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ABSTRACT 

 
Microbial and Mineral Controls over Soil Carbon Cycling and Storage: 

Process-based Modeling, Observational Syntheses, and Global Implications 
 

by  
 

Katerina Georgiou 
 

Doctor of Philosophy in Chemical Engineering 
 

University of California, Berkeley 
 

Professor Margaret Torn, Co-Chair 
Professor Ali Mesbah, Co-Chair 

 
 
Soil organic matter (SOM) is the largest actively-cycling terrestrial reservoir of carbon (C) and 
an integral component of thriving natural and managed ecosystems. Climate- and 
land-use-induced changes in plant inputs to soil may result in changes to soil organic carbon 
(SOC) storage with large implications for the global C balance. Despite the potential for large C 
feedbacks, the processes that dictate the response of SOC to changes in plant inputs are still 
poorly understood and inadequately represented in models, thus, limiting their predictive 
capability for policy and management decisions. The overarching goal of my Ph.D. research was 
to improve our process-level understanding of the response of SOC to changes in plant inputs, 
with interest in the competing microbial and mineral mechanisms that govern the decomposition 
and stabilization of SOC, respectively, and the capacity of soils to store C.  To this end, I 
leveraged data collection and synthesis, meta-analysis, and process-based modeling to advance 
our understanding and provide predictive tools. 
 
In Chapter 1, I provide an introduction and overview of the field of SOC modeling, and outline 
the trail map of my doctoral research. I then explore, in Chapter 2, the potential magnitude of the 
soil C sink over the last decade using remotely-sensed observations as a proxy for the rate of 
plant inputs. My findings suggest that soils have played a large role in the terrestrial carbon sink, 
especially in grassland ecosystems. This provides a strong motivation for better understanding 
the underlying mechanisms at play, since, as I show in Chapter 3, using simple SOC models to 
infer complex dynamics can lead to model artifacts and false mechanistic attribution. I highlight 
potential pitfalls and make recommendations for future modeling studies to include important 
mechanisms – e.g., microbial and mineral interactions – and to use more comprehensive data 
streams.  
 
Accordingly, in Chapters 4 and 5, I focus on the representation of microbes and minerals, 
respectively, in process-based SOC models. Specifically, in Chapter 4, I diagnose unrealistic 
behaviors observed in recent mechanistic models and propose modifications by leveraging 
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ecological theory and analysis of long-term litter (plant input) manipulation experiments. In 
Chapter 5, I investigate the role of minerals in the capacity of soils to store C, and propose model 
formulations that match an extensive observational synthesis of mineral-associated C across soil 
types.  
 
With advancements in process-based SOC models, and their widespread application, comes the 
need for accurate numerical methods to efficiently solve such systems of equations. Thus, in 
Chapter 6, I propose a novel numerical integration method that is uniquely suited for solving 
coupled, depth-resolved equations that arise in advection-dominated environmental systems. 
This class of equations is common in SOC modeling, and I present an example to that effect and 
assess numerical performance.  
 
Finally, in Chapter 7, I close by discussing the broad implications of this research in the context 
of society. A deep understanding of soil C and nutrient cycling is essential for building predictive 
tools to better inform land management and conservation policy. I end by describing gaps and 
scaling challenges that motivate my future work. 
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INTRODUCTION 
 

“For all things come from earth, and all things end by becoming earth.”  
– Xenophanes (580 B.C.E.) 

Soil organic matter (SOM) is the largest actively-cycling terrestrial reservoir of carbon, 
containing more than three times the carbon (C) present in vegetation globally (Jobbagy and 
Jackson, 2000; Houghton, 2007). It is an integral component of thriving natural and managed 
ecosystems, and provides multiple co-benefits for plants, animals, and humans – e.g., it contains 
nutrients that support plant growth and yields, retains water and reduces runoff, resists erosion, 
improves water quality, and sequesters C to reduce greenhouse gas emissions. The amount of C 
sequestered in soils results from the difference between plant C inputs and CO2 released by 
heterotrophic respiration, a balance regulated by biological, geochemical, and hydrological 
factors. When the plant inputs that enter soil change due to anthropogenic land-use or climate-
induced land-cover change, soil C storage also changes over decadal to centennial timescales as 
a result (Bowden et al., 2014; Lajtha, Bowden and Nadelhoffer, 2014). However, the magnitude 
and location of such changes to soil organic carbon (SOC) stocks remain uncertain, due to gaps 
in process-level understanding, a paucity of synthesized data across soil types, and a lack of 
multi-scale process representation in predictive soil biogeochemical models. 
 

Soil as a complex system and current model limitations 
 
Soils are populated by an immense diversity of microbes, particularly bacteria and fungi, which 
drive SOC decomposition and formation. Plants are also a key part of this microhabitat, 
providing organic matter to the soil through their roots and leaves (i.e., below- and aboveground 
inputs, respectively). These diverse biotic components interact chemically and physically with 
each other, and with the surrounding heterogeneous matrix of soil minerals and aggregates, at the 
micro-scale to drive emergent macro-scale biogeochemical cycling. As such, soils constitute a 
complex and multi-scale system, where small-scale processes interact to give rise to larger-scale 
phenomena through hierarchical self-organization and nonlinear interactions. Yet, most of this 
complexity is absent from current SOC models, limiting their ability to accurately predict SOC 
stocks, age, and response to perturbations. 
 
In most regional- and global-scale biogeochemical models, SOC decomposition is linearly 
proportional to the size of each soil C pool (i.e., first-order models) with rate modifiers that 
reflect environmental (e.g., temperature, moisture) controls. However, this formulation is 
inherently unable to reproduce potentially critical feedbacks, such as priming (accelerated 
decomposition) of native SOC stocks in response to increased plant inputs to the soil (Kuzyakov, 
2010). Consequently, first-order SOC models have been challenged in recent decades, calling for 
process-based model formulations that reflect our current understanding (Schmidt et al., 2011). 
 

The role of microbes and minerals in SOC decomposition and stabilization 
 
Soil microbial activity mediates SOC decomposition and, thus, increases in microbial activity 
following increases in plant inputs may limit SOC accumulation by stimulating decomposition 
(Kuzyakov, 2010; Zhu et al., 2014). ‘Microbial SOC models’ seek to capture this potential 
carbon-concentration feedback by explicitly representing microbial or enzymatic degradation of 
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SOC (Wieder et al., 2015a). Decomposition rates thus depend not only on the size of the SOC 
pool, but also on the size and composition of the decomposer microbe pool (Parnas, 1975, 1976; 
Harte, 1982; Harte and Kinzig, 1993; Schimel and Weintraub, 2003; Wieder et al., 2015a). Many 
macro-scale microbial models have been proposed in recent years, as part of a burgeoning effort 
to understand and predict soil biogeochemical dynamics (Allison, Wallenstein and Bradford, 
2010; German et al., 2012; Wieder et al., 2014; Wieder et al., 2015b). Such models have even 
been applied to make predictions at the global scale (Wieder, Bonan and Allison, 2013; Sulman 
et al., 2014), despite limited mathematical analyses of their dynamics and response to long-term 
perturbations (Wang et al., 2014, 2016; Hararuk, Smith and Luo, 2015; Sierra and Muller, 2015). 
 
Chemical and physical limitation of microbial access to otherwise decomposable organic 
substrates plays a crucial role in preserving SOM (Conant et al., 2011; Schmidt et al., 2011; 
Dungait, Hopkins and Gregory, 2012; Cotrufo et al., 2013; Lehmann and Kleber, 2015). Indeed, 
mineral-associated organic carbon (MOC) constitutes a large portion (30-90%) of total SOC 
stocks and, since such associations can protect substrates from microbial attack, MOC turnover 
times can be up to 100 times longer than free SOC (Kleber et al., 2015). Despite the major role 
of mineral-organic associations (MOAs) in SOC stabilization and preservation, decidedly less 
attention has been afforded to their explicit representation in models. Most SOC models, and in 
particular first-order models, represent the effects of minerals implicitly using soil texture (i.e., 
% clay and silt) as a proxy. Recently, process-based models have implemented explicit 
representations of sorption, including linear (Sulman et al., 2014; Wieder et al., 2015) and 
Langmuir (Wang, Post and Mayes, 2013; Tang and Riley, 2015; Dwivedi et al., 2017) isotherms. 
However, these formulations have yet to undergo rigorous validation and, furthermore, their 
parameterization at global scales remains a challenge.  
 

Changes in plant inputs to the soil: motivation and implications 
 
Climate and land-use change invariably affect the amount of plant C inputs that enter the soil – 
e.g., through changes in plant productivity, rooting depth, and allocation (Stulen and den Hertog, 
1993; Hungate et al., 1997; Phillips et al., 2006; Lichter et al., 2008; Norby et al., 2016). While 
there is evidence that increasing C inputs to the soil can enhance C sequestration (Lichter et al., 
2008; Lajtha et al., 2014), there are studies with contrasting results that argue otherwise 
(Fontaine et al., 2004; Crow et al., 2009; Pisani et al., 2016). Thus, the net balance between C 
fluxes to and from the soil, and the underlying processes that dictate these responses, remain 
uncertain. Long-term litter manipulations are an underutilized resource for exploring these 
mechanisms and validating macro-scale model representations. While litter manipulations 
spanning diverse geographical areas have been established and maintained over the past several 
decades (Barré et al., 2010; Fekete et al., 2011; Lajtha et al., 2014), a comprehensive cross-site 
data synthesis and analysis has yet to be performed. Two groups of long-term C-input 
experiments of particular interest are the Detritus Input and Removal Treatment (DIRT) sites, 
which have doubled (2x) and removed (0x) plant inputs entering the soil, and the Long-term 
Bare Fallow (LTBF) sites, which have removed (0x) plant inputs entering the soil over several 
decades. Such experiments are particularly useful for informing divergent process-based SOC 
model formulations, and have broad implications for both natural and managed ecosystems 
under a changing climate.  
 



	

 4 

Dissertation trail map: research goals and questions 
 
The overarching goal of my dissertation research is to better understand how soil microbial 
processes and mineral-organic associations modulate macro-scale SOC cycling and, 
specifically, the response of SOC to changes in plant inputs. Scaling dynamics – from the micro-
scale (1 µm to 1 mm) where decomposition of SOC occurs, to the macro-scale (1 cm to 1 m) at 
which it is generally measured, to the global-scale (> 1 km) where Earth System Models (ESMs) 
are used to make policy-relevant predictions – is currently one of the greatest challenges for SOC 
modeling (Davidson, Savage and Finzi, 2014; Wieder et al., 2015a). I postulate that microbial 
community dynamics and mineral-organic associations are critical for understanding emergent 
macro-scale phenomena and better predicting SOC cycling. Given the uncertainty and potential 
magnitude of soil C feedbacks, it is critically important to better constrain estimates of past, 
current, and future SOC cycling to enhance prediction of climate and land-use scenarios and 
inform mitigation actions. 
 
My driving hypothesis is that SOC models can be improved, for scientific inquiry and predictive 
capability, by explicitly representing coupled biotic and abiotic (i.e., microbial and mineral) 
processes that govern SOC decomposition and stabilization. While this is a long-term vision that 
will also guide my future research, much progress has been made in recent years and we are well 
on our way. 
 
In the chapters to follow, I explore the overarching questions (Q):  
 

1. How much have soils contributed to the global C sink in recent decades, and what is the 
potential capacity of soils to store C globally? 

2. What key decomposition and stabilization mechanisms warrant representation in process-
based SOC models, and how should they be represented?   

3. What numerical integration methods are best suited to the unique nature of soil 
biogeochemical models, and what advantages do such methods confer?  

 
To address these questions, my research was divided into five primary objectives:  
 
Chapter 1: The role of soil in the global C sink  
Objective: Explore the potential magnitude of the soil C sink over the last decade using 
remotely-sensed observations to inform the rate of plant inputs [Q1]. 
 
Chapter 2: Pitfalls of simple SOC models & ways forward  
Objective: Elucidate potential pitfalls of using simple SOC models to infer complex dynamics 
and make recommendations for future studies [Q2].  
 
Chapter 3: Microbial community dynamics in SOC models 
Objective: Diagnose unrealistic behaviors observed in recent microbial models and propose 
modifications based on ecological theory and analysis of long-term litter manipulation 
experiments [Q2].  
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Chapter 4: Mineral-organic associations in models & implications for C storage 
Objective: Investigate the role of minerals in the capacity of soils to store carbon, and propose 
mathematical formulations that match a global observational synthesis of mineral-associated 
carbon across soil types [Q1, Q2].  
 
Chapter 5: Numerical tools for environmental modeling 
Objective: Propose a novel numerical integration method that is uniquely suited for solving 
coupled, depth-resolved equations that arise in advection-dominated environmental systems 
[Q3].  
 
In my research, I have leveraged data collection and synthesis, meta-analysis, dynamical and 
complex systems theory, and process-based modeling to address gaps in process-level 
understanding and propose mechanistic SOC model formulations that better predict soil C 
cycling and storage. The novelty of this research rests on integrating empirical and 
computational insights across disciplines – from chemical engineering and mathematics to soil 
and earth system science – and across spatiotemporal scales to improve process-based 
biogeochemical models and, thereby, further our quantitative understanding of the 
microbiological and geochemical contributions to large-scale terrestrial C cycling. 
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CHAPTER 2: Evidence for the importance of soils and non-forest ecosystems in the 
terrestrial carbon sink 
 
This chapter is being prepared for submission as the original journal article:  
 

Georgiou, K., et al. Evidence for the importance of soils and non-forest ecosystems in the 
terrestrial carbon sink. 

 

Abstract 
 
Due to the substantial annual uptake of carbon dioxide (CO2) by the land and oceans, the annual 
increase in atmospheric CO2 concentrations constitutes approximately half of anthropogenic CO2 
emissions. However, CO2 uptake by terrestrial ecosystems is spatially and temporally variable, 
and is greatly influenced by land-use and climate-induced land-cover change. While studies have 
sought to quantify changes in vegetation biomass via remote sensing and bottom-up inventory 
approaches, the relative contribution of soil organic matter to the global carbon sink is still 
unclear. Here we provide a novel observation- and model-based assessment of the total terrestrial 
C sink over the last decade, disaggregating our estimates into above- and belowground C trends 
for each biome. We highlight the importance of non-forest ecosystems in their ability to 
sequester soil C following changes to plant C inputs. Our findings suggest that the response of 
soil to changes in plant inputs significantly contributes to regional and global C budgets. 
 

Introduction 
 
Globally, soil organic matter contains more than three times the carbon (C) present in vegetation 
(Jobbagy and Jackson, 2000; Houghton, 2007). The amount of C sequestered in soils results 
primarily from the difference between plant C inputs and CO2 released by heterotrophic 
respiration, a balance regulated by enviroclimatic and edaphic factors. When the amount and 
type of plant inputs that enter soil change due to anthropogenic land-use or climate-induced land-
cover change, soil C storage will also change over decadal to centennial timescales as a result 
(Johnson and Curtis, 2001; Lajtha et al., 2014). Globally, the size and location of such changes 
to soil C remain uncertain, despite better-known changes to the density and type of vegetative 
cover as estimated by remote sensing and inventory-based methods (Pan et al., 2011; Liu et al., 
2015). Given the uncertainty and potential magnitude of the soil C sink, it is critically important 
to better constrain estimates of past, current, and future soil C cycling to support climate and 
land-use discussions and to inform mitigation actions. 
 
The Intergovernmental Panel on Climate Change (IPCC) and the Global Carbon Project (GCP) 
estimate that, over the last decade, terrestrial ecosystems assimilated 3.0 ± 0.8 petagrams carbon 
per year (Pg C year-1) (Le Quéré et al., 2015). This land sink is calculated annually as the 
difference between the sources (e.g., emissions from fossil fuels, cement production, and land-
use change) minus the ocean and atmospheric sinks from 2005 to 2014 (Le Quéré et al., 2015; 
Canadell et al., 2007). Subtracting the estimated land-use change emissions of 0.9 ± 0.5 Pg C 
year-1, as calculated by inventory- and remote-sensing based methods, from the total land sink 
reduces the net terrestrial C sink to 2.1 ± 1.0 Pg C year-1 (Le Quéré et al., 2015). Recent studies 
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have sought to corroborate the magnitude of the net terrestrial sink by using ground- and 
satellite-based time-series of vegetation and soil C globally. However, most studies have, thus 
far, focused only on forest ecosystems (Pan et al., 2011; Liu et al., 2015), despite mounting 
evidence that non-forest ecosystems play a critical role in the magnitude and trend of the 
terrestrial C sink (Poulter et al. 2014; Ahlström et al., 2015).  
 
Here we provide a global observation- and model-based assessment of the net terrestrial C sink 
over the last decade, as driven by anthropogenic and climatic changes to vegetation and, 
consequently, soil. We use remotely-sensed aboveground biomass (from microwave-derived 
vegetation optical depth) to evaluate interannual changes in vegetation (above- and below-
ground) biomass, by employing biome-specific ratios of above- to below-ground vegetation 
biomass from the literature (Liu et al., 2011, 2015). Although many studies have focused on 
quantifying interannual changes in vegetation biomass, particularly in forest ecosystems (Pan et 
al., 2011; Liu et al., 2015), these changes in plant C drive lagged and substantial changes to soil 
C that we show are a critical component of the terrestrial C sink.  
 
We use this remotely-sensed time-series of vegetation C as a starting point to estimate the 
resulting changes to soil C pools in all biomes over the same time period. We derive and apply 
biome-specific estimates of the ratio between vegetation and total (vegetation + soil) biomass, to 
determine the amount of vulnerable soil C based on observed changes in vegetation. Directly 
applying this ratio (e.g., Liu et al., 2015) would assume that soil C is constantly in equilibrium 
with vegetation C, although there is likely a decade- to century-long time lag for soil to reach a 
biome- or region-specific steady-state. This lag is largely controlled by the soil C turnover time 
and varies substantially between biomes (Carvalhais et al., 2014; Todd-Brown et al., 2013). We 
therefore calculate the soil turnover for each biome by a few different, yet corroborating, 
methods (see Methods and Supplementary Information). From these biome-specific values, we 
calculate the corresponding lag (proportion of steady-state achieved) as a function of time for 
each biome and use it to refine our estimates of interannual changes in soil C over the last two 
decades. This approach provides a novel assessment of the soil and total terrestrial C sink 
globally, regionally, and by biome, and reveals the emergent importance of soils and non-forest 
ecosystems to the magnitude and variability of the global C cycle. 
 

Contribution of non-forest ecosystems to the global soil C sink 
 
Satellite data can be used to infer global changes in vegetation biomass and type with high 
spatiotemporal resolution and are increasingly being used for carbon accounting, land-use 
monitoring, and conservation, among other applications (Hansen et al. 2013; Friedl et al. 2010; 
Baccini et al. 2012). A recent study by Liu and colleagues (2015) quantified the contribution of 
vegetation C uptake to the terrestrial carbon sink using satellite-derived estimates of 
aboveground biomass production globally across all biomes. They reported that, from 2003 to 
2012, the average above- and below-ground vegetation uptake was 0.75 ± 0.15 Pg C yr-1, of 
which 0.12 ± 0.04 Pg C yr-1 was attributed to forests and 0.63 ± 0.14 Pg C yr-1 to non-forest 
ecosystems. We note that the importance of non-forest ecosystems is already evident in the C 
balance of aboveground biomass, due in part to extensive C losses from deforestation in tropical 
forests (Fig. 1). 
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While most studies have focused on estimates of aboveground biomass, and especially in forest 
ecosystems, we argue that global changes in soil C that result from changes in vegetative cover 
are a critical part of the terrestrial C sink. We calculate net biome production (NBP; i.e., plant 
photosynthesis minus ecosystem respiration and other losses including harvest, deforestation, 
and fire) from 2003 to 2012 using remotely-sensed observations of vegetation biomass, and 
partition land area between major land-cover classes (boreal, temperate and tropical forests, 
shrublands, woody savannahs, savannahs, and grasslands, and croplands) using the MODIS 
MCD12C1 classification product (Friedl et al. 2010). We obtain a value for the magnitude of the 
net terrestrial C sink that is consistent with mass balance estimates from atmospheric CO2 
inversion and terrestrial biosphere models (Le Quéré et al., 2015; Ahlström et al., 2015).  
 

 
Figure 1: Average annual change in aboveground biomass carbon (kg C m-2 yr-1) from 2003 to 2012.  
Aboveground biomass carbon (ABC) estimates are derived from vegetation optical depth via passive microwave 
observations from remote sensing (Liu et al. 2015). Deforestation losses in the tropics are negative (shown in red). 
 
We derive and apply biome-specific ratios of soil C to vegetation biomass C and implement a lag 
based on soil turnover times to determine the change in soil C based on observed changes in 
vegetation (Fig. 2; Table 1). These estimates constitute the upper-limit of soil C vulnerability to 
changes in plant inputs, as they assume the long-term change in soil C is proportional to the 
change in vegetation. This formulation does not allow for non-linear priming effects (accelerated 
decomposition) or other indirect responses that may result from changes to the underlying 
mechanisms (Georgiou et al. 2015). We discuss the implications of this assumption and compare 
soil turnover times calculated in different ways; namely, we compare biome- and region-specific 
turnover rates from (i) empirical heterotrophic respiration and soil C stocks (Bond-Lamberty & 
Thomson 2010) and (ii) Community Model Intercomparison Project 5 (CMIP5) model-derived 
turnover rates (Carvalhais et al. 2014; Todd-Brown et al. 2014). 
 
We find that soil constitutes nearly 58% of the global terrestrial C sink (average NBP from 2003 
to 2012; Pg C yr-1). The majority of this change in soil C has occurred in non-forest ecosystems 
(Fig. 3a), because they store proportionally more C below- than above-ground (Table 1; Fig. 2). 
The biome-specific ratios given herein (Table 1) are in close agreement with forest syntheses 
(Pan et al. 2011; Liu et al. 2015) and field studies from non-forest ecosystems (Gibbon et al. 
2010). While recent studies have purported that these ratios were not synthesized in the literature 
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for all biomes, we calculate them using global observations and corroborate them with literature 
values.  
 

 
 
Figure 2: Ratio (unitless) of soil organic C (SOC) to aboveground biomass carbon (ABC) globally. 
Aboveground biomass estimates are derived from vegetation optical depth (VOD) using passive microwave satellite 
data (Liu et al. 2011, 2015) and soil C content is extracted from the Harmonized World Soils Database (HWSD). 
 
 
Table 1: Ratio of total C (soil + vegetation) to TBC (total biomass carbon; only vegetation C) by biome. 

  
 
Non-forest ecosystems comprise 82% of the annual global terrestrial C sink (Fig. 3a), where 
shrublands (0.55 Pg C yr-1), woody savannahs (0.46 Pg C yr-1), and savannahs (0.45 Pg C yr-1) 
account for 31%, 26%, and 25% of the terrestrial sink, respectively (Fig. 3b; Table 2). Compare 
this to the 0.35 Pg C yr-1 and 0.32 Pg C yr-1 sinks for boreal and temperate forests, which 
correspond to 20% and 18% of the total sink, respectively (Fig. 3b; Fig. S4). The relatively large 
importance of non-forest ecosystems results from the larger relative change in vegetation C and, 
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•  Soil organic matter is a major reservoir of  C that 
contains more than three times the C in vegetation. 

  

•  Changes in the amount and type of  C inputs from 
plants to soil can greatly affect soil carbon storage. 

 

•  We provide an observation- and model-based 
assessment of  the impacts of  land-cover change 
(through remotely-sensed aboveground biomass C; 
ABC) on total C stocks over the last two decades. 

•  We calculate geospatial estimates of  the ratio of  soil organic C (SOC) to plant C 
(above- and belowground total biomass C; TBC) spatially and average by biome. 

  

•  Following a change in plant C inputs, SOC tends towards this steady-state 
ratio if  the response of  SOC is linear (as in most Earth system models). 

 

•  However, this ratio is attained after a lag in the response of  SOC to plant C 
inputs that depends on the soil turnover time.  

•  We estimate the turnover time of  soil C cycling in each biome from literature values of  soil C 
stocks and heterotrophic respiration (Bond-Lamberty et al. 2010, 2014; Carvalhais et al. 2014). 

 

•  These biome-specific turnover times are used to calculate the lag (denoted�) of  SOC to 
changes in C inputs; i.e., how much has SOC increased relative to t years of  ABC increase?  

 

•  We calculate � as the fraction of  cumulative change in ABC achieved by SOC at time t and 
use it to estimate the change in SOC over 20 years of  observed changes in ABC. 

 

•  We are also exploring the use of  Earth system model derived turnover time. This currently 
underestimates turnover time compared to observations and overestimates SOC response.  

•  Our geospatial estimates of  SOC to ABC ratios are 
in close agreement with other meta-analyses of  
forest ecosystems (Pan et al. 2010) and field studies 
of  non-forest ecosystems (Gibbon et al. 2010). 

 

•  This analysis adds to past studies that overlooked 
the contribution of  non-forest ecosystems to the 
total C trend globally (Liu et al. 2015). 

 

•  We are currently investigating the effect of  non-
linear, microbial-explicit models on the estimated 
total C trend in response to changes in ABC. 

•  We perform a spatially-explicit analysis to estimate 
SOC response to changes in ABC.  

 

•  The steady-state ratio of  SOC to ABC (expected 
from a linear pool-based system) is calculated for 
each grid cell. 

 

•  We apply a biome-specific lag (�) to account for 
the fraction of  SOC change attained after 20 years. 

This material is based upon work supported by the U.S. Department of  
Energy under Contract No. DE-AC02-05CH11231. K.G. acknowledges 
support from the National Science Foundation Graduate Research 
Fellowship under Grant No. DGE 1106400. 
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Figure 3: (A) Relative % change in SOC (blue) in response to 0.5% annual increase in ABC (red) predicted by a linear SOC 
model. (B) Ratio of  % change in SOC to ABC at time t. (C) Fraction of  integrated % change achieved by SOC at time t. Figure 1: Average annual change in ABC from 1993 to 2012.   
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Figure 4: Average annual change in SOC from 1993 to 2012.   

Figure 2: Steady-state ratio of  SOC to ABC.   
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Woody Savannahs + 0.11 + 0.20 + 0.26 + 0.46 

Savannahs + 0.08 + 0.20 + 0.25 + 0.45 

Grasslands - 0.002 - 0.01 - 0.01 - 0.02 

Croplands + 0.02 + 0.03 + 0.08 + 0.11 
 

Forest total + 0.10 + 0.12 + 0.11 + 0.23 
Non-forest total + 0.29 + 0.63 + 0.91 + 1.54  

Total + 0.39 + 0.75 + 1.02 + 1.77  
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•  We apply the modeled lag (�) for each biome to estimate the 
change in SOC over 20 years of  observed changes in ABC. 

 

•  We find that: (i) non-forest ecosystems play an important role 
in the total C trend due to large fractions of  belowground biomass 
carbon (BBC) and SOC, and (ii) the lag of  SOC response to plant 
C must be included for realistic estimates and reinforces the 
importance of  non-forest ecosystems in the total C trend. 

References: Bond-Lamberty et al. 2010, 2014; Carvalhais et al. 2014; Pan et 
al. 2010; Gibbon et al. 2010; Liu et al. 2015. 
Data sources: ABC from Liu et al. 2015; SOC from FAO 2012 and 
Wieder et al. 2014; heterotrophic respiration from Bond-Lamberty et 
al. 2014; MODIS land-cover classification. 

Table 2: Trend in aboveground biomass, total plant biomass, soil and total C by biome.   
Table 1: Ratio of  total (soil + 

plant) C to TBC by biome.   

Biome type Total C / TBC 
 

Boreal forests 5.5 

Temperate forests 3.1 

Tropical forests 2.1 

Shrublands 8.1 

Woody Savannahs 7.0 

Savannahs 3.9 

Grasslands 5.5 

Croplands 13.5 
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•  Soil organic matter is a major reservoir of  C that 
contains more than three times the C in vegetation. 

  

•  Changes in the amount and type of  C inputs from 
plants to soil can greatly affect soil carbon storage. 

 

•  We provide an observation- and model-based 
assessment of  the impacts of  land-cover change 
(through remotely-sensed aboveground biomass C; 
ABC) on total C stocks over the last two decades. 

•  We calculate geospatial estimates of  the ratio of  soil organic C (SOC) to plant C 
(above- and belowground total biomass C; TBC) spatially and average by biome. 

  

•  Following a change in plant C inputs, SOC tends towards this steady-state 
ratio if  the response of  SOC is linear (as in most Earth system models). 

 

•  However, this ratio is attained after a lag in the response of  SOC to plant C 
inputs that depends on the soil turnover time.  

•  We estimate the turnover time of  soil C cycling in each biome from literature values of  soil C 
stocks and heterotrophic respiration (Bond-Lamberty et al. 2010, 2014; Carvalhais et al. 2014). 

 

•  These biome-specific turnover times are used to calculate the lag (denoted�) of  SOC to 
changes in C inputs; i.e., how much has SOC increased relative to t years of  ABC increase?  

 

•  We calculate � as the fraction of  cumulative change in ABC achieved by SOC at time t and 
use it to estimate the change in SOC over 20 years of  observed changes in ABC. 

 

•  We are also exploring the use of  Earth system model derived turnover time. This currently 
underestimates turnover time compared to observations and overestimates SOC response.  

•  Our geospatial estimates of  SOC to ABC ratios are 
in close agreement with other meta-analyses of  
forest ecosystems (Pan et al. 2010) and field studies 
of  non-forest ecosystems (Gibbon et al. 2010). 

 

•  This analysis adds to past studies that overlooked 
the contribution of  non-forest ecosystems to the 
total C trend globally (Liu et al. 2015). 

 

•  We are currently investigating the effect of  non-
linear, microbial-explicit models on the estimated 
total C trend in response to changes in ABC. 

•  We perform a spatially-explicit analysis to estimate 
SOC response to changes in ABC.  

 

•  The steady-state ratio of  SOC to ABC (expected 
from a linear pool-based system) is calculated for 
each grid cell. 

 

•  We apply a biome-specific lag (�) to account for 
the fraction of  SOC change attained after 20 years. 

This material is based upon work supported by the U.S. Department of  
Energy under Contract No. DE-AC02-05CH11231. K.G. acknowledges 
support from the National Science Foundation Graduate Research 
Fellowship under Grant No. DGE 1106400. 
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Figure 3: (A) Relative % change in SOC (blue) in response to 0.5% annual increase in ABC (red) predicted by a linear SOC 
model. (B) Ratio of  % change in SOC to ABC at time t. (C) Fraction of  integrated % change achieved by SOC at time t. Figure 1: Average annual change in ABC from 1993 to 2012.   
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Figure 4: Average annual change in SOC from 1993 to 2012.   

Figure 2: Steady-state ratio of  SOC to ABC.   
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•  We apply the modeled lag (�) for each biome to estimate the 
change in SOC over 20 years of  observed changes in ABC. 

 

•  We find that: (i) non-forest ecosystems play an important role 
in the total C trend due to large fractions of  belowground biomass 
carbon (BBC) and SOC, and (ii) the lag of  SOC response to plant 
C must be included for realistic estimates and reinforces the 
importance of  non-forest ecosystems in the total C trend. 

References: Bond-Lamberty et al. 2010, 2014; Carvalhais et al. 2014; Pan et 
al. 2010; Gibbon et al. 2010; Liu et al. 2015. 
Data sources: ABC from Liu et al. 2015; SOC from FAO 2012 and 
Wieder et al. 2014; heterotrophic respiration from Bond-Lamberty et 
al. 2014; MODIS land-cover classification. 

Table 2: Trend in aboveground biomass, total plant biomass, soil and total C by biome.   
Table 1: Ratio of  total (soil + 

plant) C to TBC by biome.   

Biome type Total C / TBC 
 

Boreal forests 5.5 

Temperate forests 3.1 

Tropical forests 2.1 

Shrublands 8.1 

Woody Savannahs 7.0 

Savannahs 3.9 

Grasslands 5.5 

Croplands 13.5 
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consequently, soil C of non-forest ecosystems. We note that the response of croplands is highly 
variable, due to a large range in soil C to vegetation C ratio, potentially due to different land 
management practices and departures from steady-state.  
 
 a     b 

             
 
Figure 3: Contribution of above- and belowground biomass C (ABC and BBC, respectively) and soil C to 
annual net biome production (NBP; Pg C yr-1) from 2003 to 2012.  
(a) Percent contribution from forest (green) and non-forest (orange) ecosystems to above- and below-ground 
biomass C (ABC and BBC, respectively; dark shading) and soil C (light shading). (b) Percent contribution to NBP 
from ABC, BBC and soil C in each biome. 
 
The importance of non-forest biomes is dominated by water-limited ecosystems, including 
shrublands and savannahs, which are sensitive to interannual variability in precipitation (Zhao & 
Running, 2010; Ahlström et al. 2015). While these non-forest ecosystems have been a large net 
C sink globally (Table 2), they are vulnerable to shifts in rainfall patterns and may not remain a 
reliable C sink. 

Soil C in the global C budget 
 
Our findings suggest that global changes to soil C content have made a considerable contribution 
to the magnitude (nearly 58%) and trend of the terrestrial C sink over the last two decades (Fig. 
3; Table 2). The magnitude and trend of the C sinks reported herein are consistent with mass 
balance estimates of the total terrestrial C sink from atmospheric CO2 inversion and within the 
range predicted by terrestrial ecosystem models (Le Quéré et al., 2015). Furthermore, our soil C 
estimates provide new insights into the relative contributions of above- and belowground 
terrestrial components to the global carbon cycle. 
 
We present spatially-resolved estimates of soil C change globally (Fig. 4) at a resolution of 
0.25° × 0.25° across all biomes. We show that increases in aboveground shrubland, savannah, 
and, to a lesser extent, boreal and temperature forest biomass have driven substantial increases in 
soil C content. In this analysis, we account for the lag of soil C in response to changes in plant 
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inputs by using biome-specific soil turnover times calculated from global syntheses of soil 
carbon and heterotrophic respiration (see Fig. S3). We believe that for the decadal study period 
and the relative change of observed aboveground biomass, the model used is acceptable as a first 
approximation. The relative changes in soil C calculated here were found to be reasonable (see 
Fig. 4 and Fig. S1) and are supported by decade-long field studies that observed changes in soil 
C following changes in plant inputs (Lajtha et al. 2014). However, we note that in the long-term, 
as aboveground biomass continues to change, models that include explicit microbial and 
mineral-organic processes may be necessary to capture emergent non-linear feedbacks and soil C 
saturation capacity (Wieder et al. 2013, 2014).  
 

 
Figure 4: Average annual change in soil organic C (SOC; kg C m-2 yr-1) from 2003 to 2012.  
Changes in SOC are driven by changes to vegetation C from land-use and land-cover change globally. 
 
 
Table 2: Trend in the vegetation and soil components of the terrestrial C sink globally from 2003 to 2012.  
The trend is separated into aboveground biomass C (ABC), total biomass C (TBC; vegetation C), soil C, and total C 
(soil + vegetation) by biome. Totals are given for forest and non-forest ecosystem contributions to the total land C 
sink. 
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•  Soil organic matter is a major reservoir of  C that 
contains more than three times the C in vegetation. 

  

•  Changes in the amount and type of  C inputs from 
plants to soil can greatly affect soil carbon storage. 

 

•  We provide an observation- and model-based 
assessment of  the impacts of  land-cover change 
(through remotely-sensed aboveground biomass C; 
ABC) on total C stocks over the last two decades. 

•  We calculate geospatial estimates of  the ratio of  soil organic C (SOC) to plant C 
(above- and belowground total biomass C; TBC) spatially and average by biome. 

  

•  Following a change in plant C inputs, SOC tends towards this steady-state 
ratio if  the response of  SOC is linear (as in most Earth system models). 

 

•  However, this ratio is attained after a lag in the response of  SOC to plant C 
inputs that depends on the soil turnover time.  

•  We estimate the turnover time of  soil C cycling in each biome from literature values of  soil C 
stocks and heterotrophic respiration (Bond-Lamberty et al. 2010, 2014; Carvalhais et al. 2014). 

 

•  These biome-specific turnover times are used to calculate the lag (denoted�) of  SOC to 
changes in C inputs; i.e., how much has SOC increased relative to t years of  ABC increase?  

 

•  We calculate � as the fraction of  cumulative change in ABC achieved by SOC at time t and 
use it to estimate the change in SOC over 20 years of  observed changes in ABC. 

 

•  We are also exploring the use of  Earth system model derived turnover time. This currently 
underestimates turnover time compared to observations and overestimates SOC response.  

•  Our geospatial estimates of  SOC to ABC ratios are 
in close agreement with other meta-analyses of  
forest ecosystems (Pan et al. 2010) and field studies 
of  non-forest ecosystems (Gibbon et al. 2010). 

 

•  This analysis adds to past studies that overlooked 
the contribution of  non-forest ecosystems to the 
total C trend globally (Liu et al. 2015). 

 

•  We are currently investigating the effect of  non-
linear, microbial-explicit models on the estimated 
total C trend in response to changes in ABC. 

•  We perform a spatially-explicit analysis to estimate 
SOC response to changes in ABC.  

 

•  The steady-state ratio of  SOC to ABC (expected 
from a linear pool-based system) is calculated for 
each grid cell. 

 

•  We apply a biome-specific lag (�) to account for 
the fraction of  SOC change attained after 20 years. 

This material is based upon work supported by the U.S. Department of  
Energy under Contract No. DE-AC02-05CH11231. K.G. acknowledges 
support from the National Science Foundation Graduate Research 
Fellowship under Grant No. DGE 1106400. 
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Figure 3: (A) Relative % change in SOC (blue) in response to 0.5% annual increase in ABC (red) predicted by a linear SOC 
model. (B) Ratio of  % change in SOC to ABC at time t. (C) Fraction of  integrated % change achieved by SOC at time t. Figure 1: Average annual change in ABC from 1993 to 2012.   
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Figure 4: Average annual change in SOC from 1993 to 2012.   

Figure 2: Steady-state ratio of  SOC to ABC.   
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Biome type ABC trend 
(Pg C / yr) 

TBC trend 
(Pg C / yr) 

Soil C trend 
(Pg C / yr) 

Total C trend 
(Pg C / yr) 

 

Boreal forests + 0.16 + 0.20 + 0.15 + 0.35 

Temperate forests + 0.17 + 0.21 + 0.11 + 0.32 

Tropical forests - 0.23 - 0.29 - 0.15 - 0.45 
Shrublands + 0.08 + 0.21 + 0.33 + 0.55 

Woody Savannahs + 0.11 + 0.20 + 0.26 + 0.46 

Savannahs + 0.08 + 0.20 + 0.25 + 0.45 

Grasslands - 0.002 - 0.01 - 0.01 - 0.02 

Croplands + 0.02 + 0.03 + 0.08 + 0.11 
 

Forest total + 0.10 + 0.12 + 0.11 + 0.23 
Non-forest total + 0.29 + 0.63 + 0.91 + 1.54  

Total + 0.39 + 0.75 + 1.02 + 1.77  
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•  We apply the modeled lag (�) for each biome to estimate the 
change in SOC over 20 years of  observed changes in ABC. 

 

•  We find that: (i) non-forest ecosystems play an important role 
in the total C trend due to large fractions of  belowground biomass 
carbon (BBC) and SOC, and (ii) the lag of  SOC response to plant 
C must be included for realistic estimates and reinforces the 
importance of  non-forest ecosystems in the total C trend. 

References: Bond-Lamberty et al. 2010, 2014; Carvalhais et al. 2014; Pan et 
al. 2010; Gibbon et al. 2010; Liu et al. 2015. 
Data sources: ABC from Liu et al. 2015; SOC from FAO 2012 and 
Wieder et al. 2014; heterotrophic respiration from Bond-Lamberty et 
al. 2014; MODIS land-cover classification. 

Table 2: Trend in aboveground biomass, total plant biomass, soil and total C by biome.   
Table 1: Ratio of  total (soil + 

plant) C to TBC by biome.   

Biome type Total C / TBC 
 

Boreal forests 5.5 

Temperate forests 3.1 

Tropical forests 2.1 

Shrublands 8.1 

Woody Savannahs 7.0 

Savannahs 3.9 

Grasslands 5.5 

Croplands 13.5 
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We have shown that the response of soil to changes in plant inputs significantly contributes to 
regional and global C budgets (Table 2). Furthermore, we highlight the importance of non-forest 
ecosystems in their ability to sequester C in soil. Our findings caution against studies that focus 
on the contributions of only forest ecosystems to the global soil and terrestrial C sinks (e.g., Pan 
et al. 2011), and support recent studies that have revealed the important contribution of non-
forest ecosystems to the terrestrial C sink (e.g., Poulter et al. 2014; Ahlström et al. 2015). While 
the accumulation of vegetation and soil C has led to an overall C sink in the last two decades, the 
future terrestrial C sink may be particularly sensitive to rainfall and droughts, due to major 
contributions from non-forest ecosystems. Given the large spread in Earth system model 
predictions (Friedlingstein et al., 2006, 2014; Ahlström et al., 2012; Todd-Brown et al., 2013), 
there is still a need to develop observational constraints for model benchmarking and validation. 
 

Methods 
 
To investigate the magnitude and relative contribution of soil to the terrestrial C sink in each 
biome, we use multiple data sources, including satellite-based vegetation products, global 
syntheses of heterotrophic respiration, soil C content, and ecosystem model simulations. We use 
aboveground biomass estimates from 1993 to 2012, derived from vegetation optical depth 
(VOD) using passive microwave satellite data (Liu et al. 2011, 2015). Soil C content from the 
Harmonized World Soils Database (HWSD) was used to determine biome- and region-specific 
ratios of soil organic C (SOC) to aboveground biomass C (ABC). In response to observed 
changes in aboveground biomass, and therefore litter inputs, soils undergo a lagged change in C 
content over decadal to centennial time scales before approaching their steady-state SOC to ABC 
ratio. This can be thought of as a change in SOC that is proportional to the change in ABC, as is 
predicted by soil C decay models commonly used in Earth system models (ESMs). The lag 
experienced by soils over a given time period (denoted $(&) in Eqn. 1) is determined from the 
turnover time (decay rate) of the particular location, which can vary greatly by biome and soil 
depth. We use global syntheses of heterotrophic respiration and soil C content (Bond-Lamberty 
& Thomson 2011) to estimate soil C turnover times for each biome. We calculate the lag $(&) 
based on biome-specific turnover times, as detailed in Eqn. 2 and Fig. S3. We then use Eqn. 1 to 
estimate the change in total C over a given time period.  Since the satellite-derived estimates of 
ABC include disturbance (e.g., land-use, fire), the total C in Eqn. 1 is a novel estimate of NBP 
globally. At each grid-cell, we can calculate: 
  
           Δ	 &)&*+	, = Δ	 ./, +

112

312
∙ Δ	 ./,

5	 112

+	$(&) ∙
672

312
∙ Δ	 ./,

5	 672

             (Eqn. 1) 

 
       or  equivalently,    
 

 Δ	 &)&*+	, = Δ	 ./, + //, ∙
5	 312

312

5	 112

+	$(&) ∙ 89, ∙
5	 312

312

5	 672

 , 

 
where the lag of a one-pool SOC model in response to a ramp change in inputs can be derived 
(see Supplementary Note) as 
         $ & = 1 −

<=>?@A

BC
 .                 (Eqn. 2) 
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As such, NBP estimates from the IPCC and GCP, which quantify the balance between the net 
uptake by plants (net primary productivity; NPP = GPP – Ra) and losses from soil respiration 
(Rh) and disturbance, are used here for comparison. To aggregate results by biome, we use the 
MCD12C1 IGBP dynamic land-cover classification.  
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Supplementary Figures & Tables 
 
 
a              b 

 
 
Supplementary Figure 1: Global terrestrial C stocks in soil and aboveground biomass.  
(a) Global soil organic carbon to a depth of 1m from the Harmonized World Soil Database (HWSD) re-gridded to a 
0.25-degree grid. (b) Global aboveground biomass carbon (ABC) from vegetation optical depth via passive 
microwave observations (Liu et al. 2015). 
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Supplementary Figure 2: Probability distribution of observing a particular soil organic C to aboveground 
biomass C (SOC/ABC) ratio.  
Calculated globally, in each biome, and plotted as the natural log of the ratio. 
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       a                          b   

 
 
Supplementary Figure 3: Response of soil organic C (SOC) to changes in aboveground biomass carbon 
(ABC) as a function of soil turnover time in a one-pool model.  
(a) Relative % change in SOC (blue lines) in response to a linear 1% annual increase in ABC (red line) as predicted 
by a one-pool exponential decay SOC model. (b) Fraction α(t) of the % change achieved by SOC at time t, as 
derived in Eqn. 2. 
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Supplementary Figure 4: Percent contribution of each biome (green = forest, orange = non-forest) to the 
annual terrestrial C sink.  
Contribution of aboveground biomass carbon (ABC), soil C, and total C in each biome to the total annual C. 
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a           b 

 
Supplementary Figure 5: Response of soil organic C (SOC) to changes in aboveground biomass carbon 
(ABC) as a function of soil turnover time across a range of pool-based models. 
(a) Relative % change in SOC in response to a linear 1% annual increase in ABC as predicted by 1-, 2-, and 3-pool 
exponential decay SOC models. (b) Fraction α(t) of the % change achieved by SOC at time t, as derived in Eqn. 2. 
We observe a greater lag (lower α(t)) in multi-pool models, with the largest difference between 1- and 2-pool 
models. In future analyses, we will use global 2- & 3-pool model turnover times constrained by radiocarbon data 
from He et al. 2016. 
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Supplementary Note 
 
The lag of a one-pool SOC model in response to a ramp change in inputs (Eqn. 2) is 
 
         $ & = 1 −

<=>?@A

BC
 .   

 
The non-dimensionalization and derivation can be outlined as follows: 
 
Consider the first-order, one-pool decomposition model 
 

d,
d&

= E − F ∙ , 
 
where , = SOC, E = 	inputs	from	ABC, and F > 0 is the decomposition rate constant.  
 
At steady state, X2

XC
= E − F ∙ , = 0, so that E = F ∙ ,. This system is stable for F > 0.  

 
In our analysis, we are interested in perturbations from the initial (& = 0) steady state, where we 
define ,Y = , & = 0  and EY = E & = 0 . Thus, the initial steady state is EY = F ∙ ,Y or, 
equivalently, Z[

2[
= F. 

 
We then non-dimensionalize as follows, defining 
 

\ =
2=2[
2[

  and ] = Z=Z[
Z[

 . 
 
Substituting these expressions into the first-order model and dividing by ,Y,  
 

d(\ ∙ ,Y + ,Y)
d&

= (] ∙ EY + EY) − F ∙ (\ ∙ ,Y + ,Y) 
 
 

,Y
d\
d&
= ] ∙ EY + EY − F ∙ \ ∙ ,Y − F ∙ ,Y 

 
 

d\
d&
= ] ∙

EY
,Y
+
EY
,Y
− F ∙ \ − F 

 
then recalling that Z[

2[
= F, we can simplify further to obtain 

 
d\
d&
= ] ∙ F + F − F ∙ \ − F 
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and finally, 
d\
d&
= F ∙ ] − F ∙ \ = F ] − \  

 
where at steady-state, \ = ]. 
 
For a ramp input in time, ](&) = &, we can solve the system  
 

d\(&)
d&

= F ∙ & − F ∙ \(&) 
 
to obtain the solution 

\ & = 	& −
<

B
1 − ^=B∙C  . 

 
We then define the lag, $ & , between the relative change in inputs, ] & , and concentration, 
\ & , such that \ & = $ & ∙ ] & . For the case derived above, \ & = $ & ∙ &, so 
 

$ & = 	1 −
<

B∙C
1 − ^=B∙C  . 

 
We highlight that the expression \ & = $ & ∙ ] &  corresponds to  5672

672
= $ & ∙

5312

312
 or, 

equivalently, Δ89, = $ & ∙ 89,
./,

∙ Δ./,, as in Eqn. 1.  
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CHAPTER 3: Towards improved model structures for analyzing priming: potential pitfalls 
of using bulk turnover time  
 
This chapter is reprinted, with permission, from the original journal article:  
 

Georgiou, K., C. D. Koven, W. J. Riley, M. S. Torn. Towards improved model structures for 
analyzing priming: potential pitfalls of using bulk turnover time. Global Change Biology, 21:12, 
4298-4302 (2015).  

 

Abstract 
 
Many studies have shown that elevated atmospheric CO2 concentrations result in increased plant 
carbon inputs to soil that can accelerate the decomposition of native soil organic matter, an effect 
known as priming. Consequently, it is important to understand and quantify the priming effect 
for future predictions of carbon-climate feedbacks. There are potential pitfalls, however, when 
representing this complex system with a simple, first-order model. Here we show that a multi-
pool soil carbon model can match the change in bulk turnover time calculated from overall 
respiration and carbon stocks (a one-pool approach) at elevated CO2, without a change in 
decomposition rate constants of individual pools (i.e., without priming). Therefore, the priming 
effect cannot be quantified using a one-pool model alone, and even a two-pool model may be 
inadequate, depending on effect size as well as the distribution of soil organic carbon and 
turnover times. In addition to standard measurements of carbon stocks and CO2 fluxes, we argue 
that quantifying the fate of new plant inputs requires isotopic tracers and microbial 
measurements. Our results offer insights into modeling and interpreting priming from 
observations.  
 

Introduction 
 
Soils are a major reservoir of carbon, containing more than double the carbon currently in the 
atmosphere. As atmospheric CO2 levels increase, plant productivity generally increases 
(Ainsworth & Long, 2005). However, increased carbon inputs to soils do not necessarily result in 
more soil carbon storage. An increase in plant inputs to soil may enhance microbial activity, 
thereby accelerating the decomposition rate of native soil organic matter (SOM) and limiting 
carbon storage. This ‘priming effect’ has been observed in field and laboratory studies of 
increased carbon inputs to soils (Carney et al., 2007; Paterson et al., 2008; Cheng et al., 2013). 
Although the underlying mechanism is not well understood, this process could have a significant 
effect on global carbon cycle responses to climate change and rising CO2. Direct observations 
are difficult so it is uncertain how widespread or large this effect is. It is therefore important to 
develop accurate detection and quantification of priming, and to represent this process in Earth 
System Models (ESMs) for better prediction of carbon-climate feedbacks.   
 
Here we provide a quantitative examination and cautionary note on analytical approaches that 
use bulk soil turnover time (such as one based on a one-pool model) to infer a change in 
decomposition rate constants (Torbert et al., 2004; Prior et al., 2008; Foereid et al., 2014; van 
Groenigen et al., 2014). Such methods have been used to infer priming in response to increased 
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soil carbon inputs. We show, numerically and schematically, why a one-pool SOM model alone 
is unable to infer an increase in SOM decomposition rates given observations of respiration and 
carbon stocks over time, and that other simple linear models (e.g., a two-pool model) may also 
have limited power of detection. We also discuss the minimal required model structure to 
support conclusions on priming and process-based representation of this potentially important 
carbon feedback in ESMs. 
 

One-pool model of a multi-pool system 
 
Soils have the property that the mean age of SOM is much older than the mean age of 
heterotrophic respiration, implying that a fraction of the carbon entering soils is respired on the 
order of weeks to months, while some persists for decades to centuries or longer. Soil carbon 
models have traditionally approximated this behavior by considering decomposition as a 
combination of two or more exponential decay terms with a broad range of time constants 
(“multi-pool models”). Three-pool models typically do a good job of characterizing carbon 
cycling in many different soils (Parton et al., 1987; Torn et al., 2009). In contrast, treating 
decomposition with a single exponential decay rate (“single-pool models”) gives qualitatively 
different behavior that poorly represents the dynamics of SOM (Parton et al., 1987).  
 
Since soil carbon is not one homogeneous SOM pool, the qualitative behavior of bulk turnover 
time (i.e., the turnover time estimated from treating the soil as one pool) may mistakenly be 
interpreted as priming, even without changes to intrinsic decomposition rates (ki; or other 
proposed mechanisms for priming). To demonstrate this, we use a traditional two-pool model 
(for simplicity), with fast (τ1 = 1/k1 = 1.5 years) and slow (τ2 = 1/k2 = 50 years) cycling pools, to 
show that an increase in the overall (bulk) decomposition rate constant (k) will be inferred 
despite constant decomposition rate constants (k1 and k2) of individual pools (Fig. 1). We 
calculate bulk turnover time as soil carbon stocks over respiration; however, similar results 
would be predicted from a one-pool model where bulk turnover time is estimated by parameter 
fitting to observed soil carbon stocks over time constrained by plant growth (carbon inputs) and 
microbial respiration (carbon outputs). We perturb the soil from steady-state with a 20% step 
increase in carbon inputs, matching the average effect of elevated CO2 in van Groenigen et al. 
(2014) as an example. 
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Figure 1: Results from aggregating a two-pool SOM model with fixed pool turnover times (τ1 and τ2) in 
response to a 20% increase in carbon inputs.  
(a) Normalized overall (bulk) turnover time (τ), total soil carbon stocks, and CO2 respiration from a two-pool model 
(τ1 = 1.5 years and τ2 = 50 years) in response to a 20% step increase (at year 5) in soil carbon inputs. Carbon use 
efficiencies of 0.30 and 0.45 (respired fractions of 0.70 and 0.55) were used for the fast and slow carbon pools, 
respectively, where a fraction of the carbon uptake from each pool is transferred between soil carbon pools, while 
the remainder is respired. (b) Response of the overall decomposition rate constant (k = 1/τ) as a percent increase 
after the disturbance.  
 
The result is that total respiration responds more quickly than total carbon stocks, since the soil 
now has a larger proportion of fast versus slow cycling carbon pools because of the new inputs 
(Fig. 1a). As a result, a faster bulk decomposition rate is calculated when the (fast and slow) 
carbon pools are aggregated into a one-pool model (Fig. 1b). However, this increase in 
decomposition does not result from a change in individual pool decomposition rates, ki, but 
rather from having more carbon in the fast-cycling pool; the increase is an artifact of treating a 
multi-pool system as a one-pool system and persists for decades to centuries. This effect on bulk 
k (and τ) in response to elevated CO2 (‘false priming’) is also evident in simulations of five 
ESMs participating in the CMIP5 experiment, despite the fact that these models do not include 
mechanisms that could produce priming (Koven et al., 2015).  
 
The conceptual diagram in Fig. 2 illustrates how an aggregated one-pool model – applied to a 
system that has more than one carbon pool – can infer a decrease in the bulk turnover time 
(increase in k) as a consequence of the inappropriate model structure. We start with a two-pool 
model, as the simplest example of multiple carbon pools, and aggregate the outputs and carbon 
stocks into the structure of a one-pool model to calculate the change in bulk turnover time.  
 
 

soils is respired on the order of weeks to months, while
some persists for decades to centuries or longer. Soil
carbon models have traditionally approximated this
behavior by considering decomposition as a combina-
tion of two or more exponential decay terms with a
broad range of time constants (‘multi-pool models’).
Three-pool models typically do a good job of character-
izing carbon cycling in many different soils (Parton
et al., 1987; Torn et al., 2009). In contrast, treating
decomposition with a single exponential decay rate
(‘single-pool models’) gives qualitatively different
behavior that poorly represents the dynamics of SOM
(Parton et al., 1987).
As soil carbon is not one homogeneous SOM pool,

the qualitative behavior of bulk turnover time (i.e., the
turnover time estimated from treating the soil as one
pool) may mistakenly be interpreted as priming, even
without changes to intrinsic decomposition rates (ki; or
other proposed mechanisms for priming). To demon-
strate this, we use a traditional two-pool model (for
simplicity), with fast (s1 = 1/k1 = 1.5 years)- and slow
(s2 = 1/k2 = 50 years)-cycling pools, to show that an
increase in the overall (bulk) decomposition rate con-
stant (k) will be inferred despite constant decomposi-
tion rate constants (k1 and k2) of individual pools
(Fig. 1). We calculate bulk turnover time as soil carbon
stocks over respiration; however, similar results would
be predicted from a one-pool model where bulk turn-
over time is estimated by parameter fitting to observed

soil carbon stocks over time constrained by plant
growth (carbon inputs) and microbial respiration (car-
bon outputs). We perturb the soil from steady state
with a 20% step increase in carbon inputs, matching the
average effect of elevated CO2 in van Groenigen et al.
(2014) as an example.
The result is that total respiration responds more

quickly than total carbon stocks, as the soil now has a
larger proportion of fast- vs. slow-cycling carbon pools
because of the new inputs (Fig. 1a). As a result, a faster
bulk decomposition rate is calculated when the (fast
and slow) carbon pools are aggregated into a one-pool
model (Fig. 1b). However, this increase in decomposi-
tion does not result from a change in individual pool
decomposition rates, ki, but rather from having more
carbon in the fast-cycling pool; the increase is an artifact
of treating a multi-pool system as a one-pool system
and persists for decades to centuries. This effect on bulk
k (and s) in response to elevated CO2 (‘false priming’) is
also evident in simulations of five ESMs participating
in the CMIP5 experiment, despite the fact that these
models do not include mechanisms that could produce
priming (Koven et al., 2015).
The conceptual diagram in Fig. 2 illustrates how an

aggregated one-pool model – applied to a system that
has more than one carbon pool – can infer a decrease in
the bulk turnover time (increase in k) as a consequence
of the inappropriate model structure. We start with a
two-pool model, as the simplest example of multiple
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and s2 = 50 years) in response to a 20% step increase (at year 5) in soil carbon inputs. Carbon use efficiencies of 0.30 and 0.45 (respired

fractions of 0.70 and 0.55) were used for the fast and slow carbon pools, respectively, where a fraction of the carbon uptake from each
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(k = 1/s) as a percent increase after the disturbance.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 4298–4302

MODEL STRUCTURES FOR ESTIMATING PRIMING 4299



	

 31 

 
 
Figure 2: Conceptual diagram illustrating how aggregating a system with two SOM pools into a one-pool 
SOM model can exhibit a false priming response.  
This appears as a decrease in the bulk turnover time (τ) without a change in the individual turnover times of the fast 
(C1) and slow (C2) cycling pools (τ1 and τ2, respectively). The bulk turnover time (one-pool model) of an aggregated 
multi-pool system is defined as the total concentration of carbon stocks divided by the total CO2 flux respired as 
output. Turnover time is the reciprocal of the decomposition rate constant (k). (Left) Two SOM pools before an 
increase in carbon inputs. (Right) Response of the two SOM pools to an increase in carbon inputs into the fast-
cycling pool. In this case, the bulk turnover time τ decreases (k increases) with time. Note, for simplicity of 
illustration, carbon use efficiencies equal to zero (respired fraction equal to one) are used in this figure. 
 
For simplicity, we use a two-pool model to show the weakness of aggregating a system with 
multiple underlying carbon pools into a one-pool model, but even a model with two or more 
pools may lead to errors in assessing the effects of CO2 fertilization or inferring SOM priming. 
Depending on the model parameters, a two-pool model can result in a wide range of false 
priming (reduction in bulk turnover time) responses to increased inputs, as shown in our 
sensitivity analysis (Fig. 3). 
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Figure 3: Sensitivity analysis depicting the potential magnitude of false priming inferred from aggregating 
two SOM pools with a range of parameter values into a one-pool model.  
Contour plot of the percent increase in overall k [taken 5 years after a 20% increase in inputs to approximate the 
observational meta-analysis of van Groenigen et al. (2014), as an example] for a range of carbon use efficiencies of 
the fast pool (CUE1) and turnover times of the slow pool (τ2). The turnover time of the fast pool (τ1 = 1 year) and 
carbon use efficiency of the slow pool (CUE2 = 0; i.e. all carbon used for respiration) were held constant to explore 
the effect of CUE1 and τ2 only. 
 

Bias in quantifying priming with a one-pool model 
 
A single-pool model can be used to detect the presence of priming only when a sufficiently large 
change in respiration is observed, i.e., when more carbon is respired than (a) is added or (b) the 
bias that results from aggregating a multi-pool system. For example, if inputs increased by 20% 
and outputs by 25%, the additional 5% increase is clearly from faster decomposition rates of 
existing carbon stocks. If outputs increased by less than 20%, however, it is possible that the 
carbon use efficiency (CUE; defined as the fraction of carbon uptake from each pool that is 
allocated to microbial growth and transferred to another soil carbon pool, i.e., not respired) and 
shift in pool sizes of the underlying multi-pool system caused the observed change in bulk 
decomposition rate (Figs. 1-3).  
 
To determine the likely range of bias due to analyzing observations with a one-pool model, we 
performed a sensitivity analysis using a range of carbon use efficiencies and pool-specific 
decomposition rate constants (Fig. 3). We again aggregated a two-pool model into a one-pool 
model and examined the false priming response that resulted from different parameterizations. 
Because the typical values of the model parameters can vary within actual soil and between 
models, we present the potential magnitude of false priming for a range of carbon use 
efficiencies of the fast pool (CUE1) and turnover times of the slow pool (τ2). 
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We infer from Fig. 3 that only respiration above the ~9-16% increase in k obtained by 
aggregating two SOM pools into a one-pool model can be attributed to priming, depending on 
the range of representative system parameters. This false priming estimate is corroborated by the 
~7%-14% reduction in overall turnover time observed in the CMIP5 models in response to a 
20% increase in NPP (Koven et al., 2015).  Consequently, the magnitude of priming that can be 
concluded from a one-pool model alone is roughly equal to the difference between the inferred 
change in k and that expected from simply treating a multi-pool system as a single pool – i.e., 
much smaller than estimated in most of the studies cited above. In cases where the reported 
response of k is within the range of the response (bias) expected from using the typical range of 
Century-model (Parton et al., 1987) parameters (Fig. 3), an increase in intrinsic decomposition 
rates (priming) cannot be concluded from an analysis or meta-analysis that relies on a one-pool 
model. 
 

Towards models and observations to quantify and predict priming 
 
The mechanisms hypothesized to cause SOM priming (e.g., increased microbial production of 
extracellular enzymes, enhanced mycorrhizal activity, changes in microbial community 
structure) are absent from conventional pool-based models (Kuzyakov, 2010; Blagodatsky et al., 
2010). It is therefore possible that the typically rapid microbial turnover of increased exudation 
or fine-root necromass could explain the increase in respiration observed in litter addition and 
CO2 enrichment experiments that have not traced sources of respiration, for instance, without 
there being a change in the original SOM pool dynamics. For example, such an increase in 
respiration without a change in decomposition rate constants has been observed across a tropical 
montane forest (Giardina et al., 2014). Unless the increase in respiration is significantly larger 
than the sum of increased inputs resulting in an overall decrease of soil carbon, or unless 
observations, such as isotopic tracers, are available that trace the fate of inputs and the source of 
respiration, inferences of enhanced degradation of existing SOM will remain highly uncertain. 
Analyzing observations with a model structure that includes the hypothesized mechanisms of 
priming (e.g., microbial and enzymatic activity) is also an important next step. 
 

Conclusions 
 
Soil carbon comprises a range of organic matter pools and therefore, using a simple, first-order 
model to infer complex carbon dynamics may lead to erroneous conclusions. Using a multi-pool 
soil carbon model with an imposed increase in carbon inputs, we have shown that the behavior of 
bulk turnover time (i.e., the turnover time estimated from aggregating multiple pools into a 
single pool) may mistakenly be interpreted as priming, despite constant intrinsic decomposition 
rates of individual SOM pools. Thus, we conclude that the priming effect cannot be quantified 
using measurements of bulk carbon stocks and CO2 flux alone, but requires knowledge of the 
fate of new plant inputs. 
 
To distinguish if CO2 respiration originates from new carbon inputs or older native soil, studies 
using natural abundance radiocarbon or 13C- or 14C-labeled inputs provide useful results 
(Kuzyakov et al., 2000; Fontaine et al., 2007; Paterson et al., 2013; Hopkins et al., 2014). Since 
microbes are an active driver of carbon and nitrogen turnover in soil, microbial biomass 
measurements can also provide a constraint on changes to carbon dynamics (Blagodatskaya & 
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Kuzyakov, 2008; Blagodatsky et al., 2010). These data should be used to inform estimates of 
priming, whether analyzed as changes in decomposition rate constants in multi-pool models or as 
microbial activity in microbe-enabled models (Blagodatsky et al., 2010; Riley et al., 2014; Tang 
& Riley, 2015; Wang et al., 2014). Such information can then be used to parameterize this 
priming effect in SOM models (Wieder et al., 2013; Guenet et al., 2013; Sulman et al., 2014) 
that can be incorporated into ESMs. 
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CHAPTER 4: Microbial community-level regulation explains soil carbon responses to long-
term litter manipulations  
 
This chapter is reprinted, with permission, from the original journal article:  
 

Georgiou, K., R. Z. Abramoff, W. J. Riley, M. S. Torn. Microbial community-level regulation 
explains soil carbon responses to long-term litter manipulations. Nature Communications, 1-10 
(2017).  
 

Abstract 
 
Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity 
mediated by changes in plant inputs. Many microbial models of soil organic carbon (SOC) 
decomposition have been proposed recently to advance prediction of climate and carbon (C) 
feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC 
insensitivity to long-term changes in C inputs. Here we diagnose the source of these problems in 
four archetypal models and propose a density-dependent formulation of microbial turnover, 
motivated by community-level interactions, that limits population sizes and reduces oscillations. 
We compare model predictions to 24 long-term C-input field manipulations and identify key 
benchmarks. The proposed formulation reproduces soil C responses to long-term C-input 
changes and implies greater SOC storage associated with CO2-fertilization-driven increases in C 
inputs over the coming century compared to recent microbial models. This study provides a 
simple modification to improve microbial models for inclusion in Earth System Models. 
 

Introduction 
 
Understanding and quantifying the response of soil organic carbon (SOC) – the largest actively 
cycling terrestrial pool of organic carbon – to climatic and land-use change is imperative for 
projecting carbon (C) cycle dynamics. In most global- and ecosystem-scale biogeochemical 
models, SOC decomposition is directly proportional to the size of the soil carbon pool, with 
additional rate coefficients that account for soil moisture and temperature effects (i.e., “pseudo-
first-order models”). This formulation is inherently unable to reproduce potentially critical 
feedbacks, such as priming (accelerated decomposition) of native SOC stocks due to, for 
example, increased plant root exudates at elevated CO2 concentrations 1,2. In fact, it has been 
widely observed that changes in plant C inputs to soils result in diverse, nonlinear responses of 
SOC stocks due to microbial population dynamics and competing decomposition and 
stabilization mechanisms 3–9. These types of responses are particularly important in the face of 
atmospheric, climatic, and land-use change, which will affect the amount of plant C inputs that 
enter the soil – e.g., through changes in plant productivity, rooting depth, allocation, and species 
distributions 1,2,10–12. 
 
Since soil microbial activity mediates SOC decomposition, increases in microbial activity 
following increases in plant inputs may limit SOC accumulation by stimulating decomposition 
3,6,13. Microbial models of SOC decomposition seek to capture this potential carbon-
concentration feedback by explicitly representing microbial or enzymatic degradation of SOC 14. 
Decomposition rates thus depend not only on the size of the SOC pool, but also on the size and 
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composition of the decomposer microbe pool 14–19. Many microbial models have been proposed 
in recent years 14,20–22, as part of a burgeoning effort to understand and predict soil 
biogeochemical dynamics. Such models have even been applied to make predictions at the global 
scale 23,24, despite limited mathematical analyses of their dynamics and response to long-term 
perturbations 25–29. These models can be grouped according to the complexity they represent 
(Fig. 1), and require careful theoretical and computational investigation to diagnose emergent 
dynamics. Within this framework, we used four archetypal models to investigate the observed 
divergence of model predictions from observations and the emergence of unrealistic, decadal 
SOC oscillations in response to changes in C input.  
 

 
Figure 1: SOC decomposition models compared in this study.  
(a) 2-pool microbial model with SOC (CS) and microbial biomass C (MBC; CB) pools. (b) 3-pool linear, first-order 
model with SOC, MBC and dissolved organic C (DOC; CD) pools. (c) 4-pool microbial model that includes 
enzymatic (CE) decomposition of SOC and subsequent assimilation (uptake) of DOC. (d) 5-pool microbial model 
that includes sorption of organic matter onto mineral surfaces to form mineral-associated organic C (Cq) that is 
protected from enzymatic attack. 
 
Although oscillations of microbial biomass and activity may occur in microsites within the soil 
in response to a perturbation, such behavior is not commonly observed at the ecosystem scale or 
at daily and longer time scales 30–32. That is, oscillations may occur in neighboring soil microsites 
or within hotspots, but do not appear when aggregated at the field scale because they are out-of-
phase and are smoothed out by destructive interference 33,34. However, the latter (larger) scale is 
that at which these oscillatory models are often applied 23,27,35. There is also a disconnect 
between the timescales of observed versus predicted oscillations, where most microbial models 
exhibit oscillations on the decadal scale 27,35. Thus, a key question is one of scale – the 
oscillations arising from microbial models are not observed at the large temporal and spatial 
scales at which the models are applied. Microbial models have therefore been avoided in recent 
studies largely on account of this unrealistic behavior 36. While several studies have explored the 
emergence of decadal oscillations 26–28,35,37, a thorough analysis that diagnoses the source of this 
behavior and proposes modifications to remedy it is still needed. 
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Many microbial models consider substrate-microbe interactions at the level of individual 
microbes; however, at the community level, regulatory mechanisms – e.g., competition, space 
constraints, and other controls that depend on the density of individuals, such as disease and 
production of toxins – may limit microbial population sizes 34,38–42. Indeed, representing such 
density-dependent processes in models is common in the field of population ecology, where the 
classic example is the logistic growth model that limits population size to a carrying capacity.  
While detailed models that include microbial community-level interactions (e.g., microbial 
competition, functional guilds, and stoichiometric homeostasis) do exist 34,42,43, prominent 
microbial models of SOC decomposition that are currently applied at regional to global scales do 
not impose limitations on the size of the microbial population 23,27,44. Thus, microbial biomass in 
these models can grow indefinitely given a sustained increase in C inputs; whether C inputs 
double or increase by a factor of ten, the steady-state microbial population will change 
proportionally. This, consequently, drives SOC back to its pre-disturbance steady state, rendering 
it insensitive to long-term changes in C inputs. We thus hypothesized that including community-
level regulation, via density-dependent microbial turnover, would limit both the unrealistic 
oscillations and SOC insensitivity to long-term changes in C input currently predicted by such 
microbial models.  
 
Here we compared linear and microbial SOC models ranging in complexity to systematically 
diagnose their emergent behavior and attribute unrealistic characteristics to either parametric or 
structural differences. We incorporated density-dependent microbial turnover to explore the role 
of community-level regulation on projected SOC feedbacks. Specifically, we evaluated models 
in their response to long-term changes in plant C inputs by synthesizing observations from 24 
long-term (> 5 years) litter manipulations, including the Detritus Input and Removal Treatment 
(DIRT) and Long-term Bare Fallow (LTBF) experiments, that span a range of soil types. These 
data are a unique resource for evaluating the models presented in this study and testing our 
hypothesis and, furthermore, constitute a powerful dataset for validating and benchmarking 
future SOC models. Our findings suggest that density-dependent microbial processes play an 
essential, but largely overlooked, role in regulating SOC dynamics. We discuss our results in the 
context of applying SOC models at large spatial scales and make recommendations on model 
features that are suitable for scaling up to Earth system models. 
 

Methods 
 
SOC model formulations 
 
In this study we compare four archetypal SOC models that range in complexity (Fig. 1). Such 
models are common in recent literature 14,20,54,61, and require careful theoretical investigation of 
model behavior prior to implementation on larger spatial scales. To understand their behavior in 
response to C-input perturbations, we have dissected model components and added complexity 
incrementally, beginning from the simplest 2-pool microbial model. This 2-pool model has 
appeared in many studies (e.g., in refs. 21,25,35 ), and here we adopt parameters from the version in 
ref. 35. The C pools represented in the 2-pool model (Fig. 1a) are soil organic carbon (SOC; 
denoted ,6 in subsequent equations) and microbial biomass carbon (MBC; denoted ,1). The 2-
pool microbial model can be represented as follows, 
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X2_
XC
= E −

`abc,e2f2_
gh,ei2_

+ F1,1
j         (3) 

 
X2f
XC

= k
`abc,e2f2_
gh,ei2_

− F1,1
j         (4) 

 
where E is the carbon input rate, lmno,p the maximum microbial assimilation rate of SOC,	qr,p 
the half-saturation for assimilation, F1 the microbial mortality (turnover) rate constant, and k the 
microbial C use efficiency (see Supplementary Table 1 for units and details). We also note that # 
(the density-dependence exponent) is proposed as a modification in this study, but has been 
equal to 1 (i.e., microbial mortality is directly proportional to ,1) in previous studies (e.g., refs. 
21,25,35 ). The condition F1 ≤ ,1

<=j must hold for any value of #, such that the mass balance 
constraint on microbial turnover, F1,1

j ≤ ,1, is satisfied; for # = 2, this implies that F1 ≤
<

2f
 . 

 
We compare the dynamics of this 2-pool microbe model to a 4-pool microbe-enzyme model in 
which we have added carbon pools for dissolved organic carbon (DOC; denoted ,u in all 
subsequent equations) and enzymatic carbon (ENZ; denoted ,v). This structure allows for the 
separation of enzymatic decomposition and microbial uptake of organic carbon (Fig. 1c). The 4-
pool microbial model can then be written as 
 
X2_
XC
= wE − àbc2x2y

ghi2y
+ *16F1,1

j         (5) 
 
X2z
XC

= 1 − w E + àbc2x2y
ghi2y

−
`abc,e2f2z
gh,ei2z

+ 1 − *16 F1,1
j + {v,v    (6) 

 
X2f
XC

= k
`abc,e2f2z
gh,ei2z

− F1,1
j − {|,1        (7) 

 
X2x
XC

= {|,1 − {v,v           (8) 
 
where lmno is the maximum enzymatic decomposition rate of SOC, qr the half-saturation for 
decomposition, w the fraction of inputs that enters the SOC pool, *16 the fraction of microbial 
turnover into SOC, {v the enzyme turnover rate constant, and {| the enzyme production rate 
constant. 
 
We next include mineral sorption of DOC in a 5-pool microbial model, where DOC can 
reversibly bind to mineral surfaces forming a mineral-associated C pool (denoted ,}) that is 
protected from microbial uptake (Fig. 1d). This can be represented as 
 
X2_
XC
= wE − àbc2x2y

ghi2y
+ *16F1,1

j          (9) 
 
X2z
XC

= 1 − w E + àbc2x2y
ghi2y

−
`abc,e2f2z
gh,ei2z

+ 1 − *16 F1,1
j  

           +{v,v − Fn~�,u Ämno − ,} + F~>�,}        (10) 
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X2f
XC

= k
`abc,e2f2z
gh,ei2z

− F1,1
j − {|,1        (11) 

 
X2x
XC

= {|,1 − {v,v           (12) 
 
X2Å
XC
= Fn~�,u(Ämno − ,}) − F~>�,}        (13) 

 
where Fn~� is the adsorption rate constant, F~>� the desorption rate constant, and Ämno the 
maximum DOC adsorption capacity, i.e., the mineral surface area available for organo-mineral 
interactions. 
 
Finally, we compare these microbial models to a 3-pool linear, first-order model (Fig. 1b). The C 
pools represented include SOC, DOC, and MBC, and the transfer of C between these pools is 
directly proportional only to the pool where it originates 35,67. The 3-pool linear model can be 
written as follows, 
 
X2_
XC
= wE + wuFu,u + w1w1→6F1,1 − F6,6        (14) 

 
X2z
XC

= 1 − w E + w6F6,6 + w1(1 − w1→6)F1,1 − FÉ|CnB>,u − Fu,u    (15) 
 
X2f
XC

= FÉ|CnB>,u − F1,1           (16) 
 
where F6 is the SOC decay rate constant, Fu the DOC decay rate constant of DOC, F1 the MBC 
turnover rate constant, w6 the fraction of SOC entering the DOC pool, wu the fraction of DOC 
entering the SOC pool, w1 the fraction of MBC turnover reentering the C pools (similar to a C 
use efficiency), w1→6 the fraction of retained MBC turnover C that enters the SOC pool, and 
FÉ|CnB> the DOC uptake rate constant. 
 
Density-dependent microbial turnover 
 
In population ecology, density-dependent processes, motivated by community-level interactions, 
are regulated by the size of the population itself. For example, this may take the form of density-
dependent microbial turnover that effectively limits the potential size of a population. A typical 
formulation is logistic growth 
 
X2f
XC

= { ∙ ,1 ∙ 1 −
2f
g

          (17) 
 
where { is the growth rate and q is the carrying capacity of the population. In this equation, at 
low populations, the unimpeded growth is modeled as the first term ({ ∙ ,1), which results in 
exponential growth. As the population grows, however, the second term (−	{ ∙ 2f

Ñ

g
	) begins to 

overtake the first term, thereby limiting the population size. This is an intuitive regulation of the 
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population size to some carrying capacity, resulting from competition, space constraints, and 
other density-dependent controls such as disease and toxicity. 
 
Equation (17) can be rearranged to have the same form as the microbial models presented used in 
the literature. For example, from equation (4) with # = 2, we have 
 
X2f
XC

= k ∙
`abc,e∙2f∙2_
gh,ei2_

− F1 ∙ ,1
Ö         (18) 

 
where the logistic growth parameters can be represented as  
 

{ = k ∙
`abc,e∙2_
gh,ei2_

	           (19) 
 
and Ü

g
= F1 so that  

 

q =
á

Bf
∙

`abc,e∙2_
gh,ei2_

 .          (20) 
 
Here the growth rate and carrying capacity depend on the substrate availability (,6) and thus, 
unlike most existing microbial models, microbes experience an additional constraint on 
population size.  
 
We note that the parameter # = 2 gives logistic growth, but this parameter need not be equal to 
2. In fact, any value greater than 1 will impart a density-dependent microbial turnover rate (i.e., 
more mortality when populations are large) that will limit population sizes. 
 
Parameter values 
 
For the 2-, 3-, and 4-pool models, we adapted parameter values from ref. 35 where the three 
models were fit to obtain comparable steady-state solutions among corresponding C pools in 
each model. We used empirical rate constants for the organo-mineral interactions in the 5-pool 
model 68,69 and matched the steady-state solutions of the other models. We note that a subset of 
the parameters from ref. 35 were derived from lab incubations in the literature and the remaining 
parameters were fit to attain reasonable field C pool steady-state solutions. However, rates 
measured in the lab may not be representative of process rates in the field or at ecosystem scales. 
Although we use this particular set of parameters in our numerical simulations, our analytical 
work shows that our conclusions about model behavior are robust to the choice of parameter 
values. Additional details about the parameter values are summarized in Supplementary Table 1. 
 
Analytical and numerical evaluation 
 
We analytically derived the steady-state solutions of each of the four models, with and without 
density-dependent microbial turnover, by setting all X2à(C)

XC
= 0 (where ,â(&) is the concentration 

of the ith component in time) and solving the corresponding algebraic equations. We then 
analyzed the dependence (or lack thereof) of the model steady-state solutions on the rate of C 
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inputs. Furthermore, we simulated all four models to analyze their diverse transient responses to 
increased and decreased C inputs. 
 
We also performed a stability analysis for each of the four models to understand their behavior 
and explain the emergence of oscillations with select model structures and parameter sets. We 
linearized each model using a multivariable Taylor expansion, forming the Jacobian (J) matrix 
from the first-order partial derivatives evaluated at equilibrium. The eigenvalues (äã) of the 
matrix J characterize the stability of the system, since the solution can be written as a 
superposition of exponential ^åçC terms, where & denotes time. The eigenvalues were calculated 
for each model to understand the dynamics near equilibrium, where for äã = $ã ± èã] the 
following scenarios can be summarized: (1) èã = 0, $ã < 0 corresponds to a stable mode and 
$ã > 0 to an unstable mode; and (2) èã ≠ 0, $ã < 0 corresponds to a damped (diminishing) 
oscillation, $ã > 0 to an unstable (increasing) oscillation, and $ã = 0 to a persistent oscillation 
with a period of Öí

ìç
. The damping ratio (îã) can then be defined as  

 
îã =

=ïñ

óçÑiìçÑ
           (21) 

 
for each eigenvalue äã, where î = 1 signifies a stable mode, 0 < î < 1 signifies damped 
oscillations, and î < 0 signifies an unstable equilibrium 29,70. In the case of the 2-pool microbial 
model, there is a single complex conjugate pair of eigenvalues and the corresponding value of î 
was calculated as a function of the model parameters (Fig. 2). We assign the damping ratio of the 
dominant mode (smallest î) as the damping ratio of the linearized system and use this as a metric 
to illustrate the stability of the models under different parameter sets and with/without density-
dependent microbial turnover. 
 
Long-term C input simulations and observations 
 
We simulated the response of the models to a doubling (2X; 100% increase) and removal (0X; 
100% decrease) of C inputs, following the manipulations of the long-term Detritus Input and 
Removal Treatment (DIRT) and Long-term Bare Fallow (LTBF) experiments. We then 
compared the model results to our synthesis of long-term observations from DIRT and LTBF 
studies. We compiled DIRT and LTBF data of SOC and MBC from 18 sites with 24 total (6 
doubled litter and 18 litter removal) manipulations, each across several time points ranging from 
5 to 80 years (summarized in Supplementary Tables 2-3). We provide a summary of the findings 
across these sites, but focus our model-data comparison on experiments with over 20 years of 
measurements; for example, the 50+ year Noe and Wingra Woods Wisconsin DIRT experiment 
30 and the 50+ year LTBF experiments 31. We also synthesized MBC observations 55,56, which are 
summarized in Supplementary Fig. 12.  
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Results 
 
Analytical steady-state solutions of models 
 
For each SOC model (Fig. 1), we derived the analytical steady-state solution as a function of 
model parameters (Table 1). In the absence of density-dependent microbial turnover (i.e., for 
density-dependent exponent # = 1; see Methods), the steady-state SOC stock (denoted ,6) is not 
a function of total C inputs (denoted E), but only of select system parameters. For example, for 
the 2-pool microbial model with # = 1 (Fig. 1a): 
 
,6 =

gh,e	∙	Bf	

á	∙	`abc,e	=	Bf	
           (1)  

 
at steady state (Table 1), where lmno,p is the maximum microbial assimilation rate,	qr,p the 
half-saturation for assimilation, F1 the microbial turnover rate constant, and k the microbial C 
use efficiency (Supplementary Table 1). Conversely, the 3-pool linear, first-order model (Fig. 
1b) always predicts that the ,6 steady-state solution is directly proportional to total C inputs 
(Table 1). In the microbial models with # = 1 and the 3-pool linear model, the steady-state 
microbial biomass carbon (MBC; denoted ,1) is directly proportional to the C input rate. For 
example, for the 2-pool microbial model with # = 1: 
 
,1 =

á	∙	Z

<=á 	∙	Bf
 .          (2) 

 
This implies that, for the microbial models with # = 1, the ratio of MBC to SOC (,1/,6) is 
proportional to the C input rate (Supplementary Note 1). With density-dependent microbial 
turnover (# > 1), however, the microbial models predict a sensitivity of the ,6 steady state to C 
inputs and the ,1 steady state remains responsive, but not proportional, to C inputs (Table 1). 
This allows the ratio of MBC/SOC to be largely independent of the C input rate depending on 
the value of #, as is also the case for the 3-pool linear model (Table 1). These are fundamental 
differences among the predictions of microbial models, and between microbial and linear models 
that are a direct consequence of model structure, and not the parameters. 
 
Dynamic response of models to perturbations 
 
We analytically and numerically explored the stability of each model and its response to C-input 
perturbations, using a change in both SOC and DOC inputs as a general case. We found that the 
microbial models in recent literature (i.e., the 2-, 4-, and 5-pool models with # = 1; Fig. 1a,c,d) 
are particularly prone to oscillations as a consequence of their model structure and parameters. 
For common parameter values (Supplementary Table 1), these models exhibit damped 
oscillations with a period of 10 to 20 years in response to an increase in C inputs (Fig. 2; 
Supplementary Figs. 1-3). This behavior is largely due to an imbalance between the C 
assimilation term, which has a positive sign and is proportional to ,1 in the differential equation 
for X2f

XC
, and the microbial turnover (mortality) term. Microbial assimilation (hereafter C uptake) 

is represented as k `abc,e	∙	2à	∙	2f
gh,e	i	2à

, where ,â represents SOC (,6) in the 2-pool model and DOC 

(,u) in the 4- and 5- pool models. When this C uptake exceeds the mortality term, the microbial 
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population experiences exponential growth until it consumes too much substrate, causing a 
transient crash in the population until the substrate can recover – and the cycle repeats. We 
calculated the characteristic damping ratio (î; see Methods) and the period of oscillations from 
the eigenvalues of each linearized system and found that they strongly depend on the parameters 
lmno,p, qm,p, k, and F1, as well as # (Fig. 2; Supplementary Figs. 2, 4 and 5; parameter details 
in Supplementary Table 1). A damping ratio of î = 1 (i.e., stable system with no oscillations) is 
achieved for any # ≥ 1.5 in the 2-pool model (Fig. 2). 
 
Table 1: Steady-state solutions of the SOC decomposition models.  
 

2-pool microbial 
model (for all #) * 

,6 =
gh,e	∙	Bf	∙	2f

ú?ù

á	∙	`abc,e	=	Bf	∙	2f
ú?ù      

 

,1 =
á	∙	Z

<=á 	∙	Bf

</j
  

3-pool linear model 

,6 =
ûZi2z(ûzBziBü†Ab@°ûfûf→_)

B_
  

 

,u =
Z	[ <=û iûû_]

[Bü†Ab@°iBziBü†Ab@°ûf ûf→_=<=ûf→_û_ =ûzBzû_]
  

 

,1 =
Bü†Ab@°2z

Bf
  

4-pool microbial 
model (for all #) * 

,6 =
gh	∙ 	û	∙	Z	i	Bf	∙	nf_	∙	2f

ú

	 àbc	∙	
§†
§x
	∙	2f	=	 	û	∙	Z	i	Bf	∙	nf_	∙	2f

ú 	
      

 

,u =
gh,e	∙	 Ü†	i		Bf	∙	2f

ú?ù

á	∙	`abc,e	=	 Ü†	i		Bf	∙	2f
ú?ù       

 
F1,1

j + {|,1 = 	
á	∙	Z

<=á
   (implicit equation for all #) 

 

,v =
Ü†	∙	2f
Üx

  

5-pool microbial 
model (for all #) * 

,6 , ,u , ,1 , ,v   (same as 4-pool model for all #) 
 

,} =
Bb•y	∙	¶abc	∙	2z
B•°yi	Bb•y	∙	2z

  

* General expressions are given for any value of density-dependent microbial turnover (#), where 
microbial models in the literature do not include density-dependence, i.e., # = 1. Parameter definitions 
can be found in Supplementary Table 1. 
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Figure 2: Damping ratio of the 2-pool microbial model as a function of the model parameters.  
The damping ratio (î) is a metric that depicts the degree of oscillatory behavior of the linearized system near its 
steady state, where î = 1 signifies a stable node, 0 < î < 1 damped (diminishing) oscillations, −1 < î < 0 
unstable (growing) oscillations, and î = −1 an unstable node. Here all parameters were varied independently from 
their default value (Supplementary Table 1) by the given multiplier (x-axis) to illustrate the inherent sensitivity of 
the oscillations on the parameter values. The model stability is very sensitive to the density-dependence exponent 
(#). 
 
We also analyzed the scenario where the change in C inputs occurs unevenly among pools, 
entering either the SOC pool (E6) or the DOC pool (Eu), for example, in contrast to the change in 
C inputs entering both pools. That is, we performed simulations in which E6, Eu, or both (E =
E6 + Eu) are perturbed (Supplementary Note 2). This analysis was motivated by the potential for 
the fraction entering each pool (w) to change, where E6 = w ∙ E and Eu = (1 − w) ∙ E. This 
numerical experiment showed that the transient dynamics and steady-state responses of all 
models (i.e., the microbial models and the first-order, linear model) depended on which C input 
(SOC or DOC) was perturbed (Supplementary Figs. 6 and 7). The response of the steady-state 
SOC stock to a range of C input treatments (from complete removal to doubling of E6, Eu, or 
both) was compared for the 3-pool linear model and the 4-pool microbial model with and 
without density-dependent microbial turnover (Supplementary Fig. 7). We observed that without 
density-dependent microbial turnover, the 4-pool model steady-state SOC stock was insensitive 
to changes in the total C inputs (I), consistent with its analytical steady-state solution (Table 1). 
 
Density-dependent microbial turnover 
 
We evaluated the effects of density-dependent microbial turnover (i.e., setting the mortality rate 
proportional to ,1 j with # > 1) and found that the SOC oscillations in response to changes in 
C inputs (as observed in the literature for # = 1) can be reduced or completely removed (Fig. 3). 
While an exponent of # = 2 leads to logistic growth, we note that # can take on any value > 1 
to reduce SOC oscillations (Figs. 2 and 3). We further explored the effect of # on the percent 
change in steady-state SOC following a range of step changes in total C inputs (Fig. 4).  For # =
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1, the model reduces to the common microbial model where the long-term SOC is insensitive to 
any change in total C inputs. As the exponent (# > 1) increases, however, the long-term SOC 
becomes increasingly sensitive to changes in C inputs. 
 

 
Figure 3: Response of SOC and MBC to a sustained doubling of C inputs in the 2-pool microbial model with 
and without density-dependent microbial turnover.  
(a) Percent change of modeled SOC following a 2X step increase in total C inputs. (b) Percent change of modeled 
MBC following a 2X step increase in total C inputs. The value of the parameter # depicts the strength of density-
dependent microbial turnover, where # = 1 corresponds to no density-dependence and # = 2 to a strong density-
dependence. 
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Figure 4: Percent change in the SOC steady state following a range of step changes in C inputs with a range 
of ! values in the 2-pool microbial model.  
The value of # depicts the strength of density-dependent microbial turnover, where # = 1 gives the widely used 2-
pool microbial model without density-dependence and # = 2 gives a strong density-dependence. 
 
In all models without density-dependence, heterotrophic respiration (CO2 efflux) is always 
directly proportional to MBC (Supplementary Figs. 8 and 9). When density-dependence is 
incorporated, steady-state respiration doubles for a doubling of C inputs, but the steady-state 
MBC does not double due to constraints that limit population size (Supplementary Figs. 4b,c and 
8b,c). This response is effectively an increase in the specific respiration rate as microbial 
populations increase, since there is proportionally more respiration per unit of MBC.  
 
Doubling C inputs in models and experiments 
 
We compared the response of all four models to a doubling of total C inputs (Fig. 5a,c) with our 
synthesis of DIRT experiments, in which C inputs to the soil were doubled at 6 different sites 
over 5 to 50 years (Fig. 6a; Supplementary Table 2). The two longest-running DIRT sites, Noe 
and Wingra Woods (50 years), showed similar increases in SOC stocks in response to doubling 
C inputs, where SOC approached a new steady state that was ~40% higher than the control (Fig. 
6a). Similar SOC responses were observed at other DIRT sites, with SOC stocks varying 
between 0 to 60% of the pre-disturbance steady state after 5+ years of treatment (Fig. 6a; 
Supplementary Figs. 10a and 11). 
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Figure 5: Response of SOC and MBC to doubling and removal of C inputs in models.  
(a,c) Percent change of modeled SOC and MBC following a 2X step increase in inputs. (b,d) Percent change of 
modeled SOC and MBC following sustained 0X inputs. A value of # > 1 corresponds to a microbial model with 
density-dependent microbial turnover. The 5-pool microbial model overlaps with the 4-pool microbial model for the 
parameter set in Supplementary Table 1. 

 
The microbial models without density-dependence are unable to capture the range of SOC 
responses observed in the DIRT experiments (Figs. 5a and 6a), as a direct consequence of their 
model structure. Similarly, the linear model structure predicts that the SOC steady state will 
always change proportionally to the change in C inputs. These two model formulations are thus 
limited in the SOC responses that they can predict, and do not match observations given an 
increase in total C inputs. In contrast, the microbial models with density-dependence can, 
depending on the value of #, capture a change in the long-term SOC stocks that is within the 
range observed from experiments (dark blue line, Fig. 5a; Fig. 6a). Long-term (> 5 years) MBC 
measurements and replicates were not available from most DIRT plots and, therefore, the 
comparison with MBC model output for a doubling of C inputs was inconclusive 
(Supplementary Table 2; Supplementary Fig. 12a). 
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Northern Hemisphere peak of 933 % in 1963 (Hua
and Barbetti 2004). Because all experimental plots

began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis

For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-
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fractions consist of single values, so it was not possible
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treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean
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in SOC relative to the Control.

Results

Bulk C response to detrital manipulation
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After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls
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where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.
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over time (1997–2006). In 1997 in Curtis Prairie 1, soil
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lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By

2006 No Litter plots showed slight, but significant

decreases in soil C compared to Controls for Prairie 1
but not Prairie 3; there were no differences between C
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Input plots lost 69–71 % of total soil C content after
50 years. Soil N followed patterns of soil C, although

years of treatment
0 10 20 30 40 50 60

m
g 

C
 g

-1
 s

oi
l

0

10

20

30

40

50

60

control
double litter
no litter

years of treatment
0 10 20 30 40 50 60

0

10

20

30

40

50

60A B

Fig. 1 SOC concentrations for Noe Woods (a) and Wingra
Woods (b) in the Wisconsin DIRT plots in 1984, 1997 and 2006.
Values are means ± 1 standard error, n = 4. Significant

differences in values between treatments within a site in 2006
are shown in Table 2. When SE bars are not shown it is because
the SE was smaller than the symbol

346 Biogeochemistry (2014) 119:341–360

123

Northern Hemisphere peak of 933 % in 1963 (Hua
and Barbetti 2004). Because all experimental plots

began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis

For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-

amples into one homogenous sample per experimental

plot for density fractionation. Thus d13C and D14C on
fractions consist of single values, so it was not possible

to run statistical tests. Total C values were pooled

within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental

treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results

Bulk C response to detrital manipulation

There were significant differences in soil C among

detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil

C concentration in the top 10 cm was significantly

lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By

2006 No Litter plots showed slight, but significant

decreases in soil C compared to Controls for Prairie 1
but not Prairie 3; there were no differences between C

content loss in No Litter versus No Root plots. No

Input plots lost 69–71 % of total soil C content after
50 years. Soil N followed patterns of soil C, although

years of treatment
0 10 20 30 40 50 60

m
g 

C
 g

-1
 s

oi
l

0

10

20

30

40

50

60

control
double litter
no litter

years of treatment
0 10 20 30 40 50 60

0

10

20

30

40

50

60A B

Fig. 1 SOC concentrations for Noe Woods (a) and Wingra
Woods (b) in the Wisconsin DIRT plots in 1984, 1997 and 2006.
Values are means ± 1 standard error, n = 4. Significant

differences in values between treatments within a site in 2006
are shown in Table 2. When SE bars are not shown it is because
the SE was smaller than the symbol

346 Biogeochemistry (2014) 119:341–360

123

SO
C 

(m
g 

C 
g-1

 so
il)

 

Years of treatment 

%
 ch

an
ge

 in
 S

O
C 

Years of treatment 

%
 ch

an
ge

 in
 M

BC
 

Years of treatment 

Control 
2-pool, β = 1 
4-pool, β = 1 

4-pool, β = 2 
Linear 

Northern Hemisphere peak of 933 % in 1963 (Hua
and Barbetti 2004). Because all experimental plots

began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis

For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-

amples into one homogenous sample per experimental

plot for density fractionation. Thus d13C and D14C on
fractions consist of single values, so it was not possible

to run statistical tests. Total C values were pooled

within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental
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and Barbetti 2004). Because all experimental plots

began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.
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respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-
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fractions consist of single values, so it was not possible
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within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental

treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results
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detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after
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significantly in No Litter plots, the decrease in C

content was 40–47 %.
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Input plots lost 69–71 % of total soil C content after
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began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.
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For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-
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fractions consist of single values, so it was not possible
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within ecosystems by treatment (e.g., data for Noe and
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treatment), however, with n = 2 we were not able to
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then, represent where both sites comprising the mean
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although values were more variable (data in see
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plots, bulk C concentration decreased by *55 % after
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in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls
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where litter was excluded. In the forested No Litter
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Figure 6: Response of SOC to doubling and removal of C inputs in long-term litter manipulations.  
(a) Percent change in SOC at Detritus Input and Removal Treatment (DIRT) experiments after a sustained 2X step 
increase in inputs. (b) Percent change in SOC at DIRT and Long-Term Bare Fallow (LTBF) experiments after 
sustained 0X inputs. Points indicate means and bars the standard error of the mean. Individual points are separated 
by site in Supplementary Fig. 10 and data sources are reported in Supplementary Tables 2-3. 
 
Removing C inputs in models and experiments 
 

We compared SOC and MBC projections for a complete removal of C inputs (Fig. 5b,d) to the 
analogous treatments in the DIRT and LTBF experiments (Fig. 6b; Supplementary Fig 10). We 
synthesized results from 18 different sites with measurements spanning 5 to 80 years 
(Supplementary Tables 2-3) 30,31,45–47 and summarized the observed SOC and MBC responses 
(Fig. 6b; Supplementary Figs. 11 and 12b). The microbial models without density-dependence 
(# = 1) predicted a rapid decrease in MBC, where MBC completely died out within 10 years, 
despite remaining SOC stocks; only ~20% of SOC stocks were lost by the time MBC declined to 
zero (Fig. 5b; Supplementary Fig. 13). In contrast, the linear model showed a gradual decrease in 
all pools, approaching zero after 80+ years. While the microbial models with density-dependent 
turnover (# = 2) gave similar predictions for C input removal to the linear model, they 
experienced a faster SOC decline in the first two decades that became more gradual over time 
(Fig. 5b). All of the long-term C-input removal sites showed a gradual decrease in SOC stocks 
(Fig. 6b), where most sites reached a period of slower decomposition by 50 years, and MBC 
decreased but did not die out (Supplementary Fig. 12b; Supplementary Tables 2-3). 

Discussion & Conclusions 
 

Due to the important contribution of SOC to the terrestrial C budget following changes in plant 
productivity, it is crucial that soil C models are able to capture the transient and steady-state 
dynamics of long-term C-input manipulations in the field. Our results show that, across the range 
of model complexities investigated, microbial models without density-dependent microbial 
turnover (i.e., # = 1) return to their pre-disturbance SOC steady state following a sustained 
increase in total C inputs, for any increase in inputs (Fig. 4; Supplementary Fig. 7). This behavior 
is a direct consequence of the microbial model structure, which also results in damped decadal 
oscillations for most parameter sets reported in the literature (Fig. 2). The decoupling of C inputs 
and long-term SOC stocks has been observed in several modeling studies that effectively used 
# = 1 20,23,25. The proportionality between C inputs and long-term MBC (and the resulting 
insensitivity of long-term SOC) implies that MBC is only limited by the C input rate 
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(Supplementary Fig. 7), but in fact it can also be limited by community-level regulatory 
mechanisms 38–41. In microbial models with # = 1, a change in C inputs drives a proportional 
change in the long-term ratio of MBC to SOC (,1/,6; see Supplementary Note 1), in contrast to 
global observations that suggest this ratio is confined to a rather narrow range 48. 
 
Increasing the density-dependence # > 1 strengthens community-level regulation of MBC, and 
therefore limits how large (and how quickly) the MBC pool can grow or decline (Fig. 3). The 
case of # = 2 has been widely used in modeling population dynamics, including past 
biogeochemical models 18, and it is a logical modification: microbes experience proportionally 
more mortality (e.g., due to competition, space-constraints, disease, and production of toxins) as 
their concentrations increase. We show that a value of 1 < # < 2 imparts a moderate SOC 
sensitivity to C inputs and acts to reduce oscillations (Figs. 2 and 3).  We expect the effective 
value of # to vary between biomes, and potentially with depth, depending on the strength of 
microbial community-level regulation that arises from biotic and abiotic limitations. The high 
sensitivity of microbial model predictions to changes in # highlights the need for experiments 
that quantify its value and its relation to explicit underlying regulatory mechanisms in different 
soils. Meta-analyses exploring MBC/SOC ratios 48,49 and emergent scaling relationships of 
microbial function 50–53 corroborate the density-dependent turnover (# > 1) formulation and are 
invaluable for constraining the value of # in future modeling studies.  
 
Plant-input manipulation experiments show that long-term measured SOC stocks are, in fact, 
sensitive to C input rate in the field, contrary to the predicted SOC stocks from most microbial 
models (Figs. 5a and 6a). Following an increase in C inputs, microbial models without density-
dependent turnover (i.e., # = 1) overestimate the response of MBC and, thus, underestimate the 
response of SOC (Figs. 5a,c and 6a). This suggests that a mechanism limiting the size of the 
microbial pool is necessary, and consistent with a density-dependent turnover formulation. 
Furthermore, in microbial models with # = 1, MBC disappears within 5-10 years of ceasing 
plant inputs (Figs. 5d), and SOC decreases too quickly to a nonzero value and is invariant once 
microbes die out (Figs. 5b and 6b). The complete loss of MBC after cessation of C inputs was 
also predicted by a microbial model (with # = 1) that included organo-mineral interactions and 
microbial physiology 54 (similar to the 5-pool model, Fig. 1d), but this prediction had not been 
compared to data. In contrast, the empirical evidence synthesized here 55–57 suggests that SOC 
and MBC continue to decrease slowly over decades (Figs. 6b; Supplementary Fig. 12). Density-
dependent turnover in microbial models slows the decay of SOC and MBC such that they persist 
for 80+ years, better matching observations and further corroborating the need for a density-
dependent turnover formulation. 
 
We note that other microbial model formulations exist in the literature that behave differently 
than the class of models presented in this study. For example, the so-called ‘reverse Michaelis-
Menten’ microbial model 14,19,58 – a class of Equilibrium Chemistry Approximation (ECA) 
kinetics 59,60 – predicts a slight sensitivity of the SOC steady state to C inputs, but the MBC 
steady state is again directly proportional to the C input rate 26. While this formulation dampens 
oscillations 26, the decadal oscillations do persist, and the long-term response to C-input 
manipulations has not been evaluated. Another example is the MIcrobial-MIneral Carbon 
Stabilization (MIMICS) model 22,61. Recently, the microbial turnover rate in MIMICS was 
modified by a factor of E (where E denotes C inputs) to better explain litter decomposition 
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observations 62. Interestingly, explicit density-dependent microbial turnover in microbial models 
can be shown to impart this same modification on the microbial turnover rate over long 
timescales; for # = 2,	,1~ E and thus microbial turnover is proportional to E	,1.  
 
Dormancy is another mechanism that has recently been incorporated in microbial models and has 
shown promise in better matching respiration seasonality and moisture sensitivity 63. A 
dormancy formulation allows microbes to switch from an active state (in which they decompose 
SOC and proliferate) to a dormant state 63,64. In the case of substrate limitation or starvation 
following C input removal, this mechanism may help preserve MBC, albeit in a dormant state, 
over longer periods of time than in microbial models without dormancy. This MBC would then 
be available to respond rapidly to future increases in C inputs and favorable environmental 
conditions, as observed in field and laboratory experiments 46,56,57. However, if dormancy 
approaches zero when C inputs to the soil are increased 63,64, the resulting model approaches the 
microbial models without dormancy and will still be insensitive to increases in C inputs. Thus, 
even with dormancy, future formulations are likely to require a density-dependent turnover, 
either in the microbial mortality term or in the transition between active and dormant microbial 
states. 
 
When connecting global change experiments to model predictions, variable changes in plant C 
inputs over time (as opposed to step-changes in many manipulations) may prevent SOC from 
reaching a steady state on relevant time scales. Thus, models must accurately capture transient 
dynamics, where community-level regulation (i.e., here density-dependence with # = 2) plays a 
key role.  Step-change scenarios are also highly relevant for studying the impacts of land-use 
change. While we have focused on C-only manipulations in this study, more complex models 
that explicitly represent nutrients may be necessary to capture other biogeochemical interactions; 
e.g., addition/limitation of nitrogen (N) and phosphorus (P) 43. However, our results on SOC 
model stability and sensitivity to C inputs are robust and relevant to more complex C-N or C-N-P 
models as well, since a similar representation of key processes is used in such models. 
 
Given the significant and growing interest in developing microbial models for predicting soil C 
dynamics over large spatiotemporal scales, it is imperative to compare proposed models and 
validate model behaviors against observations. This validation is particularly important in light 
of the significant divergence among soil C model predictions to future temperature and C input 
change, which have far-reaching global implications 65,66. Here we diagnosed structural and 
parametric differences between models ranging in complexity, and synthesized a novel dataset 
from long-term litter manipulation experiments to evaluate the models and validate our 
hypothesis. Analyzing the underlying mechanisms of simple microbial models allowed us to 
identify the source of, and potential solution to, behavior deemed unrealistic in recent studies. 
Namely, a model formulation with density-dependent microbial turnover (# > 1; arising from 
competition, space, or other community-level regulation mechanisms) reduced oscillations and 
resulted in a realistic sensitivity of long-term SOC stocks to (and a decoupling of the MBC/SOC 
ratio from) C inputs. All else equal, the proposed formulation implies larger SOC storage 
associated with expected CO2-fertilization-driven increases in C inputs over the coming century 
compared to microbial models with # = 1. Moving forward, we encourage the validation of 
subcomponents of increasingly complex microbial models before they are applied at field or 
larger scales, and a concerted effort to identify additional metrics and datasets to benchmark 
mechanistic models.  
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Supplementary Note 1 
 

In microbial models without density-dependent microbial turnover (# = 1), the steady-state ratio 
of microbial biomass carbon (MBC; ,1) to soil organic carbon (SOC; ,6) is proportional to the C 
input rate, as a result of the respective proportionality and insensitivity of long-term MBC and 
SOC to total C inputs. For the 2-pool microbial model with # = 1, the steady-state ratio of 
MBC/SOC can be written as follows 
 
2f
2_
=

®	∙	©
ù?® 	∙	@f
™h,e	∙	@f	

®	∙	´abc,e	?	@f	

 ,          (22) 

 
which is clearly proportional to the total C input rate; that is, 2f

2_
∝ E<. In contrast, for microbial 

models with density-dependent microbial turnover (# > 1), the proportionality between the 
steady-state MBC/SOC ratio and C input rate decreases. Consider the 2-pool microbial model 
with # = 2, for example. In this case, the steady-state ratio of MBC/SOC can be written as 
 

2f
2_
=

á	∙	`abc,e	=	
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ù/Ñ
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 .         (23) 

 
This quantity has two limiting cases of sensitivity to the total C input rate, depending on the 

relative magnitude of the two terms in the numerator. When (k	 ∙ 	lmno,p) > 	
á	∙	Z∙	Bf
<=á 	

</Ö
, which 

is the case for parameter sets used in the literature and given in Supplementary Table 1, then the 
steady-state MBC/SOC ratio is independent of the C input rate; that is,  2f

2_
∝ EY. This decoupling 

of the steady-state MBC/SOC ratio from the C input rate in microbial models with density-
dependence (# > 1) is corroborated by global observations showing that this ratio is confined to 
a narrow range around 1-2% 1,2. First-order models, such as the 3-pool linear model in Fig. 1b, 
also predict a steady-state MBC/SOC ratio that is independent of the total C input rate; however, 
this is simply because each pool changes proportionally to the total C inputs. This proportionality 
of SOC stocks to the change in total C inputs was not observed in the DIRT experiments (Fig. 6). 
Comparing the predicted long-term MBC/SOC ratio, in addition to individual pool sizes, to 
observations can be a useful metric for validating models and constraining the value of # in 
future studies. 
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Supplementary Note 2 
 
In the 4-pool microbial model, the SOC steady state is insensitive to changes in C inputs when 
both SOC inputs (E6) and DOC inputs (Eu) – i.e., the total E in equations (5-8) – are changed by 
the same proportion (Supplementary Figs. 6 and 7). This perturbation in total E causes an 
oscillatory response in all C pools (shown for SOC and MBC) with a period of ~20 years. The 
case where only E6 is doubled also results in oscillations; however, an increase in the SOC steady 
state of +2.9% is observed (Supplementary Fig. 6). Conversely, when only Eu is doubled, we 
observe that oscillations are largely dampened and a decrease in the SOC steady state of −5.5% 
is observed (Supplementary Fig. 6). These responses were markedly different than those of the 4-
pool microbial model with density-dependent microbial turnover (# = 2) and the 3-pool linear 
model for a doubling of E6, Eu, or both (Supplementary Fig. 6). 
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Supplementary Figures & Tables  
 

 
 
Supplementary Figure 1: Stability of the 2-pool microbial model for a range of density-dependent microbial 
turnover exponents.  
The damping ratio (î; defined in equation (21)) illustrates the degree of oscillatory behavior that the system will 
display following a perturbation. The system is increasingly stable with a larger density-dependent microbial 
turnover exponent (#), where for # ≥ 1.5, a stable node (î = 1) is achieved. 
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Supplementary Figure 2: Period of oscillation of the 2-pool microbial model as a function of the model 
parameters.  
This depicts the degree of oscillatory behavior of the linearized system near its steady-state following a perturbation. 
The period of oscillation (2π/è, where è = Im ä  for eigenvalue ä) depends on the model parameters. Parameters 
are defined in Supplementary Table 1.  
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Supplementary Figure 3: Stability and periodicity of the 2- and 4-pool microbial models without density-
dependent microbial turnover.  
Phase portrait of the relative change of soil organic carbon (SOC) and microbial biomass carbon (MBC) in response 
to a 10% change in initial conditions. For parameter sets commonly used in the literature (Supplementary Table 1), 
the 2-pool microbial model has a pair of complex eigenvalues (äã = $ã ± èã]) with $ã < 0, èã ≠ 0 and the 4-pool 
microbial model has a complex pair of ä and 2 negative real ä with $ã < 0, èã ≠ 0. Thus, both models exhibit 
damped oscillations. Similarly the 5-pool microbial model has a complex pair of ä and 3 negative real ä with $ã < 0, 
èã ≠ 0, again exhibiting damped oscillations. In contrast, the 3-pool linear model has all 3 negative, real ä with $ã < 
0, èã = 0, which signifies a stable node. The 2-pool microbial model is the most oscillatory, as expected, since its 
damping ratio is closest to zero. 
 
 
 
  

Re
la

tiv
e 

Ch
an

ge
 (%

) i
n 

M
BC

!

Relative Change (%) in SOC!

Phase Portrait of AWB and GER: 10% Increase in Initial Conditions!

Re
la

tiv
e 

Ch
an

ge
 (%

) i
n 

M
BC

!

Relative Change (%) in SOC!

Phase Portrait of AWB and GER: 10% Increase in Initial Conditions!

2-pool microbial model (β = 1)
4-pool microbial model (β = 1)



	

 63 

 
 
Supplementary Figure 4: Response of the 2-pool microbial model to a step 2X of inputs for a range of	! using 
standard parameter values.  
Percent change of modeled (a) SOC, (b) MBC, and (c) CO2, where # > 1 corresponds to a microbial model with 
density-dependent microbial turnover. The standard value of carbon use efficiency (CUE; ε) at 20°C is 0.31, as in 
Supplementary Table 1.  
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Supplementary Figure 5: Response of the 2-pool microbial model to a step 2X of inputs for a range of	! using 
a larger carbon use efficiency than the standard value.  
Percent change of modeled (a) SOC, (b) MBC, and (c) CO2, where # > 1 corresponds to a microbial model with 
density-dependent microbial turnover. Here a carbon use efficiency (CUE; ε) at 20°C of 0.90 was used. Although 
this CUE may be unrealistically high under most soil conditions, this illustrates how the transient dynamics are 
dependent on the parameter values, while the steady-state behavior is largely a consequence of the model structure. 
Here oscillations are diminished with larger CUE (as compared to Supplementary Fig. 4). Varying the parameter qm 
(not shown) results in a response curve that is less steep at early times, especially for larger # exponents. 
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Supplementary Figure 6: Response of the 4-pool microbial model with and without density-dependence and 
the linear 3-pool model to a doubling of inputs.  
SOC, DOC, or both inputs are individually doubled (2X) in each model. Left panels: Percent change in SOC with 
time. For the 4-pool microbial model, the SOC steady-state increases with 2X SOC, decreases with 2X DOC, and is 
insensitive to 2X SOC + 2X DOC. The inset plot zooms into the dashed box. Right panels: Percent change in 
microbial biomass carbon (MBC) with time.  
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Supplementary Figure 7: Response of the 4-pool microbial model with and without density-dependence and 
the linear 3-pool model to perturbations in inputs.  
SOC, DOC, or both inputs are individually perturbed in each model. Left panels: Percent change in the SOC steady-
state as a function of the percent change in C inputs, where the inset plot zooms into the dashed box. Right panels: 
Percent change in the MBC steady-state as a function of the percent change in C inputs.  
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Supplementary Figure 8: Response of soil to doubling of plant C inputs in models.  
Percent change of modeled (a) SOC, (b) MBC, and (c) CO2 following a doubled (2X) step increase in inputs. A 
value of # > 1 corresponds to a microbial model with density-dependent microbial turnover. 
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treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,
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Results

Bulk C response to detrital manipulation

There were significant differences in soil C among

detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil

C concentration in the top 10 cm was significantly
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Litter plots did not differ from control (Table 3). By
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Northern Hemisphere peak of 933 % in 1963 (Hua
and Barbetti 2004). Because all experimental plots

began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis

For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-

amples into one homogenous sample per experimental

plot for density fractionation. Thus d13C and D14C on
fractions consist of single values, so it was not possible

to run statistical tests. Total C values were pooled

within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental

treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results

Bulk C response to detrital manipulation

There were significant differences in soil C among

detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil

C concentration in the top 10 cm was significantly

lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By

2006 No Litter plots showed slight, but significant

decreases in soil C compared to Controls for Prairie 1
but not Prairie 3; there were no differences between C

content loss in No Litter versus No Root plots. No

Input plots lost 69–71 % of total soil C content after
50 years. Soil N followed patterns of soil C, although
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began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis
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respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using
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CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-
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fractions consist of single values, so it was not possible

to run statistical tests. Total C values were pooled

within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental

treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results
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most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil
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lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By
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but not Prairie 3; there were no differences between C
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began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis

For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-

amples into one homogenous sample per experimental

plot for density fractionation. Thus d13C and D14C on
fractions consist of single values, so it was not possible

to run statistical tests. Total C values were pooled

within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental

treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results

Bulk C response to detrital manipulation

There were significant differences in soil C among

detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil
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lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By
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decreases in soil C compared to Controls for Prairie 1
but not Prairie 3; there were no differences between C
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expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into
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treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean
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in SOC relative to the Control.
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detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after
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significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
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lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By

2006 No Litter plots showed slight, but significant
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but not Prairie 3; there were no differences between C
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Input plots lost 69–71 % of total soil C content after
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Supplementary Figure 9: Response of soil to complete removal of plant C inputs in models.  
Percent change of modeled (a) SOC, (b) MBC, and (c) CO2 following sustained 0X inputs. A value of # > 1 
corresponds to a microbial model with density-dependent microbial turnover. 
  

Northern Hemisphere peak of 933 % in 1963 (Hua
and Barbetti 2004). Because all experimental plots

began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis

For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using
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CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-
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although values were more variable (data in see
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50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C
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recent ([1950) C, with deviations in different treat-
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respiration data from 2006, means per treatment are
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plot. For these datasets one-way ANOVA, using
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CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-

amples into one homogenous sample per experimental

plot for density fractionation. Thus d13C and D14C on
fractions consist of single values, so it was not possible

to run statistical tests. Total C values were pooled

within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental

treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results

Bulk C response to detrital manipulation

There were significant differences in soil C among

detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil

C concentration in the top 10 cm was significantly

lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By

2006 No Litter plots showed slight, but significant

decreases in soil C compared to Controls for Prairie 1
but not Prairie 3; there were no differences between C

content loss in No Litter versus No Root plots. No

Input plots lost 69–71 % of total soil C content after
50 years. Soil N followed patterns of soil C, although
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treatment), however, with n = 2 we were not able to
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although values were more variable (data in see
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slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
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but not Prairie 3; there were no differences between C

content loss in No Litter versus No Root plots. No

Input plots lost 69–71 % of total soil C content after
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where litter was excluded. In the forested No Litter
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began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis

For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-

amples into one homogenous sample per experimental

plot for density fractionation. Thus d13C and D14C on
fractions consist of single values, so it was not possible

to run statistical tests. Total C values were pooled

within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental

treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results

Bulk C response to detrital manipulation

There were significant differences in soil C among

detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil

C concentration in the top 10 cm was significantly

lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By

2006 No Litter plots showed slight, but significant

decreases in soil C compared to Controls for Prairie 1
but not Prairie 3; there were no differences between C

content loss in No Litter versus No Root plots. No

Input plots lost 69–71 % of total soil C content after
50 years. Soil N followed patterns of soil C, although
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most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
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although values were more variable (data in see
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slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter
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and Barbetti 2004). Because all experimental plots

began with low 14C values in soil, bomb 14C would be

expected to accumulate proportionally to additions of
recent ([1950) C, with deviations in different treat-

ments and soil fractions providing some insight into

soil organic carbon (SOC) dynamics.

Statistical analysis

For total C and N from 1984, 1997 and 2006 and

respiration data from 2006, means per treatment are

comprised of 4 replicate samples per experimental
plot. For these datasets one-way ANOVA, using

SigmaPlot version 12 (Systat Software, Inc., San Jose,

CA, USA), with was utilized to compare means.
A Tukey HSD post hoc test was used for comparison

of means if a significant p value was found. Signif-

icance for the contrasts was set at p = 0.05.
Due to budgetary constraints we combined subs-

amples into one homogenous sample per experimental

plot for density fractionation. Thus d13C and D14C on
fractions consist of single values, so it was not possible

to run statistical tests. Total C values were pooled

within ecosystems by treatment (e.g., data for Noe and
Wingra Woods were averaged for each experimental

treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results

Bulk C response to detrital manipulation

There were significant differences in soil C among

detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil

C concentration in the top 10 cm was significantly

lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By

2006 No Litter plots showed slight, but significant

decreases in soil C compared to Controls for Prairie 1
but not Prairie 3; there were no differences between C

content loss in No Litter versus No Root plots. No

Input plots lost 69–71 % of total soil C content after
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treatment), however, with n = 2 we were not able to
run statistical tests. The numbers in bold in Table 4,

then, represent where both sites comprising the mean

followed the same trend of either increase or decrease
in SOC relative to the Control.

Results

Bulk C response to detrital manipulation

There were significant differences in soil C among

detrital treatments in the forested plots, both in the
most recent sampling (Table 2) and over time (Fig. 1).

After 50 years, surface soil C concentration increased

by 37 % in Double Litter plots compared to Controls
in both forests. Soil N followed patterns of soil C,

although values were more variable (data in see

Table 6 in Appendix). Because bulk density decreased
slightly in Double Litter plots, the increase in C

content increased slightly less compared to Controls

(29–33 %). Bulk C concentration decreased in all sites
where litter was excluded. In the forested No Litter

plots, bulk C concentration decreased by *55 % after

50 years (Table 2). Because bulk density increased
significantly in No Litter plots, the decrease in C

content was 40–47 %.

In prairie exclusion plots, C losses also increased
over time (1997–2006). In 1997 in Curtis Prairie 1, soil

C concentration in the top 10 cm was significantly

lower than control in No Input and No Roots plots; No
Litter plots did not differ from control (Table 3). By

2006 No Litter plots showed slight, but significant

decreases in soil C compared to Controls for Prairie 1
but not Prairie 3; there were no differences between C

content loss in No Litter versus No Root plots. No

Input plots lost 69–71 % of total soil C content after
50 years. Soil N followed patterns of soil C, although
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Supplementary Figure 10: Response of SOC to doubling and removal of plant C inputs from experiments 
labeled by site.  
(a) Percent change in SOC at Detritus Input and Removal Treatment (DIRT) experiments after a sustained 2X step 
increase in inputs. (b) Percent change in SOC at DIRT, Bare Fallow (BF) and Long-Term Bare Fallow (LTBF) 
experiments after sustained 0X inputs. Points indicate means and bars the standard error of the mean. Data sources 
are reported in Supplementary Tables 2-3. For the DIRT 2X and 0X experiments, the sites are depicted by the 
following marker styles in blue and purple, respectively: squares = Noe woods, circles = Wingra woods, + = Curtis 
prairie, triangles = Harvard, diamond = Bousson, dash = Sikfokut, x = HJ Andrews. 
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Supplementary Figure 11: Response of SOC to doubling and removal of plant C inputs from experiments.  
Average percent change in SOC after 20+ years of litter manipulation across all Detritus Input and Removal 
Treatment (DIRT) and Long-term Bare Fallow (LTBF) sites, which consistently doubled (2X) and removed (0X) 
inputs to the soil over time. Points indicate means and bars the standard error of the mean. Data sources are reported 
in Supplementary Tables 2-3. 
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Supplementary Figure 12: Response of microbial biomass carbon to doubling and removal of plant C inputs 
from experiments.  
(a) Percent change of microbial biomass carbon (MBC) at DIRT experiments after a sustained doubling (2X) in 
inputs. (b) Percent change of MBC at DIRT, BF and LTBF experiments after sustained removal (0X) of inputs. 
Points indicate means and bars the standard error of the mean. Data sources are reported in Supplementary Tables 2-
3. Substantial seasonal variability was observed in ref 3. MBC does not double in response to 2X inputs and does not 
disappear within 10 years of 0X, as predicted by common microbial model formulations. 
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Supplementary Figure 13: Stability and sensitivity of the 2-pool microbial model with and without density-
dependence to a decrease and complete removal of plant C inputs.  
(a) Percent change of modeled SOC and MBC in the 2-pool microbial model without density dependence (β = 1) 
following a step decrease (< 1X) and complete removal (0X) in C inputs. (b) Percent change of modeled SOC and 
MBC in the 2-pool microbial model with density-dependence (β = 2) following a step decrease (< 1X) and complete 
removal (0X) in C inputs.  
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Supplementary Table 1: Parameter values for each SOC model. Parameter values are given at a reference 
temperature of 20°C.  

Parameter Description Unit Value Reference 
2-pool microbial model (,6, ,1) 

E Plant carbon input rate mg C g-1 soil hr-1 0.00016 ref. 4 

lmno,p Maximum assimilation rate mg C mg-1 MBC 
hr-1 0.01 " 

qr,p Half-saturation for assimilation mg C g-1 soil 250 " 
F1 Mortality rate mg C mg-1 C hr-1 0.00028 " 
k Carbon use efficiency - 0.31 ref. 4,5 
# Density-dependent exponent - [1 to 2] This study 

4-pool microbial model (,6, ,u,	,1, ,v) * 
lmno Maximum decomposition rate mg C mg-1 C hr-1 1 ref. 4 
qr Half-saturation for decomposition mg C g-1 soil 250 " 

lmno,p Maximum assimilation rate mg C mg-1 MBC 
hr-1 0.01 " 

qr,p Half-saturation for assimilation mg C g-1 soil 0.26 " 
w Fraction of inputs into C± - 0.94 " 

*16 Fraction of microbial turnover into 
C± - 0.5 " 

{v Enzyme turnover rate mg C mg-1 C hr-1 0.001 " 

{| Enzyme production rate mg C mg-1 MBC 
hr-1 5.6×10-6 " 

# Density-dependent exponent - [1 to 2] This study 
5-pool microbial model (,6, ,u,	,1, ,v, ,}) * 

Fn~� Adsorption rate constant mg C mg-1 C hr-1 0.01 This study; ref 
6 

F~>� Desorption rate constant mg C mg-1 C hr-1 0.001 This study; ref 
6 

Ämno Maximum DOC adsorption 
capacity mg C g-1 soil 1.7 ref. 7 

3-pool linear model (,6, ,u,	,1) 

F6 Decomposition rate constant of 
SOC mg C mg-1 C hr-1 5.6×10-6 ref. 4 

Fu Decomposition rate constant of 
DOC mg C mg-1 C hr-1 0.001 " 

F1 Turnover rate constant of MBC mg C mg-1 C hr-1 0.00028 " 
FÉ|CnB> Uptake rate constant of DOC  mg C g-1 DOC hr-1 0.0005 " 
w6 Fraction of SOC entering DOC  - 0.31 " 
wu Fraction of DOC entering SOC  - 0.31 " 

w1 Fraction of MBC turnover 
recycled - 0.31 " 

w1→6 Fraction of recycled MBC into 
SOC  - 0.5 " 

 
* Unless otherwise noted, as complexity is added in subsequent microbial models, all parameters that 
have an analogous value in a simpler model conserve their value in the more complex models. �  
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Supplementary Table 2: Summary of Detritus Input and Removal Treatment experiments synthesized in our 
study.  
Data sources and details for the synthesized Detritus Input and Removal Treatment (DIRT) experiments are listed.  
Source Location Type Duration (yrs) SOC MBC 

DIRT (>20 years) 
Lajtha et al. 2014 (ref. 8) Noe 2X 50 y - 

 
Noe 2X 41 y - 

 
Noe 2X 28 y - 

 
Wingra 2X 50 y - 

 
Wingra 2X 41 y - 

 
Wingra 2X 28 y - 

 
Noe 0X 50 y - 

 
Noe 0X 41 y - 

 
Noe 0X 28 y - 

 
Wingra 0X 50 y - 

 
Wingra 0X 41 y - 

 
Wingra 0X 28 y - 

 
Curtis 1 0X 50 y - 

 
Curtis 1 0X 41 y - 

 
Curtis 3 0X 50 y - 

Rousk & Frey 2015 (ref. 9) Harvard 2X 23 y y 

 
Harvard 0X 23 y y 

Lajtha et al. 2014 (ref. 10) Harvard 2X 20 y - 

 
Harvard 0X 20 y - 

Bowden et al. 2014 (ref. 11) Bousson 2X 21 y - 

 
Bousson 0X 21 y - 
DIRT (<20 years) 

Crow et al. 2009 (ref. 12) HJ Andrews 2X 5 y - 
Brant et al. 2006 (ref. 13) HJ Andrews 2X 6 - y 

 
HJ Andrews 0X 6 - y 

Brant et al. 2006 (ref. 3) Bousson 2X 12 - y 

 
Bousson 0X 12 - y 

 
HJ Andrews 2X 6 - y 

 
HJ Andrews 0X 6 - y 

 
HJ Andrews 2X 6 - y 

 
HJ Andrews 0X 6 - y 

 
HJ Andrews 2X 6 - y 

 
HJ Andrews 0X 6 - y 

 
Sikfokut 2X 3 - y 

 
Sikfokut 0X 3 - y 

Nadelhoffer et al. 2004 (ref. 14) Harvard 2X 5 y y 

 
Harvard 0X 5 y y 

Fekete et al. 2011 (ref. 15,16) Sikfokut 2X 6 y - 

 
Sikfokut 0X 6 y - 
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Supplementary Table 3: Summary of Long-term Bare Fallow and Bare Fallow experiments synthesized in 
our study.  
Data sources and details for the synthesized Long-term Bare Fallow (LTBF) and Bare Fallow (BF) experiments are 
listed. 
Source Location Type Duration (yrs) SOC MBC 

LTBF (>20 years) 
Barre et al. 2010 (ref. 17) Kursk 0X 36 y - 

 
Ultuna 0X 51 y - 

 
Askov B3 0X 29 y - 

 
Askov B4 0X 29 y - 

 
Grignon 0X 48 y - 

 
Versailles 0X 80 y - 

 
Rothamsted 0X 49 y - 

Guenet et al. 2011 (ref. 18) Versailles 0X 80 y y 
BF (<20 years) 

Pothoff et al. 2006 (ref. 19) UC Hastings 0X 6 y y 
Wang et al. 2007 (ref. 20) China 0X 13 y y 
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CHAPTER 5: The role of mineral-organic associations on the capacity of soils to store 
carbon: insights from data and models 
 
This chapter contains material being prepared for submission as the original journal articles:  
 

Georgiou, K., et al. Representing mineral-organic associations in soil carbon models: insights 
and ways forward 
 

Georgiou, K., et al. The global mineralogical capacity of soils to store carbon. 
 

Abstract 
 
Mineral-organic associations (MOAs) play a key role in governing soil carbon (C) stabilization 
and long-term storage, and thus, improving their representation for inclusion in Earth system 
models is crucial for understanding and predicting feedbacks under global change. Despite the 
important role of MOAs in soil organic carbon (SOC) preservation, decidedly little attention has 
been afforded to their explicit representation in soil C models. Here we explore mathematical 
representations of MOAs, drawing insights from theory and experiments to recommend model 
structures and propose targeted data syntheses to constrain key parameters. We compare a range 
of model formulations, motivated by the myriad of underlying MOAs, and leverage laboratory 
incubations and field experiments to inform model parameters. Specifically, we describe linear, 
Langmuir, Freundlich, and Sips adsorption models, where the latter emerges from heterogeneous 
compositions of substrate and surface components. We show predicted trends of mineral-
associated organic carbon (MOC) as a function of mineralogy, and discuss the role of soil carbon 
saturation on emergent patterns. Specifically, our results highlight that the response of MOC to 
changes in plant C inputs depends greatly on the level of C saturation and thus, the 
representation of MOAs in models can lead to nonlinear steady-state responses in MOC. We also 
find that, consistent with field experiments, the trend in MOC with mineralogy can be linear, but, 
interestingly, the slope depends on the degree of C saturation. We contend that this latter finding 
is an important consideration for explaining field studies that did not find a universal slope and 
interpreted this as an inability of mineralogy to explain observed patterns. Using a synthesis of 
field observations, we infer a MOC saturation capacity for different soil types, which is essential 
for parameterizing process-based SOC models globally.  
 

Introduction 
 
Mineral-associated organic carbon (MOC) constitutes a large portion (30-90%) of total soil 
organic carbon (SOC) stocks (Kleber et al., 2015) (Supplementary Figure 1). Such associations 
can protect MOC from microbial attack and, as a result, MOC turnover times can be up to 100 
times larger than free (particulate) organic carbon (Kleber et al., 2015). Despite the major role of 
mineral-organic associations (MOAs) in SOC preservation, little attention has been afforded to 
their explicit representation in mechanistic soil carbon (C) models thus far. Given potential MOC 
vulnerability to novel conditions (e.g., warming), it is critical to explicitly model MOAs and 
explore emergent mineral-microbial feedbacks. 
 
MOAs in soils are chemically complex, where many types of minerals and substrates interact 
through a plethora of bonding mechanisms to drive emergent bulk-pool responses (Figure 1). 
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While it is unclear how this underlying complexity integrates to larger scales, data limitations 
and computational costs necessitate effective model representations that aggregate biochemical 
heterogeneity and spatiotemporal variability into homogenous bulk pools. This motivates the 
questions: (1) how should micro-scale MOAs be represented in macro-scale models, and (2) 
what data are necessary for parameterizing macro-scale models globally? We describe scaling 
considerations and model insights below, and perform an observational synthesis to constrain 
model formulations and parameterizations. 
 

 
Figure 1: Diverse minerals and substrates interact to form MOAs that protect MOC from microbial 
decomposition.  
However, data and computational costs necessitate simplified models that aggregate biochemical and spatial 
heterogeneity.  
 

Modeling MOAs: Adsorption kinetics and theory 
 
Currently, most soil C models represent MOAs implicitly by using soil texture (% clay + silt) as 
a proxy to partition C between first-order pools (Parton, Stewart and Cole, 1988). In contrast, 
mechanistic models explicitly represent mineral-associated and free (unbound) substrate pools, 
which undergo a constant and dynamic exchange driven by substrate concentrations and 
environmental conditions. Such models that explicitly represent MOAs allow for emergent 
behavior (e.g., mineral-microbe feedbacks and carbon saturation) that can be diagnosed and 
attributed to underlying mechanisms. Furthermore, measurements of MOC afford an additional 
constraint for validating explicit models.  
 
Recent mechanistic models have implemented explicit representations that include: linear 
(Sulman et al., 2014; Wieder et al., 2015), Freundlich (Grant, Juma and Mcgill, 1993), and 
Langmuir (Wang, Post and Mayes, 2013; Tang and Riley, 2015) formulations. In their respective 
derivations, these formulations carry assumptions that are often not met in reality given scaling 
considerations (Table 1) and, as such, they are generally used empirically. Here we detail four 
relevant explicit formulations and their key characteristics and limitations (Table 1). The classic 
description of these representations is their equilibrium isotherm (Figure 2), but each formulation 
can also be expressed dynamically (Table 1).  
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One key property for any evaluation of explicit formulations is the potential for carbon saturation 
(Figure 2). It is widely observed that mineral surfaces can experience MOC saturation in 
laboratory incubations and field experiments (Mayes et al., 2012; Feng et al., 2014; Jagadamma 
et al., 2014), suggesting that a Langmuir- or Hill-type formulation may be warranted. While the 
Freundlich isotherm also displays saturating behavior, it does not include a strict saturation limit 
and its empirical nature makes it difficult to extrapolate parameters across different soil types. 
We thus focus our comparison on the Langmuir and Hill formulations, due to their strong 
theoretical basis, which allows for intuition on dynamics and an understanding of the origin and 
significance of the parameters. 
 
While the Langmuir and Hill formulations are, in fact, related, they can differ greatly in their 
predictions and implications. The strength and sign of the exponent ($) in the Hill equation 
(Table 1) dictates the “cooperativity” of binding interactions. For $ > 1, the binding of molecules 
increases the affinity for subsequent molecules, while for $ < 1, binding decreases affinity for 
others. For $ = 1 (i.e., Langmuir), the affinity of a molecule is completely independent of 
whether other molecules are bound. Interestingly, it can be shown mathematically that for a 
heterogeneous mixture of MOAs, each exhibiting a Langmuir isotherm with distinct affinity 
coefficients, the emergent bulk behavior approaches a Hill isotherm (Sposito, 1980), and at low 
concentrations, a Freundlich isotherm. This suggests that scaling spatial and chemical 
heterogeneity of underlying constituents to homogenous bulk pools may warrant an effective 
representation that resembles a Hill isotherm. While these formulations can be used empirically, 
understanding the theoretical origin and limitations of effective representations is critical for 
diagnosing interactions and emergent feedbacks. 
 
Table 1: Types of representations for MOAs: equations, assumptions, and limitations.  
Formulations used to represent MOAs in SOC models are detailed here. We note that other formulations include 
Toth, multi-surface Langmuir (with and without interactions), and BET isotherms; however, these are not 
considered here, since the current data are not sufficient to constrain the additional complexity of these 
representations globally. 
 

 

where ! =	MOC and $ =	substrate (%&'! =	max, (& = ) =	affinity,' =	cooperativity)

Implicit
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1 ++ , -.

Parton et al. 1988

Sulman et al. 2014;
Wieder et al. 2015.

Grant et al. 1993.

Wang et al. 2013;
Tang & Riley 2015;
Ahrens et al. 2015.

Empirical
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5*
56 = 7- − 9*

5*
56 = 7-. − 9*

5*
56 = 7- /012 − * − 9*

5*
56 = 7-. /012 − * − 9*

Dynamics

(pool partitioning)



	

 82 

  
Figure 2: Adsorption isotherm (amount adsorbed as a function of free substrate in solution) formulations 
diverge in distinct regimes.  
Amount adsorbed – i.e., MOC or ≤ – as a function of free substrate – i.e., \ – in solution (see equations in Table 1). 
Notable regime differences: (i) Hill diverges at low substrate concentrations and (ii) linear and Freundlich diverge at 
high substrate concentrations.  
 

MOC vs. mineralogy: Model insights and predictions  
 
Many empirical studies have explored the relationship between MOC and soil mineralogy using 
texture, i.e., % clay + silt content, as a proxy in different soils. While some have argued for a 
linear trend between MOC stocks and % clay + silt content (Hassink, 1997; Angers et al., 2011), 
this relationship can appear unconvincing (Angers et al., 2011; Beare et al., 2014). Furthermore, 
other studies have explored the dependence of total SOC on mineralogy, despite the fact that 
SOC includes both MOC and particulate organic matter, where the latter may not have a direct 
link to mineral content. Such studies have found poor linear correlations between SOC and clay 
+ silt content, as a proxy for mineralogy, and have simply concluded that % clay + silt is not a 
good predictor (Rasmussen et al., 2018). However, we contend that these observations are, in 
fact, expected from theory, and that such studies may have overlooked the co-varying 
explanatory variables that drive the emergent relationship. 
 
Indeed, we hypothesize that there is not a universal slope between MOC and mineralogy, but, 
rather, the level of MOC saturation dictates the emergent relationship (Figure 3). Near saturation, 
all observations collapse along the same “saturated” line; however, below saturation, other 
variables (e.g., C inputs, temperature, moisture, and pH) can affect the observed trend. Take, for 
example, surface and deep soils with similar mineralogy and Qmax. The available (unbound) 
substrate concentration is generally higher in surface soils (due to higher C inputs) and, 
consequently, more adsorption and total MOC storage results. Our findings suggest that MOC is 
far from saturation in most soils, and covariates can play an important role in the observed 
relationship between MOC and mineralogy. Yet, while other variables can affect the departure 
from saturation, we maintain that the maximum MOC capacity (denoted Qmax) is an intrinsic 
property of the soil minerals. 
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   a          b     c 

 
Figure 3: MOC at various levels of C saturation.  
Predicted trend of (a) MOC versus free (unbound) substrate at equilibrium and (b) corresponding MOC for a 
particular maximum C capacity (Qmax) given a range of C input (unbound substrate) concentrations. (c) MOC across 
soils with different Qmax and a range of C input (unbound substrate) concentrations. 
 
We explore predictions from mechanistic models and show that, with insights from theory and 
sufficient observations across soil types and biomes, we can understand why conflicting 
conclusions are reached across studies. While we focus on saturating adsorption representations 
(i.e., Langmuir and Hill) herein, the intuition gained can easily be extended to other 
formulations. We find that, indeed, a single linear relationship cannot be expected (Figure 4a). 
Mineral soils (i.e., excluding permafrost soils, peat, and wetlands) in regions with greater 
substrate concentrations (higher productivity) and lower temperatures (given proportionally more 
adsorption at lower temperatures, i.e., higher q = Fn~�/F~>�) are expected to have larger slopes. 
Additionally, the response of MOC to changes in substrate concentration (e.g., via changes in C 
inputs) can depend on the level of MOC saturation (Figure 4b). While we have presented semi-
qualitative model insights – with a single set of parameters – thus far, we follow with a more 
rigorous analysis to extend our results across soil types and input rates. 
 
   a        b 

 
 
Figure 4: Controls on MOC storage: exploring mineralogy and C inputs.  
(a) MOC across soils with different Qmax for a range of substrate (dissolved organic carbon; DOC) concentrations 
spanning several orders of magnitude. (b) Response of MOC to an increase in substrate concentrations with a range 
of initial substrate concentrations. 
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Comparing models: Approaching saturation 
 
To allow for inter-site variability in parameter values and input rates, we perform a Monte Carlo 
simulation in which we sample values from observationally constrained ranges. Specifically, we 
explore explicit Langmuir ($ = 1) and Hill ($ > 1) representations (Table 1), for which necessary 
model inputs include substrate concentrations (\; namely, dissolved organic carbon, DOC) and 
affinity coefficients (association; q = Fn~�/F~>�). DOC can vary spatiotemporally over an order 
of magnitude, and concentrations are generally lower with depth (Sanderman and Amundson, 
2009). We examine modeled MOC at equilibrium, but note that temporal variability in DOC can 
contribute minor nonlinearities when using the Hill formulation, but not the Langmuir; the 
dynamic representation of the latter is linearly proportional to concentration (Table 1). The 
coefficient q can vary across different mineral types, and, thus, we sample from a range 
observed in experiments (Jagadamma, Mayes and Phillips, 2012; Mayes et al., 2012). 
Specifically, we sample q uniformly between 101 and 103 kg soil/g C (Mayes et al., 2012). For 
surface soils, we sample DOC uniformly between 0.05 - 0.1 g C/kg soil, whereas for deep soils, 
we sample between 0.01 - 0.05 g C/kg soil (Sanderman, Baldock and Amundson, 2008). To 
estimate SOC from MOC, we sample MOC/SOC uniformly between 30 – 99% given the range 
observed in our observational synthesis (Supplementary Figure 1). 
 
We show the predicted MOC, and by extension SOC, as functions of soil mineralogy (Figure 5; 
Supplementary Figure 2). The independent variable, Qmax (g C eqv/kg soil), corresponds to the 
maximum amount of MOC that can be stored in a particular soil. Here we base this value on the 
general range of MOC measured by size- and density- fractionation in soils globally. For broader 
applications of these explicit formulations, a pedo-transfer function can be used to relate Qmax to 
readily measured mineral content (% clay + silt) and properties. 
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Figure 5: MOC and bulk SOC in all (surface and deep) soil as a function of soil mineralogy (Qmax; gC eqv/kg 
soil) with explicit Langmuir and Hill formulations.  
 
We find that the mineral surfaces are largely saturated with the Langmuir representation, while 
the low DOC values carry more weight in the Hill representation and allow a departure from 
saturation (Figure 5). This is particularly evident when comparing surface and deep soils 
(Supplementary Figure 2), where the latter are further from saturation with the Hill formulation. 
This modeling experiment, using literature-based ranges of parameter values, suggests that the 
Hill formulation may allow a more flexible response that can better match observations (Figure 
8; Supplementary Figure 3). 
 
In estimating SOC from MOC, we sampled from an empirically constrained distribution of the 
MOC/SOC ratio (Supplementary Figure 1) (Kleber et al., 2015). We find that low MOC/SOC 
values (e.g., 30% vs. a high 90%) play a key role in the predicted trend between SOC and 
mineral content, particularly when inferring a SOC storage capacity from the boundary line 
(maximum) slope (Figure 5). We note that studies that simply assume a constant MOC/ SOC ~ 
85% (Angers et al., 2011; Beare et al., 2014), based on an average value, may greatly 
overestimate the capacity of soils to store SOC. 
 

Observational synthesis: Towards a pedo-transfer function 
 
To inform and better constrain explicit model formulations of MOAs, MOC observations across 
a range of mineral soils are needed. We conduct a synthesis of MOC and corresponding mineral 
content (% clay + silt) and composition (clay type) to compare to model results. We observe that 
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• Mineral-associated organic carbon (MOC) composes a large fraction
(30-90%) of total soil organic carbon (SOC) stocks.

• Such associations “protect” OC from microbial attack; MOC turnover
times can be up to 100 times larger than free OC.1

• The vulnerability of MOC to novel conditions is still unclear and is
critical for understanding mineral-microbial feedbacks.

• Despite the major role of mineral-organic associations (MOAs) in SOC
stabilization, decidedly less attention has been afforded to their
explicit representation in soil models.

• Most soil C models implicitly represent MOAs using soil texture (% clay).2
• Explicitly representing MOAs allows for emergent mineral-microbe feedbacks and measurements of

MOC afford an additional constraint for testing models.
• Recent explicit representations include: linear3,4 and Langmuir5,6 formulations.
• It can be shown mathematically that the emergent behavior of a heterogeneous mix of MOAs, each

exhibiting a Langmuir isotherm, approaches a Hill isotherm.
• Below we detail relevant formulations (at equilibrium) and their key characteristics.
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• Many studies have explored MOC vs. soil mineralogy (using % clay + silt as a proxy) in different
soils; while some studies have argued for a linear trend7,8, the relationship can appear messy8,9.

• We hypothesize that there is not a universal slope, but, rather, the level of soil C saturation
dictates the emergent relationship between MOC and mineralogy (Fig. 3).

• We find that environmental variables (e.g., temperature) can also affect the departure from
saturation, but the maximum C capacity is a property of the soil itself.

Figure 3: (a) MOC versus free
substrate at equilibrium and (b)
MOC across soils with different
maximum C capacities (Qmax). [s
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• Surface soils contain higher SOC, where a shift in the distribution is observed with depth.
• We find that higher biomass (~ higher C inputs) and lower MAT lead to higher MOC.
• In general, MOC is far from saturation in most soils, unlike many model predictions.

• We used a Monte Carlo simulation to allow for inter-site variability: DOC ~ uniform between 0.01-0.1
(surface soils) and 0.001-0.01 (deep soils; not shown) g C/kg soil 12, K ~ uniform 101-103 kg soil/gC 13,
MOC/SOC ~ uniform 30-99% (data not shown).

• We find that mineral surfaces are largely saturated with the Langmuir, but low DOC values carry more
weight in the Hill and allow a departure from saturation. (Qualitatively compare among * and * figures.)

• While several studies have assumed a constant MOC/SOC ~ 85% 8,9 across soils, we find that low
MOC/SOC values (~30%) are critical for the inferred trend between SOC and mineralogy.

Figure 6: MOC as a function of mineralogy (% clay + silt)
across a mineralogical transect11 (n = 24). Points are marked
by mean annual temperature (MAT; low < 10ºC) and average
annual biomass (low < 2,000 kg dry weight ha-1 yr-1).

• The level of C saturation dictates the observed relationship between
MOC (or total SOC) and mineralogy and, thus, future studies should
not expect a universal slope.

• Monte Carlo simulations suggest that Hill kinetics may generate more
realistic distributions of MOC than Langmuir kinetics.

• We are currently using the boundary line (maximum) of MOC versus
mineralogy to infer the maximum capacity (Qmax) of different soils.

• Future studies should explore the use of other mineralogical
properties (e.g., SSA and CEC) for estimating C storage capacity. If
better performance is observed, additional measurements will be
needed globally for model parameterizations.
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Figure 5: Total SOC as a
function of mineralogy
(% clay + silt) globally10

(n = 5,000). Points are
marked by depth
(surface < 15 cm).
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most soils fall below an upper saturation limit and that, below this limit, many covariates can 
govern emergent patterns (Figure 6). For example, we find that temperature decreases MOC and 
that C inputs increase MOC, when all other variables are held constant for each relationship. 
Furthermore, we observe that surface soils contain higher MOC, where a shift in the MOC 
distribution is clearly visible with increasing depth (Supplementary Figure 3). These findings 
corroborate our model predictions and insights, and imply that a saturating isotherm may best 
describe MOAs in models; specifically, our results suggest that the Hill formulation may be 
preferable. 
 
These data are not only important for constraining formulations and exploring underlying 
relationships, but, also, the presence of a boundary line (maximum) slope is essential for 
parameterizing Qmax in models. Indeed, the derived slope (0.10 ± 0.01 gC/g mineral for high-
activity clay soils and 0.05 ± 0.01 gC/g mineral for low-activity clay soils) provides a pedo-
transfer function to convert from readily measured soil texture (% clay + silt, i.e., g mineral/100g 
soil) to the maximum mineralogical capacity (Qmax) needed in models (Figure 6). This slope can 
be conceptually broken into two parts; namely, C loading (g C/m2 surface area) multiplied by 
specific surface area (SSA; m2 surface area/g mineral). The intuitive components of this value, 
and its role in the theory-based model formulations, give both Langmuir and Hill an advantage 
for extrapolation across soils and increased physical understanding. Indeed, this empirically 
derived saturation relationship (Figure 6), gives us the opportunity to extrapolate Qmax globally 
for application in Earth system models. 
 
 

 

Figure 6: The role of soil texture (% clay + silt) on the capacity of high-activity soils to store mineral-
associated organic carbon in natural ecosystems.  
MOC as a function of clay and silt (< 60 µm) content in high-activity mineral soils (i.e., 2:1 clays and amorphous 
minerals) across diverse biomes and climates. The regression illustrates the boundary line with uncertainty, fit to a 
subset (top 5%) of points. The slope of this regression (0.10 ± 0.01 gC/g mineral; divided by 10 to convert units to g 
C/g mineral) signifies the maximum capacity (i.e., saturation) of high-activity mineral soils to store carbon. The 
boundary line relationship for low-activity mineral soils (1:1 clays; not shown here) has a slope of 0.05 ± 0.01 gC/g 
mineral. These relationship can be used to constrain Qmax in models globally. 
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Conclusions and ways forward 
 
Given the potential for emergent, mineral-microbial feedbacks under novel environmental 
conditions, it is critically important to better understand and explicitly represent MOAs in soil C 
models. The chemically and spatiotemporally heterogeneous nature of MOC at the micro-scale 
introduces challenges in selecting effective model representations to be applied at macro-scales. 
Here we described potential mathematical representations, with interest in scaling considerations, 
and explored their respective characteristics and limitations. We discussed model insights, in 
conjunction with an observational synthesis, to make recommendations on ways forward. 
Specifically, we found that the level of C saturation can influence the observed relationship 
between MOC and mineral content, at times masking a direct linear correlation between the two. 
Consequently, we used the boundary line (maximum slope) of MOC versus clay + silt content to 
infer the maximum capacity of different soil types (dominated by either high- or low-activity 
minerals; Figure 6) to store C, which constitutes a key parameter (Qmax) in both Langmuir and 
Sips/Hill formulations, and is necessary for extrapolation to Earth system models. Finally, we 
highlight the need for measurements of auxiliary data – in particular, net primary productivity 
(NPP), DOC, vegetation type, climate, and additional mineralogical properties, e.g., specific 
surface area (SSA), cation exchange capacity (CEC), and clay type – to allow a more rigorous 
exploration of the role of underlying covariates.  
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Supplementary Figures & Tables 
 
  

 
 
Supplementary Figure 1: MOC/SOC ratio (%) across different soil types and biomes.  
Percent of total SOC in mineral-organic associations (MOC/SOC) as a function of mineral-organic associated 
carbon (MOC in weight %). At most sites, the majority (>50%) of SOC is contained within MOAs.  
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Supplementary Figure 2: Monte Carlo simulations for Langmuir and Hill/Sips with depth.  
Predicted MOC and SOC as functions of maximum C capacity (Qmax) with Langmuir and Hill model formulations 
for deep (shown in orange) and surface (shown in blue) soils. 
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Supplementary Figure 3: Global SOC data with depth.  
SOC as a function of soil texture (% clay + silt) with depth for n=5000 profiles from the World Soil Information 
Service (WoSIS) Soil Profile Database. 
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CHAPTER 6: A method of alternating characteristics with application to 
advection-dominated environmental systems 
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CHAPTER 6: A method of alternating characteristics with application to advection-
dominated environmental systems 
 
This chapter is reprinted, with permission, from the original journal article:  
 

Georgiou, K., J. Harte, A. Mesbah, W.J. Riley. A method of alternating characteristics with 
application to advection-dominated environmental systems. Computational Geosciences, (2018).  
 
 

Abstract 
 
We present a numerical method for solving a class of systems of partial differential equations 
(PDEs) that arise in modeling environmental processes undergoing advection and 
biogeochemical reactions. The salient feature of these PDEs is that all partial derivatives appear 
in linear expressions. As a result, the system can be viewed as a set of ordinary differential 
equations (ODEs), albeit, each one along a different characteristic.  The method then consists of 
alternating between equations and integrating each one step-wise along its own characteristic, 
thus creating a customized grid on which solutions are computed.  Since the solutions of such 
PDEs are generally smoother along their characteristics, the method offers the potential of using 
larger time steps while maintaining accuracy and reducing numerical dispersion. The advantages 
in efficiency and accuracy of the proposed method are demonstrated in two illustrative examples 
that simulate depth-resolved reactive transport and soil carbon cycling.  
 

Introduction 
 
Typically, models of environmental processes must be solved over long time horizons and over 
many spatial grid points to make projections that establish how external stimuli might affect the 
state of a system [1-2, 5, 14, 36, 41-42, 46, 48]. In addition, multi-model ensembles are often 
used due to uncertainty in model structure and parameter values to obtain not only one projection 
but also a range depicting its uncertainty [17, 23, 46, 48]. Such simulations require considerable 
computational resources, especially since the solutions must be obtained over sufficiently small 
time steps to maintain accuracy and avoid errors due to numerical dispersion. There is thus an 
ongoing need for improving the numerical tools used to solve spatially- and temporally- resolved 
reactive-transport models over large space- and time- horizons. 
  
The type of equations we are concerned with here are typical of those arising in environmental 
systems in which one or more components undergo advective transport in addition to chemical or 
biological reactions. Such equations occur, for example, in modeling of pollutant transport 
through a porous, reactive medium or in modeling of soil carbon cycling where leaching 
processes transport dissolved organic carbon vertically through the soil profile [1, 16, 22-23, 36, 
41-42, 45]. These types of systems give rise to equations of the form:  
 
 ≥Éà

≥C
= wâ &, ≤, ¥â, … , ¥∂ − \â &, ≤

≥Éà
≥o
		,									 for			] = 1,… , ∑	,    (1) 

 
where ¥â is the concentration of the ]C∏ component of the system, wâ(&, ¥â, … , ¥∂) is a non-linear 
function that encodes the reactions governing ¥â, and \â(&, ≤) is the advective velocity (e.g., of 
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water through the soil profile). We then have equations in which the partial derivatives with 
respect to space and time appear linearly for each ]C∏ component, modified only by coefficients. 
We note that the advective velocity (\â) may in fact be spatially varying, so we present an 
extension of our method to accommodate this dependence. These equations comprise a system of 
coupled, hyperbolic PDEs and, although they can be solved numerically via standard methods 
[11-12, 20, 26, 33, 35, 43], the specific form that arises in environmental processes is often 
amenable to a natural and simpler numerical solution as a set of ODEs along a customized grid 
by a suitable adaptation of the method of characteristics [12, 33].  
  
In essence, the proposed method transforms the above coupled PDEs into coupled ODEs, each 
one propagating along its own characteristic, and alternates in solving each equation by step-wise 
numerical integration along its corresponding characteristic. The method takes advantage of the 
fact that the solutions of advection-dominated PDEs are generally much smoother along their 
characteristics than they are in the time direction [12, 49]. This allows for larger time steps in a 
simulation without loss of accuracy, and reduces the numerical dispersion present in many 
Eulerian methods [12, 43]. Additionally, since the grid is uniquely defined by the physics (via 
the characteristics) of the system, the proposed method is not susceptible to grid orientation 
effects, in contrast to finite-difference methods. We implement a numerical integration using the 
implicit Euler method to achieve better accuracy and stability compared to the explicit Euler 
scheme [24, 33]. For specific forms of the governing equations, the method can be generalized to 
more than one spatial dimension. 
  
In the next section, the proposed method, termed the Method of Alternating Characteristics 
(MAC), is described for a system of two, three, or more characteristic directions, and extended to 
spatially-variable characteristic directions and more than one spatial dimension, as well as to 
systems where both advection and diffusion are present.  We then present two example 
applications that arise in modeling reactive transport and depth-resolved soil carbon cycling. We 
solve each system of equations using the Method of Alternating Characteristics and standard 
methods for approximating PDEs (e.g., finite differences).  We compare the solutions in terms of 
accuracy, speed, and robustness and explore advantages of the proposed method. While 
optimized integration schemes may outperform our chosen standard, we emphasize that the goal 
here is to illustrate that the physics of advection-dominated environmental systems is uniquely-
suited for the proposed method and that further optimization may be necessary.  
 

Method of Alternating Characteristics 
 
In general, for a given component ], the partial differential equation  
 
 ≥Éà

≥C
= wâ &, ≤, ¥â, … , ¥∂ − \â &, ≤

≥Éà
≥o
		,	  

 
that is linear in the spatial partial derivative, can be turned into the equivalent ordinary 
differential equation  
 
 XÉà

XC
=

≥Éà
≥C
+

≥Éà
≥o
	
Xo

XC
= wâ &, ≤, ¥â, … , ¥∂   
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along the characteristic ≤(&) defined by Xo C

XC
= \â(&, ≤) [12, 33].  

  
For a system with two or more PDEs as above, the basic idea of the MAC is to alternate between 
(ordinary) integration along characteristics, each time integrating step-wise the corresponding 
ODE equation along its respective characteristic. We first focus on the case where \â is constant, 
in which case the characteristic is  
 
 ≤ & = ≤Y + \â&  
 
and will be referred to as a “constant characteristic direction”. The method is described in detail, 
first for a system with two constant characteristic directions, followed by a discussion for 
extending this method to systems with more general (e.g., spatially-varying) characteristic 
directions as well as systems with more than two characteristics. Our interest is mainly in one 
spatial dimension; however, we also remark and discuss special cases where the method can be 
extended to more than one spatial dimension. 
  
In the developments that follow we adopt the commonly used compact notation of denoting 
partial derivatives ≥É

≥o
 by ¥o and ≥É

≥C
 by ¥C. 

 
System of two constant characteristic directions  
 

Consider a system of two PDEs as in equation (1), with constant advective velocities	\â where 
] ∈ {1, 2}. Without loss of generality, we can assume that one of the two is equal to zero and the 
other normalized to 1. Thus, simplifying the notation for illustration, we consider two scalar 
functions ¥(&, ≤) and º(&, ≤) satisfying  
 
 ¥C = w &, ≤, ¥, º − ¥o         (2a) 
 ºC = Ω &, ≤, ¥, º 	.           (2b) 
  
Along the characteristic of º (i.e., ≤æ(&) = ≤Y since ≤æ & =

Xoø(C)

XC
= 0, where the superscript 

denotes the dependent variable to which the characteristic belongs), equation (2b) becomes the 
ODE  
 
 Xæ

XC
= Ω &, ≤Y, ¥, º   

 
where the function g depends on ¥(&, ≤Y). However, ¥(&, ≤Y) is not known ahead of time and 
depends on values of ¥(&, ≤) at nearby points in the spatial direction, via equation (2a). In turn, 
equation (2a) can be written as an ODE when solved along its corresponding characteristic,  
 
 XÉ

XC
= ¥C + ¥o	≤É  

 					= w &, ≤Y + &, ¥, º   
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along the line ≤É & = 1, or, equivalently, along ≤É & = ≤Y + &. This is so because equation 
(2a) has the character of a wave equation [33]. Here the function w depends on º(&, ≤Y + &) 
which evolves in time and space via equation (2b).  
  
We summarize that equation (2b) can be solved as an ODE along the characteristic ≤æ = 0, 
while equation (2a) can be solved as an ODE along ≤É = 1. We briefly note that along the line 
≤æ = 1, equation (2b) is no longer an ODE, but rather, it becomes  
 
 Xæ

XC
= ºC + ºo	≤æ  

 					= Ω &, ≤Y + &, ¥, º + ºo	.  
  
Thus, the wave nature of one of the two equations complicates matters and we cannot reduce the 
system to a corresponding system of ODEs unless we alternate between the directions of the two 
characteristics: ≤É = 1 to solve for ¥ and ≤æ = 0 for º. By developing a customized grid, we can 
alternate between these characteristic directions and solve the system as two ODEs, rather than 
as numerically-approximated PDEs.  
  
For the particular example above, with characteristics ≤æ = 0 and ≤É = 1, the corresponding 
grid is shown in Fig. 1a, where we can solve the ODE for ¥ diagonally and for º horizontally. 
We can only solve each over the time step Δ& since we must update the value of both ¥ and º at 
the nodes of the grid for successive points in time.  
 
        (a)                (b) 

 
 
Figure 1: Schematic of a customized grid for propagating the integration along two constant characteristics. 
(a) Characteristic directions ≤æ & = ≤Y (dashed horizontal lines; ≤æ = 0) and ≤É & = & + ≤Y (dotted diagonal 
lines; ≤É = 1) for solving the system of PDEs in equation (2). Boundary and initial conditions are depicted in red. 
(b) Propagating the integration along two characteristics using the explicit or implicit Euler methods (as in equations 
(3) or (4), respectively) to obtain ¥Bi<,¿ and ºBi<,¿, where initial (¥Y,¿, ºY,¿) and boundary (¥B,Y) conditions are 
shown in red.  
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Thus, the numerical scheme amounts to updating the value of ¥ and º at the node points, as 
follows: 
 
Fix Δ& and consider successively the points in time & ∈ 0, Δ&, 2Δ&, … , FΔ&, …  and the 
corresponding values of  
 
 ¥B,¿ = ¥ FΔ&, +Δ≤ 				and			ºB,¿ = º FΔ&, +Δ≤ 	.  
 
In the case of equation (2), Δ≤ = Δ& since the one characteristic is ≤É & = constant+ & at the 
corresponding spatial coordinates. Starting from given boundary values  
 
 ¥Y,¿, ºY,¿	 	+ = 0, 1, 2, … }				and			 ¥B,Y 	F = 1,2, … }	,  
 
compute recursively for increasing values of F ≥ 0,  
 
 ¥Bi<,¿ = ¥B,¿=< + w ¥B,¿=<, 	ºB,¿=< 	Δ&,						for  	+ = 1, 2, …      (3a) 
 
 ºBi<,¿ = ºB,¿ + Ω ¥B,¿, 	ºB,¿ 	Δ&,																			for 	+ = 0, 1, 2, …     (3b) 
 
This constitutes the explicit (forward) Euler method and is shown schematically for ¥Bi<,¿ and 
ºBi<,¿ in Fig. 1B.  
 
A small modification of the approach allows usage of the implicit (backward) Euler method for 
solving the differential equations along the characteristics. More specifically replace equation (3) 
by the implicit equations:  
 
 ¥Bi<,¿ = ¥B,¿=< + w ¥Bi<,¿, 	ºBi<,¿ 	Δ&,						for  	+ = 1, 2, …      (4a) 
 
 ºBi<,¿ = ºB,¿ + Ω ¥Bi<,¿, 	ºBi<,¿ 	Δ&,										for 	+ = 0, 1, 2, …     (4b) 
 
These can then be solved by a fixed-point iteration  
 
 ¥Bi<,¿

(âi<) = ¥B,¿=< + w ¥Bi<,¿
(â) 	, 	ºBi<,¿

(â) 	Δ&,						for  	+ = 1, 2, …      (5a) 
 
 ºBi<,¿

(âi<) = ºB,¿ + Ω ¥Bi<,¿
(â) 	, 	ºBi<,¿

(â) 	Δ&,										for  	+ = 0, 1, 2, …     (5b) 
 
starting from 
 
 ¥Bi<,¿

(Y) = ¥B,¿=<				and				ºBi<,¿
(Y) = ºB,¿ . 

 
The above system of equations is a vectorial equation of the form  
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¥Bi<,¿
(âi<)

ºBi<,¿
(âi<) = ¡(

¥Bi<,¿
(â)

¥Bi<,¿
(â) ) , 

 
where the map  
 

 ¡(
¬
√ ) =

¥B,¿=< + w ¬, √ 	Δ&
ºB,¿ + Ω ¬, √ 	Δ&

 . 

 
It is clear that for sufficiently small Δ&, ¡ is Lipschitz continuous with Lipschitz constant ƒ < 1, 
since  
 

 ¡(
¬≈
√≈

) − ¡(
¬∆
√∆

) = Δ&	
w ¬≈, √≈ − w ¬∆, √∆
Ω ¬≈, √≈ − Ω ¬∆, √∆

<
¬≈
√≈

−
¬∆
√∆

 . 

 
Therefore, the fixed-point iteration in equation (5) converges. In the simulations, a fixed number 
of steps for the iteration are deemed sufficient, and it is observed that they give an improvement 
over the standard explicit Euler method.  
  
The proposed method can be applied to a system of more than two equations without any 
modification provided they share the same two characteristics. In fact, this is not unusual in 
many natural systems. For example, in soil, some chemical components may experience 
advection (i.e., leaching) with a particular gravity- or pressure-driven water velocity, while other 
components experience no leaching [1, 36]. In that case, a subset of equations can be solved 
along the characteristic dictated by the magnitude of the water advective velocity (i.e., ≤ & = \ 
for some value \), while the remaining equations can be solved along constant values of ≤ (i.e., 
≤ & = 0).  
  
If, however, there are more than two characteristics, e.g., for three dependent variables ¥, º and 
«, then we need to adjust the grid appropriately and possibly interpolate values of some of the 
dependent variables. This scenario will be discussed below, along with the case where the 
velocities (and therefore the characteristics) vary spatially.  
 
 
System of three or more characteristic directions  
 
Consider the case of three coupled PDEs  
 
 ¥C = w ¥, º, « − ¥o          (6a) 
 
 ºC = Ω ¥, º, «            (6b) 
 
 «C = ℎ ¥, º, « − \«o .        (6c) 
 
Once again, and without loss of generality, one velocity is normalized to 1, another to 0, and the 
remaining advective velocity is \.  
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We may form a grid as before on which to alternate directions and integrate equations (6a) and 
(6b). However, in order to update the values of «, we need to integrate equation (6c) along a 
different characteristic. If the advective velocity of « (\; denoted ≤…) is an integer (i.e., integer 
multiple of ≤É), then the grid points dictated by the advective velocities of ¥ and º are sufficient; 
namely, the (¥º)-grid as defined in the previous section. Then all dependent variables can be 
consistently determined on these points. If, however, \ is not an integer multiple of the advective 
velocity of ¥, then the value of « needs to be interpolated accordingly. More specifically, the 
value of « can be computed by integrating equation (6c) at points that fall outside the grid and 
those values can then be used to approximate « on the (¥º)-grid (see Fig. 2). For instance, the 
values of « at points (Δ&, ≤<) and (Δ&, ≤Ö) can be used to linearly interpolate the value of « at 
(Δ&, Δ≤), as shown in Fig. 2. We note that, in principle, the interpolation should be of at least the 
same order as the integration scheme, which is here of first order. 
 
In this way, following the rationale in the MAC, we can again use ordinary integration along 
characteristics as specified by the physics of the system. The choice of which equations to 
normalize and, thereby, determine the grid on which to evaluate the parameters, may have an 
impact on the numerical accuracy. Further analysis is needed to assess the optimal choice.  

 
 
Figure 2: Schematic of a customized grid for propagating the integration along three characteristic 
directions. 
Customized grid for three characteristic directions – ≤É = 1, ≤æ = 0, and ≤… = \, as in equation (6) – with 
interpolation of integrated values of ≤… = \ from spatial locations (Δ&, ≤<) and (Δ&, ≤Ö) in-between existing grid 
points (shown as black squares). The order of interpolation should be of at least the same order as the integration 
scheme. The integration then proceeds as before, alternating ordinary integration of each equation, along the 
customized grid. Boundary conditions are shown in red. 
 
 
System with spatially-varying characteristic directions  
 
On account of the underlying physics, the advective velocity may vary in space and time, i.e, as 
\(&, ≤) [16, 23, 41-42]. For example, the number and size of pore spaces in soil (and 
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consequently, the bulk density) through which water flows may vary with depth [1, 29, 36, 47]. 
Given mass balance considerations and no accumulation, this implies that the velocity changes 
with depth as the flow path changes. Additionally, leaching may vary according to the amount of 
water entering the soil (e.g., due to changes in precipitation) at a particular point in time [15, 29, 
36, 47]. Thus, we can see that the method presented above often needs to be extended to the case 
of variable characteristic directions. 
 
For illustration purposes, we consider the case where the advective velocity is only spatially 
variable, i.e., it is \(≤). Fig. 3 displays a suitable grid for the numerical scheme to solve an 
example with depth-varying advective velocity. Of particular interest, conferring advantages to 
the MAC, may be the case where the depth-varying velocity changes abruptly between layers 
(rough coefficients in the PDEs) as dictated by the underlying physics. An example of such a 
case will be simulated and discussed. 
 

 
 
Figure 3. Schematic of a customized grid for propagating the integration along two varying characteristics, 
such as those arising in systems with spatially-variable advective velocity.  
In this example, ≤æ = 0 (dashed horizontal lines) and ≤É = \(≤) (dotted diagonal lines). The step Δ≤ varies with ≤ 
and is dictated by \ ≤ 	Δ&. Boundary conditions are shown in red. 
 
 In principle, it is also possible to include temporal variation, either as \(&) or \(&, ≤) depending 
on the system. However, in such a case, the suitable grid may be complicated or may require 
additional interpolation. Since MAC is a first-order method, in principle, any approximation 
should be at least of first order. In practice, however, simplifications are often employed that 
ignore this time dependence.  In the case of soil carbon modeling, a temporally-averaged water 
flux is often used, calculated based on monthly- or annually-averaged precipitation [1, 29]. 
Hence, the velocity is taken as a constant in time and the use of a temporally-varying velocity 
may depend on the timescale of interest. 
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Characteristics in more than one spatial dimension 
 
The basic property that allows adapting the method of characteristics to a hyperbolic system of 
PDEs is the ability to generate a customized lattice (grid) where the spatial and temporal 
derivatives can be numerically approximated, consistently and simultaneously, for each of the 
equations of the hyperbolic system. For this to be the case, it is important that the characteristics 
display a suitable spatial invariance. The type of equations that arise in environmental models 
(e.g., of biogeochemical processes) are often simple enough to justify such a property. 
 
Once again, we consider two dependent variables, ¥ and º. We consider two spatial dimensions 
with coordinates designated as ≤ and  , and PDEs of the form 
 
 ¥C = w &, ≤,  , ¥, º − \< ≤ 	¥o −	\Ö	¥À ,      (7a) 
 
 ºC = Ω &, ≤,  , ¥, º  .         (7b) 
 
This set of equations arises naturally in instances were two components (with concentrations, ¥ 
and º) chemically interact, while one of the two advects (e.g., component ¥ leaches through the 
soil) and the other is stationary (e.g., º is adsorbed to the soil matrix). The advective velocities in 
the ≤ and   directions may depend on different physical factors. For example, the velocity in the 
  (horizontal) direction could be driven by a constant pressure gradient, possibly due to a nearby 
river or sloped catchment [15, 31, 37, 47]. The gravity-driven velocity in the ≤ (vertical) 
direction, on the other hand, may be a function of the depth (rather than being constant) due to 
differing medium properties (e.g., porosity) with depth [1, 36]. In this instance, the 
characteristics for component ¥ (distinguished by a superscript) are defined by 
 
 ≤É = \< ≤            (8a) 
 
  É = \Ö ,          (8b) 
 
and for component º, 
 
 ≤æ = 0           (9a) 
 
  æ = 0 .          (9b) 
 
As seen in Fig. 4a, a customized lattice, where spacing is regular in the  -direction and 
adjustable in the ≤-direction, provides a grid that allows integration of ODEs numerically along 
corresponding characteristics in a suitable manner. The curves in Fig. 4B represent the projection 
of the characteristics of ¥ (that may be spatially-variable, as shown) on the (≤,  ) plane, whereas 
the dots represent the projection of the characteristics of º. The lattice consists of points 
 
 &, ≤,   = (FΔ&, Δ≤â

¿
âÃ< ,ÕΔ )  
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and the corresponding variables for the numerical scheme are labeled accordingly as ¥B,¿,m and 
ºB,¿,m. Along the characteristics in equations (8) and (9), the ordinary difference equations for the 
explicit Euler scheme take the form 
 
 ¥Bi<,¿,m = ¥B,¿=<,m=< + w(¥B,¿=<,m=<, ºB,¿=<,m=<)	Δ&     (10a) 
 
 ºBi<,¿,m = ºB,¿,m + Ω(¥B,¿,m, ºB,¿=<,m=<)	Δ& ,      (10b) 
 
respectively, where ¥ and º are computed recursively for increasingly values of F ≥ 0, starting 
from given boundary conditions 
 
 ¥Y,¿,m, ºY,¿,m 	+ = 0, 1, 2, … ,Õ = 0, 1, 2, … }  and   ¥B,¿,Y 	F = 0, 1, 2, … , + = 0, 1, 2, … }. 
 
Similarly, the implicit Euler method, together with a fixed-point iteration scheme, can be 
employed using w and Ω evaluated at (¥Bi<,¿,m, ºBi<,¿,m). 
 
In more general situations, when a family of characteristics cannot be found that meets at the 
nodes of a lattice, advantages may still be drawn from a customized grid in conjunction with 
approximation schemes to interpolate at in-between points as discussed earlier. 
 
 
(a)                                           (b)  

 
 
Figure 4: Schematic of a customized lattice for two spatial dimensions. 
Customized lattice for two spatial dimensions, where the integration is propagated along distinct characteristics for 
dependent variables ¥ and º, as arising in equations (7) to (9). (a) Characteristic directions ≤É = \<(≤) and  É = \Ö 
for variable ¥ (red diagonal arrows) and ≤æ = 0 and  æ = 0 for variable º (red arrows perpendicular to ≤,  -plane) 
are used to form the customized lattice and propagate ordinary integration of the corresponding coupled ODEs as in 
equation (10). (b) The characteristic curves of ¥ are projected on the ≤,  -plane (shown in red) and the dots represent 
the projection of the characteristic curves of º. Here the characteristic ≤É = \<(≤) is spatially varying, as in 
equations (7a) and (8a). 
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System with diffusion and advection   
 
For many of the physical processes that we consider, it is expected that a small amount of 
diffusion will be present; e.g., that dissolved organic carbon will diffuse through the porous soil 
media. Thus, a more accurate model may be of the form  
 
 ≥Éà

≥C
= wâ &, ≤, ¥â, … , ¥∂ − \â &, ≤

≥Éà
≥o
+ kâ 	

≥ÑÉà
≥oÑ

	 . 
 
Numerically, we need to introduce kâ 	

≥ÑÉà
≥oÑ

 as an additional term in equations (3) and (4). A 
natural choice is to estimate the second partial derivatives with respect to x by either  
 

 ≥ÑÉ

≥oÑ
≈

ü@,œ?ü@,œ?ù
–c

=
ü@,œ?ù?ü@,œ?Ñ

–c

5o
=

É@,œ=ÖÉ@,œ?ùiÉ@,œ?Ñ
5oÑ

      (11a) 
 
and 
 
 ≥Ñæ

≥oÑ
≈

æ@,œ—ù=Öæ@,œiæ@,œ?ù
5oÑ

 ,        (11b) 
 
or, alternatively,  
 
 ≥ÑÉ

≥oÑ
≈

É@—ù,œ=ÖÉ@—ù,œ?ùiÉ@—ù,œ?Ñ
5oÑ

         (12a) 
 
and,  
 
 ≥Ñæ

≥oÑ
≈

æ@—ù,œ—ù=Öæ@—ù,œiæ@—ù,œ?ù
5oÑ

 ,        (12b) 
 
for explicit and implicit difference schemes, respectively. The approximation of the diffusion 
term can also be accomplished via finite volume methods [21, 26, 35]. If we use equation (11), 
we need to modify equation (3) as follows  
 
 ¥Bi<,¿ = ¥B,¿=< + w ¥B,¿=<, 	ºB,¿=< 	Δ& + kÉ

É@,œ=ÖÉ@,œ?ùiÉ@,œ?Ñ
5oÑ

Δ&,							for  	+ = 1, 2, …    
 
 ºBi<,¿ = ºB,¿ + Ω ¥B,¿, 	ºB,¿ 	Δ& + kæ

æ@,œ—ù=Öæ@,œiæ@,œ?ù
5oÑ

Δ&,																					for 	+ = 0, 1, 2, …    
 
If we use equations (4) and (12) instead, the difference equations become implicit as both ¥Bi<,¿ 
and ºBi<,¿ appear in the expression for the second partial with respect to ≤. These equations must 
be solved by relying on a fixed-point iteration as before. However, since the estimate for the 
second partial requires Δ≤Ö in the denominator, the relative sizes of Δ&, Δ≤, and k’s are critical 
and a Lipschitz constant of less than 1 may not be possible to guarantee. This appears to be the 
case when the magnitude of Δ& ≈ Δ≤ and Δ≤ is small relative to the k’s. 
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Applications & Results 
 
The Method of Alternating Characteristics (MAC) is uniquely suited to solve systems where 
subsets of the chemical constituents experience different advective velocities. Such instances 
arise naturally in many depth-resolved reactive transport models with flow through a porous, 
reactive medium, where only a subset of the constituents experience leaching [1, 16, 22-23, 32, 
36, 41-42]. For example, this encompasses many instances of pollutant transport through soil, 
and extends to models of soil carbon cycling where dissolved organic matter experiences 
leaching in addition to microbial decomposition and adsorption to mineral surfaces. Earlier 
method-of-characteristics-based ideas [3, 7, 8, 13, 38] have not been applied to this type of 
system where multiple characteristics must be reconciled and simultaneously utilized on a 
customized grid, limiting our ability to compare directly to such methods. The efficiency and 
accuracy (convergence towards the exact solution) of the MAC is therefore compared to a 
standard finite-difference scheme. More specifically, the first-order, implicit upwind finite-
difference scheme (hereafter, FD) is used to allow for a direct comparison with the first-order, 
implicit Euler method used in the MAC, as detailed in equations (4) and (5). For the system in 
equations (1) and (2), following the discretization ¥B,¿ = ¥(FΔ&, +Δ≤) and ºB,¿ = º(FΔ&, +Δ≤), the 
upwind scheme employed can be represented in compact notation as follows 
 
        ¥Bi<,¿ = ¥B,¿ + w ¥Bi<,¿, ºBi<,¿ 	Δ& − \i

É@,œ=É@,œ?ù
5o

+ \=
É@,œ—ù=É@,œ

5o
Δ&        (13) 

 
where \i = max \, 0  and \= = min \, 0 , and similarly for ºBi<,¿ with Ω ¥Bi<,¿, ºBi<,¿  [33, 
34]. Thus, if	\ > 0, as is the case in the examples below, then \i = \ and \= = 0. This implicit 
scheme can be solved by a fixed-point iteration, as described in equations (4) and (5), as opposed 
to an explicit scheme where	w and Ω are directly evaluated at ¥B,¿, ºB,¿ . We note that implicit 
evaluation of spatial derivatives at &Bi< resulted in additional numerical dispersion. We have 
therefore restricted our attention to the case where only w and Ω are implicitly evaluated as in 
equation (13). The upwind finite-difference scheme in equation (13) is first-order in both space 
and time. While we consider only first-order schemes here, alternative higher-order schemes can 
be used for both the MAC and FD; e.g., higher-order Runge-Kutta methods to approximate the 
ODE in the MAC and accordingly for the FD [19, 25]. The performance of the proposed method 
is highlighted by two examples of typical one-dimensional environmental applications.  
 
Reactive transport through a porous medium 
 
We apply the MAC to simulate depth-resolved, advection-dominated transport in which an 
unspecified number of substrates (for example, dissolved organic matter or extraneous 
pollutants) are leached through a porous medium (e.g., soil) while also undergoing reactions with 
the stationary parent material. Here we imagine that a substrate flows through the soil profile, but 
can no longer be leached if adsorbed to a mineral surface. In its dissolved and leachable state, the 
substrate constitutes the dissolved pool ,u, while in its adsorbed and stationary state, the 
substrate-mineral complex makes up the mineral-associated pool ,}. The adsorption and 
desorption reaction rate constants are denoted Fn~� and F~>�, respectively, and the advective 
transport is driven by the water velocity (\) through the medium (see Fig. 5). Assuming that a 
surplus of mineral binding sites (‘mno) exist to adsorb the substrate, the temporal and spatial 
evolution of the two dependent variables is dictated by  
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≥2z(C,o)

≥C
= −	Fn~�	,u	 ‘mno − ,} 		+ 	F~>�	,} 		− 		\

≥ 2z
≥o

     (14a) 

      adsorption         desorption    leaching 
 
≥2Å(C,o)

≥C
= 	Fn~�	,u	 ‘mno − ,} 	−	F~>�	,}	       (14b) 

             adsorption           desorption 
 
where all functions depend on time & and depth ≤. This example is easily extended to the case 
where there are multiple substrates that undergo reactions, multiple mineral surface types, as 
well as biological activity in which select substrates are consumed. The key is that only a subset 
of components undergo advection, making the MAC uniquely suited to solve such a system.  
 

 
 
Figure 5: Schematic of depth-resolved reactive transport.  
Here a substrate in the soil profile undergoes advective transport (leaching) and reactions (adsorption and 
desorption) in time (&) and space (≤) – see equation (14). 
  
Without loss of generality, the parameters Fn~�, F~>�, ‘mno, and \ in the above model were 
assumed to take the values of 1 day-1 kg-1 m3, 1 day-1, 1 kg m-3, 0.2 m day-1, respectively, 
recognizing that in real applications these values are estimated from laboratory experiments; e.g., 
sorption isotherms for each particular substrate are used to calculate the relevant adsorption and 
desorption parameters (Fn~�, F~>�, ‘mno) [30]. Fig. 6 shows the temporal- and spatial- evolution 
of the system in equation (14) in response to a step input of pollutant of 1 kg m-3 at the surface. 
The initial condition of both pools is zero pollutant concentration, while the boundary (surface) 
condition is initially rich in pollutant (imagine a continuous spill) and then free of pollutant (e.g., 
the spill is contained). Ultimately, the shape of the pollutant profile depends on the initial and 
boundary conditions, the relative magnitude of the adsorption and desorption rate constants, as 
well as the advective velocity.  
 
We compared the solutions of equation (14) with time steps Δ& ranging from 0.001 to 0.5 days 
for both the MAC and FD (Fig. 6), where Δ≤ for MAC is predefined by the nature of the method 
(i.e., Δ≤ = \	Δ&) and thus, the same Δ≤ was adopted for FD to ensure a fair comparison at the 
same resolution. As aforementioned, we show results from the first-order, implicit upwind finite-
difference scheme in equation (13), but also note that the first-order, explicit upwind finite-
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difference scheme was more prone to instabilities, as expected [12, 33]. Comparing the solution 
of FD across a range of time steps in Fig. 6, where the spatial step size is chosen to allow direct 
comparison to MAC, we can see that there is substantial numerical dispersion at larger time 
steps. However, comparing the MAC (Fig. 6, top) to the FD (Fig. 6, bottom), we can clearly see 
that the MAC maintains performance at coarser grid resolution. This pattern is also illustrated in 
Fig. 7 where the error (defined as the difference between the solution obtained using Δ& = 0.5 
and Δ& = 0.0005) is displayed for both the MAC and FD schemes. The two methods converge at 
smaller time steps Δ& < 0.001 and, thus, Δ& = 0.0005 is a good approximation of the true solution 
[4, 33]. It is observed that the MAC offers a significant advantage, as it allows for faster 
simulations with larger integration steps that do not sacrifice accuracy. 
 

 
 
Figure 6: Solving a system undergoing depth-resolved reactive transport using the Method of Alternating 
Characteristics (MAC) and the method of Finite Differences (FD). 
Solving the system in equation (14) using the Method of Alternating Characteristics (MAC) (top panels) and the 
method of Finite Differences (FD) (bottom panels) with increasing time steps from left to right: Δ& = 0.01, 0.1, 0.25, 
0.5 days, respectively. More specifically, the ordinary integration in MAC is performed by the first-order, implicit 
Euler method. For the FD implementation, the standard first-order, implicit upwind scheme in space and time is 
used to approximate the corresponding PDEs. The step size Δ≤ is predefined for MAC by the nature of the method 
(i.e., Δ≤ = \	Δ&) and thus, the same Δ≤ was adopted for FD to ensure a fair comparison at the same resolution. The 
increased numerical dispersion of the FD solution compared to the MAC solution is observed as the step size 
increases.   
 
 
 
 

0     2      4       6      8    10    12    14    16    18    20 
Time, t (days) 

0     2      4       6      8    10    12    14    16    18    20 
Time, t (days) 

0     2      4       6      8    10    12    14    16    18    20 
Time, t (days) 

0     2      4       6      8    10    12    14    16    18    20 

0 
 
1 
 
2 
 
 

3 
 
4 
 
5 

D
is

ta
nc

e,
 x

 (m
et

er
s)

 

Time, t (days) 

D
is

so
lv

ed
 s

ub
st

ra
te

, C
D
(t

,x
) (

kg
/m

3 )
 

0     2      4       6      8    10    12    14    16    18    20 

0 
 
1 
 
2 
 
 

3 
 
4 
 
5 

D
is

ta
nc

e,
 x

 (m
et

er
s)

 

Time, t (days) 
0     2      4       6      8    10    12    14    16    18    20 

Time, t (days) 
0     2      4       6      8    10    12    14    16    18    20 

Time, t (days) 
0     2      4       6      8    10    12    14    16    18    20 

Time, t (days) 

�t = 0.01 �t = 0.1 �t = 0.25 �t = 0.5 

D
ep

th
, x

 (m
) 

D
ep

th
, x

 (m
) 

M
A

C
 

FD
 

0 
 

1 
 

2 

 
3 
 

4 
 

5 
0 
 

1 
 

2 

 
3 
 

4 
 

5 

Time, t (days) 
0        4          8        12        16       20 0         4         8        12        16      20 0         4         8        12        16      20 0         4         8        12        16      20 

1 
 
0.9 
 
0.8 

 
0.7 
 
0.6 

 
0.5 
 
0.4 
 
0.3 

 
0.2 
 
0.1 
 
0 

1 
 

0.9 
 

0.8 
 
0.7 
 

0.6 
 
0.5 
 
0.4 
 
0.3 
 

0.2 
 

0.1 
 

0 



	

 108 

 
 
Figure 7: Numerical dispersion arising in the solutions using MAC and FD. 
Numerical dispersion, computed as the difference between the solution using Δ& = 0.5 and Δ& = 0.0005 days for 
MAC (left) and FD (right), both with first-order, implicit integration schemes of ordinary and partial derivatives, 
respectively.  Since the solutions of the two methods converge for Δ& < 0.001, the solution obtained with Δ& = 
0.0005 days is considered the “true solution” of the system [4, 33]. For consistency, the two methods are compared 
on a (Δ≤, Δ&) = (0.5m, 0.5day) grid. MAC shows significantly lower numerical dispersion. 
  
In Fig. 8, we show the simulation runtime and absolute error (defined here as the absolute value 
of the difference between the solution at each Δ& and the true solution at Δ& = 0.0005; i.e., 
|estimated – true| as per [4, 33]) as a function of the time step for each of the two methods. 
While we show the average absolute error (i.e., the L1 norm, |estimated – true|) over space and 
time in Fig. 8, we also explored the error at select time points, as well as the average squared 
error (i.e., the L2 norm, (estimated− true)Ö) since the choice of norm can be important and 
should reflect the goal of the computation [4, 44]. We can clearly see that, for this system, the 
MAC has a distinct advantage over FD and especially at larger step sizes. The error is essentially 
proportional to the step size, as seen in the matching slopes of the MAC and FD lines in Fig. 8B, 
confirming that we are dealing with first-order numerical methods [33]. By its very nature, the 
MAC outperforms FD, especially when steep concentration gradients occur. We note that in 
cases with smoother concentration gradients, the two methods showed similar accuracy, but we 
did not find the converse, where FD would perform better than the MAC.  
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   (a)                          (b) 

 
 
Figure 8: Comparing the method of alternating characteristics (MAC) to finite differences (FD) across a 
range of integration step sizes. 
Comparing the method of alternating characteristics (MAC; dashed lines) to finite differences (FD; solid lines) for 
the example given in equation (14) using a range of integration step sizes. Both the MAC and FD are implemented 
with first-order, implicit integration schemes of ordinary and partial derivatives, respectively. The time step Δ& is 
shown, while Δ≤ is predefined for MAC by the nature of the method and thus, the same Δ≤ was adopted for FD to 
ensure a fair comparison at the same resolution. (a) Simulation runtime and (b) average absolute value of the error 
for each Δ& compared to the true solution (using an exceedingly small Δ& = 0.0005 days where both methods 
converge to the same solution). The comparison of CPU time is made on a MacBook Air 2.2 GHz Intel Core i7 
processor. For any given accuracy, the MAC can use a significantly larger time step than FD resulting in a faster 
runtime. 
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Figure 9: Solving a system undergoing an abrupt change in advection velocity with depth using the MAC and 
FD. 
Solving the system in equation (14) with an abrupt change in advection velocity with depth (from \ = 0.1	m	day=< 
to \ = 0.5	m	day=< at 0.5m depth) using the MAC (top panels) and FD (bottom panels), both with first-order, 
implicit integration schemes of ordinary and partial derivatives, respectively. The solutions are compared for 
increasing integration time steps Δ&, and corresponding Δ≤ as defined by the MAC, from (left) Δ& = 0.01 to (right) 
0.5 days. Significantly more numerical dispersion is observed in the FD solution, especially for steep gradients and 
larger integration time steps. 
 
While we have thus far explored a numerical example with constant advective velocity, the 
properties of the medium (e.g., mineralogy and porosity of soil) generally vary with depth [1, 
36]. It is also possible to have rough coefficients with depth, for example, in distinct soil 
horizons (i.e., layers) [30, 36]. A system with heterogeneous coefficients may be more naturally 
handled by taking advantage of the physics in the MAC solution. A numerical example is 
presented in Fig. 9, where an abrupt change in the advective velocity occurs with depth. The FD 
solution results in significant numerical dispersion, especially with steep velocities and large 
time steps, as seen by comparing the right-hand panels of Fig. 9. 
 
Depth-resolved biogeochemical cycling in soil 
 
We now apply the MAC to a depth-resolved soil carbon model that includes four pools of 
organic carbon to a depth of 1 meter. These pools include the carbon in polymeric soil organic 
matter (,6), dissolved organic matter (,u) that leaches down the soil profile with a water 
transport velocity (\), microbial biomass carbon (,1), and mineral-associated organic matter 
(,}). The temporal and spatial evolution of these four dependent variables is dictated by   
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             adsorption           desorption 
 
where all functions depend on time & and depth ≤. The nonlinear functions of ,6, ,u, ,1, and ,} 
represent various chemical and biological reactions, including soil organic matter decomposition, 
uptake of dissolved organic matter into microbial biomass, and organo-mineral adsorption (see 
schematic in Fig. 10).  
 

 
 
Figure 10: Schematic of depth-resolved soil carbon cycling. 
Schematic of depth-resolved soil carbon cycling with dissolved organic carbon (DOC) leaching vertically through 
the soil profile while undergoing various chemical (i.e., desorption and adsorption with minerals) and biological 
(e.g., decomposition and uptake by microbial and enzymatic activity) reactions. The key constituents depicted and 
modeled here in addition to DOC are mineral-bound DOC, soil organic carbon (SOC), and microbial biomass. See 
equation (15) for details, including the functional form and parameters of each reaction. 
 
We can observe that the system is, in fact, of the same form as the previous example and that of 
equation (1). Here ¥ and º can be thought of as vector-valued with ¬ = [,u] and √ = [,6, ,1, 
,}], so that there are, again, two corresponding characteristics ≤É = \ and ≤æ = 0, respectively. 
Without loss of generality, we assume values of the parameters as reported in the literature (e.g., 
[1] and [27]) noting that the relative importance of each term in equation (15), as dictated by the 
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values of the parameters, does not affect our conclusions. The parameters lmno, qm, lmno,p, 
qm,p, F1, k, Fn~�, F~>�, ‘mno, and \ take values of 1 day-1, 250 mg C g-1 soil, 0.1 day-1, 0.26 mg 
g-1, 0.005 day-1, 0.31, 1 (mg/g) -1 day-1, 0.02 day-1, 1.5 mg g-1, 0.5 m day-1, respectively (Table 1) 
[1, 27, 30]. Most of these parameters are derived from laboratory incubations (e.g., Fn~�, F~>�, 
and ‘mno via sorption isotherm experiments [30] and k via measurements of microbial growth 
and respiration [40]) and the remaining parameters are statistically fit to match overall pool sizes 
(i.e., ,6, ,u, ,1, and ,}) at the field site of interest [1, 27]. We note that the estimation of these 
parameters, and the final model structure, depends largely on the application. We therefore use 
these parameters to illustrate the implementation of this method, and this analysis should be 
taken in that spirit. 
 
Table 1: Parameters for the model used for depth-resolved soil carbon cycling.  
The parameters of the model in equation (15) are lmno, qm, lmno,p, qm,p, F1, k, Fn~�, F~>�, ‘mno, and \ and were, 
without loss of generality, assumed to take the values given in the table. Here we adopt parameters from recent 
publications [1, 27, 30] and recognize that in each application these values will be estimated from observations. 
 

Parameter Description Value 
◊ÿŸ⁄ Maximum decomposition (depolymerization) rate 1 day-1 
€ÿ Half-saturation constant for decomposition 250 mg g-1 

◊ÿŸ⁄,‹ Maximum assimilation rate 0.1 day-1 
€ÿ,‹ Half-saturation constant for assimilation 0.26 mg g-1 
›fi Mortality rate of microbes 0.005 day-1 
fl Carbon use efficiency of microbes 0.31 

›Ÿ‡· Adsorption rate 1 (mg/g) -1 day-1 
›‡‚· Desorption rate 0.02 day-1 
„ÿŸ⁄ Maximum adsorption capacity 1.5 mg g-1 
‰ Average pore water velocity 0.5 m day-1 

 
 
Integrating equation (15) with MAC and FD (both with first-order integration schemes of 
ordinary and partial derivatives, respectively) across a range of time steps (Δ& = 0.01, 0.05, 0.1, 
0.25, 0.5) with corresponding spatial steps (Δ≤) as defined by MAC, we show the resulting 
transient and steady-state total soil carbon (,6 + ,u + ,1 + ,}) profiles in Fig. 11. It is clear that 
the MAC approaches the steady-state faster and with greater accuracy than FD. This is also 
illustrated in Fig. 12 and Fig. 13, where we show the percent absolute error of the MAC and FD 
solutions as compared to the true solution (i.e., 100	∙ |estimated – true|/true) for a range of time 
steps Δ&. For this example, we conclude that the MAC outperforms FD in accuracy, stability, and 
speed, especially at larger time steps.  
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Figure 11: Total soil organic carbon profile as integrated with the MAC and FD. 
Total soil organic carbon (,6 + ,u + ,1 + ,}) profile at & = 350, 700, 1150, and 1400 days, as integrated from 
equation (15) with the MAC and FD for Δ& = 0.01 and 0.5 days, and corresponding Δ≤ as defined by the MAC. Both 
the MAC and FD are implemented with first-order, implicit integration schemes of ordinary and partial derivatives, 
respectively, to allow for a direct comparison. Initial conditions and the steady-state solution are shown for 
reference. 
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Figure 12: Percent absolute errors obtained from comparing the MAC and FD solutions of the total soil 
organic carbon profile to the true solution. 
Percent absolute errors obtained from comparing the MAC and FD solutions of the total soil organic carbon (,6 +
,u + ,1 + ,}) profile to the true solution at & = 1400 days. The methods converge to the same solution at small 
enough time steps Δ& < 0.005 days and, therefore, this is considered as the true solution and is used to compare the 
methods across increasing Δ& = 0.01, 0.05, 0.1, 0.25, 0.5 day integration time steps, with the corresponding Δ≤ as 
defined by the MAC. Both the MAC and FD are implemented with first-order, implicit integration schemes. 
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Figure 13: Spatiotemporal evolution of percent absolute error of the first-order, implicit MAC and FD across 
space and time. 
Spatiotemporal evolution of percent absolute error of MAC and FD, calculated by comparing the total soil organic 
carbon (,6 + ,u + ,1 + ,}) across space and time to the true solution. The two methods were implemented with Δ& 
= 0.01, 0.05, 0.1, 0.25, 0.5 day time steps and corresponding Δ≤ as defined by the MAC. All solutions are shown on 
a (Δ≤, Δ&) = (0.5m, 0.5day) grid for direct comparison. 
 

Discussion & Conclusions 
 
We have presented a method for solving systems of advection-dominated PDEs in which all 
partial derivatives appear in linear expressions, as in many reactive transport models. The 
proposed method, termed the Method of Alternating Characteristics (MAC), is based on 
alternating between characteristic directions of the equations, such that a system of PDEs can be 
sequentially integrated, one step at a time, as ODEs along corresponding directions. We 
described extensions of this method to systems with two or more characteristics, spatially- and 
temporally- varying characteristics, and more than one spatial dimension. Finally, we presented 
two numerical examples, including applications to contaminant transport with mineral adsorption 
in a porous medium and to soil carbon cycling. The key is that only a subset of the chemical 
constituents undergo advection, while the remaining constituents are stationary. This scenario 
arises naturally when a compound can be leached through a porous medium in its dissolved state, 
for example, but cannot be advected once adsorbed to the surrounding medium.  
 
We compared the MAC using the first-order, implicit Euler method for ODE integration to the 
standard first-order, implicit upwind finite-difference scheme for PDE integration in space and 
time [12, 33], and demonstrated that the MAC is substantially more accurate for a given grid 
resolution or simulation runtime (Fig. 8). More specifically, because the solutions of advection-
dominated PDEs are smoother along their characteristics than in the time direction, the MAC can 
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use larger time steps while maintaining stability and accuracy. This fact is especially true for 
situations with steep concentration profiles. For such a case, we found that the MAC has a 
significant advantage in performance with regards to simulation time as well.   
 
In implementing finite-difference schemes, we have not implemented additional advances, e.g., 
that improve stability [9, 18, 28, 31, 39]. Further, besides stability, when implementing finite-
difference schemes, it is also important to preserve conserved quantities if that is the case [19, 
26, 34]. This last point has not been considered in the current paper either. However, we 
anticipate that both, improved stability and conservation, can be suitably addressed since MAC 
in essence reduces to integration of ODEs. This is a topic of current interest and research.  
 
Our point in the present paper has been to highlight the potential advantages of the proposed 
method and underscore the suitability for advection-dominated environmental systems with 
biogeochemical reactions. We expect that the proposed MAC will be useful to other fields of 
study in which time-dependent advection-dominated PDEs arise, such as air pollution (e.g., 
atmospheric pollutant transport), geomorphology and geochemistry (e.g., sediment and 
contaminant transport [5-6, 16, 41]), ecology (e.g., population densities of drift-prone aquatic 
species [10]), and engineering applications. 
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CONCLUSIONS 
 
It is an exciting time to be a soil scientist. Soil is essential to life, and understanding how carbon 
and nutrients are cycled and stabilized is critical for informing sustainable management practices 
and mitigation and conservation policies. Soil can be a potential solution or a positive feedback 
to rising temperatures and atmospheric CO2 concentrations. It is our responsibility to understand 
and maintain this critical resource for our own well-being and for the generations to come.  
 
Below I provide additional context that highlights the broad importance and applications of this 
growing field, and I briefly outline plans for upcoming work. 
 

Broader implications 
 

“The nation that destroys its soil, destroys itself.” - Franklin Delano Roosevelt (1937) 
 
By 2060, the U.S. population is expected to increase from 319 million in 2014 to 417 million 
(U.S. Census Bureau, 2015), and with that, so will emissions and the demand for food 
production. Maintaining healthy soils is not only crucial to long-term environmental 
sustainability, but carbon sequestered in soils also has the potential to mitigate emissions. 
Throughout my interactions with students and the broader public, I have been heartened to see a 
widespread interest in soils across the political and socio-economic spectrum, and an innate 
understanding that soil conservation is paramount to environmental prosperity. From students to 
home-gardeners, ranchers, engineers, and stakeholders alike, the significance of soils is tangible. 
Fostering public awareness and disseminating research findings to regional and national 
stakeholders (e.g., through the California Healthy Soils Initiative) is key in maintaining this 
critical resource and leveraging it as a potential solution in carbon sequestration. 
 

Future work 
 
Upscaling micro-scale interactions to macro-scale models 
 
Overarching question: How do micro-scale interactions modulate macro-scale soil C cycling? 
 
Soil is organizationally complex and spatially heterogeneous with exceptional microbiological 
diversity that varies in time and space (Jackson and Caldwell, 1993; Petridis et al., 2014; Mishra 
and Riley, 2015). Hotspots of microbial activity (e.g., in the rhizosphere; Kuzyakov and 
Blagodatskaya, 2015) are prevalent, yet they are patchy and periodic and it is intractable to 
represent this level of detail in macro-scale models. Most macro-scale microbial models have, 
therefore, been focused on exploring theory and capturing select processes in a simplified way. 
Process representations are often borrowed from micro-scales, without concern for effective, 
upscaled equations and parameterizations applicable at macro-scales (Fig. 1). Indeed, even key 
process representations are still debated (e.g., Michaelis-Menten versus reverse Michaelis-
Menten kinetics for SOC decomposition; Wieder et al., 2015a) and the relevant relationships 
may in fact depend on the intended scale. Thus, there is a need for continuum models that 
integrate across scales and can make process-based predictions of emergent feedbacks. 
Currently, the bridge between these scales is lacking. 
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While previous modeling studies have adopted mathematical formulations using bulk microbial 
biomass from a micro-scale understanding of microbial physiology (Allison, Wallenstein and 
Bradford, 2010; Wieder, Bonan and Allison, 2013), the mechanisms (and consequent effective 
equations) that operate at the community-level have not been sufficiently explored. In this 
dissertation, I showed that microbial community-level interactions (e.g., density-dependent 
microbial turnover) are essential for capturing the response of bulk SOC stocks to long-term 
litter manipulations, and that simply extrapolating process representations from micro- to macro-
scale models can lead to unrealistic behaviors. These findings motivate additional research on 
scaling, and illustrate the large implications that scale-dependent formulations can have on 
global carbon-concentration feedbacks. I will continue to explore how soil microbial processes 
regulate macro-scale SOC cycling through integrating empirical and computational insights 
across spatiotemporal scales to bridge the gap between micro- and macro-scale soil 
biogeochemical models. 
 
 

 
 

Figure 1: Scaling considerations and challenges in soil C modeling.  
There is an urgent need to bridge the gap between our micro-scale understanding (left panel) and effective 
representations in bulk, pool-based models (right panel). 
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