this kernel metric to obtain a local posterior predictive density based on a kNN

estimator on SD−1
∞ . To this end we consider a locally uniform density within a (D − 1)-dimensional

ball B, centered on observation vn. The radius Rk(vn) := g
(
vn,v

∗
Nk(n)

)
, where g(·, ·) is the up-

per bound on geodesic distance on SD−1
∞ defined in Equation (2.21), and v∗Nk(n)

is the kth nearest

neighbor of vn in a sample from the posterior predictive distribution. The volume of the ball is

calculated as

Vol(BD−1
k ) =

π
D−1

2 Rk(vn)D−1

Γ
(
D−1
2 + 1

) . (3.5)

The density is thus estimated as f
(kNN)
v (vn | V ) ≈ k

N

(
Vol(BD−1

k )
)−1

where N is the total num-

ber of replicates of from the posterior predictive distribution. Taking the reciprocal of the

estimated angular density, the angular score under the kNN estimator is then

SkNN
n,v =

Nπ
D−1

2 Rk(vn)D−1

kΓ
(
D−1
2 − 1

) (3.6)

In our experience, using a large posterior predictive sample, the resulting ordering of scores was

relatively robust to a choice of k between 2 and 10. We used k = 5 in our performance analysis.

3.3.2 Kernel Density Estimation

Kernel density estimation is an approach that makes use of kernel smoothing to pro-

duce a semi-parametric estimate of the density function for a dataset. For a scalar bandwidth

parameter h,

fn(x) =

∫
Ω

1

h
Q
(
x− t
h

)
dFn(t) ≈ 1

Kh

K∑
k=1

Q
(
x− x∗

k

h

)
where x∗

k are random replicates from F . The choice of kernel function Q, and selection of

the bandwidth parameter h are both topics that have been extensively researched. In practice

the Gaussian kernel seems to be well regarded for its simplicity, flexibility, and interpretability.

42



The bandwidth parameter in this case corresponds to the standard deviation of the kernel

function. The multivariate Gaussian kernel is more flexible, accepting a matrix as the bandwidth

parameter. A larger bandwidth serves to smooth the resulting density estimate, where a lower

bandwidth is more responsive to individual observations of data. Optimization of h is application

and data specific, but there do exist various rules of thumb based on summary statistics of

the data. For our analysis, we are making use of a distance analogue on SD−1
∞ described in

Equation (2.22), which precludes the ability to describe bandwidth using a matrix. We therefore

consider the univariate case of f in kernel space, where ∥x−x∗∥ has been replaced with g(v,v∗).

For selection of the bandwidth parameter h, we employ Silverman’s rule of thumb

(Silverman, 2018), estimating ĥ =
(

4
D+2

) 1
D+4

N− 1
D+4 σ̂. This then requires the estimation of σ̂,

which in this case we calculate from pairwise distances. Recall that for a random variable X,

E
[
∥Xj −Xk∥2

]
= 2Var(X). In that case,

σ̂ =

√
1

2N(N − 1)

∑
j ̸=k

g(v∗j ,v
∗
k),

where v∗j ,v
∗
k are replicates from the posterior predictive distribution. Then σ̂ is used in the

aforementioned rule of thumb for h. Finally, the angular score under KDE is then calculated as

Skde
n,v = Ev∗

[
exp

{
−
(
g(vn,v

∗)

ĥ

)2
}]−1

≈

[
1

K

K∑
k=1

exp

{
−
(
g(vn,v

∗
k

ĥ

)2
}]−1

(3.7)

where v∗k are again replicates from the posterior predictive distribution. We investigated other

methods of calculating bandwidth, as well as searched the neighborhood around our bandwidth

estimate for example datasets. The estimator following Silverman’s rule of thumb as described

consistently produced the most performant rank ordering of angular anomaly scores on tested

datasets.
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Algorithm 3 Workflow for anomaly detection on SD−1
∞ .

1: Take rn, yn according to Algorithm (2), substituting bq,d = F̂−1
d (q)

2: Fit PYPG(y) from Equation (3.1)

3: From α | y, sample ϱ∗k | α ∼
∏

d G(αd) for k = 1, . . . ,K

4: Take v∗k = T∞(ϱ∗k)

5: Take Sn,v as per Equations (3.6,3.7)

3.4 Binary and Categorical Data

In the previous sections we have used extreme value theory to obtain samples from

the tail distribution of a given sample of observations. Unfortunately those results can only be

applied to continuous random variables. Many applications of novelty detection include both

real and categorical data, so here we consider an extension of the projected gamma mixture

model to handle categorical observations.

Suppose X is a vector of M random categorical variables. Let Cm be a categorical

random variable, encoded in one-hot, or multinomial, encoding. The length ofCm, Dm, indicates

the number of categories. Then C is the concatenation of M one-hot encoded categorical RV’s.

It is a binary vector of length D =
∑M

m=1Dm, and
∑M

m=1

∑Dm

d=1 Cmd = M . To account for

over-dispersion, and compatibility with our methods in Chapter 2, we consider a Dirichlet-

multinomial density for Cm. Recall that the Dirichlet distribution is a special case of the

projected gamma, projected onto SD−1
1 , with rate parameters uniformly fixed as βd = β = 1 by

convention. We consider a Dirichlet-multinomial densiy, DM(·), that is obtained by integrating

out the latent categorical probability vector from a multinomail density with a Dirichlet prior.

That is,

DM(c | α) =

∫
π

M(c | π) D(π | α)dπ.

Recalling that a categorical random variable can be considered as a multinomial with size 1, we
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can further simplify the Dirichlet-multinomial to a Dirichlet-categorical, reducing the computa-

tional burden. Thus,

c | α ∼ DC(c | α) =
Γ(
∑D

d=1 αd)

Γ(1 +
∑D

d=1 αd)

D∏
d=1

Γ(cd + αd)

Γ(αd)
=

∏D
d=1 α

cd
d∑D

d=1 αd

(3.8)

We then consider a concatenated Dirichlet-categorical (CDC) as a product of Dirichlet-categorical

densities. That is, CDC(c | α) =
∏M

m=1 DC(cm | αm). Then we can define a Bayesian non-

parametric categorical data model as:

cn | αn ∼ CDC (cn | αn)

αn ∼ G

G ∼ PY (d, η,G0)

G0 = LN (α | µ,Σ)

µ ∼ N (0,1)

Σ ∼ IW (ν,Ψ) .

(3.9)

Note that there exists a strong negative covariance between categories within a categorical

variable. To account for this in our proposed prior, the parameter Ψ is chosen as a block

diagonal matrix, with each m block corresponding to the mth categorical variable. Setting the

value of the diagonal to ψ0, the off-diagonals within the m block are set to −ψ0D
−2
m where

Dm is the number of categories in the mth categorical variable. This value corresponds to the

covariance of a categorical variable where all category probabilities are equal. In addition to

the proposed log-normal model, we investigated using a product of gammas as the centering

distribution in Equation (3.9), but we observed that this choice induces numerical instability.

We observed that the log-normal distribution, with its squared exponential tails and ability to

account for negative covariance within the prior, provided stable model fitting.

3.4.1 Anomaly Detection Methods for Categorical Data

Anomaly scores analogous to the ones proposed in Section 3.3 can be obtained for

categorical variables by transforming the latent variables that define a Dirichlet-Multinomial
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distribution on SD−1
1 to SD−1

∞ . We start by considering the cluster identifiers. Extrapolating

Equation (3.3) to the categorical model, cluster identifiers γn are sampled with probabilities

Pr[γn = ȷ | α,π, cn] =
πȷ CDC (cn | αȷ)∑J

k=1 πk CDC (cn | αk)
for ȷ = 1, . . . , J, (3.10)

where π refers to the cluster weights under the stick-breaking representation of the Pitman-Yor

process model. For a given sample from the posterior for α, first we sample γn, then sample

ϱn | αγn
∼

D∏
d=1

G (ϱnd | αγnd, 1) . (3.11)

These are the latent variables that provide the core structure to the categorical data model.

In fact, the component probability vectors for the concatenated multinomial are obtained by

projecting ϱn onto
∏M

m=1 S
Dm−1
1 to produce πn =

∏M
m=1 T1(ϱnm). Anomaly scores analogous

to the ones proposed in the continuous case can then be obtained by letting νn = T∞(ϱn), the

transformation of ϱn onto SD−1
∞ . It is important to notice that distance metrics between pro-

jections of ϱn and replicates of ϱ∗ from the posterior predictive distribution is straightforward.

This provides a distinct advantage to the approach based on the distance between the directly

observed values cn and samples of C, obtained from the corresponding posterior predictive

distribution (Alamuri et al., 2014).

We develop four methods based on applications of the KNN and KDE metrics previ-

ously described. Making an abuse of notation for simplicity of presentation, let

Ẽ [νn] := T∞(E [νn | cn]),

the projection of the expectation of νn back onto SD−1
∞ . Evaluating this expectation by Monte

Carlo approximation is equivalent calculating the spherical mean (Mardia et al., 1999), which

takes the arithmetic mean of observations in Cartesian coordinates, then projects back onto the

sphere.
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The hypercube KNN (hknn) metric applied to the latent projected SD−1
∞ space uses

the negative definite kernel metric previously established to estimate distance between Ẽ[νn]

and ν∗. This score takes the form:

Shknn
n,ν =

N π
D−1

2

k Γ
(
D−1
2 + 1

) Rk

(
Ẽ[νn]

)D−1

(3.12)

where Rk

(
Ẽ[νn]

)
measures the distance from Ẽ[νn] to the kth nearest replicate from a sample

from the posterior predictive distribution for ν∗. This projection places all the class probabilities

within the same sphere and subject to the same distance measure. Note here we are first taking

the expectation of νn, then the expectation of the kernel metric raised to the D − 1 power.

The hkde score applied to the categorical space operates in much the same way. We

compute Ẽ[νn], and employ the same kernel metric to compute distance from a sample from

the posterior predictive distribution. From there, however, we use kernel density estimation to

compute local density for observation n. The score is then

Shkde
n,ν = Eν∗

exp

−1

2

(
g(Ẽ[νn],ν∗)

ĥ

)2

−1

≈

 1

K

K∑
k=1

exp

−1

2

(
g(Ẽ[νn],ν∗

k)

ĥ

)2

−1

(3.13)

We use the same previously described approach to choose h. An exploration of manually tuning

h did not consistently outperform the rule of thumb estimator.

Notice that the hkde score depends on two expectations that are computed in sequence.

A variant of the score is obtained by computing the expectations jointly:

S lhkde
n,ν = Eν∗,νn

[
exp

{
−1

2

(
g(νn,ν

∗)

ĥ

)2
}]−1

≈

 1

KνnKν∗

Kνn∑
ȷ=1

Kν∗∑
k=1

exp

{
−1

2

(
g(νn,ȷ,ν

∗
k)

ĥ

)2
}−1

(3.14)

Computing this for a given sample is more expensive than hkde due to the double sum. How-

ever, plugging in an estimate of E [vcn ] removes a significant degree of uncertainty around the

distribution of vcn , which may be relevant.
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If, instead of projecting the unnormalized probability vectors onto a unified hypersphere

SD−1
∞ , we normalize each m-component onto its associated simplex, SDm−1

1 . Using Manhattan

distance on the simplex, we obtain the latent simplex KDE (lskde).

S lskde
n,π = Eπi,π∗

[
exp

{
−1

2

(
∥πn − π∗∥1

ĥ

)2
}]

≈

 1

Kπ∗Kπn

Kπn∑
ȷ=1

Kπ∗∑
k=1

exp

{
−1

2

(
∥πnȷ − π∗

k∥
ĥ

)2
}−1 (3.15)

Using the normalized latent class probabilities offers the advantage of numerical stability: di-

verging estimates of ϱ are isolated to the relevant m-component.

Algorithm 4 Workflow for anomaly detection for categorical data

1: Take c as the concatenation of m multinomial-encoded categorical variables.

2: Take D :=
∑M

m=1Dm as the dimensionality of the process

3: Fit PYCDC(c) as per Equation (3.9)

4: From α | c, sample ϱ∗k | α ∼
∏

d G(αd) for k = 1, . . . ,Kν ; then ν∗ = T∞(ϱ∗)

5: From αn | cn sampled as per Equations (3.10-3.11) sample ϱnk | αn ∼
∏

d G(αd) for

k = 1, . . . ,Kνn

6: Take vnk = T∞(ϱnk); πnk =
∏M

m=1 T1(ϱnkm)

7: Take Snv as per Equations (3.12–3.15)

3.4.2 Mixed Models

To obtain a joint model for the density of a vector with mixed components we consider

a product kernel, then mix over the parameters that define both kernels in order to capture the

dependence between components. Thus,

(y, c) ∼
∫
α

PGp(y | αy,1) CDM(c | αc) dG(α) (3.16)
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with the distribution of α = (αy, αc) as defined in Equation 3.9. The dimensions are, re-

spectively, Dy and Dc. Note that for the projected gamma distribution, we restrict the rate

parameters to βd := 1. Also note that for the mixed model, the hyperparameter for the co-

variance matrix Σα is taken as a blocked diagonal matrix, with the block corresponding to the

angular component being a diagonal matrix.

3.4.3 Mixed Model Anomaly Scores

Let D = Dy +Dc be the total number of dimensions. Then, for the mixed model, let

νn = T∞(Rnyn,ϱnc), and ν = T∞(ϱ). The hknn score can be adapted to the mixed model

by re-projecting the angular data and the latent categorical component into the same sphere.

This requires moving yn back to RDy

+ , by multiplying by the radial component Rn generated

according to Equation 2.12, replacing α with αy, the portion of the α vector associated with

the angular component. Then νn = T∞(Rnyn,ϱnc) is the latent projection of both the real

component and categorical component into the same sphere. Also, let ν = T∞(ϱ) be the generic

ν not specifically dependent on observation n. To obtain the corresponding anomaly scores we

can proceed by using the expression in Equations (3.12)–(3.14)

All three scores seek a unifying approach for all data, projecting onto a the same sphere,

and calculating a consistent distance metric. An alternative is to, instead, evaluate distances

between angular data their own space, and, separately, latent posterior class probabilities in their

own space, with the appropriate distance metric for each. In effect, this approach combines hkde

from the angular component and lskde from the categorical component yielding:

Slmkde
n,v = Ev∗,π∗,πn

[
exp

{
−1

2

(
g (vn,v

∗)

ĥv∗

)2

− 1

2

(
∥πn − π∗∥1

ĥπ∗

)2
}]−1

≈

 1

Kπ∗Kπn

Kπn∑
ȷ=1

Kπ∗∑
k=1

exp

{
−1

2

(
g(vn,v

∗
k)

ĥv∗

)2

− 1

2

(
∥πnȷ − π∗

k∥1
ĥπ∗

)2
}−1 (3.17)

This choice to evaluate each component within its own space presents some loss of information
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as to the dependence structure between y and c within the score. We will explore to what extent

that loss of information is relevant.

Algorithm 5 Workflow for anomaly detection for mixed data

1: Take rn, yn according to Algorithm (2), substituting bq,d = F̂−1
d (q); cn as in Algorithm 4.

2: Fit (y, c) using mixed model from Equation (3.16)

3: From α | y, c, sample ϱ∗k | α ∼
∏

d G(αd) for k = 1, . . . ,K

4: if Sn,v is hknn, hkde, or lhkde then

5: From α | yn,wn: sample Rn according to Equation (2.12) substituting α with αy, ϱc,n

similar to Algorithm 4.

6: Take νn = Tinfty(Rnyn,ϱc,n); ν∗ = T∞(ϱ∗).

7: Apply Score function.

8: else if Sn,v is lmkde then

9: From α | yn, cn, sample ϱc,n similar to Algorithm 4.

10: Take πn =
∏M

m=1 T1(ϱm,c); π
∗ =

∏M
m=1 T1(ϱ∗)

11: Apply Score function.

12: end if

3.4.4 Relaxing the assumption of independence

A valid critique of the model presented thus far is that in order to justify modeling the

radial component of Z as independent to its angular component—the fundamental result of the

multivariate extreme value theory presented—it is necessary to subset data to those observations

X which exceeded a large threshold in at least one dimension. For some applications, this

represents a very powerful data reduction with little loss of information pertaining to anomalies,

as anomalies tend to be in the tails (see, for example, Table 3.1). For other applications,
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this data reduction represents a significant loss of information about possible anomalies not

corresponding to the tails. For this second group, one available avenue is to relax the assumption

of independence between the angular and radial components.

Let znd = 1/(1 − F̂ (xnd)) be the rank-transformation to the standard Pareto scale.

The lower range of this transformation is bounded at 1. For data transformed in this manner,

let rn = ∥zn∥∞ be the radial component, vn = zn/rn the angular component of zn, and yn its

projection onto SD−1
p . As no thresholding is performed we can no longer make the assumption

that angles are independent of radius. Instead, we can include the radius within a joint model.

As the radius is on the range [1,∞), we use the Pareto density, with shape parameter αr as our

choice of kernel.

(yn, cn, rn) ∼
∫
α

PGp(yn | αy,1) CDM(cn | αc) P(rn | αr) dG(α) (3.18)

As αr > 0, we augment the kernel parameters to α = (αy,αc, αr), and use a joint log-normal as

the center of the random measure prior for G. The scores developed previously in Section 3.4.3

remain applicable.

3.5 Results

As mentioned in 3.3, our goal is to produce novelty scores to rank observations ac-

cording to how likely they are of being anomalous. This creates another problem: threshold

selection—anomaly scores beyond what level are determined anomalous? We mentioned Clifton

et al. (2011) and Gu et al. (2021) as examples of computing thresholds theoretically, but in gen-

eral, thresholds are determined heuristically, using performance criteria. In some applications,

heuristic determination can be extremely costly.

One such criteria is the receiver operating characteristics, or ROC, curve. For a given

score threshold, one can compute the true positive rate, or TPR, as the number of anomalous
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observations with scores above the threshold, divided by the total number of anomalous obser-

vations. The false positive rate, or FPR, is similarly the number of non-anomalous observations

above the threshold, divided by the total number of non-anomalous observations. The ROC

curve is formed as the TPR is plotted on the vertical axis against the FPR on the horizontal

axis for a range of possible thresholds. The curve is non-decreasing, starting at the origin (0, 0),

and ending at unity (1, 1). Threshold selection might include specifying an acceptable FPR, and

determining the threshold that produces that FPR.

In assessing model performance, we sideline the issue of threshold selection by observing

the whole ROC curve. Specifically, we look for the area under the ROC curve, (AuROC). The

better a classifier is, the closer its ROC curve will approach the upper left corner, and the closer

its AuROC will approach 1.

In developing our model, we employ the blocked Gibbs sampler for stick-breaking priors

detailed in Ishwaran and James (2001b). We set a discount factor of 0.1, and a concentration

parameter of 1.0. In our testing, in the neighborhood around these values we found the resultant

number of extant clusters to be relatively stable. We use (µ0 = 0D,Σµ = ID) as prior parameters

for µ, and (ν = D+50,Ψ = νId) as prior parameters for Σ, except for the categorical components

of the shape vector as described in Section 3.4. Deviations in µ0 towards the negative direction

bias the model towards asymptotic independence, which in our testing resulted in lower model

fidelity. To update the cluster shape vectors, we employ a joint proposal step in log-space using

a multivariate normal proposal, where the proposal covariance is informed with an adaptive

Metropolis algorithm.(Haario et al., 2001). To hasten updates to the shape parameters, and

speed convergence of the model, we employ a parallel tempering algorithm where parallel MCMC

chains are sampled at an ascending temperature ladder, where density is exponentiated to the

reciprocal of the chain temperature t: ft(θ) = f(θ)1/t. Chains with higher temperatures have

flatter posteriors, and thus more readily move around the parameter space. Chain states are
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Table 3.1: Characteristics of datasets used in the analysis. For a given model, N and A refer to the number

of observations and anomalies in the fitting set, respectively. M identifies the number of categorical variables,

with Dv and Dc identifying the total number of real and categorical columns respectively. Note D = Dv +Dc.

For thresholding datasets, q is the threshold quantile such that bq,d = F̂−1
d (q). t is the time (in hours) to fit

the model. Discrepancy in D between peaks–over–threshold and rank–transformation reflects differences in data

transformation, as well as the additional column for the radial component in the rank–transformed model.

Raw Peaks over Threshold Rank/Cat Rank-Transform Categorical

name N A q N A Dv M Dc D t N A Dv M Dc D t M Dc t

annthyroid 3600 270 0.85 715 150 6 16 32 38 7.45 1200 105 6 16 31 38 4.88

cardio 1831 176 0.85 715 152 15 10 21 36 9.17 1831 176 19 3 7 27 5.34

cover 19070 194 0.98 5504 194 9 4 9 18 5.35 1907 20 9 4 9 19 4.31 10 30 5.02

mammography 11183 260 0.95 2390 227 5 5 11 16 5.59 1864 42 6 3 5 12 3.87

pima 768 268 0.90 205 106 7 6 12 19 1.10 768 268 8 5 10 19 1.99 8 28 1.93

solarflare 1389 12 10 32 3.87

yeast 1484 90 0.90 343 35 6 5 11 17 1.64 1484 90 6 2 5 12 3.09 8 23 2.79

randomly exchanged via a Metropolis step with probability pi,k = exp
{

(t−1
k − t−1

i )(Ek − Ei)
}

,

where E refers to the energy, or log-density of the chain at its current state. The sample history

of the cold chain, where t := 1, is preserved as draws from the posterior distribution. For each

example dataset, the sampler was ran for 50 000 iterations, discarding the first 40 000 as burn-in.

The resulting chain was thinned, keeping only every 10th iteration. For evaluating density under

the posterior predictive distribution, we generate 10 replicates from each iteration kept.

We compared our four proposed scores against three canonical novelty detection algo-

rithms, including isolation forest iso (Liu et al., 2008), local outlier factor lof (Breunig et al.,

2000), and one-class SVM svm (Chang and Lin, 2011). Each dataset was subject to 5-fold

cross-validation, and out-of-sample performance scores were averaged to produce the resulting

performance tables seen in this section. This additional step of cross–validation turned out

to be unnecessary for our model, as out–of–sample performance did not markedly differ from
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Table 3.2: Area under the ROC curve for various anomaly detection schemes, on strictly categorical datasets.

Reported here is arithmetic mean of out-of-sample performance for 5-fold cross-validation. Values closer to 1 are

preferred.

dataset iso lof svm hknn hkde lhkde lskde

cover 0.384 0.515 0.424 0.586 0.523 0.558 0.450

pima 0.620 0.570 0.614 0.457 0.579 0.659 0.694

solarflare 0.893 0.402 0.887 0.435 0.632 0.768 0.875

yeast 0.620 0.580 0.622 0.406 0.708 0.650 0.702

in–sample or full–sample performance for the tested datasets. Table 3.1 provides a summary

description of the datasets used in the analysis. For larger datasets, we subsetted the raw data

to reduce computation time for the rank–transformation and categorical applications. Note

that the categorical versions of cover, pima, and yeast are created from discretizing the rank–

transformation subsets. First, we present score efficacy on our purely categorical data model,

then mixed scoring with thresholding on continuous variables. Finally we present mixed scoring

on rank-transformation data.

3.5.1 Categorical anomalies

The categorical transformation of cover, pima, and yeast discretized the real-valued

and ordinal variables in those datasets. For cover in particular, it seems this transformation

lost a significant amount of data. From Table 3.1, it seems a large portion of data regarding

anomalies is contained within the radial component, so a categorical transformation loses that

information. Likely for this reason, none of the methods offer exceptional performance on this

dataset. The dataset solarflare was also unique in our analysis, being the only truly categorical
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dataset used. Our algorithm lskde very slightly trailed the performance of one-class SVM,

the best performing algorithm on this dataset. On both pima and yeast, latent-simplex KDE

performed significantly better than any of the canonical methods. On this analysis, hkde and

hknn both performed poorly. It seems the projection of the categorical probability vectors into

a unified sphere induces some loss of information.

3.5.2 Peaks-over-Threshold anomalies

We subjected six datasets to multivariate thresholding on their numerical variables,

only keeping observations that exceeded the threshold in at least one dimension. Table 3.1

indicates what quantile was used for the threshold, as well as the number of anomalies in excess

of the threshold. For cover, we further sub-sampled the excesses to produce a more manageably

sized dataset. For variables that did not exhibit properties that would allow for a peak-over-

threshold model to apply, these variables were instead converted to discrete values with two

or three categories. We built the mixed data model, and evaluated performance of the mixed

scores, compared against the canonical methods. Of particular interest here is the annthyroid

dataset, for which all of our scores performed comparably, and significantly better than the

canonical scores. Of the other tested datasets, on cardio, lmkde approached the performance of

isolation forest and one-class SVM, but all other methods performed worse. For the datasets

cover and mammography, hknn, lhkde, and lmkde performed comparably, and each significantly

better than any of the canonical methods. We see that lmkde, being the inheritor of the latent

simplex KDE score, performs reasonably well reliably among datasets thus far in the peaks-over-

threshold setting, but is outperformed by other metrics on each dataset. We may see some effect

of the loss of information relating to the dependence structure between w and v on the derived

performance. On that note, lhkde performed comparably to lmkde on annthyroid, cover, pima,

and yeast, but slightly exceeded its performance on mammography. We saw in the categorical
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Table 3.3: Area under the ROC curve for various anomaly detection schemes, on mixed data where the real

component has undergone the threshold standard Pareto transformation. Reported here is arithmetic mean of

out-of-sample performance for 5-fold cross-validation. Values closer to 1 are preferred.

dataset iso lof svm hknn hkde lhkde lmkde

annthyroid 0.458 0.512 0.640 0.691 0.692 0.698 0.689

cardio 0.849 0.610 0.836 0.590 0.812 0.804 0.823

cover 0.606 0.512 0.684 0.832 0.698 0.719 0.714

mammography 0.594 0.616 0.725 0.675 0.750 0.757 0.725

pima 0.530 0.565 0.511 0.525 0.525 0.524 0.522

yeast 0.427 0.579 0.560 0.639 0.522 0.540 0.542

datasets, lskde performed generally well, so the projection onto a unified sphere may induce

loss of information. In that regard, it may be the case that preserving information about the

dependence structure between v and w had a greater effect than a greater effect than preserving

information within w specifically.

As to the poor performance of every method on pima and yeast, these reported AuROC

values are conditional on the data exceeding the multivariate threshold used in building the

model. As we see in Table 3.1, these datasets do not meet the assumption that anomalies are

concentrated in the tails. Scores depending on rn, the radius component of zn, or magnitude of

the extremal observation, are going to perform poorly relative to metrics that do not make that

assumption.

3.5.3 Rank Transformation anomalies

We subjected the same six datasets used in the peak-over-threshold model to rank

transformation on the real and ordinal variables. We then built the mixed model including
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radius described in Section 3.4.4 on the transformed datasets. Large datasets used in rank-

transformation and categorical models were sub-sampled to reduce computation time. Note

that rank transformation preserves the entire dataset, so we should not consider the values in

Table 3.4 to be comparable to the values in Table 3.3.

Table 3.4: Area under the ROC curve for various anomaly detection schemes, on mixed data where the real

component has undergone the rank standard Pareto transformation. Reported here is arithmetic mean of out-

of-sample performance for 5-fold cross-validation. Values closer to 1 are preferred.

dataset iso lof svm hknn hkde lhkde lmkde

annthyroid 0.519 0.561 0.796 0.714 0.817 0.823 0.822

cardio 0.887 0.588 0.634 0.648 0.847 0.848 0.883

cover 0.898 0.680 0.931 0.833 0.960 0.960 0.960

mammography 0.896 0.806 0.940 0.700 0.928 0.930 0.845

pima 0.679 0.653 0.712 0.654 0.712 0.707 0.714

yeast 0.675 0.527 0.632 0.566 0.601 0.593 0.599

Here lmkde performs better than each of the canonical methods in four of six datasets,

performing slightly worse than one-class SVM on mammography, and significantly worse than

isolation forest on yeast. As we have stated before, yeast and pima are datasets that do not

quite meet our assumptions as to how anomalies are distributed, but our methods still make a

strong showing on pima.

3.6 Conclusion

In this chapter, we have proposed a method of scoring observations as anomalous based

on their posterior-predictive angular density, using the result from multivariate extreme value
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theory that—assuming the existence of a limiting behavior—given observations are in excess

of a high threshold, after transformation their angular distribution on SD−1
∞ is independent of

the radial distribution on R+. In the anomaly detection setting, this independence allows us to

separate anomaly scores into an angular and radial component, and treat them separately. To

define an angular anomaly score, a Bayesian non-parametric model is developed on the angular

data projected onto SD−1
p , and as a true density on SD−1

∞ is not available, anomaly scores are

obtained using a non-parametric estimator to that angular density built on a sample from the

posterior predictive distribution of the fitted model. The non-parametric estimators we used

were k-nearest neighbors, and kernel density estimation.

We then expanded the model to handle categorical data, recognizing that in the real

world data does not always fit our assumption of the existence of a limiting behavior. We did

this by developing a Bayesian non-parametric categorical data model that provides a general

approach for the exploration of the distribution of multivariate data. This was then tied in

with the previously defined angular model, providing an approach to mixed data modeling. We

explored various methods of defining an anomaly score based on the categorical data, analogous

to the scores considered for the angular data making use of of latent class probability vectors. We

applied the categorical scores to four datasets, three of which were transformed to be categorical

from mixed data. In this analysis, we observed that lskde performed reliably well.

In addition, the analysis of six datasets performed with the mixed model indicated that

lmkde performed reliably well, better than canonical methods most of the time, but was itself

outperformed in some cases by other methods that project the latent probability vector along

with the angular vector into a unified space. Finally, as the data thresholding process may not

always be applicable, we applied the mixed model to data with its angular component trans-

formed via the standard Pareto rank ordering transformation. In this setting, we observed that

the latent models—lmkde and lskde—performed reliably well, as well or better than canonical
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methods in five of six tested cases.

In this chapter, we have presented a highly flexible model–based method for anomaly

detection that scales to moderately large dimensions and sample sizes. However, as seen in

Table 3.1, even for the dimensions and sample sizes presented, model fitting can take several

hours. Scaling this model beyond some thousands of observations or tens of columns will require

a paradigm shift in how the model is fit. For this reason, we are investigating faster means of

model fitting, including a variational approach.
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Chapter 4

Analysis of Extremal Dependence of

Storm Surge using a PoT Model

4.1 Introduction

Storm surge, measured as water height above ground level, can produce flooding as

a result of a storm pushing sea-water onto land. Its effects can be catastrophic, potentially

disrupting critical infrastructure such as emergency services, logistical services, and military

responsiveness. The Sea, Lake, and Overland Surges from Hurricanes (SLOSH)(Jelesnianski,

1992) is a computer model developed by the National Weather Service to simulate storm surge,

and its associated inundation caused by hurricanes. Given storm characteristics, the model

takes into account local topology, bathymetry, and surge management devices such as levees,

to generate a spatial field of inundation—the maximum observed height of water above ground

level (or above normal water level for a data point in a body of water) over the duration of

the storm at a location. Storm characteristics are data pertaining to the eye of the storm

when it made landfall—bearing, velocity, latitude, minimum atmospheric pressure of the storm,
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Figure 4.1: (Left) Grid output from one storm simulation in SLOSH, with values truncated at 9 feet. The bars

(red) indicate the lower and upper limits on the location of the hurricane eye at landfall. The arrow indicates

the direction of travel, and at the vertex, the location of the hurricane eye at landfall for this realization of the

SLOSH output grid. (Right) Marginal 90th percentiles of simulated storm-surge at selected locations within the

grid.

and projections of sea level rise over time. The example that motivates this work corresponds

to a simulation from SLOSH, covering an area extending from Virginia Beach, Virginia, to

Long Island, New York. The simulation output describes the surge over a grid containing some

23 119 800 elements, with a spatial resolution of 0.001 degrees, or approximately 90 meters. We

have 4000 such simulations, produced from a sample of storm characteristics.

Storm parameter inputs for the SLOSH model were sampled via Latin hypercube—a

space-filling technique—that attempts to evenly cover the sample space without an imposed

grid. Samples thus appear marginally uniform, and lack any observable covariance structure.

Figure 4.1 provides a visual depiction of the SLOSH simulation output. On the left, we have the

resulting maximum storm surge of a single simulated storm using the SLOSH model. Observe

there is data extending from Virginia, near the Chesapeake Bay inlet, to the Eastward tip of
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Long Island, New York. In this plot, the observed surge was truncated to 9 feet. There were 45

cells in excess of this, up to 19 feet. Such phenomena are highly localized, and not visible at this

scale. We also mention that cell values for a single simulation are not reported simultaneously.

Each cell reports its maximum simulated value over the course of the storm. The bars bracketing

Delaware Bay indicate the limits of the location of the simulated hurricane eyes when they make

landfall, indicating all simulated storms approach the entrance of Delaware Bay. The arrow

indicates the bearing, or direction, and location, of the hurricane eye at landfall associated with

this particular realization of the storm surge grid. These values range from 200 to 380 degrees;

a full 180 degrees, from South-Southwest, to North-Northeast. On the right, we have selected

SLOSH grid cells that are in the vicinity of physical features, or locations, of interest, and

corresponding 90th percentile of storm surge at each location.

This chapter presents a model for SLOSH simulations under an extreme value theory

(EVT) framework, using a peaks-over-threshold model. We seek the joint probability that two or

more locations will exhibit extreme behavior. This provides key information in the management

of critical infrastructure. We stress here a caveat: EVT assumes that the originating data are

independent and identically distributed. SLOSH simulations do not strictly meet this second

criterion. They arise as the result of a partially stochastic simulation given a set of input

parameters—the storm characteristics. That being said, application of the EVT framework to

SLOSH still provides us with a great deal of information. It is with that caveat that we continue

the analysis.

The chapter proceeds as follows: Section 4.2 details the theoretical background for

the relevant modeling methods and dataset we will be using in this analysis. In particular

Section 4.2.1 provides a brief review of variational inference which we attempt to use to speed

analysis, and Section 4.2.3 further expands the discussion of SLOSH, along with detailing how

the analysis will proceed. Section 4.3 expounds on our methods of posterior analysis, including a
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discussion on conditional survival probability and posterior clustering. Further, Section 4.3.2 in-

troduces a novel regression model with support SD−1
p , the positive orthant of the D-dimensional

p-norm unit sphere. Section 4.4 presents the results of our analysis, first evaluating the efficacy

of variational methods on simulated data as compared to MCMC, then applying our methods

to the SLOSH simulation data. Finally, Section 4.5 concludes.

4.2 Review and Background

Let ynd be the storm surge at location d during storm n, after thresholding, transfor-

mation, and projection onto SD−1
p . Then, the model can be specified as

yn | αn ∼ PGp (Y | αn,1)

αn ∼ G

G ∼ PY (η, ω,G0)

G0 =
∏D

d=1Ga(αd | ξd, τd)

ξd ∼ G(ξ | a, b)

τd ∼ G(τ | c, d)

(4.1)

where η and ω are respectively the concentration and discount parameters of the Pitman–Yor

process. Fitting this model can be accomplished via Markov-chain Monte Carlo methods. For

this purpose, we introduce a latent cluster assignment variable γn, sampled as

Pr [γn = ȷ | y,α,π] =
πȷPG(yn | αȷ,1)∑J

k=1 πkPG(yn | αȷ,1)
(4.2)

with π as described in in Equation (3.2), and the full conditional of ρȷ is

ρȷ | γ ∼ B
(
ζρȷ1 = 1 + Cȷ − ω, ζρȷ2 =

∑
k>ȷCk + η + ȷω

)
, (4.3)

where Cȷ =
∑N

n=1 1γn=ȷ. We can further introduce a latent variable

rn | y, γn,α ∼ Ga

(
r |

D∑
d=1

αγnd,

D∑
d=1

ynd

)
such that conditional on r, the likelihood of αȷ becomes separable by dimension. Posterior

updates for α, and ξ can be accomplished via Metropolis-within-Gibbs steps, and the full

conditional of τd is a gamma distribution.
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Such a fitting scheme can work well for a moderately sized inference problem. In

Trubey and Sansó (2024), they report requiring approximately 20 minutes to run the sampler

for 40 000 iterations, on a problem with 532 observations × 47 sites. If we want to conduct

MCMC inference for more sites, and more observations, the sampler may need more iterations

to reach convergence; each iteration will require more CPU time, and the sampler will have

an increasing memory footprint. Thus, we consider, as an alternative, a variational inference

approach.

4.2.1 Variational Inference - A Brief Overview

Variational inference, or variational Bayesian statistics, is an alternative method of

model-fitting that proposes, if the target distribution is analytically intractable, to fit a tractable

candidate distribution as close to the target distribution as possible (Blei et al., 2017). That

is, for data x and some distributional parameter set θ, where f(θ | x) is not available in closed

form, we select q(θ) from a family of tractable distributions Q. Variational inference selects the

optimal variational distribution q∗ by minimizing the KL divergence. Thus,

q∗(θ) = arg min
q∈Q

{
KL (q(θ)||f(θ | x)) := Eq

[
log

(
q(θ)

f(θ | x)

)]}
. (4.4)

There are myriad flavors of variational approaches, differentiating by the type and degree of

structure, or dependence, they allow between the parameters in the variational distribution, or

in the specific method they use to fit the variational distribution. Of particular note here is mean

field variational Bayes, which is based on an assumption of independence between parameters.

That is,

qθ =
∏
ℓ∈L

qθℓ(θℓ | ψℓ)

where ℓ = 1, . . . , L is indexing over distributional parameters of f(·). If we hold each qθℓ to

be an appropriate transformation of a normal distribution, then each qθℓ can be specified by a
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mean and variance parameter.

Through analytic manipulation we can separate the KL divergence into two quantities:

the evidence, log f(x), and the negative of the evidence lower bound, or ELBO,

L(θ) = Eq [log f(x,θ) − log q(θ)] = Eq[log f(x,θ)] −H, (4.5)

where H denotes the entropy of q. As the evidence is constant with respect to q, minimizing

the KL divergence is equivalent to maximizing the ELBO, so restating Equation (4.4), we get

q∗(θ) = arg max
q∈Q

L(θ). (4.6)

For a given family Q, finding the optimal q∗ means finding the optimal parameter set ψ∗ such

that q∗(θ) = q(θ | ψ∗). For continuous parameters, optimization of the ELBO with respect to

ψ can be accomplished by analytically computing the gradient,

∆ψ =
∂

∂ψℓ
{Eq [log f(y | θ)] −H(ψ)} for ℓ = 1, . . . , L, (4.7)

then iteratively moving towards the optimal point, where ∆ψ = 0. As the above expectation is

not available in closed form for our model, we make implicit use of the reparametrization gradient

(Kingma and Welling, 2022), that takes samples of θ as a function of ψ and an independent R.V.

ϵ. This allows us to move the differentiation inside the expectation, and take the expectation

numerically. To do the optimization, we use the well-regarded Adam optimizer (Kingma and

Ba, 2017), a combination of ADAGRAD (Duchi et al., 2011) and RMSProp (Tieleman, 2012).

Adam is stated to be well-suited to noisy and high-dimensional problems, and this problem

likely fits the criteria. That said, a path-based optimization approach will be dependent upon

the starting position, and if multiple local optima exist, there is no guarantee of reaching the

global optimum value. In our analysis, results are highly dependent upon starting position,

both in terms of model fidelity, and the resulting number of extant mixture components. One

solution would be to consider a better starting position for the optimizer.
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As we are considering a mixture model, there is potentially a label switching issue. If

the initializing distribution of mixture component parameters provides decent coverage of the

optimal distribution of mixture parameters, then the most important part of the initialization

is the distribution of mixture weights, πȷ. Here we consider three strategies. First is random

initialization, (VB Random). Second is uniform initialization—initializing the variational pa-

rameters such that, after transformation via stick-breaking, the expected probability of cluster

assignment is uniform among all clusters up to the truncation point. That is, for truncation

point J ,

E[ρ] =

(
1

J
,

1

J − 1
, . . . ,

1

3
,

1

2

)
leading to E[πȷ] = 1

J for all ȷ = 1, . . . , J . Finally, we consider pregaming the variational algorithm

by setting the starting position via an abridged MCMC sampler, which we describe thusly:

Sampling an initial position αȷ ∼ LN (α | µ = 0s,Σ = 3Is) and an initial random cluster

assignment, we iteratively update ρȷ for ȷ = 1, . . . , J according to Equation 4.3, γn for n =

1, . . . , N according to Equation 4.2, and µ via a normal-normal Bayesian update routine. Every

iteration, new αȷ for empty clusters are resampled from LN (α | µ, 3Is). This abridged sampler

runs for some small number of iterations; in our testing we used 1000 iterations. Then we set

the starting position for the variational algorithm using the last state of the abridged MCMC

sampler as follows:

qαȷd
= LN

(
ψαȷdµ

:= log(αȷd) − 0.005, ψαȷdσ := 0.1
)

qρȷ = LogitN
(
ψρȷµ := ψ(ζρȷ1) − ψ(ζρȷ2), ψρȷσ2 := ψ′(ζρȷ1) + ψ′(ζρȷ2)

)
,

(4.8)

where ψ(·) and ψ′(·) are the digamma and trigamma functions respectively. The distributional

values for qαȷd
are assigned via method of moments, where the standard deviation has been fixed

to 0.1. The distributional values for qρȷ
have been assigned following Aitchison and Shen (1980)

as the best approximation of a logit-normal to a beta distribution as measured by minimum KL
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Figure 4.2: Rise in energy score over baseline by number of dimensions, on simulated data for various model

fitting strategies. Faceting denotes the number of mixture components in the generating distribution.

divergence. There is a computational burden associated with establishing at least an abridged

MCMC sampler, but given the limited number of iterations, and lower number of parameters

being learned, that burden is relatively low compared to the full MCMC approach. This ap-

proach does have the twin benefits of moving the variational optimizer into a potentially better

optima, and reaching convergence faster.

To validate the variational model, and investigate the effects of different classes of

starting positions, we conduct a simulation study to evaluate various approaches for the BNP

mixture of projected gammas model. The datasets are simulated from a finite mixture of pro-

jected gammas, at varying levels of dimensionality and number of mixture components. For

each number of mixture components and dimensionality, 10 sets of parameters are generated,

and then for each parameter set, a training dataset and testing dataset, each of 1000 replicates,

are generated.

As the metric for our evaluation, we use the energy score criterion (Gneiting and

Raftery, 2007) which is a generalization of the continuous ranked probability score to a multi-

variate setting. The energy score takes the form

SES(P,x) = Ep [g(X,x)] − 1

2
Ep [g(X,X ′)]

where g is a kernel function, x is an observed value, andX,X ′ are posterior predictive replicates

of x. When the energy score is used with an appropriate negative definite kernel metric, it forms
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a proper scoring rule. The specific negative definite kernel we use is described in Prop. 3 of

Chapter 2, and leverages the fact that all faces of SD−1
∞ are pairwise adjacent. By rotating the

face of the second point into the same hyperplane as that of the first, the kernel metric becomes

the Euclidean distance between the first point, and the rotated second point.

Figure 4.2 displays the results of our simulation, using the rise in energy score cal-

culated from a posterior predictive sample from the fitted model against the target sample,

over a baseline energy score calculated using another random sample from the same generating

distribution. Thus, small values indicate high fidelity of the model in capturing the generating

distribution. We investigate this recovery under a variety of conditions increasing the number of

dimensions, as well as the number of mixture components in the generating distribution. With

this simulation study, we see that a pure MCMC approach achieves the best model fidelity, but

VB Pregamed, using the abridged MCMC sampler to set a starting position for the variational

algorithm, achieves a model fidelity that is very nearly indistinguishable from that of the MCMC

model, while running significantly faster. Note that, as the dimensionality of the problem grows,

energy scores become less able to assess model fidelity, as the distance between each observation

or replication will approach a constant value (Bishop and Nasrabadi, 2006).

4.2.2 The Multi-site Return Period and Conditional Survival Proba-

bility

Statistical inference of extreme values tends to focus on the return period as a deliv-

erable metric. In a univariate case, this is easy to define: for event z, the return period is the

average time it would take to observe a new event Z as extreme or more extreme than z. That

is,

T (z) =
µ

1 − Fz(z)
=

µ

Sz(z)
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where µ is the average inter-arrival time in a series of events, and S(·) the survival function. Con-

ceptual problems begin to arise in interpretation when we consider a multivariate F . Salvadori

and De Michele (2010) considers a strict interpretation of the return period in a multivariate

setting, defining the return period in terms of a copula—a redefinition of the joint CDF, as

a distribution over marginal uniform densities, with the marginal CDF’s for each site taking

the place of the marginal uniforms. We say strict interpretation in interpretation of the CDF:

F (z) = P (∩s∈SZs ≤ zs), though it considers later a more general critical region. Salvadori

et al. (2013) inverts this, defining the return period in terms of the joint survival function,

T (z) = µ
S(z) , where S(z) = P

(⋂
s∈S Zs > zs

)
. We observe that there exists a vast difference

in interpretation between these two extremes. In generating a meaningful deliverable metric of

a return period, for a given event at how many sites must the threshold be breached for us to

interpret the event as over-topping the threshold? For a CDF based metric, one; for a survival

function based metric, all. But as the number of locations under consideration increases, the

value of such a metric decreases, as the probability of the specified scenario approaches one or

zero respectively. Cho et al. (2023) sidesteps this issue of interpretation by estimating univari-

ate return periods for each indexed location within a spatial field, along with low-dimensional

multivariate extreme analysis on different summary statistics, assessed over the aggregate spa-

tial field: flood volume, peak discharge, total rainfall depth, and maximum wind speed. Gräler

et al. (2013) also follows the latter approach, establishing a multivariate return period using a

copula over three dimensions of summary statistics. Salvadori and De Michele (2010) follows

an approach closer to ours, in that they consider the dependence structure of extreme values of

the same statistic between different points in space. They consider yearly maximum observed

flow rates between 4 of the 17 available flow meters on the catchment of the river Spey, in

Scotland. Beyond the conceptual issue of interpreting a multivariate F , there arises a practical

issue in presenting complete results of a higher dimensional process. It is for these reasons that
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in practice, as a deliverable metric, the notion of a return period is frequently tailored to the

application in question. In this chapter, we tailor the survival function thresholds to describe

specific scenarios.

4.2.3 Extreme value analysis of SLOSH output

As the motivating example for our analysis of the extremal dependence structure, we

use the aforementioned SLOSH, which simulates the storm surge resulting from hurricanes over

a wide grid. Our interest is specifically in describing and exploiting the dependence structure

of extremes between specific locations. As such, rather than the entire grid, it makes sense to

consider data pertaining specifically to those locations. Thus, we subset the data to grid cells

which are in the vicinity of such locations of interest. We gather these locations from the point

and landmark file of the US Census Bureau’s 2023 TIGER database (U.S. Census Bureau, 2023).

We define vicinity as the nearest grid cell within 70 meters of a location—this value stemming

from the grid existing on an approximately 110 meter resolution, a 70 meter radius ensures

no gaps in coverage. Additionally, we select grid cells that have experienced at at least some

inundation in q proportion of storm simulations. That is, such that bq,d = F̂−1
d (q) > 0, for all

d of interest. This restriction arises as a consequence of fitting the parameters for the marginal

generalized Pareto distributions on threshold excesses. The quality of MLE estimation of the

other marginal GP parameters will suffer if the threshold is not well chosen, so to ensure that

excesses follow a generalized Pareto, we limit analysis to cells that meet this criteria. Here we

suffer another trade-off, the implications of which are explored in Figure 4.3. Setting a higher

quantile threshold allows more sites to be included in the analysis, but in turn reduces the

number of storm simulations which exceed the threshold, which in turn reduces the amount of

information available by which we can estimate the dependence structure. Using a quantile of

0.90, the resulting number of cells, and number of storm simulations exceeding the threshold
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per slice are summarized in Table 4.1.
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Figure 4.3: Trade-offs in threshold specification: (Left) Proportion of sites with threshold bqs > 0 versus (1− q);

(Right) Proportion of storms surviving thresholding, Pr [Wn ̸< bq ] versus (1− q).

Dataset Sites Storms P(w ̸≤ bq)

Threshold 4414 1744 0.436

Delaware 950 1253 0.313

Restricted 65 1092 0.273

Critical 12 810 0.202

Table 4.1: Slices of SLOSH for analysis. Storms specifies the number of storms that survive thresholding, of the

total 4000 storms in the sample. The probability gives that value numerically. Sites identifies the number of

locations included in the slice. Each subsequent slice is a subset of the preceding slice.

The validity of the proposed PoT model depends on asymptotic results that consider

observations above a very large threshold. To define a threshold for each location in the sim-

ulation output we take the 90th percentile of the observations per location. The resulting

thresholded sample corresponds to the Threshold slice. Additional reduction of the sample is

produced by considering the bounds of the storm approach angles, one of the SLOSH inputs. In

Figure 4.1, we see the boundaries of the storm approach vectors, which we see is quite restricted

in comparison to the the extent of the surge simulations. This limit in latitudes at landfall
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in turn somewhat limits the relevance of the storm surge simulation data to the region where

hurricanes making landfall within the bounds of our data would have the greatest effect. We

are thus limited to Delaware Bay and the surrounding area. This corresponds to the Delaware

Bay slice. Further refinement of the sample is performed by focusing on locations of particular

interest, identified through the use the feature class codes that correspond to different location

types of interest. These form the Restricted slice. Finally, we restrict the data to a few loca-

tions of critical interest, as well as a selection of locations around the bay to inform conditional

analysis. These form the Critical slice. The resulting sizes of the different slices of the original

simulation output considered in our analysis are reported in Table 4.1.

On the diagonal, Figure 4.4 shows the marginal histograms of SLOSH input parameters,

for storms which exhibited extreme behavior in the Threshold slice. The off-diagonals are scatter-

plots of the storm parameters, which reveal pairwise relationships that contribute to a particular

storm exceeding the threshold. Recall that storm parameters in the original simulation were

sampled via Latin hypercube, so would appear uniform, with no discernible pattern in the

pairwise scatter-plots. The difference between apparently independent uniform, and the observed

densities provides some indication of what characteristics are necessary for a storm to exceed

the threshold. Imprimis, for sea level rise it is readily apparent that a higher sea level will make

it easier for a storm to inundate larger swaths of land, and to a greater degree. So we expect

and, in fact, see a higher proportion of storms exceeding the threshold, for a higher sea level

rise. Similarly, a lower minimum pressure in the storm’s eye corresponds to a more powerful

storm. This bears out, as a lower minimum pressure has a higher probability of exceeding the

threshold. The relationship to approach speed is interesting in that it is nearly linear. Perhaps,

the mechanism there lies in that a higher approach speed indicates more power behind the

storm. The spike in approach angle past 360 degrees is interesting as well, especially considering

the lull in approach angle between 270 and 350 degrees. 360 degrees indicates due North, thus
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Figure 4.4: (Off-diagonal) Pairwise contour plots of SLOSH simulation inputs that survived thresholding in the

Threshold slice. Sea level rise in mm, approach angle in degrees (360 is North), approach speed in kmh−1,

minimum pressure in mbar, latitude in decimal degrees. (Diagonal) Marginal histograms of same.

approach angles beyond 360 degrees indicate the storm is heading slightly northeast. As these

approaches are on the eastern seaboard, this means a shallower approach angle relative to the

land—perhaps offering a given storm more time to inundate larger swaths of land. The apparent

lack of interaction between approach angle and latitude is most interesting.
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4.3 Methodology

Following the example of Trubey and Sansó (2024), we can use the dependence struc-

ture we infer by fitting the model in Equation (4.1). Then, conditional on the fitted model,

there are various inferences we can make. One of the more compelling applications of modeling

the dependence structure between locations in storm surge lies in the reality that a storm surge

occurs over a period of time, and the maximum observed values in storm surge at different sites

occur asynchronously. A decision maker, interested in the storm surge at a smaller group of

locations, can observe storm surge at other locations, and make inference as to the probability

of catastrophic flooding at their locations to make an informed decision. Equation (4.9), from

Proposition 2 of Trubey and Sansó (2024) offers us a practical means by which this can be

accomplished.

Pr

⋂
d∈α

Zd ≥ zd

∣∣∣∣∣∣
⋂
d ̸∈α

Zd ≥ zd

 =
E
[∧D

d=1 1 ∧ Vd

zd

]
E
[∧

d ̸∈α 1 ∧ Vd

zd

] (4.9)

Letting Set α be a group of locations of interest, we obtain the probability of entering a failure

region, conditional on the current state of the inundation field. Say, given current storm flooding

near the mouth of the Delaware Bay, will the Philadelphia International Airport, situated on the

Delaware river, experience catastrophic flooding? If one can describe the dependence structure of

extremes in inundation analytically or via samples, Equation (4.9) offers a practical, actionable

metric.

One point of concern: the framework and tools of multivariate EVT do not allow for the

concept of negative dependence. In fact, a peaks-over-threshold approach using the projected

gamma to model the dependence structure can not encompass even complete independence: the

closest we can represent is weak positive dependence. As such, it is difficult to accurately model

phenomena that exhibit mutually exclusive extreme behavior.
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4.3.1 Posterior clustering of storms

One potential application leveraging the use of a Bayesian non-parametric prior is ex-

ploiting the clustering of observations with similar characteristics. Recall that δn is the cluster

identifier for observation n. Within the MCMC approach considered in this work, δn is explicitly

sampled using its full conditional in Equation (4.2). Given samples of α, π, from their posterior

density, δn can be explicitly generated using the same its full conditional. This approach makes

no assumption with regard to the stability of cluster labelling. This can present a problem,

as interpretation of clusters requires effective labelling—a fixed assignment of observations to

clusters—to avoid label switching. A label-switch between clusters a and b occurs when the

parameters of clusters a and b swap, causing the bulk of observations formerly in cluster a to

be classified in cluster b, and vice-versa. This issue is not present in a variational implemen-

tation, as, once the variational distribution is obtained, the distributions of cluster parameters

are fixed. In our example, we find that the label switching concern may be overstated. In the

MCMC approach, after the sampler reaches convergence, we find the posterior distribution of

cluster assignments and resulting cluster parameters to be relatively stable. Thus, a means of

estimating the cluster label of a given observation that is consistent between MCMC and varia-

tional approaches is to take samples of π, and α, and then sample δn following Equation (4.2).

Using this approach, we group observations by their sampled cluster identifier, and count the

number of emergent clusters in the data.

4.3.2 Regression on the unit sphere

To consider storm-relevant information in the estimation of the probability of a signifi-

cant storm surge event, we develop a novel regression model for angular data in SD−1
p . Consider

yn ∼ PG(y | g(xT
nθ),1)
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where g(·) is a link function that maps R → R+ to maintain the viability of inputs for the

underlying gamma density. For our purpose, we use the softplus function, g(x) = log[1+exp(x)].

This asymptotically approaches identity for x > 0, and 0 for x < 0. The major reason for this

choice over the more commonly used exp(·) is numerical: for softplus, small deviations in inputs

produce small deviations in outputs. Some discussion is necessary here as to the dimensionality

of xn and θ. Consider a vector xn of dimension L, where we might expect each element of xn

to contribute to each dimension s of yi. We call a model fully specified if, for each dimension

d, we have a vector θnd, with the same dimensionality as x. With some abuse of notation, the

fully specified model can be written as

yn ∼
∫ ∞

0

D∏
d=1

G
(
rnynd | g(xT

nθnd), 1
)
× J(yi)r

D−1dr

where J(yn) is the rest of the Jacobian of the projection. Or more succinctly,

yn ∼ PG
(
yn | g((xn ⊗ ID)Tθ),1

)
where ⊗ denotes the Kronecker product. To fully realize the flexibility of this model, we feature

it as the kernel density of a Bayesian non-parametric mixture.

yn ∼ PG
(
y | g

(
(xn ⊗ ID)Tθn

)
,1
)

θn ∼ G

G ∼ PY(G | η, ω,G0)

G0 = N (θ | µ,Σ)

Σ ∼ IW(Σ | ν, ψ)

µ | Σ ∼ N (µ | 0,Σ/κ)

(4.10)

Note the cardinality of θ under the fully specified model is L×D. For practical considerations,

this is likely overspecified in application; we consider it here to test for model recovery. In

Figure 4.5, we conduct this this simulation example, with two input dimensions, 3 output

dimensions, and thus θ has a cardinality of 2 × 3 = 6. For each cluster of inputs, we generate

an associated θȷ, and project yn = g
(
(xn ⊗ ID)Tθȷ

)
+ ϵn where ϵnd is a small jitter term onto

S210. The center plot re-projects that onto S21 for display. In the right plot, we have the posterior
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Figure 4.5: Model recovery under a fully specified model, colored by cluster. Left is the regressors, X. Center

is g(xT
nθȷ + ϵn) projected onto S21. Right is a sample of the posterior predictive distribution using the same

regressors, colored by their emergent cluster identity.

predictive distribution of y∗
n | xn. We see that we can reasonably recover the original clusters.

In truth, we’ve given it a hard task, as for the fully specified model and the separated nature of

the inputs might mean that a single θ vector might reasonably cover 2 or more clusters. In the

simulation, we find 3 emergent clusters, with stable posterior cluster assignment that matches

that of the input data.

The fully specified model is extremely inefficient. As D increases, the dimensionality of

θ increases linearly, which renders it inappropriate for modelling the SLOSH data. However, we

can consider other transformations of the data to keep the dimensionality of θ at an appropriate

level. In the SLOSH data, let xnd, the covariates associated with observation n at location

d, consist of xn,obs, the (scaled) parameters under which the nth storm is modelled, along

with xd,loc, information pertaining to the dth location including (scaled) latitude and longitude

along with elevation above sea level, and xnd,int, any interaction thereof. We include a single

interaction term describing the distance between the location of the storm eye at landfall, and

that of location d, in hectomiles. This results in a θ of dimension 5 + 3 + 1 = 9. Then we

may add an additional random effect by location, εd. Thus for analysis of the SLOSH data we
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update Equation (4.10) such that

yn ∼ PG
(
y | g(xT

nθn + ε),1
)

εd ∼ N (ε | 0, σ2
ε) (4.11)

where xn has been overloaded as discussed. We fit this model also under an MCMC framework.

4.4 Results

Slice Var Bayes Monte Carlo Reg w/o RE Reg w/ RE

Threshold 3 37

Delaware 4 30

Restricted 8 21 127 118

Critical 11 51 30 22

Table 4.2: Counts of emergent clusters identified in data slices via posterior sampling.

In Section 4.2.3 we described our criteria for narrowing the focus of our analysis,

and specifically in Table 4.1 we detailed the number of observations, and number of storm

simulations, for the resulting datasets at each stage of this narrowing process. In Table 4.2, we

detail the number of clusters that emerge in fitting our model to these datasets. In all cases,

for the Pitman-Yor process parameters, we used a concentration parameter η = 0.1, along with

a discount parameter also of 0.1. For any given model and dataset, the number of emergent

clusters found was relatively robust to our choice of parameters, for concentration within a

range from 0.01–20, and discount ω within a range 0.001–0.2. Higher values for both generally

resulted in slightly more emergent clusters, but did not change the total number by more than

10 percent. Here we encounter an issue: the model fitted via variational methods, and the model

fitted via MCMC methods, are nominally the same model, and should result in a similar number
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of emergent clusters. That there is such a discrepancy is likely a weakness of the variational

fitting process. In the variational Bayes fitting method, we see the number of extant clusters

fall significantly as the number of dimensions rises. This behavior is predicted by Chandra et al.

(2023), which argues that as dimensionality increases, a BNP mixture model will degenerate

to one of two possible states: every observation falling into a single cluster, or every cluster a

singleton. We do not quite see that happen yet in the MCMC approach, where we see the number

of extant clusters actually rise slightly between Delaware slice and the Threshold slice. However,

the dimensionality of the threshold slice is approximately 14.6 times that of the Delaware slice,

and the number of simulations which meet the criteria for inclusion in the Threshold slice is

approximately 1.4 times that of the Delaware slice. Taking into account the associated increase

in data complexity between the two slices, we should see significantly more clusters. That we

only see marginally more appears to indicate that the BNP mixture of projected gammas will

eventually degenerate towards a single cluster. Chandra et al. (2023) suggests an amelioration

of this behavior: to instead base the BNP process on a lower-dimensional representation of the

output space—suggesting a factor analysis. The regression model we have developed works in

a similar manner, representing an D-dimensional space using a L-dimensional vector. In the

regression models, we see the opposite problem occurring: there are too many clusters. The

Pitman-Yor process is accounting for the lack of information in X, the regressors, by producing

more clusters. We see evidence to this interpretation by the addition of the random effects. By

including random effects in the model specification, more information is contained within the

regressors, and thus a single cluster is able to represent slightly more varied outcomes. Thus,

the number of emergent clusters is marginally reduced.

Given the geographical focus inherent to the original data, we concentrate our primary

analysis on Delaware Bay. Figure 4.6 gives the locations of sites we identified, along with a clas-

sification of those sites. The original feature class codes in the TIGER location data were sorted
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Figure 4.6: Locations of identified sites in the Delaware (left), Restricted (center), and Critical (right) Slices.

Three locations of interest in further analysis have been specifically identified.

into five categories: “Land” includes prominent land features, as well as some road features;

“Locality” includes major road intersections, communities, or populated places; “Parks&Rec”

includes state and local parks, cemeteries, and places of worship; “Services” includes emergency

services: police, fire, and medical services, and “Transportation” includes airports, heliports,

ferry landings, and other major transportation infrastructure. We identify within the data

three locations which are of particular interest, for which significant inundation can can lead to

catastrophic consequences. Dover Air Force Base (Dover AFB) is a military installation on the

South shore of the Delaware Bay, with a direct line of approach from the ocean. Philadelphia

International Airport (PIA) is a major airport, situated on the bank of the Delaware River,

near Philadelphia. PIA is much further upstream relative to Dover AFB, and would require a

storm to backflow the Delaware River a significant amount to reach it. Packer Avenue Terminal

is a major shipping hub, connecting transport ships to truck and rail transport services. It is

situated only slightly further upstream than PIA, so we would expect outcomes for these two

locations to be strongly dependent. Inundation in any of these three locations could lead to
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significant negative consequences.

4.4.1 Assessing Model Fidelity

One difficulty with a high-dimensional model is evaluating its fidelity. As we saw

in the simulation study, the relative rise in energy score between a bad modeling approach

and a good modeling approach shrinks as data complexity increases. However, as we saw in

Table 4.2, MCMC and what appears to be a similarly good modeling approach yield very different

outcomes. This disconnect in assessment of model fidelity using energy score as a criterion is

related to the curse of dimensionality in applications like k-nearest neighbor algorithms: as the

number of dimensions increases, the ratio in average distance between the nearest replicate, and

farthest replicate in a sample will tend to approach unity. In this regard, distance, and metrics

based on distance will be fundamentally flawed in a high-dimensional setting.

As a partial amelioration of this issue, we can subjectively assess recovery of marginal

empirical CDF, by observing the marginal posterior predictive CDF for various locations under

our modeling approaches. Having sampled V ∗ from its posterior predictive density, we can get

a sample of W ∗
d by inverting Equation (2.1). Thus, for for R∗ ∼ Pareto(1), Z∗ = R∗V ∗,

W ∗
d = ad

(
(Z∗

d)ξd − 1

ξd

)
+ bd (4.12)

where ξ, a, and b were previously calculated. For consistency with regard to the originating

data, we truncate replicates from the posterior predictive distribution such that W ∗
d ≥ 0.

In Figure 4.7, we observe the marginal empirical and posterior predictive CDFs for

storm surge at Dover AFB, Philadelphia International Airport, and Packer Avenue Terminal.

With respect to Dover AFB, this location is adjacent to Delaware Bay, approximately 2 miles

inland of the bay shoreline, with a direct line of sight to the mouth of the bay and open ocean.

Take note in particular, that the empirical cdf of wd shows that the storm surge does not reach
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Figure 4.7: Empirical, and posterior predictive cumulative distribution functions for marginal vd, V
∗
d (top), and

wd, W
∗
d (bottom) at denoted locations, under various modeling considerations.

Dover AFB in approximately 44 percent of storms, post-thresholding. With respect to PIA,

the airport is situated along the banks of the Delaware River. Storm surge has much further to

travel to reach this point, yet it experiences inundation much more frequently, owing to the fact

it is only 4 feet above sea level, relative to the 9 feet for Dover AFB. Packer Avenue Terminal

is similarly situated along the Delaware River, further upstream than PIA, but it experiences

flooding significantly less than PIA.

Looking at equivalent marginal plots for all locations (including those not displayed),

nearly all preserve the same ordering, from top-left to bottom-right: first the Variational Bayes

fit of PYPG, then the Monte Carlo fit of the same model, then the regression models—though the

specific ordering of the regression models changes. The marginal empirical CDF for each location

tend to favor the regression models or the MCMC fit model. This means that the variational fit
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model tends to consistently under-predict, or predict lower values than is appropriate. This fact

permits us some insight to comment what effect granularity, or the number of extant clusters,

has in model fidelity. In Table 4.2, we saw counts of extant clusters for each model and fitting

approach. Variational methods found significantly fewer than MCMC, while the regression

models found significantly more. It is perhaps enlightening to realize that the largest single

cluster in the variational approaches for all datasets is a cluster with all shape parameters

tending towards 0. This parameter set results in an extremely unstable distribution, with its

mass concentrated near the edges of the support; specifically edges where only one component

is large. Replicates drawing an angular component from this cluster would tend to result in

smaller replicates of V ∗
d , perhaps explaining the under-prediction of the variational approach

overall. That the empirical CDF might favor the regression models should perhaps come as

little surprise; with the number of extant clusters large, individual variation is easier to account

for. However, in doing so, we are almost certainly over-fitting the model to the data.

4.4.2 Conditional Survival Curves

From Equation 4.9, we can obtain the conditional probability of exceeding a specified

threshold for some set of components, given that other dimensions exceed their specified thresh-

old. Using the Critical slice with a model fitted via MCMC, we use this equation to establish

conditional survival curves for three locations: Dover Air Force Base, Philadelphia International

Airport, and Packer Avenue Marine Terminal. In keeping with our goal of a practical actionable

metric, we consider three scenarios where we observe extreme behavior further out in the bay

than the positions of interest. In the Lower Bay scenario, we observe extreme behavior at sites

on the south side of the bay towards the entrance of the bay. That is, a scenario in which sites

1,2, and 7 (Beebe Hospital, Henlopen Memorial Park, and Smyrna Airport respectively) expe-

rienced storm surge at or above their respective 90th percentiles. In the Upper Bay scenario,
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Figure 4.8: Conditional Survival Curves (standardized) for labeled locations, under three scenarios where partic-

ular downstream locations have already experienced significant inundation. The top row is scaled in standardized

units, while the bottom row is in real units (feet).

we observe extreme behavior at sites 6, and 8 (Bay Island Fish and Wildlife Refuge, and Salem

Airfield respectively), sites situated along the northern edge of Delaware Bay. In the Mouth

scenario, we observe extreme behavior at all sites near the mouth of the bay. This includes sites

1, 2, 3, and 4 (Beebe Hospital, Henlopen Memorial Park, Paramount Airport, and the Cape

Regional Medical Center).

Figure 4.8 shows the one-dimensional survival curves for these three locations, under

these three scenarios. Note that a survival curve indicates P (Zs > zs). That is, the probability of

a surge event greater than the specified value, under the specific scenarios outlined. Additionally,

a z score greater than 1 indicates storm surge above the 90th percentile. Perhaps unsurprisingly

in interpreting these results, as Dover AFB is on the south side of the bay, we see the survival

curve for the Upper Bay scenario dip below that of both Lower Bay and Mouth scenarios. What

is interesting, however, is that that ordering is not uniform; we see the ordering change to that
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Figure 4.9: Conditional 2d survival curve (contour plot, standardized) of flooding, at selected pairs of locations.

Note, (X axis) : (Y axis). The top row is in standardized units, while the bottom row is in real units (feet).

behavior around z = 4. The Mouth scenario indicates a storm that has inundated both the

lower and upper portions of the Delaware Bay entrance, indicating a powerful storm that is

well positioned to enter the Bay. As such, it is no surprise that the survival curve associated

with that scenario indicates the highest probability of extreme surge throughout the entire

curve. What is interesting is that we observe the same crossing behavior and the same ordering

on all three curves, though their exact shape and the exact point at which that cross occurs

differ. It is apparent that relative to the other scenarios, extreme surge on the Upper Bay sites

does not strongly indicate increased surge at the other sites. It appears to be the case that a

hurricane optimally aligned towards inundating the North bank is sub-optimally aligned towards

inundating the rest of the bay.

Figure 4.9 provides contour plots of a two-dimensional survival surface, between flood-

ing at pairs of locations in the Critical slice, still conditioning on various scenarios of flooding

in-process. Considering Dover AFB : PIA, we do not expect to see a strong association be-
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tween the two locations. Dover AFB is on the south edge of the bay, while PIA is far up the

Delaware River. However, we observe that the survival surface in standard units is nearly linear

on the transition between the two locations; neither convex nor concave. This shape indicates

moderate dependence between those locations under these scenarios. We must call attention

to the ordering of the contours of the survival surface. Here, the Lower Bay scenario crosses

even the Mouth scenario. In contrast, in Dover AFB : Packer Ave., we see that survival surface

is actually concave, which indicates an extremely weak dependence between the two locations.

This is understandable, as Packer Avenue Terminal is around 4 miles upstream of PIA, even

further away from Dover AFB. Given the proximity between Packer Ave., and PIA, we would

expect a rather strong dependence. That relationship is borne out, as in the contour plot of the

survival surface in PIA : Packer Ave. we observe strong convexity.

4.4.3 Conditional survival under a regression model

Under the regression model, providing a particular set of storm characteristics θ∗ per-

mits us to take samples of V ∗ | θ∗, by doing posterior prediction of Y ∗ | θ∗ and projecting

onto SD−1
∞ . With this sample of V ∗ following the same procedure used in Section 4.4.2, we can

estimate the conditional probability of survival—the conditional probability of experiencing a

surge event greater than or equal to the stated value, given both the scenario and the storm

characteristics. Keeping the extant flooding scenarios outlined previously, we investigate the

effects of storm characteristics on these scenarios. A strong storm indicates a storm with an

approach speed approximately 1 standard deviation higher than mean, and a minimum pressure

approximately 1 standard deviation lower than mean. Looking at Figure 4.4, both of these

parameters serve to indicate a higher probability of the storm’s surge exceeding the threshold,

indicating a stronger storm. A weak storm indicates the opposite, on both counts. landing +

direction of approach specifies the approach vector of the storm’s eye: landing at the South end
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Figure 4.10: Conditional survival curves of flooding, at selected locations, under various scenarios of extant

flooding and storm characteristics. A strong storm has both a significantly higher than average approach speed,

and significantly lower than average minimum pressure. Neutral sea-level-rise was assumed. We further separate

by (landing latitude) + (direction of approach).

of the range, angled North, or landing at the North end of the range, angled South.

In Figure 4.10, we see the results of these storm profiles, under the aforementioned

scenarios, applied to the listed locations. The baseline is not controlling for storm strength,

storm landing latitude, or storm direction. It should be comparable to the curves displayed

in Figure 4.8. There are a few observations to make here. One, it is evident that while a

stronger storm generally has a greater potential of inundating any given site to a greater degree,

we see odd behavior under the Upper Bay scenario for Dover AFB: we see under this scenario

the weak storm has a slightly higher potential to inundate, and of particular interest is that

all investigated storm profiles fall below the baseline. Second, under the Mouth scenario, the

landing latitude and direction dramatically affects the probability and degree of inundation.

This is most apparent at Dover AFB, for which with a strong storm, the North landing latitude
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Figure 4.11: Conditional survival surfaces (contour plot, standardized) of flooding, at selected pairs of locations,

under various scenarios of extant flooding and storm characteristics. A strong storm has both a significantly

higher than average approach speed, and significantly lower than average minimum pressure. Neutral sea-level-

rise was assumed. We further separate by (landing latitude) + (direction of approach).

and South-southwest direction produces almost uniformly higher probability of flooding at each

site. PIA and Packer Avenue fare similarly under each scenario and storm profile. This is

somewhat to be expected, considering their proximity, and our previous analysis.

In Figure 4.11, we see the results of these storm profiles, under the aforementioned

scenarios, applied pairwise to the listed locations. Again, baseline is not controlling for storm

profile or strength, and thus should be comparable to the results displayed in Figure 4.9. Very

quickly we see a discrepancy: whereas previously, Dover AFB : PIA exhibited moderate de-

pendence, and Dover AFB : Packer exhibited extremely weak dependence, under this model

they exhibit slightly strong dependence. We no longer see the concave survival surfaces we saw

previously under the MCMC-fit projected gamma model. We do still see the highly convex

survival surface for PIA : Packer.
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4.5 Conclusion

In this chapter, we extended our work on the BNP mixture of projected gammas

model for angular data to include a variational approximation. Unfortunately, we found that

the particular approximation that we chose suffers from a loss of model fidelity, as the number of

dimensions increases, to a much greater degree than the equivalent MCMC-fit model. We have

also developed a novel and flexible regression model with support on the unit p-norm sphere,

in part to ameliorate an expected loss of granularity as dimensionality increases, and for the

additional information gain offered by a directional regression model. Though the regression

model did impart a strong bias towards pairwise dependence of sites, as seen in Figure 4.11, it

nonetheless brings a great deal more information into the survival surface calculation—as we

can see in the deviations from the baseline in the survival surfaces.

We explored the application of said models to the angular distribution of multivariate

extremes, at a much greater scale than has been previously attempted in our knowledge. In

doing so, we have encountered some weaknesses of the model in its application at scale. We

discuss those issues and potential remedies below.

4.5.1 Proposed solutions

It is clear that, for our intended purpose of multivariate extreme inference on a high-

dimensionality problem, the variational inference method we have chosen is inadequate. A

target model where the discrete cluster identifiers have been integrated out leads to too few

emergent clusters, and that lack of granularity is detrimental to the model’s ability to recover

the generating distribution. There are a few potential remedies that we could take. First,

following the example of Loaiza-Maya et al. (2022), we might reintroduce the latent cluster

identifiers via a Gibbs-sampling step. With that said, an optimal variational approximation
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can only do as well as a well-tuned MCMC fitted model. As Chandra et al. (2023) shows,

dimensionality increases, model fidelity in recovering the generating distribution will eventually

face more challenges than merely an inadequate model fitting method. We should also consider

other solutions.

One additional step we can consider is placing a restriction on the shape parameter in

the projected gamma model, such that maxs αjs ≥ 1 ∀ j. It is the case, when considering the

data, that nearly every observation falls close to an edge on some dimension. Recollecting the

gamma distribution, if the shape parameter is less than one, then we observe a spike in density

approaching zero. In a projected gamma setting, that translates to high density towards the

edges of a distribution where the shape parameters are less than 1. If all dimensions are so, then

we arrive at a very unstable distribution with all mass around the edges of the support, and little

to no mass in the center. For a very high dimensional problem, a single cluster with all shape

parameters approaching zero is a likely inevitable end result, and thus, in fitting the model, we

learn nothing. One means of tackling such a problem would be to enforce a restriction that at

least one dimension have a shape parameter greater than 1. For extreme data, which tends to

exist near an edge, this would at least create clusters for edges with high density. We might

consider some dimensions as active or inactive for a given observation depending on whether

that observation falls near that dimension’s edge. We can consider this restriction as requiring

that at least one dimension is active.

Building on this notion of active or inactive dimensions, another extension we might

consider would be a zero-inflated, or sparse, projected gamma, where some dimensions of the

projected gamma are structurally zero. With some process controlling the structure of the zero-

inflation, we can separate inference on active dimensions from that on inactive dimensions. In

the current model with a product-of-gammas centering distribution on α, it is currently the

case that a single gamma density has to cover cluster parameters for both active dimensions,

90



away from zero, and inactive dimensions, near zero, resulting in hyper-parameter estimates

approaching zero for all dimensions. This is not optimal.

One of the remedies suggested in Chandra et al. (2023) is, rather than clustering on

distributional parameters in the target high-dimensional space, to instead cluster on a lower-

dimensional representation of that space. That is, a factor analysis model. We have taken a

slightly different approach in this chapter by developing a regression model. This is an alternative

low-dimensional representation of the high-dimensional space. But, for the regression model we

have considered, the number of emergent clusters grows with the number of dimensions. In fact,

during model fitting, the 950 location sample quickly consumed all available candidate cluster

slots up to the truncation level. We believe this occurs because the proposed model formula

is inadequate to handle information contained in the output surface, so it is being absorbed

by the cluster representation. Adding additional variables—making the regression model more

descriptive of the output surface—will likely result in fewer emergent clusters being necessary,

and a higher-fidelity model.
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Chapter 5

Conclusion

This document is primarily concerned with representing a peaks-over-threshold setting

as a finite-dimensional realization of Ferreira and de Haan (2014)’s constructive definition of the

generalized Pareto process as a transformation of a standard Pareto process. This action permits

us some freedoms. First, by computing estimates of marginal generalized Pareto parameters,

we can use them to transform data into that of a multivariate standard Pareto R.V. Second,

under the multivariate standard Pareto framework, we can model the dependence structure

of the extremes, expressed as the angular component on the SD−1
∞ sphere, independent of the

magnitude, or radial component, and without consideration of the marginal GP parameters.

Chapter 2 establishes a flexible and performant framework for modeling that angular

component. It creates a distribution on an arbitrary Lp-norm sphere as the result of projecting

a vector of independent random gamma variables onto the surface of said sphere. Using this

distribution as the kernel distribution of a Dirichlet process mixture model, we arrive at a

highly flexible distribution for modeling angular data with support on SD−1
p . Additionally, we

establish a negative-definite kernel metric that acts as an upper bound on geodesic distance on

SD−1
∞ , that we use in conjunction with the energy score criterion, to evaluate model fidelity. We
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evaluate our model, and it compares favorably with other possible models of angular data, both

in terms of model fidelity, and in terms of computational cost. This model was used to evaluate

the dependence structure of extremes in the Integrated Vapor Transport, an atmospheric river

carrying moisture inland over California.

Chapter 3 applies the angular data model developed in Chapter 2 to a novelty detec-

tion setting, taking advantage of the independence between angular and radial components of

the standard Pareto R.V. to develop scores for each component independently. We develop the

angular scores as the product of the clustering behavior of the Bayesian non-parametric model,

for which we elected to use a Pitman-Yor process rather than a Dirichlet process for greater

control over the clustering behavior. This separation of novelty scores allows us to extend the

angular novelty score, and indeed the framework of the angular distribution, to a more general

class of data. We consider the Dirichlet-multinomial distribution, the result of a multinomial

distribution with a Dirichlet prior, with the Dirichlet R.V. integrated out, as the kernel distribu-

tion of a Bayesian non-parametric model, and extend the novelty scores previously developed to

this new setting. Finally, we consider a mixed case, involving both angular and categorical data,

and extend the scores to this setting as well. We find the scores we develop compare generally

well on canonical novelty detection datasets, though they tend to perform better when novelties

are extremely rare.

Chapter 4 attempts to push the limits of the projected gamma model in terms of the

complexity it can represent, and our ability to evaluate model fidelity in a high-dimensional or

noisy setting. It applies the projected gamma model developed in Chapter 2 with the Pitman-

Yor process prior used in Chapter 3 to simulations of storm surge, gathered from the SLOSH

model, at varying levels of dimensionality. In Section 4.4.2, we see the fitted model provides

us a very powerful tool for predicting extreme levels of storm surge, conditional on that which

is already observed. However, we observe that model fidelity, or the ability of the model to
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capture the nuances of the data, is lost as dimensionality increases and the granularity of the

BNP clustering decreases. This effect is most readily apparent in our variational approximation

of the Pitman-Yor mixture of projected gammas, but it is seen in the MCMC approach as

well. We also implement a regression model based on the projected gamma. It is obvious that

including information pertaining to storm conditions would provide a more rich inference of

the multivariate dependence structure, including the conditional survival probability, and the

regression model gives us a means of including that data in the calculation. Further, a regression

model as a low-dimensional approximation to a high dimensional process, also serves as a means

of increasing the granularity in clustering of the BNP mixture model. That said, mixing on

regression coefficients, there is a delicate balance to be attained. In our testing, we have too few

coefficients, resulting in too many clusters.

There are some potential approaches that might hold merit for our task. First, moving

away from mean-field variational Bayes, we can consider a variational approximation within

Gibbs approach echoing Loaiza-Maya et al. (2022), by sampling latent cluster identifiers and

weights via a Gibbs-sampling step. Second, we can consider placing a restriction on a clusters

shape parameter vector such that at least one dimension’s shape parameter be greater than 1.

This would remove, as a possibility, a single cluster with all shape parameters approaching zero.

Third, accepting that all data tends to exist near an edge of the support—that is, at least one

dimension is near 0—we can consider internalizing to the model the notion of active or inactive

dimensions, using a zero-inflated or sparse projected gamma. This sparseness can be used to

combat the issue of density spiking near an edge, for dimensions with a shape parameter near

0.

Perhaps the most important advancement in this document is the regression model.

However, the density is highly multimodal. Model coefficients would benefit from a tempered

approach, but the model is already prohibitively slow to fit in a high-dimensional setting. Per-
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haps in conjunction with the aforementioned variational approximation within Gibbs, there is

room for a tempered variational approach (Mandt et al., 2016) to be considered. Beyond that,

we can consider adding more data—a more descriptive regressor vector to include more informa-

tion about the storm or local conditions. Adding additional information, making the regression

model more descriptive of the output surface, will result in fewer clusters being needed, and a

higher fidelity model.
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Goix, N., A. Sabourin, and S. Clémençon (2017). Sparse representation of multivariate extremes

with applications to anomaly detection. Journal of Multivariate Analysis 161, 12–31.
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Appendix A

Ancillary Material

A.1 Additional Conditional Survival Curves
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Figure A.1: Conditional survival curves of flooding, at selected locations, under various scenarios of extant

flooding and storm characteristics. A strong storm has both a significantly higher than average approach speed,

and significantly lower than average minimum pressure. Neutral sea-level-rise was assumed. We further separate

by (landing latitude) + (direction of approach).
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Figure A.2: Conditional survival surfaces (contour plot, standardized) of flooding, at selected pairs of locations,

under various scenarios of extant flooding and storm characteristics. A strong storm has both a significantly

higher than average approach speed, and significantly lower than average minimum pressure. Neutral sea-level-

rise was assumed. We further separate by (landing latitude) + (direction of approach).
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