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Abstract

Semiclassical Analysis of Fundamental Amplitudes in Loop Quantum Gravity

by

Austin J Hedeman

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Robert Littlejohn, Chair

Spin networks arise in many areas of physics and are a key component in both the
canonical formulation (loop quantum gravity) and the path-integral formulation (spin-foam
gravity) of quantum gravity. In loop quantum gravity the spin networks are used to con-
struct a countable basis for the physical Hilbert space of gravity. The basis states may be
interpreted as gauge-invariant wavefunctionals of the connection. Evaluating the wavefunc-
tional on a specific classical connection involves embedding the spin network into a spacelike
hypersurface and finding the holonomy around the network. This is equivalent to evaluating
a “g-inserted” spin network (a spin network with a group action acting on all of the edges of
the network). The spin-foam approach to quantum gravity is a path-integral formulation of
loop quantum gravity in which the paths are world-histories of embedded spin networks. De-
pending on the spin-foam model under consideration the vertex amplitude (the contribution
a spin-foam vertex makes to the transition amplitude) may be represented by a specific sim-
ple closed spin network. The most important examples use the 6j-symbol, the 15j-symbol,
and the Riemannian 10j-symbol. The semiclassical treatment of spin networks is the main
theme of this dissertation.

To show that classical solutions of general relativity emerge in the appropriate limits
of loop quantum gravity or spin-foam gravity requires knowledge of the semiclassical limits
of spin networks. This involves interpreting the spin networks as inner products and then
treating the inner products semiclassically using the WKB method and the stationary phase
approximation. For any given spin network there are many possible inner product models
which correspond to how the spin network is “split up” into pieces. For example the 6j-
symbol has been studied in both a model involving four angular momenta (Aquilanti et al
[1]) and a model involving twelve angular momenta (Roberts [2]). Each of these models offers
advantages and disadvantages when performing semiclassical analyses. Since the amplitude
of the stationary phase approximation relies on determinants they are easiest to calculate
in phase spaces with the fewest dimensions. The phase, on the other hand, is easiest to
compute in cases where all angular momenta are treated on an equal footing, requiring a
larger phase space.
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Surprisingly, the different inner product models are not related by symplectic reduction
(the removal of a symmetry from a Hamiltonian system). There is a connection between
the models, however. On the level of linear algebra the connection is made by considering
first not inner products but matrix elements of linear operators. A given matrix element
can then be interpreted as an inner product in two different Hilbert spaces. We call the
connection between these two inner product models the “remodeling of an inner product.”
The semiclassical version of an inner product remodeling is a generalization of the idea
that the phase space manifold that supports the semiclassical approximation of a unitary
operator may be considered the graph of a symplectomorphism. We use the manifold that
supports the semiclassical approximation of the linear map to “transport” features from one
space to another. Using this transport procedure we can show that the amplitude and phase
calculations in the phase spaces for the two models are identical. The asymptotics of a
complicated spin network, and thus the fundamental amplitudes of loop quantum gravity
and spin-foam gravity, may be computed by first setting up an inner product remodeling
and then picking and choosing which features of the calculation to perform in which space.

In this dissertation we first introduce the remodeling of an inner product and the semi-
classical features of the remodeling. We then apply the remodeling to the well-studied cases
of the 3j-symbol and the 6j-symbol. Finally we explore how the remodel procedure applies
to more complicated spin networks such as the 15j-symbol and the g-inserted spin networks
of loop quantum gravity.
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Chapter 1

Introduction

Spin networks were first introduced by Penrose [3] as a way of creating a discrete model of
three-dimensional spatial geometry. Spin networks and their role in quantum gravity have
been reviewed in Major [4]. They are a diagrammatic way of representing certain group-
theoretic concepts such as the coupling of group representations. As defined in Rovelli [5], a
(closed) spin network is a graph containing a number of nodes and oriented links (“edges”)
between the nodes with labels on each of the nodes and links representing group-theoretic
quantities. For a given group the edges are labeled by a group representation. In this work
we deal exclusively with SU(2) spin networks so the irreducible representations are labeled
by j, a non-negative integer or positive half-integer. The nodes are intertwiners, linear maps
between carrier spaces of group representations that commute with the action of the group.
If the nodes are trivalent (so only three edges connect to the node) then the intertwiner is
uniquely determined up to a normalization and phase. If the nodes are of higher valence (so
four or more edges connect to the node) then there is a non-trivial vector space of possible
intertwiners the node could represent. Thus a further decoration or “coloring” is required for
each node of valence four or higher to indicate the precise intertwiner the node represents.
Note that this abstract definition of a spin network is not a graph embedded in some space,
though embeddings are used to form the basis states of loop quantum gravity.

These spin networks are closely related to the graphical technique used by Levinson [6]
and Yutsis et al [7] to describe calculations in SU(2) group theory. In their work each closed
spin network evaluates to a number. The Yutsis spin networks also contain links that contain
free ends. These ends are labeled with azimuthal quantum numbers m and represent angular
momenta with definite z-components. This idea was expanded upon in Stedman [8] where
the open ends are left unlabeled, in which case the spin network represents a state in the
Hilbert space of angular momenta rather than a number.

There is another approach to spin networks, sometimes called the chromatic evaluation,
which is more directly connected to Penrose’s original idea [3]. The fundamental object in
this approach is a “loop,” which is essentially a spin network with no nodes whose edge
carries a j = 1/2 representation label. Any closed SU(2) spin network can be decomposed
into finite linear combinations of loops. The decomposition uses the fact that the carrier
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space for the j-irrep of SU(2) can be expressed as the symmetrized product of 2j carrier
spaces for the fundamental (j = 1/2) representation. A spin network edge labeled with
irrep j is therefore interpreted as a symmetrized product of 2j strands (segments of a loop)
(see, for example, Section 6.3.2 of Rovelli [5]). The intertwiners at the nodes encode how
the strands that end at each node are connected. Thus the spin network becomes a linear
combination of closed loops. Kauffman and Lins [9] provide a more thorough overview of this
approach. It is this conception of spin networks that allows spin networks to be interpreted
as functionals of the connection in loop quantum gravity [5].

Spin networks arise in many areas of physics, ranging from atomic, molecular, and nuclear
physics to quantum computing and quantum gravity [10, 11]. They are a key component in
both the canonical formulation (loop quantum gravity) and the path-integral formulation
(spin-foam gravity) of quantum gravity [5]. Spin networks also provide a rich playground for
semiclassical analysis since their semiclassical approximations involve integrable systems.

Loop quantum gravity is a canonical, background-independent quantum field theory for
quantum gravity. Review articles and texts for loop quantum gravity include Rovelli [5],
Ashtekar and Lewandowski [12], and Thiemann [13]. Historically loop quantum gravity grew
out of the ADM formalism and the Cartan formulation of the first-order Palatini formalism.
In the ADM formalism [14] general relativity is described as a Hamiltonian system with
first-class constraints and in the Cartan formulation the Palatini action is expressed in terms
of a tetrad and a Lorentz connection, the metric being a function of the tetrad and the
curvature being a function of the connection [15, 5]. The formalism of loop quantum gravity
is built out of the Ashtekar’s “new variables” [16] which reformulate the ADM formalism as
a type of SU(2) Yang-Mills gauge theory, with the fundamental field an SU(2) connection,
which is the self-dual part of the complexified Palatini Lorentz connection.

Given a gauge theory in the canonical formalism we may use the connection of the gauge
theory to form a representation for the quantization of the theory. In this connection repre-
sentation physical quantum states are interpreted as gauge-invariant functionals of the con-
nection. Just as the classical configuration space in elementary quantum mechanics specifies
a set of basis states whose wavefunctions are delta functions in the configuration variables,
the space of connections specifies the connection basis states. However, the wavefunctionals
for these basis states are not gauge-invariant and therefore the connection basis states do not
represent physical states. Moreover, the Hilbert space on which these connection basis states
live is non-separable and therefore an uncountably infinite number of connection basis states
is required. In the context of quantum gravity this Hilbert space is the space of Ashtekar’s
SU(2) connections. Rovelli [5] calls this the “kinematical state space.” The physical Hilbert
space is obtained by performing a quotient operation in which the gauge freedoms and con-
straints of the theory are eliminated. One of the early triumphs of loop quantum gravity
was Rovelli and Smolin’s construction of a countable basis for a (separable) physical Hilbert
space of gravity [17]. This basis is made up of “s-knot” states and is labeled by a decorated
spin network and a knot class. In this work we call this basis the spin network basis.

Since loop quantum gravity is a canonical (Hamiltonian) formulation of gravity we need
to perform a 3+1 split of spacetime. Let the spacetime locally be foliated into a family of
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spacelike hypersurfaces. Interpreting the geometric properties of a spin network basis state
involves first embedding the spin network in a three-dimensional spacelike hypersurface Σ.
Let |S〉 be a spin network basis state, A a connection, and |A〉 the corresponding connection
basis state. Just as a state in ordinary quantum mechanics can be identified with a function
of the classical configuration (the wavefunction), a state in gauge theory can be interpreted
as a gauge-invariant functional of the classical connection (the wavefunctional) [18]. Thus
we may interpret spin network states in loop quantum gravity as wavefunctionals of the
Ashtekar SU(2) connection, ΨS[A] = 〈A|S〉. These are the fundamental amplitudes in loop
quantum gravity, taking one from the connection basis to the spin network basis [5]. The
semiclassical treatment of these amplitudes is the main theme of this dissertation.

As discussed earlier we may interpret an embedded spin network as a linear combination
of embedded loops. In this interpretation each of the individual loops evaluated against the
connection is a Wilson loop (this terminology is standard but confusing - it is not a loop in
the sense that we have defined them but the trace of the closed-path holonomy around a
loop) and thus the spin network evaluated against a connection may be interpreted in terms
of holonomies. The evaluation of spin networks as in Yutsis et al [7] is recovered when the
spin network is evaluated against a flat connection (so all holonomies are the identity). For
a non-flat connection there is an open-path holonomy g along each of the embeddings of an
edge. Evaluating the wavefunctional ΨS[A] on a specific classical connection then involves
inserting a group action operator Û(g) on each of the legs of the spin network. We call
such operations “g-insertions”. The fundamental amplitudes of loop quantum gravity are
therefore the evaluations of g-inserted spin networks.

Diffeomorphism invariance in gravity is manifested as the invariance of physical quantities
on the embedding given a specific knot class (diffeomorphisms cannot map a spin network
embedding in one knot class into another which is why the spin network basis must specify
both a spin network and a knot class). An area operator ÂS and volume operator V̂R may
be defined for each two-dimensional surface S and three-dimensional region R in Σ. A
spin network basis state for a given four-valent spin network where all four-valent nodes are
colored by volume eigenvalues is an eigenstate of all area operators [19] and volume operators
[20] on Σ. The spin network basis may be therefore be considered a “geometry” basis, in
contrast to the standard “connection” basis of quantum field theories [5, 13].

The origins of the idea of treating the g-inserted spin networks as the amplitudes of loop
quantum gravity trace back a long way. As described in Rovelli [5], it is a modern version
of Faraday’s insight that electromagnetic phenomena may be treated in terms of “lines of
force.” If we take the Faraday approach seriously then the relevant physical variables are
the holonomies of the U(1) electromagnetic gauge potential along paths. To gain physical
insight into loop quantum gravity we can compare with the loop representation of electro-
magnetism, which is described in Ashtekar and Rovelli [21] and Gambini and Pullin [22].
Since electromagnetism is an abelian U(1) gauge theory the SU(2) spin network basis states
of loop quantum gravity can be replaced by “loop states,” although now the loop states are
not invariant under diffeomorphisms and thus the states in the loop representation have to
also contain complete information about the embedding (this is one of the very few instances
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where the treatment of gravity is simpler than electromagnetism!). A loop state then is a
state where the electric field is zero everywhere except for the loop, along which it is tan-
gent. The loop state thus represents a singular electric field line. Since this state represents
a definite electric field it is a simultaneous eigenstate of the electric field operator Ê(x) at
every point in space. In Maxwell theory the electric field is the conjugate momentum to the
connection one-form and thus the loop representation is related to a “momentum represen-
tation” while the typical basis built out of the second quantization of the potential is related
to a “configuration representation” (up to subtleties that are irrelevant for this discussion).
We can also create an electric flux operator associated with each two-dimensional surface S
in space. The electric flux “counts” how many electric field lines pierce the surface and thus
we can interpret the edges of a loop state as carrying quanta of electric flux. This is exactly
analogous to loop quantum gravity where the spin network edges carry quanta of area. This
is the statement made in Section 4.1.1 of Rovelli [5], “the area of a surface is the flux of the
gravitational electric field across the surface”, where the gravitational electric field is roughly
the conjugate momentum to the induced Ashtekar connection on Σ.

Spin networks are also a central object in spin-foam models of quantum gravity. The
spin-foam approach is a path-integral formulation of loop quantum gravity. The “paths” in
this case are the world-history of the embedded spin network, called a “spin-foam.” Spin
network nodes becomes spin-foam edges and spin network edges become spin-foam faces. A
given spin-foam graphically shows one possible way for one spin network to evolve into a
different spin network. This usually involves creating or destroying spin network nodes. This
occurs at the vertices of the spin-foam. For example, three spin-foam edges meeting at a
spin-foam vertex and leaving as a single spin-foam edge represents three spin network nodes
coalescing to become a single spin network node. As in the Feynman diagram approach to
quantum field theory the transition amplitudes of spin-foam models are presented as sums-
over-histories. Review articles and texts for the spin-foam approach to gravity include Baez
[23], Oriti [24], Perez [25, 26], and Rovelli [5]. Spin networks enter this spin-foam approach
in a second way, distinct from their use in the spin network states of loop quantum gravity.
The contribution of a specific spin-foam to the transition amplitude is dependent in part on
the spin-foam vertices. Depending on the spin-foam model under consideration the vertex
amplitude may be represented by a specific simple closed spin network. The “Ponzano-Regge
model” presented in Ponzano and Regge [27] is a state-sum model for 3d-Euclidean quantum
gravity treated as an SU(2) gauge theory. It was the first spin-foam model ever presented
and uses the 6j-symbol as a fundamental building block. The 6j-symbol is a central object
in angular momentum theory and represents the unitary matrix elements involved in a
change-of-basis between the various recoupling schemes of three angular momenta [28]. The
6j-symbol provides the one of the simplest non-trivial examples of a closed-spin network and
will be discussed extensively in Chapter 4. Turaev and Viro [29], unaware of the previous
work by Ponzano and Regge, defined a similar state sum. They also expanded the formalism
and created a state sum using the “q-deformed” 6j-symbol, which is the 6j symbol for
the Hopf algebra SLq(2). This state sum represents a spin-foam model for 3d-Euclidean
quantum gravity with a cosmological constant. Ooguri [30] created a 4d-Lorentzian spin-
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foam model for BF theory. The vertex amplitude in the Ooguri model is a 15j-symbol. The
Archer [31, 32], Crane-Yetter [33], and Roberts [34] models are versions of the Ooguri model
which use the q-deformed 15j-symbol as the vertex amplitude and are spin-foam models
for 4d-Lorentzian BF theory with cosmological constant. The Barrett-Crane model [35] is
a spin-foam model that uses the “Riemannian 10j-symbol” as the vertex amplitude. The
spin network for the 10j-symbol contains ten edges linking five four-valent nodes. The irrep
labels on the ten edges are related to the areas ten triangular 2-faces of a four-simplex. Each
of the four-valent nodes is colored with an eigenvalue of the volume operator and represents
the volume of each of the five tetrahedral 3-faces of the four-simplex. One unfortunate
feature of the Barrett-Crane models is “ultra-locality,” the virtual absence of correlations
between the amplitudes of neighboring simplices. More recent spin-foam models for 4d-
gravity proposed by Engle, Pereira, and Rovelli [36] and Freidel and Krasnow [37] are free
from this problem. These models also use the 15j-symbol as a fundamental building block
of transition amplitudes.

One of the outstanding problems in both loop quantum gravity and spin-foam models
of quantum gravity is to show that classical solutions of general relativity emerge in the
appropriate limits. This requires knowledge of the semiclassical limits of spin networks as the
quantum numbers (the irrep values that label the edges) become large. The asymptotics of
certain fundamental spin networks has been studied extensively. The semiclassical behavior
of the Wigner 3jm-symbol (which in the rest of this work we refer to as simply the “3j-
symbol”) and the Wigner 6j-symbol (which is related to the Racah W -coefficient by a phase)
have been studied in such works as Ponzano and Regge [27], Neville [38], Miller [39], Schulten
and Gordon [40, 41], Biedenharn and Louck [42], Roberts [2], Charles [43], and Aquilanti et
al [44, 1]. The asymptotics of other simple spin networks have been studied by Haggard and
Littlejohn [45] (the 9j-symbol), Haggard [46] (the 6j and 9j-symbols), Yu [47] and Bonzom
and Fleury [48] (the 3nj-symbols with both large and small quantum numbers), and Baez
et al [49] and Freidel and Louapre [50] (the 10j-symbol), among others.

One of the Littlejohn group’s main approaches to studying the asymptotics of spin net-
works (see, for example, Aquilanti et al [44, 1] and Hedeman et al [51]) has been to treat
the spin networks as inner products and to treat the inner product semiclassically using the
WKB method and the stationary phase approximation. For an overview of features of the
WKB method relevant for this work see Appendix C and for modern treatments of WKB
theory, see Martinez [52] or Mishchenko et al [53]. The semiclassical calculation can be bro-
ken up into two main components, the phase and the amplitude. We are mainly concerned
with the relative phases that occur between the terms of the semiclassical expressions rather
than the absolute phases (which depend on the phase conventions of the states in the inner
products). The relative phase itself may be broken up into two pieces, an “action integral”
and a discrete Maslov correction, which are described in Sections C.1 and C.5. The action
integral and Maslov indices are dependent on paths in phase space. As shown in Littlejohn
[54], the amplitude can be expressed in terms of the determinant of matrix of Poisson brack-
ets on phase space, which we call the “amplitude determinant”. The Maslov correction can
also be expressed in terms of determinants of matrices of Poisson brackets, as discussed in
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Esterlis et al [55].
In preparing to analyze a spin network a specific inner product model must be chosen.

For any given spin network there are many possible models, which correspond to how the
spin network is “split up” into pieces (each piece representing a vector in a Hilbert space).
For example, in Roberts [2] a “12j-model” of the 6j-symbol was used. The states in the
12j-model inner product are states in a Hilbert space describing twelve angular momenta
(two for each of the six irrep labels of the 6j-symbol). In contrast Aquilanti et al [1] used a
“4j-model,” in which the states are states in a Hilbert space describing four angular momenta
(with four of the six irrep labels of the 6j-symbol assigned to these four angular momenta
and the remaining two irrep labels used to describe intermediate couplings between the orig-
inal four angular momenta). Each of these models offers advantages and disadvantages when
performing semiclassical analyses. Since the amplitude determinant and the Maslov correc-
tion calculations rely on determinants they are easiest to calculate in phase spaces with the
fewest dimensions. In the case of the 6j-symbol this phase space is the symplectic reduction
(a way of eliminating a symmetry from a classical system, as described in Section B.4) of
the semiclassical 4j-model. The action integral in the phase, on the other hand, is easiest to
compute in cases where all angular momenta are treated on an equal footing, such as in the
12j-model.

Surprisingly, the different inner product models are not related by symplectic reduction.
We discovered this in our analysis of the 3j-symbol. In Aquilanti et al [44] a “3j-model”
was used to study the 3j-symbol, which is constructed by considering the coupling of three
angular momenta to zero. The semiclassical analysis took place on a 12-dimensional phase
space, which may be reduced to a four-dimensional phase space by symplectic reduction.
Meanwhile, the 3j-symbol is closely related to the Clebsch-Gordan coefficients (up to the
action of a “2j-intertwiner,” as discussed in Chapter 3), which may be considered a “2j-
model” of the 3j-symbol. This model is constructed by considering the coupling of two
angular momenta to a third, non-zero angular momentum. The semiclassical analysis of
the 2j-model takes place on an 8-dimensional phase space, which may be reduced to a
two-dimensional phase space by symplectic reduction. There is no symplectic reduction that
connects the four-dimensional reduced 3j-model with the two-dimensional reduced 2j-model.

There is a connection between the models, however. On the level of linear algebra the
connection is made by considering first not inner products but matrix elements of linear op-
erators. A given matrix element can then be interpreted as an inner product in two different
Hilbert spaces, a “product” Hilbert space in which the linear operator of the matrix element
is a vector, and a “target” Hilbert space which contains the range of the linear operator.
We call the connection between these two inner product models the “remodeling of an inner
product.” The semiclassical version of an inner product remodeling is a generalization of the
idea in Miller [39] that the phase space manifold that supports the semiclassical approxima-
tion of a unitary operator may be considered the graph of a symplectomorphism. We use
the manifold that supports the semiclassical approximation of the linear map to “transport”
features from one space to another. Using this transport procedure we can show that the
amplitude and phase calculations in the phase spaces for the two models are identical. The
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asymptotics of a complicated spin network, and thus the fundamental amplitudes of loop
quantum gravity and spin-foam gravity, may be computed by first setting up an inner prod-
uct remodeling and then picking and choosing which features of the calculation to perform
in which space.

The structure of this dissertation is as follows:
In Chapter 2 we introduce and discuss the remodeling of an inner product. We ex-

plore the remodeling of an inner product first through the linear algebra and then through
the phase space geometry (and set up what we refer to as the “remodeling algebra” and
“remodeling geometry,” respectively). Then we define in the “transport of a manifold,” a
geometric construction that is used to relate semiclassical objects in different phase spaces.
The remainder of the chapter is then devoted to showing that the various aspects of the
semiclassical evaluations of an inner product are identical for the different models of the
matrix element.

In Chapter 3 we apply the remodeling of an inner product to the 3j-symbol and see
explicitly how the constructions of Chapter 2 apply. In particular we show how a remodeling
algebra and geometry is constructed. We show how the transport procedure maps the
manifolds of the 3j-model to the manifolds of the 2j-model and explicitly demonstrate the
how the remodeling geometry produces the expected densities, amplitudes, and phases in
the two models.

In Chapter 4 we apply the remodeling of an inner product to the 6j-symbol. In the case of
the 6j-symbol two remodeling algebras are required to connect the “symmetric” 12j-model
of Roberts [2] to the “small” 4j-model of Aquilanti et al [1]. With the remodeling algebras
and geometries in place we re-derive the asymptotic formula for the 6j-symbol, choosing to
do different pieces of the calculation in different models in order to simplify the calculation.

In Chapter 5 we consider other applications of the remodeling of an inner product. In
particular we show how different models may be constructed for the 3nj-symbol and set
up the remodeling algebras and geometries connecting these models. Then we consider
g-insertions in spin networks and show how the remodeling algebras and geometries are
affected. Finally, we analyze how the remodeling geometry may be used to associate a
Lagrangian manifold in a certain product phase space to a co-isotropic manifold. This
relationship enables us to consider the quantization of co-isotropic manifolds.

The Schwinger model of angular momentum, which is used heavily in all of our spin
network applications, is summarized in Appendix A. Appendix B reviews the various aspects
of symplectic geometry that are crucial to this work. Finally, relevant features of the WKB
method are reviewed in Appendix C.
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Chapter 2

The Remodeling of an Inner Product

One way to simplify the semiclassical evaluation of an inner product is through symplectic
reduction [56]. We can do that when there is symmetry in the system. However, symplectic
reduction is not the only way that a semiclassical calculation can be put on a different phase
space. Rather than reducing the phase space we can “remodel” the inner product so that
the calculation takes place in a different phase space. Remodeling shuffles computational
complexity between various aspects of a calculation whereas a symplectic reduction simplifies
things (and can be considered a “step down” on the complexity ladder) by removing the
redundancies in the system due to the symmetry.

For example, the inner product defining the 6j-symbol can be evaluated using either the
“4j-model” or the “12j-model” of the 6j-symbol as described in Aquilanti et al [1]. Under
a symplectic reduction the 4j-model reduces to a two-dimensional phase space. However,
calculations of the action integrals are more complicated due to the asymmetric nature in
which the six angular momenta of the 6j-symbol are treated. The angular momenta are
treated symmetrically by the 12j-model, at the cost of living in a 48-dimensional phase
space. However the symmetric treatment of the 12 angular momenta allows an easy and
straightforward calculation of the semiclassical phase. The 4j- and 12j- models cannot
be connected by symplectic reductions but can be by two remodels, as will be shown in
Chapter 4.

The goal of this chapter is to define and explore the remodeling procedure. In Section 2.1
the linear algebra and symplectic geometry connecting the various inner product models is
described. Then in Section 2.2 the “transport of a manifold,” a geometric construction that
is used to relate semiclassical objects in different phase spaces, is defined. The remainder of
the chapter is devoted to showing that the various aspects of the semiclassical evaluations
of an inner product are identical for the different models of the matrix element. Section 2.3
shows how a density may be geometrically constructed on the transported manifold and then
shows that this density is identical to the density that naturally arises from a stationary phase
evaluation. Section 2.4 shows how a momentum map description of the transported manifold
also reproduces this density. This result is used to show that the different inner product
models yield the same amplitudes in the semiclassical evaluation of the inner products.
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Finally in Section 2.5 we prove that the relative phases that occur in the stationary phase
evaluation are identical.

As will be shown in spin network calculations in future chapters, the phase is often easiest
to calculate in phase spaces of a large dimension where all of the angular momenta are treated
symmetrically. The amplitude, on the other hand, involves evaluation of a determinant and
thus is easier to evaluate in phase spaces of the lower dimensionality. Knowledge that the
various pieces of the stationary phase calculation are identical in different models allows for
the separate evaluation of these pieces in different models.

2.1 Hilbert and Phase Space Models

In this section we define the remodeling procedure and explore the various quantum and
semiclassical structures associated with each of the models. In Section 2.1.1 the “remodeling
algebra,” a collection of related Hilbert spaces, states, and inner product models is described.
Then in Section 2.1.2 the “remodeling geometry,” a collection of classical phase spaces and
maps between them, is constructed. The remodeling geometry contains the phase spaces
on which semiclassical evaluations of the various inner product models introduced in Sec-
tion 2.1.1 is carried out. The wavefunctions and associated semiclassical manifolds for the
quantum states and operators are described in Section 2.1.3. Finally, Section 2.1.4 provides
a description of the states and manifolds of the remodeling geometry in terms of a group
theory structure.

2.1.1 The Remodeling Algebra

Consider two Hilbert spaces H1 and H2. In this discussion vectors in H1 and H2 will be
written as kets. The formalism developed in this chapter, however, extends to cases where
H1 or H2 are spaces of bras, linear maps, or tensor products of such spaces. The chapter on
the 3j-symbol, for example, will deal with the case where H1 is a space of kets and H2 is a
space of bras.

Let M̂ : H2 → H1 be a linear map. The Hilbert spaces H1 and H2 will be called
the “target” and “source” Hilbert spaces, respectively. Let |a〉 ∈ H1 and |b〉 ∈ H2 be
two normalized vectors, called the “a-state” and the “b-state,” respectively. In this work,
“state” refers to a vector in a Hilbert space following the common physics usage. Given
vectors |a〉 ∈ H1 and |b〉 ∈ H2, one can form the matrix element

〈a|M̂ |b〉, (2.1.1)

which can be interpreted as an inner product in different ways. Such interpretations are
what we call the various “models” of the matrix element.

We will be dealing exclusively with integrable systems in this work, which implies that
the states described in this section can all be described as the simultaneous non-degenerate
eigenstates of sets of observables. The set of observables defining a state do not need to
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commute globally on the Hilbert space but they do commute when acting on the state [44].
For example, the Wigner state |j1j2j30〉 is a simultaneous eigenvector of the three observables
Ĵ at eigenvalue 0. On the 0 eigenspace, the three components of Ĵ mutually commute. The
observables defining a state will usually be the generators for a unitary representation of
some group on the Hilbert space. For example, the operators Î1, Î2, Î3, Ĵ that are used to
define the Wigner state are the generators of a U(1)3 × SU(2) representation on the 3j-
Hilbert space. In this case we say that the operators form the direct sum of three copies of
the u(1) Lie algebra and the su(2) Lie algebra under the commutator. We will assume that
all sets of operators defined below form Lie algebras under the commutator.

Let there be n1 degrees of freedom in H1 so that n1 independent operators are needed
to form a complete set of observables on H1. Let the a-state be the unique state (up to a
normalization and phase) such that Âi|a〉 = µa,i|a〉, where {Âi} are a set of n1 observables
on H1 satisfying

[Âi, Âj]|a〉 = 0. (2.1.2)

Assume that the set of operators Âi form a Lie algebra under the commutator so that the
operator identity [Âi, Âj] = fkijÂk holds for some constants fkij. Then the set of operators Âi
may act as the generators of a group GA on H1, where fkij are the structure constants of the
Lie algebra gA. The observables are then interpreted as the components of the g∗A-valued
operator Â : H1 → g∗A × H1 with respect to some basis. With respect to this basis, the
eigenvalues µa,i are considered the components of a momentum µa ∈ g∗A. For 2.1.2 to be
satisfied we need µa to be a fixed point of g∗A under the co-adjoint action of GA on g∗A. Given
such a µa we may express the eigenstate |a〉 using the notation

|a〉 =

∣∣∣∣ Â1

µa,1
· · · Ân1

µa,n1

〉
=

∣∣∣∣ Â
µa

〉
, (2.1.3)

where the top row is a list of operators and the bottom row is a list of quantum numbers
and µa ∈ g∗A.

Similarly,H2 describe a system with n2 degrees of freedom and let the b-state be described
as the simultaneous eigenstate

|b〉 =

∣∣∣∣ B̂1

µb,1
· · · B̂n2

µb,n2

〉
=

∣∣∣∣ B̂
µb

〉
, (2.1.4)

where {B̂I} are a set of n2 observables on H2 satisfying [B̂I , B̂J ]|b〉 = 0. Let B̂I close under
commutation and generate a Lie group GB.

Define the “β-state,” as the map M̂ acting on the b-state,

|β〉 ≡ M̂ |b〉. (2.1.5)

We assume in this work that the β-state can be expressed as the simultaneous eigenstate of
a set of n1 observables {β̂i} at eigenvalues µβ,i. The relationship between β̂i, the map M̂ ,
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State Hilbert Space Observables Eigenvalues Group

|a〉 H1 Âi µa,i GA

|β〉 H1 β̂i µβ,i Gβ

|b〉 H2 B̂I µb,I GB

|a〉〈b| H12 Â
(12)
i , B̂

(12)
I µa,i, µb,I GA×GB

M̂ H12 ÔM,α µM,α GM

Table 2.1: States in the remodeling algebra of 〈a|M̂ |b〉.

and the observables B̂ will be discussed in Section 2.4.2. In terms of |β〉, the matrix element
2.1.1 can be expressed as

〈a|M̂ |b〉 = 〈a|β〉, (2.1.6)

Since |a〉 and |β〉 are vectors in H1, Eq. 2.1.6 is called the “target space model” of matrix
element 2.1.1.

The “dual source Hilbert space” H∗2 is the space of linear maps : H2 → C. If H2 is a
space of kets then H∗2 is a space of bras and vice versa. There is a natural antiunitary map
Ĝ2 : H2 → H∗2 that acts on vectors in H2 via the Hermitian conjugate, Ĝ2(|b〉) = (|b〉)† = 〈b|.
There is a natural mapping from operators B̂ : H2 → H2 on the source Hilbert space to
operators B̂> on the dual source Hilbert space. As discussed in Section A.1, B̂> is the
natural action of B̂ on dual vectors from the right.

Define the “product Hilbert space” H12 ≡ H1 ⊗ H∗2 to be the tensor product of the
target Hilbert space with the dual source Hilbert space. The product Hilbert space can be
identified with the space of linear maps : H2 → H1. By construction H12 describes a system
with (n1 + n2) degrees of freedom. Thus M̂ is interpreted both as a linear map and as a
vector in H12. The map M̂ will be called the “map state” or the “M -state” when considered
as a vector in the product Hilbert space. We assume that M̂ , considered as a state in H12,
may be described as the simultaneous eigenstate of a set of (n1 +n2) observables {ÔM,α} on

H12 satisfying [ÔM,α, ÔM,γ]M̂ = 0 that generate a Lie group GM .
Another vector in H12 can be constructed by taking the outer product of the a-state with

the dual of the b-state, |a〉⊗〈b| ∈ H1 ⊗ H∗2. This will be called the “product state” or the
“ab-state.” We will usually omit the tensor product symbol for brevity, writing the product
state as simply |a〉〈b|. Operators on the target or source Hilbert spaces can be extended

to operators on the product Hilbert space. Let Â
(12)
i : H12 → H12 and B̂

(12)
I : H12 → H12

be defined as Â
(12)
i = Âi ⊗ Îd

>
2 and B̂

(12)
I = Îd1 ⊗ B̂>I , where Îd1 and Îd2 are the identity

operator on H1 and H2. The superscript (12) is used to emphasize that the operators act on
H12 and may be dropped if the space the operators are acting on is clear from context. The
ab-state may be described as the simultaneous eigenstate of the (n1 + n2) observables Â

(12)
i

and B̂
(12)
I at eigenvalues (µa,i, µb,I). This set of observables generates the group GA ×GB.

The space of linear maps between Hilbert spaces carries a natural inner product. The
inner product of two vectors Ôa and Ôb ∈ H12 is given by tr(Ô†aÔb). The matrix element
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H1

|a〉, |β〉
H1⊗H∗2
M̂, |a〉〈b|

H∗2
〈b|

H2

|b〉
Ĝ2oo

Ĝ−1
2

//

Figure 2.1.1: The remodeling algebra for 〈a|M̂ |b〉.

2.1.1 can be expressed as such an inner product,

〈a|M̂ |b〉 = tr
(
(|a〉〈b|)†M̂

)
. (2.1.7)

The right-hand side of Eq. 2.1.7 is the inner product of vectors |a〉〈b| and M̂ in the product
Hilbert space H1 ⊗H∗2 and is called the “product space model” of matrix element 2.1.1.

We call the above collection of Hilbert spaces, states, and inner product models of the
matrix element 2.1.1 the “remodeling algebra” of the matrix element. A diagram showing
the spaces and states in the remodeling algebra is shown in Fig. 2.1.1. A list of the states
and the observables that define them is given in Table 2.1.

It is also possible to act M̂ to the left in the matrix element 2.1.1 to form a state 〈α| ∈ H∗2
and thus make a “source space model” 〈α|b〉. However, this is equivalent to setting up the
remodeling algebra for M̂ interpreted as a map : H∗1 → H∗2 and so does not need to be
considered separately.

2.1.2 The Remodeling Geometry

Since the different inner product models Eqs. 2.1.6 and 2.1.7 are carried out in different
Hilbert spaces, the semiclassical approximations of the models will occur in different phase
spaces. Since the approximations are for the same object 2.1.1, it is expected that the
semiclassical evaluations in the different models will be closely related to one another. The
set of phase spaces for the different models, the relations between them, semiclassical objects
that live in them will be referred to as the “remodeling geometry.”

A Hilbert space H may be represented semiclassically by a phase space which is specified
by a manifold Φ and a symplectic form ω on the manifold, (Φ, ω). In a slight abuse of notation
we will usually use the symbol Φ to refer to the manifold equipped with the symplectic form.
If the number of independent operators necessarily to form a complete set in H is n then
the phase space has dimension 2n.

The target Hilbert space H1 is associated with the “target phase space” (Φ1, ω1), where
dim Φ1 = 2n1. A point in Φ1 will be labeled z1 and local Darboux coordinates on Φ1 are
chosen to be (xi, pi), where lowercase index i runs from 1 to n1. In these coordinates, the
symplectic form is ω1 =

∑
i dpi ∧ dxi or dp∧ dx, where a sum over hidden index i is implied.

The Darboux coordinate define a local x-representation, for which the symplectic potential
is θ1 =

∑
i pidxi which we write as p dx.
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Similarly, the source Hilbert spaceH2 is associated with the “source phase space” (Φ2, ω2),
where dim Φ2 = 2n2. A point in Φ2 will be labeled z2 and local Darboux coordinates on Φ2

are chosen to be (yI , rI), where uppercase index I runs from 1 to n2. In these coordinates,
the symplectic form is ω2 =

∑
I drI ∧ dyI or dr ∧ dy, where a sum over hidden index I is

implied. The Darboux coordinate define a local x-representation, for which the symplectic
potential is θ2 =

∑
I rIdyI which we write as r dy.

The phase space for the dual source Hilbert space H∗2 is the “dual source phase space”
(Φ2, ω2̄) = (Φ2,−ω2), where the bar on the subscript distinguishes the symplectic form on
the dual space from the form on the original space. The manifold Φ2 with the symplectic
form ω2̄ will be written as Φ∗2. The dual source phase space is identical as a manifold to the
source phase space but has the opposite symplectic form. There is a natural antisymplectic
isomorphism between these spaces,

G2 : Φ2 → Φ∗2 : z2 7→ z2. (2.1.8)

This is different from the identity map because the two copies of z2 belong to spaces with
different symplectic structures. The map is antisymplectic since G∗2ω2̄ = −ω2. The map G2

is called the “dual map” and G2 and G−1
2 can be used to pull back or push forward structures

between a space and its dual. For example, submanifolds keep their symplectic character
under the dual map. That is, the push-forward of an isotropic/Lagrangian/co-isotropic
submanifold of Φ2 under G2 is an isotropic/Lagrangian/co-isotropic submanifold of Φ∗2. Co-
ordinates (y, r) define a local y-representation on Φ2. With respect to this representation
the symplectic potential is θ2̄ = −r dy = −G−1

2
∗
θ2.

The product Hilbert space H12 is associated with the “product phase space” (Φ12, ω12).
The manifold Φ12 is the Cartesian product of the manifolds Φ1 and Φ2 and thus is 2(n1 +n2)-
dimensional. The symplectic form ω12 is the sum of the pull-backs of the symplectic forms
on the component phase spaces by the natural projection maps π1 and π2 associated with the
Cartesian product, ω12 = π∗1ω1 + π∗2ω2̄. In a slight abuse of notation, this will be expressed
as ω12 = ω1 − ω2.

A point z ∈ Φ12 will be described as the pair (z1, z2), where z1 = π1(z) and z2 = π2(z).
Local coordinates (xi, pi; yI , rI) on Φ12 are the pull-backs of the coordinates on the target
and dual source phase spaces. In these coordinates, the symplectic form is

ω12 =

n1∑
i=1

dpi ∧ dxi −
n2∑
I=1

drI ∧ dyI . (2.1.9)

We will usually use Φ12 to refer to the manifold with this symplectic structure and write
Φ12 = Φ1 × Φ∗2, where the phase space Φ1 × Φ∗2 is the pair (Φ1 × Φ2, ω1 − ω2). Coordinates
(x, p; y, r) define a local xy-representation on Φ12, for which the symplectic potential is

θ12 = π∗1θ1 + π∗2θ2̄ =

n1∑
i=1

pidxi −
n2∑
I=1

rIdyI . (2.1.10)

Note that dθ12 = ω12, as required.
The phase spaces and the various maps between them are summarized in Fig. 2.1.2.
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Φ1 Φ1×Φ∗2

Φ∗2 Φ2

π1oo

π2

�� G2oo

G−1
2

//

Figure 2.1.2: Phase spaces and maps in the remodeling geometry.

2.1.3 Lagrangian Manifolds in the Remodeling Geometry

In this work, we will assume that the states described in Section 2.1.1 all have wavefunctions
that are well-approximated by the WKB form. The WKB wavefunctions will be expressed
in the x-, y-, and (x, y)-representation for states in the target, source, and product Hilbert
spaces, respectively. As discussed in Section C.1, the phase function in the WKB wave-
function generates a Lagrangian manifold in the relevant phase space associated with the
Hilbert space. The amplitudes and phase functions in the following discussion all carry a
hidden branch index and the functions are to be interpreted locally. Each of the branches
of the WKB wavefunctions carries a Maslov index µ. The Maslov indices for the various
wavefunctions and the relationships between them will be discussed in Section 2.5.4. We
assume that all states defined in the remodeling algebra are normalized and explicitly in-
clude normalization constants N in the WKB wavefunctions below. This will allow us to
express the amplitudes in terms of Poisson brackets and the normalization constant in terms
of group volumes in Section 2.1.4.

The vector |a〉 ∈ H1 has a WKB wavefunction in the x-representation of Φ1 given by

ψa(x) = 〈x|a〉 = Na

∑
ka

Aa(x)eiSa(x)−iµaπ/2, (2.1.11)

where ka is the branch index, Aa(x) is the amplitude, Sa(x) is the phase function, and µa
is the Maslov index. The amplitude, phase function, and Maslov index all carry a hidden
branch index in the above sum. The functions Sa(x) are the generating functions for the
Lagrangian manifold La ⊂ Φ1. Points on the “a-manifold” La have coordinates (x, pa(x)),
where

pa(x) ≡ ∂Sa
∂x

. (2.1.12)

Note that each branch of the WKB wavefunction carries a different phase function and thus
generates a different x-representation branch of the Lagrangian manifold.

Similarly, the vector |β〉 ∈ H1 has WKB wavefunction

ψβ(x) = 〈x|β〉 = Nβ

∑
kβ

Aβ(x)eiSβ(x)−iµβπ/2. (2.1.13)
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The function Sβ(x) generates the Lagrangian manifold Lβ ⊂ Φ1. Points on the “β-manifold”
Lβ have coordinates (x, pβ(x)), where

pβ(x) ≡ ∂Sβ
∂x

. (2.1.14)

The vector |b〉 ∈ H2 has a WKB wavefunction in the y-representation of Φ2 given by

ψb(y) = 〈y|b〉 = Nb

∑
kb

Ab(y)eiSb(y)−iµbπ/2. (2.1.15)

The function Sb(y) is the generating function for the Lagrangian manifold Lb ⊂ Φ2. Points
on the “b-manifold” Lb have coordinates (y, rb(y)), where

rb(y) ≡ ∂Sb
∂y

. (2.1.16)

Similarly, the WKB wavefunction for the dual vector 〈b| ∈ H∗2 is given by

ψb̄(y) = 〈b|y〉 = Nb

∑
kb

Ab(y)eiSb̄(y)−iµb̄π/2. (2.1.17)

Since ψb̄(y) = ψ∗b (y), the phase function is Sb̄(y) = −Sb(y) and µb̄ = −µb. The amplitude
for ψb̄ is real and is therefore the same as the amplitude for ψb. The Lagrangian manifold
Lb̄ ⊂ Φ∗2 is generated by Sb̄(y). Points on the “dual b-” or “b̄-manifold” Lb̄ have coordinates
(y, rb̄(y)), where

rb̄(y) ≡ −∂Sb̄
∂y

= +
∂Sb
∂y

= rb(y). (2.1.18)

The negative sign in the definition of rb̄(y) is due to the fact that the symplectic form is
ω2̄ = −dr ∧ dy. Note that the manifold Lb̄ ⊂ Φ∗2 is described by the same momentum
functions as Lb ⊂ Φ2. Therefore Lb̄ is the image of the manifold Lb under the dual map
Eq. 2.1.8, Lb̄ = G2(Lb).

The M -state, interpreted as a vector in H1⊗H∗2, has a WKB wavefunction in the (x, y)-
representation of Φ12 given by

ψM(x, y) = 〈x|M̂ |y〉 = NM

∑
kM

AM(x, y)eiSM (x,y)−iµMπ/2. (2.1.19)

The function SM(x, y) is the generating function for the Lagrangian manifold LM ⊂ Φ1×Φ∗2.
Points on the “M -” or “map manifold” LM have coordinates (x, y, pM(x, y), rM(x, y)), where

pM(x, y) ≡ ∂SM
∂x

; rM(x, y) ≡ −∂SM
∂y

. (2.1.20)
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The product state |a〉〈b| ∈ H1⊗H∗2 has a WKB wavefunction in the (x, y)-representation
of Φ∗12 given by

ψab(x, y) = 〈x| (|a〉〈b|) |y〉 = Nab

∑
kab

Aab(x, y)eiSab(x,y)−iµabπ/2. (2.1.21)

The function Sab(x, y) is the generating function for the Lagrangian manifold Lab ⊂ Φ1×Φ∗2.
Points on the “ab-” or “product manifold” Lab have coordinates (x, pab(x, y); y, rab(x, y)),
where

pab(x, y) ≡ ∂Sab
∂x

; rab(x, y) ≡ −∂Sab
∂y

. (2.1.22)

Since ψab(x, y) = ψa(x)ψ∗b (y), we may express Eq. 2.1.21 as This may also be expressed as

ψab(x, y) = NaNb

∑
kakb

Aa(x)Ab(y)eiSb(y)−iSa(x)−i(µb−µa)π/2. (2.1.23)

Therefore the phase function Sab(x, y) is the difference Sa(x)−Sb(y) and Eq. 2.1.22 becomes

pab(x, y) = pa(x); rab(x, y) = rb(y). (2.1.24)

Points on Lab can be described by coordinates (x, pa(x); y, rb(y)) and therefore Lab may be
expressed as the Cartesian product La × Lb̄. In particular,

Lab = π−1
1 (La) ∩ π−1

2 (Lb̄), π1(Lab) = La, π2(Lab) = Lb̄. (2.1.25)

2.1.4 Momentum Maps and Densities

As discussed in Littlejohn [54] and Aquilanti et al [44, 1], the simultaneous eigenstate condi-
tion defining a state translates to a level set condition that defines the Lagrangian manifold
that supports the semiclassical approximation for the state. For example, the Lagrangian
manifold La is the simultaneous level set for the classical observables Ai associated with Âi
at the quantized contour values µa,i. As discussed in Sections A.2 and C.3, the classical

observables Ai are the Weyl symbols of operators Âi. The La is described using the notation
similar to the eigenstate notation introduced in Eq. 2.1.3,

La =

(
A1

µa,1
· · · An1

µa,n1

)
, (2.1.26)

where the top row is a list of classical observables and the bottom row is a list of contour
values.

The set of classical observables defining a Lagrangian manifold can often be described
as the components of a momentum map for some symplectic group action on phase space.
All groups in this section are assumed to be connected, semisimple Lie groups to ensure
the existence of Ad∗-equivariant momentum maps, as discussed in Section B.2. Consider a
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group G with a symplectic group action on a 2n-dimensional phase space Φ. Let P : Φ→ g∗

be an Ad∗-equivariant momentum map for the group action and let generalized momentum
µ be a fixed point of g∗ under the co-adjoint action. Following Section B.3, the level set
P−1(µ) is then a co-isotropic manifold. The group orbits through points on the level set are
isotropic manifolds completely contained in P−1(µ) and the level set is the union of these
group orbits.

Let {ξi} be a basis of the Lie algebra g and let Pi be the components of P with respect
to this basis. Let Xi ≡ ω−1(dPi) be the set of Hamiltonian vector fields for the momentum
map components. As discussed in Section B.3, if the set of vectors Xi at a point z ∈ Φ
has rank m then the group orbit through z has dimension m and the level set containing
z has co-dimension m. If dim G = n (half the dimension of Φ) and if the set of vectors
{Xi} are full rank on the level set P−1(µ) then the level set and the group orbit through any
point on P−1(µ) are n-dimensional and thus Lagrangian. We assume that all Lagrangian
manifolds in this section are connected and therefore are covered by a single group orbit.
Let {λi} be the set of n one-forms on the Lagrangian manifold that are dual to {Xi} on
P−1(µ), λi(Xj) = δij. Let σ ≡

∧
λi on the Lagrangian manifold P−1(µ) be the form on L

as defined in Eq. C.2.2. This is locally the push-forward of the Haar measure on G. The
isotropy subgroup HL ⊂ G is defined as the elements of G that leave points on L invariant
under the symplectic action. The volume of L with respect to σ is the volume of the group
G with respect to the Haar measure divided by the cardinality of the isotropy subgroup HL,
VL = VG/ |HL|. The normalization of the WKB wavefunction is then N = 1/

√
VL. Given an

x-representation on Φ the density σ defines a set of density functions Ωk(x) indexed by the
branches of L in the x-representation. As in Section C.2, the density functions are defined
through σ|z = Ωk(x)dx1 ∧ · · · ∧ dxn, where z is the point on the k-th branch of L over point
x. As shown in Littlejohn [54] the density functions can be expressed using the determinant
of an n×n matrix of Poisson brackets evaluated at z, Ωk(x) = (det {xi, Pj})−1 in which case

the amplitudes of the WKB wavefunction are expressed as Ak(x) =
√

Ωk(x).
We now apply these general ideas to the states defined in Section 2.1.1 and the Lagrangian

manifolds described in Section 2.1.3. We assume that each of the states can be described as
simultaneous non-degenerate eigenstates of a set of observables and that the manifolds can
be described as the level set of an Ad∗-equivariant momentum map. Note that all of the
states and Lagrangian manifolds that occur in spin network applications may be described
in such a way.

Let the a-manifold La be the level set A−1(µa), where GA is an n1-dimensional connected,
semi-simple Lie group with Ad∗-equivariant momentum map A : Φ1 → g∗A and µa is a fixed
point of g∗A. Let {ξAi } (i = 1, · · ·n1) be a basis of gA. Let XA

i be the Hamiltonian vector
field for momentum map component Ai with respect to this basis. Let λAi be the forms dual
to XA

i on La and let σa be the volume form on La, as described above.
Similarly let Gβ, GB, and GM be n1-, n2-, and (n1 + n2)-dimensional groups with mo-

mentum maps β, B, and M. Let µβ, µb, and µM be fixed-point generalized momenta so the
Lagrangian manifolds can be expressed as momentum map level sets, as listed in Table 2.2.
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Lagrangian
Manifold

Space Group Dimension
Momentum

Map
Generalized
Momentum

La Φ1 GA n1 A µa
Lβ Φ1 Gβ n1 β µβ
Lb Φ2 GB n2 B µb
Lb̄ Φ∗2 GB n2 −B −µb
LM Φ12 GM n1 + n2 M µM
Lab Φ12 GA ×GB n1 + n2 (A,−B) (µa,−µb)

Table 2.2: Lagrangian manifolds in the remodeling geometry. These manifolds may be
expressed as group orbits of a group or as level sets of a momentum map at a particular
generalized momentum.

Let {ξβi }, {ξBI }, and {ξMα } be bases of the Lie algebras, where lower case Latin indices run
from 1 to n1, upper case Latin indices run from 1 to n2, and Greek indices run from 1 to
(n1 + n2). Let σβ, σb, and σM be the volume forms on Lβ, Lb, and LM with respect to these
ordered choices of basis. The momentum map β is related to maps B and M as will be
shown in Section 2.4.

The symplectic group action ϕB of GB on Φ2 induces a symplectic group action ϕB̄ on
the dual space Φ∗2 via conjugation with the dual map,

ϕB̄g ≡ G2 ◦ ϕBg ◦G−1
2 , ∀ g ∈ GB. (2.1.27)

Let XB̄
I be the infinitesimal generators of ϕB̄ corresponding to the basis vectors ξI . Since

ω2̄ = −(G−1
2 )∗ω2, XB̄

I = −G2∗X
B
I . Therefore the momentum map B̄ : Φ∗2 → g∗B is the

negative of the pull-back of B,
B̄ = −B ◦G−1

2 . (2.1.28)

Since G−1
2 is the identity map on the points of Φ∗2, the momentum map B̄ acting on a point

of Φ∗2 is the same as −B acting on the same point of Φ2. In a slight abuse of notation we
will write B̄ as simply −B. The Lagrangian manifold Lb̄ is therefore the level set

Lb̄ =

(
B̄
−µb

)
=

(
−B
−µb

)
=

(
B
µb

)
, (2.1.29)

where we use the notation introduced in Eq. 2.1.26 for a level set of momentum maps. The
one-forms λI

b̄
∈ Ω1(Lb̄) dual to X b̄

I on Lb̄ are given by λI
b̄

= −(G−1
2 )∗λIb and therefore the

density on Lb̄ is
σb̄ = (−1)n2 (G−1

2 )∗σb ∈ Ωn2(Lb̄). (2.1.30)

Finally, group actions ϕA of GA on Φ1 and ϕB̄ of GB on Φ∗2 induce a GA × GB action
ϕAB on the product space Φ12,

ϕAB(g,h) : (z1, z2) 7→ (ϕAg z1, ϕ
B̄
h z2), ∀ g ∈ GA, h ∈ GB. (2.1.31)
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The Lie algebra of GA × GB is the direct sum of Lie algebras gA ⊕ gB and the dual Lie
algebra is the direct sum g∗A⊕ g∗B. The momentum map PAB : Φ12 → g∗a⊕ g∗b for this action
is given by

PAB : (z1, z2) 7→ (A(z1), B̄(z2)), (2.1.32)

which we write as just PAB = (A,−B), as in Table 2.2. The product Lagrangian manifold
Lab = La × Lb̄ is the level set P−1

AB(µab), where µab = (µa,−µb). Interpreting A and B as
functions on Φ12 defined via the pullbacks by π1 and G−1

2 ◦ π2, respectively, Lab is thus the
simultaneous level set of A at µa and B at µb. We also express this as

Lab =

(
PAB

µab

)
=

(
A
µa

−B
−µb

)
=

(
A
µa

B
µb

)
, (2.1.33)

where the top row is a list of momentum maps or classical observables and the bottom row
is the corresponding generalized momenta or contour values.

Let {ξABα } be a basis of ga⊕gb, with ξABα = ξAi for α = i ≤ n1 and ξABα = ξBI for α = n1+I.
The (n1 + n2) components of the momentum map PAB are then the n1 components of A
and the n2 components of B. With this basis, the volume form on Lab is given by

σab = (π∗1σa) ∧ (π∗2σb̄) ∈ Ω(n1+n2)(Lab). (2.1.34)

2.1.5 Semiclassical Inner Product Models

The target space inner product model Eq. 2.1.6 and the product space inner product model
2.1.7 of matrix element 2.1.1are evaluated semiclassically in the target phase space and
product phase space, respectively. Both are expressed as integrals of the WKB wavefunctions
defined in Section 2.1.3.

The target space model is expressed as

〈a|β〉 = NaNb

∑
ka,kβ

∫
dxAa(x)Aβ(x)eiSb(x)−iSa(x)−i(µb−µa)π/2, (2.1.35)

where the sum is taken over the branches of ψa(x) and ψβ(x) and branch indices on the
amplitudes and phase functions have been suppressed. Each of the points in the intersection
I(1) ≡ La ∩ Lβ corresponds to a stationary phase point of one of the integrals in Eq. 2.1.35,
where the conjugate momentum coordinates p of the intersection determine the branch in-
dices ka and kβ [44]. We first consider the case when the stationary phase set I(1) is composed
of a discrete set of points. Applying Eq. (3) of Aquilanti et al [44] to the target space model
yields

〈a|β〉 =
(2πi)n1/2√

VaVβ

∑
k

∣∣Ω(1)(z1,k)
∣∣1/2 eiϕ1

k , (2.1.36)

where k indexes points z1,k ∈ I(1), Ω(1)(z1,k) is the “amplitude determinant” (det {Ai, βj})−1

evaluated at z1,k and ϕ1
k is the phase. Let z1,k be on the ka-th branch of La and the kβ-th
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branch of Lβ over representation point xk. Then the phase is

ϕ1
k = Sβ,kβ(xk)− Sa,ka(xk)− (µb,kβ − µa,ka)

π

2
+ σz1,k(β, a)

π

4
, (2.1.37)

where µb,kβ and µa,ka are Maslov indices and σz1,k(β, a) is the signature index as described
in Sections C.1 and C.5.

The states in the inner product models will frequently feature common symmetry groups
which manifest as higher-dimensional intersections of the two Lagrangian manifolds that
support the WKB wavefunctions of the states. The intersections are interpreted as a set
of disconnected group orbits of the common symmetry group. Let GH,1 be the common
symmetry group between the a- and β-manifolds in the target space model with group
orbits of dimension s1. The common symmetry group may be made explicit by choosing a
basis of the Lie algebras for gA and gβ such that the first s1 components of the momentum
maps A and β are identical [1]. The stationary phase approximation of Eq. 2.1.6 becomes

(2πi)(n1−s1)/2√
VaVβ

∑
k

VH1,k

∣∣∣Ω̃(1)(z1,k)
∣∣∣1/2 eiϕ1

k , (2.1.38)

where k indexes group orbits of GH,1 ∈ I(1), z1,k is a point in the group orbit, VH1,k is
the volume of the group orbit with respect to the Haar measure on GH,1. The phase is

the same as in Eq. 2.1.37 but Ω̃(1)(z1,k) is a “reduced” amplitude determinant involving an
(n1 − s1)× (n1 − s1)-matrix of Poisson brackets of the last (n1 − s1) components of A and
β (the components that are not common to both momentum maps).

Define I(12) ≡ Lab ∩ LM . The stationary phase evaluation of the product space model
yields

tr
(
(|a〉〈b|)†M̂

)
=

(2πi)(n1+n2)/2

√
VabVM

∑
k

∣∣Ω(12)(zk)
∣∣1/2 eiϕ12

k , (2.1.39)

where k indexes points zk ∈ I(12), Ω(12)(zk) = (det {PAB,α,Mα′})−1 is the amplitude deter-
minant evaluated at zk, and ϕ12

k is a phase. Let zk be on the kab-th branch of Lab and the
kM -th branch of LM over representation point (xk, yk). Then the phase ϕ12

k is

Sab,kab(xk, yk)− SM,kM (xk, yk)− (µab,kab − µM,kM )
π

2
+ σzk(M,ab)

π

4
. (2.1.40)

If there is a common symmetry group GH,12 with s12-dimensional group orbits between Lab
and LM then Eq. 2.1.39 becomes

(2πi)(n1+n2−s12)/2

√
VabVM

∑
k

VH12,k

∣∣∣Ω̃(12)(zk)
∣∣∣1/2 eiϕ12

k , (2.1.41)

The rest of this chapter is devoted to exploring the remodeling algebra and geometry.
We ultimately show that the pieces of the stationary phase results in Eqs. 2.1.38 and 2.1.41
agree. In particular the phases and amplitude determinants of the target space model are
identical to the phase and amplitude determinant of the product space model. Thus we may
carry out different pieces of the semi-classical evaluation of a matrix element in different
models.
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2.2 The Transport of a Manifold

The semiclassical evaluation of an inner product 〈A|B〉 as performed in Littlejohn [54] and
Aquilanti et al [44, 1] involves expressing the inner product as an integral of WKB wavefunc-
tions. The integral is then approximated using the stationary phase approximation. The
stationary phase set is interpreted as the set of phase space points in the intersection of the
Lagrangian manifolds associated with |A〉 and |B〉. Similarly, since |β〉 is defined to be M̂ |b〉,
the WKB wavefunction for ψβ(x) in Eq. 2.1.13 can be approximated using a stationary phase
approximation on the integral in Eq. 2.2.1, below. The stationary phase set is the set of
product phase space points in the intersection of a Lagrangian manifold and a co-isotropic
manifold. This is a generalization of the inner product procedure to acting a map on a
vector. In this generalization the inner product is interpreted in a remodeling picture where
the target Hilbert space is just C and the target phase space is zero-dimensional.

In Section 2.2.1, we evaluate the wavefunction ψβ using the stationary phase approxima-
tion and the WKB forms of ψM and ψb. The geometry of the stationary phase set inspires
a geometric construction of a target space manifold TM(Lb) ⊂ Φ1 from LM and Lb. We call
TM(Lb) the “transport” of Lb through LM . We describe the geometric construction of the
transported manifold and then show that TM(Lb) and Lβ are identical as manifolds in Sec-
tion 2.2.2. In Section 2.2.3 we start to investigate the symplectic structure of the transported
manifold in cases where LM and Lb do not share a non-trivial common symmetry group and
prove that the transport procedure generically results in a Lagrangian manifold. Finally
we consider the transport of a manifold in the presence of a non-trivial common symmetry
group in Section 2.2.4.

2.2.1 The Stationary Phase Approximation for ψβ(x).

Using Eq. 2.1.5, the wavefunction of |β〉 can be expressed as

ψβ(x) = 〈x|β〉 = 〈x|M |b〉 =

∫
dy〈x|M |y〉〈y|b〉 =

∫
dyψM(x, y)ψb(y). (2.2.1)

Plugging in the WKB forms Eq. 2.1.19 and 2.1.15 gives

ψβ(x) =
∑

branches

∫
dyAM(x, y)Ab(y)eiSM (x,y)−iµMπ/2eiSb(y)−iµbπ/2, (2.2.2)

where the sum is taken over both the branches of ψM(x, y) and the branches of ψb(y). The
stationary phase condition is

∂SM
∂y

+
∂Sb
∂y

= 0. (2.2.3)

In terms of the momentum functions defined in Eq. 2.1.20 and 2.1.16, this implicitly defines
the function yβ(x),

−rM(x, yβ(x)) + rb(yβ(x)) = 0. (2.2.4)
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For a fixed x Eq. 2.2.4 is a set of n2 equations for the n2 unknowns yβ. This generically yields
a discrete set of solutions which are labeled by a branch index for yβ(x). In situations with
symmetry such as those that occur in spin networks there will be a continuum of solutions.
We will explore how to handle these situations in greater detail in Section 2.2.4. Therefore
the phase in Eq. 2.1.13 can be expressed as

Sβ(x) = SM(x, yβ(x)) + Sb(yβ(x)). (2.2.5)

The function pβ(x) defined in Eq. 2.1.14 is therefore

pβ(x) =
∂SM(x, yβ(x))

∂x
+
∂Sb(yβ(x))

∂x
=
∂SM
∂x

+

(
∂SM
∂y

+
∂Sb
∂y

)
∂yβ
∂x

. (2.2.6)

Replacing the derivatives with the momentum functions gives

pM(x, yβ(x)) +
(
rb(yβ(x))− rM(x, yβ(x))

)∂yβ
∂x

. (2.2.7)

The last term vanishes by Eq. 2.2.4 and therefore the momentum function pβ(x) for Lβ is

pβ(x) = pM(x, yβ(x)). (2.2.8)

Note that the branches of pβ(x) that occur in Eq. 2.1.13 are indexed by the triplet of branches
of pM(x, y), rb(y), and yβ(x).

2.2.2 Geometric Construction of TM(Lb)
We assume in this section that Lb and LM do not share a non-trivial common symmetry
group. Even though most of the spin-network examples will exhibit symmetry, it is worth-
while to study the generic case to illustrate the main features of the transport procedure.

We start with Lb ⊂ Φ2 which is described locally by (y, rb(y)) ∈ Φ2. The first stage
in the transport is to push-forward Lb into Φ∗2 using the dual map. As discussed in the
previous section, this yields the dual-b-manifold Lb̄ = G2(Lb), described locally by coordi-
nates (y, rb(y)) ∈ Φ∗2. Since both Lb and Lb̄ are Lagrangian submanifolds, they are both
n2-dimensional.

The next stage in the transport is to form a manifold in the product phase space Φ1×Φ∗2
by taking the inverse image of Lb̄ under the projection map π2,

π−1
2 Lb̄ = {(z1, z2) ∈ Φ12 | z2 ∈ Lb̄} . (2.2.9)

This is a (2n1 + n2) co-isotropic submanifold of Φ12. The inverse image is equal to the
Cartesian product Φ1 × Lb̄ and is described locally by coordinates (x, p; y, rb(y)). Let Lb
be the fixed-point level set of momentum map B as in Section 2.1.4. The inverse-image in
Eq. 2.2.9 can then be described as the level set B−1(µb) ⊂ Φ12 where, in an abuse of notation,
B : Φ12 → gB is interpreted as the pull-back of B : Φ2 → gB by G−1

2 ◦ π2. As discussed in
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Section 2.1.4, the momentum map for the symplectic GB action on Φ12 is −B. The level set
B−1(µb) can be described as the level set of the momentum map −B at fixed point −µb ∈ g2

B

and is therefore co-isotropic.
The third stage in the transport is to form the intersection manifold I of the inverse

image with the map manifold LM ,

I ≡ LM ∩ π−1
2 Lb̄. (2.2.10)

As discussed in Sec. 2.1.3, points on the map manifold LM are locally described by co-
ordinates (x, pM(x, y); y, rM(x, y)). The intersection occurs over points (x, y) satisfying
rM(x, y) = rb(y). This implicitly defines the function yI(x),

rb(yI(x)) = rM(x, yI(x)). (2.2.11)

Points on I are thus locally described by coordinates (x, pM(x, yI(x)); yI(x), rb(yI(x))). Com-
paring Eq. 2.2.11 with Eq. 2.2.4 shows that the set of stationary phase points of the integral
in Eq. 2.2.1 is precisely the intersection manifold I. The map manifold LM has co-dimension
(n1 +n2) and the inverse image has co-dimension n1, so the intersection manifold generically
has co-dimension (2n1 +n2), meaning that dim I is generically n1. In cases of symmetry the
intersection manifold I may have a greater dimension, as will be discussed in Section 2.2.4.
If Lb and LM are both fixed-point level sets of momentum maps as in Section 2.1.4, the
intersection manifold may be described as the simultaneous level set

I =

(
B
µb

M
µm

)
. (2.2.12)

The transport is concluded by projecting I onto the target phase space Φ1 using the
projection map π1,

TM(Lb) ≡ π1

(
LM ∩ π−1

2 Lb̄
)
. (2.2.13)

Manifold TM(Lb) is therefore locally described by (x, pT (x)), where

pT (x) ≡ pM(x, yI(x)). (2.2.14)

The branches of pT are labeled by the three branch indices of rb, pM , and yI . Generically this
projection is full rank and yields an n1-dimensional submanifold of Φ1. In cases of symmetry
the projection will not be full rank and there will be “vertical” directions of I over Φ1, in
which case the intersection manifold has a larger dimension than the transported manifold,
dim I > n1.

The definition of the transported momenta pT (x) in Eq. 2.2.14 is the same as the sta-
tionary phase result for pβ(x) in Eq. 2.2.8 since yI(x) = yβ(x). Therefore Lβ and TM(Lb)
are described by the same set of points and we can conclude that the β-manifold and the
transported manifold are identical submanifolds of the target phase space.
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⇐
π1

⇓G−1
2 ◦ π2

Φ2

Φ1
LM

Lb

I

Lβ

π
−1

2
L b̄

Φ12

Figure 2.2.1: The geometric construction of the transport of the manifold Lb through LM .
The manifold I is the intersection of the inverse image π−1

2 Lb̄ with LM . The transported
manifold Lβ is the projection of I onto the target phase space.

Manifold Space Dimension Co-Dimension

Lb Φ2 n2 n2

Lb̄ Φ∗2 n2 n2

π−1
2 Lb̄ Φ12 2n1 + n2 n2

LM Φ12 n1 + n2 n1 + n2

I Φ12 n1 n1 + 2n2

TM (Lb) Φ1 n1 n1

Table 2.3: Manifolds and spaces involved in forming the transport TM(Lb). The dimensions
in the first four rows are exact while the dimensions for the last two rows are generic.

Figure 2.2.1 shows the transport of Lb through LM to form the manifold Lβ using the
geometric construction just discussed. Table 2.3 lists the manifolds described in the proce-
dure above along with the spaces they belong to and their dimension and co-dimension. The
dimensions listed for the first four rows are exact while the dimensions for I and TM(Lb) are
merely the dimensions that occur in cases without symmetry.

Consider a point z1 ∈ Lβ. The transport procedure described above ensures that there
exists at least one point z ∈ I such that π1(z) = z1. However the point z is in general not
unique, even in cases without symmetry. Let πI : I → TM(Lb) be the projection map π1

whose domain is restricted to the intersection manifold and whose range is restricted to the
transported manifold. The inverse image π−1

I (z1) is the set of intersection points projecting
to the same point of the transported manifold. In cases without symmetry this set will be
the discrete set of points {zρ} indexed by ρ. The intersection manifold I thus becomes the
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• • •• •
⇐
π1

Φ1

Lβ

I ⊂ LM

︸ ︷︷ ︸ ︸ ︷︷ ︸
Branch ρ Branch ρ′

Iρ Iρ′

z1
zρ zρ′

Figure 2.2.2: An example of the branches of the intersection manifold I under the projection
onto Lβ. The restriction of the projection map π1 to the branch Iρ or Iρ′ of the intersection
manifold is injective.

Tz1Φ1 TzΦ12

Tz2Φ∗2 Tz2Φ2

π1∗oo

π2∗

�� G−1
2∗ //

Figure 2.2.3: Maps between tangent spaces in the remodeling geometry.

union of branches Iρ, as shown in Figure 2.2.2. The branches Iρ are connected submanifolds
of I such that the restricted projection map π1|Iρ is injective.

The transport procedure as defined above results in a manifold that has all of the prop-
erties that are required to support the semi-classical approximation of a quantum state. For
example, the transport of a Lagrangian manifold is itself a Lagrangian manifold, as proven
in the next section. In addition we show explicitly in Section 2.5.6 that if LM and Lb are a
quantized manifolds, then so is the transported manifold.

2.2.3 The Transport of an Isotropic Manifold is Isotropic

Since the transport of Lb is identical to the manifold Lβ it is a Lagrangian manifold. However
we may show more generally that the transport procedure applied to an isotropic manifold
always yields an isotropic manifold of the target phase space. Let B ∈ Φ2 be an isotropic
submanifold of the source space and let TM(B) be the transport of B under M , following
the procedure of Section 2.2.2. Consider a point z = (z1, z2) ∈ I and the tangent spaces
TzΦ12, Tz1Φ1, Tz2Φ∗2, and Tz2Φ2. These are all symplectic vector spaces since the phase spaces
are symplectic manifolds. Also note that TzΦ12 = Tz1Φ1 × Tz2Φ∗2. The maps in Fig. 2.1.2
are pushed-forward to become maps π1∗, π2∗, and G−1

2∗ between tangent spaces, as shown in
Fig. 2.2.3.

Define B̄ to be the image of B under the dual map, B̄ = G2(B). Since B is an isotropic
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manifold of Φ2, B̄ is an isotropic submanifold of Φ∗2 and the tangent space Tz2B̄ is an isotropic
plane in Tz2Φ∗2. Similarly, TzLM is a Lagrangian plane in TzΦ12. The tangent space to the
inverse image at z is given by Tz1Φ1×Tz2B̄ and is a co-isotropic plane in TzΦ12. The tangent
space at z of the intersection manifold is given by TzI = Tz(π

−1
2 B̄) ∩ TzLM . Since this is a

subspace of the Lagrangian plane TzLM , TzI will always be an isotropic plane in TzΦ12. The
dimension of TzI is generically (n1 − n2 + dim B) but may be larger in cases of symmetry.
Note that if B is Lagrangian then the dimension of TzI is generically n1. Finally, the tangent
space at z1 of the transported manifold is Tz1(TM(B)) = π1∗(TzI).

Consider an arbitrary point z1 ∈ TM(B) and let z ∈ π−1
I (z1) be some point in I that

projects onto z1. Let Xβ ∈ Tz1(TM(B)) be an arbitrary tangent vector to the transported
manifold at z1. Since Tz1(TM(B)) = π1∗(TzI), there must exist a vector XM ∈ TzI such that
π1∗XM = Xβ. Note that since I is a subspace of the tangent space to the inverse image of B̄,
the push-forward of any vector in TzI by π2 will be tangent to B̄. Therefore π2∗XM ∈ Tz2B̄.

Acting the symplectic form ω1 on any pair of vectors in the tangent space Tz1(TM(B))
therefore gives

ω1(Xβ1, Xβ2) = ω1(π1∗XM1, π1∗XM2) = π∗1ω1(XM1, XM2). (2.2.15)

Since ω12 ≡ π∗1ω1 + π∗2ω2̄, the last expression in Eq. 2.2.15 can be rewritten

ω12(XM1, XM2)− π∗2ω2̄(XM1, XM2). (2.2.16)

The tangent space to I is a subspace of the Lagrangian plane TzLM , so the first term in
Eq. 2.2.16 is zero. The second term is −ω2̄(π2∗XM1, π2∗XM2). The pushed-forward vectors
are both elements of Tz2B̄ so this term also evaluates to zero since B̄ is isotropic. Thus, for
any two vectors Xβ1, Xβ2 ∈ Tz1(TM(B)) in the tangent space for any point z1 ∈ TM(B),

ω1(Xβ1, Xβ2) = 0. (2.2.17)

The transport of an isotropic manifold is therefore always an isotropic submanifold of Φ1.
The transport of a Lagrangian manifold generically has dimension n1 and will be generi-
cally Lagrangian. Even in non-generic cases the transport of a Lagrangian manifold will
be isotropic and thus dim TM(Lb) ≤ n1, even when symmetries result in an intersection
manifold that has a non-generic dimension greater than n1.

2.2.4 The Transport of a Manifold in Cases of Symmetry

When the M - and b-states share a non-trivial common symmetry group the intersection
manifold I in Eq. 2.2.10 will have a dimension greater than the generic dimension n1. Such
symmetry groups occur often in spin networks. The symmetry group shared by a Lagrangian
and co-isotropic manifold is determined in a manner similar to the determination of the
symmetry group shared by a pair of Lagrangian manifolds described in Aquilanti et al [1].

Consider LM and π−1
2 Lb̄, both co-isotropic submanifolds of Φ12. Assume that Lb and LM

are fixed-point level sets of momentum maps as described in Section 2.1.4. As discussed in
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Section 2.2.2, the inverse image π−1
2 Lb̄ is the level set B−1(µb) ⊂ Φ12 and is co-isotropic. As

in Eq. 2.2.12, the intersection manifold I is described as the simultaneous level set of M
and B. Consider a point in the intersection z ∈ I. As in Section B.3, let L be the level set
B−1(µb) containing z and let B be the group orbit through z for the action of GB on Φ12.
As discussed in Section 2.2.3, the tangent space TzI is the intersection TzLM ∩ TzL and is
an isotropic plane of TzΦ12. The set of (n1 + n2) Hamiltonian vector fields {XM

α } span the
entire Lagrangian plane TzLM . The co-isotropic manifold L is the union of isotropic group
orbits and TzB is an isotropic sub-plane of TzL. Each group orbit in L is isomorphic to Lb
and therefore n2-dimensional. The set of n2 Hamiltonian vector fields {XB

I } span TzB.
Let TzH be the intersection TzLM ∩ TzB and let dim TzH = s. Rewrite the bases of gM

and gB such that the first s basis vectors generate identical Hamiltonian vector fields XH
τ ,

where τ = 1, · · · , s and the set of s vectors {XH
τ } span TzH. Since the action of groups GM

and GB provide a Lie algebra anti-homomorphism between gM and gB and the Lie algebra
of Hamiltonian vector fields on Φ12, the first s basis vectors of gM can be identified with the
first s basis vectors of gB. Call these vectors {ξτ} and let the span of these vectors be gH .
The space gH is interpreted as the intersection of Lie algebras gM and gB and is therefore
itself a Lie algebra. The group H generated by gH is thus the “common symmetry group”
of LM and π−1

2 Lb.
With this new choice of bases, the first s components of M are identical to the first

s components of B. These components form the s components for the momentum map
H : Φ12 → gH . As in Eq. 2.2.12, I can be expressed as the simultaneous level set of the
(n1 +n2) momentum map components Mα and the n2 momentum map components BI . The
s components of H each occur twice in this list of functions and I is the simultaneous level
set of (n1 + 2n2 − s) “independent” functions. Therefore, in the case of an s-dimensional
common symmetry group H, dim I = (n1 + s).

The Hamiltonian vector fields XH
τ are all vertical over the target space and the H group

action only affects the source space variables z2. Each of the s-dimensional group orbits of
H is thus mapped to a single point in the target space Φ1 under the projection π1. Therefore
the projection of I onto TM(Lb) has co-rank s and dim TM(Lb) = dim I − s = n1. The
extra dimensions of I generated by the common symmetry group are eliminated under the
projection.

The inverse image π−1
I (z1) of a point z1 ∈ Lβ is the union of a set of H-group orbits,

indexed by ρ. In cases without symmetry the group H is trivial and the inverse image is
just a discrete set of points. As in Figure 2.2.2, the intersection manifold I breaks up into
the union of branches Iρ. The branches Iρ are connected submanifolds of I such that the
inverse image under the restricted projection map π1|Iρ contains a single connected H-group
orbit, as shown in Figure 2.2.4.
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z

⇐
π1

Lβ Iρ

ϕH(z)π1(z)

Figure 2.2.4: The projection of the ρ-th branch Iρ of the intersection manifold I = LM ∩
π−1

2 (Lb̄) to the source phase space when LM and Lb share a non-trivial common symmetry
group H. Each H-group orbit ϕH(z) in I is vertical over the source space and projects onto
a single point of Lβ.

2.3 The Transport of the Density

As discussed in Sections C.1 and C.2, the WKB wavefunction of a state specifies a Lagrangian
manifold and a density or volume form on that manifold. The definition of the β-state in
Eq. 2.1.5 allows the density form on Lβ to be constructed from the WKB forms of ψM and ψb.
The transport procedure outlined in Section 2.2.2 provides a second construction of a density
form on Lβ, which is inherited from the structures associated with LM and Lb. Finally, the
description of Lβ as the level set of a momentum map as shown in Table 2.2 provides a
third way of defining a density on Lβ. These three densities are the same. Analysis of the
momentum map β describing Lβ and the associated density is discussed in greater detail in
Section 2.4.

In Sections 2.3.1 and 2.3.2 we find the density form σβ on Lβ that arises from the product

space stationary phase evaluation of |x〉〈β| = 〈x|M̂ |b〉, first in cases without symmetry and
then in cases with a non-trivial common symmetry group. Then in Sections 2.3.3 and 2.3.4
we present a geometric construction of a density form σT on the transport of a Lagrangian
manifold, first in cases without symmetry and then in cases with a non-trivial common
symmetry group. Finally in Section 2.3.5 we show that the transported density is identical
to the WKB density σβ.

2.3.1 The WKB Amplitude of ψβ

Consider the x-representation wavefunction ψβ(x) for the β-state, Eq. 2.1.13 and the La-
grangian manifold Lβ ⊂ Φ1 generated by the phase function. The wavefunction 〈x|β〉 can

be interpreted as a target space inner product model for the matrix element 〈x|M̂ |b〉, just
as Eq. 2.1.6 is a formulation of the matrix element 2.1.1. Here, the x-representation basis
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states |x〉 ∈ H1 serve as the a-states in Section 2.1.1. The product space model for the
wavefunction is

ψβ(x) = 〈x|M̂ |b〉 = tr
(

(|x〉〈b|)†M̂
)
. (2.3.1)

The semiclassical evaluation of this inner product involves Lagrangian manifolds LM and
Lxb in Φ12. As in Section 2.1.4, LM is the level set of the (n1 + n2) components Mα of
momentum map M. The product manifold Lxb is the Cartesian product of the constant-x
manifold Lx ⊂ Φ1 and the b̄-manifold Lb̄ ⊂ Φ∗2. Interpret xi : Φ12 → R as the pull-back of
the n1 functions xi : Φ1 → R by π1. Similarly, interpret B : Φ12 → gB as the pull-back of
the momentum map on Φ2 by π2 ◦ G−1

2 . The momentum map for the symplectic action of
GB on Φ12 is −B. Thus Lxb is the simultaneous level set of the n1 functions xi and the n2

components of momentum map −B.

First consider the semiclassical evaluation of the inner product tr
(

(|x〉〈b|)†M̂
)

when

the Lagrangian manifolds Lxb and LM do not share a non-trivial common symmetry group.
In particular, let {zk̃} ∈ Φ12 be the discrete set of intersection points LM ∩ Lxb, which
is semiclassically the stationary phase set for the WKB approximation in Eq. 2.3.1. The
analysis in the presence of common symmetry groups is discussed in Section 2.3.2. The
geometry of the transport discussed in Section 2.2.2 provides a map between LM ∩ Lxb and
points on Lβ over x-representation configuration point x. The projection π1(LM ∩ Lxb) is
a set of points z1,k ∈ Lβ, where k indexes the x-representation branches of Lβ. This is the
same branch index that appears in the WKB form for ψβ(x) in Eq. 2.1.13. As discussed
in Section 2.2.2, there may be more than one point in LM ∩ Lxb that projects onto a given
point z1,k. As in Figure 2.2.2, let ρ index these points. Thus the index k̃ will be treated
as a combined index for the pair of indices (k, ρ). Note that LM ∩ Lxb can be expressed as
I ∩ X−1(x) =

⋃
ρ Iρ ∩ X−1(x). A point zk̃ can therefore be described as the unique point

on the ρ-th branch of I that projects onto the k-th x-representation branch of Lβ over
configuration x, as shown in Figure 2.3.1.

The wavefunction at x is, to within an overall phase, the sum

ψβ(x) =
∑
k̃

Aβ,k̃(x)eiϕk̃(x), (2.3.2)

where ϕk̃(x) encodes the relative phases between intersection point zk̃ and a reference in-
tersection point. Let z1 ∈ Lβ be on the k-th x-representation branch of Lβ and lie over
configuration point x and let zk̃ ∈ I be the ρ-th point in LM ∩Lxb such that π1(zk̃) as shown
in Figure 2.3.1.

As summarized in Section C.4, the amplitudes for the product space evaluation Eq. 2.3.1
can be expressed using the determinant of an (n1 +n2)×(n1 +n2) matrix of Poisson brackets
evaluated at zk̃ [54],

Aβ,k̃(x) =

∣∣∣∣∣det

[
{xi,Mα}
{−BI ,Mα}

]
zk̃

∣∣∣∣∣
−1/2

. (2.3.3)
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︸ ︷︷ ︸ ︸ ︷︷ ︸
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Figure 2.3.1: An example of the two types of branch indices that occur in constructing
the x-representation wavefunction of a transported manifold. The branches of I over the
manifold Lβ are indexed by ρ as in Figure 2.2.2 and the branches of Lβ over configuration
space Q are indexed by k. The index k̃ represents the pair of indices (k, ρ).

We define a density σβ,ρ on Lβ for each ρ and for each k̃ define a density function Ωβ,k̃ so
that σρ|z1 = Ωβ,k̃(x)dx1 ∧ · · · ∧ dxn1 . The density functions are related to the amplitude by

Aβ,k̃(x) =
∣∣Ωβ,k̃

∣∣1/2. Comparing the relationships between the amplitude, density function,
and density with Eq. 2.3.3 yields

Ωβ,k̃(x) =

(
det

[
{xi,Mα}
{−BI ,Mα}

]
zk̃

)−1

, (2.3.4)

σβ,ρ|z1 = (−1)n2
dx1 ∧ · · · ∧ dxn1

det

[
{xi,Mα}
{BI ,Mα}

]
zk̃

. (2.3.5)

Note that since the sum in Eq. 2.3.2 is over both the x-representation branches of Lβ
and the set of ρ-indexed points that project onto the same point in Φ1. Thus we get a set
of amplitudes Aβ,k̃(x) and density functions Ωβ,k̃(x) indexed by k̃ = (k, ρ) which correspond
to densities σβ,ρ indexed by ρ. The presence of the relative phases ϕk̃ in Eq. 2.3.2 prevents
forming a single density on Lβ from the sum over ρ of the densities σβ,ρ. However, if it is
shown that in a specific application the relative phases between any two points zk̃ over the
same point z1 are zero then we may make the simplification Aβ,k(x) =

∑
ρAβ,k̃(x), in which

case we may define Ωβ,k(x) =
∑

ρ Ωβ,k̃(x) and σβ =
∑

ρ σβ,ρ.
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2.3.2 The WKB Amplitude in Cases of Symmetry

Now consider the case when the M - and b-states share a non-trivial common symmetry
group. Consider the bases of gb and gM constructed in Section 2.2.4. Recall that in this
basis the first s basis vectors in both sets are identical and generate the Lie algebra gH of
the common symmetry Lie group H. The momentum maps B and M thus decompose into
(−H, BĨ) (Ĩ = s+1, · · · , n2) and (H,Mα̃), (α̃ = s+1, · · ·n1+n2), where H is the momentum
map for the subgroup GH . Note that the momentum map for the action of GH on Φ2 is
−H due to the fact that the construction of the basis relied on identical Hamiltonian flow
vectors in Φ1 × Φ∗2.

Evaluation of the WKB amplitude in the case of symmetry proceeds as in Section 2.3.1.
However, näıve use of the momentum maps in the (n1 + n2) × (n1 + n2)-matrix of Poisson
brackets of Eq. 2.3.3 yields

[
{xi,Mα}
{−BI ,Mα}

]
zk̃

=

 {xi, Hτ} {xi,Mα̃}
{Hτ , Hτ ′} {Hτ ,Mα̃}
{−BĨ , Hτ} {−BĨ ,Mα̃}


zk̃

= 0, (2.3.6)

since the second row of the block matrix evaluates to zero on LM and zk̃ ∈ I. Eq. 2.3.3
does not give the proper amplitude because in the case of symmetry the stationary phase set
contains H-group orbits rather than just isolated points. In Section 11.2 of Aquilanti et al
[44] it was shown that the stationary phase evaluation applied to the inner product of states
whose Lagrangian manifolds are described as level sets of functions (C,D) and (C,E) yields
the amplitude

Ak =
VI√

|det {D,E}|
. (2.3.7)

In the above equation VI is the volume of the intersection, which we will be the volume of
the common symmetry group with respect to the Haar measure divided by the cardinality of
the isotropy subgroup. Note that the symmetry implies that the denominator of Eq. 2.3.7 is
the same no matter where the evaluation occurs in a common symmetry group orbit. Thus
the WKB amplitude functions Eq. 2.3.3 in the case of symmetry are

Aβ,k̃(x) =
VH
|H|

√∣∣∣Ω̃β,k̃(x)
∣∣∣, (2.3.8)

where VH/ |H| is the volume of the H-group orbits in Φ12 and

Ω̃β,k̃(x) = (−1)ñ

(
det

[
{xi,Mα̃}
{BĨ ,Mα̃}

]
zk̃

)−1

. (2.3.9)

The group orbits are parameterized by index k̃ as in Figure 2.2.4. The matrix in Eq. 2.3.9
is now a smaller (n1 + n2 − s)× (n1 + n2 − s)-matrix of Poisson brackets.
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2.3.3 The Transported Density on TM(Lb)
The manifolds Lb ⊂ Φ2 and LM ⊂ Φ12 and their defining momentum maps B and M allow
a form σI to be constructed on the intersection manifold I defined in Eq. 2.2.10, called
the “induced form on I.” The induced form then defines an n1-form on the transported
manifold TM(Lb) = Lβ. This “transported density” is identical to the density form defined
by Eq. 2.3.5 and Eq. 2.3.4. In this section we describe the construction of σI in the generic
case when Lb and LM do not share a non-trivial common symmetry group, in which case σI
is an n1-form on I. Construction of the induced form on I in the presence of symmetry is
discussed in Section 2.3.4.

Construction of σI requires a form that annihilates spaces that are tangent to momentum
map level sets. We first show how to construct such a form for a general momentum map.
Let Φ be a 2n-dimensional phase space with a symplectic G-action and an Ad∗-equivariant
momentum map P : Φ→ g∗. Let m = dim G ≤ n and let the Hamiltonian vector fields Xi

be linearly independent. Given an ordered choice of basis {ξi} of g, an m-form ΠP on Φ can
be constructed,

ΠP ≡
m∧
i=1

〈dP, ξi〉 = dP1 ∧ · · · ∧ dPm ∈ Ωm(Φ). (2.3.10)

A different choice of ordered basis will yield the same form up to a multiplicative constant. By
construction the one-forms dPi restricted to any level set P−1(µ) are zero and ΠP annihilates
any tangent plane to any level set P−1(µ),

ΠP (X1, · · · , Xn) = det [dPi(Xj)] = det [ω(Xi, Xj)] = 0. (2.3.11)

For most points z ∈ Φ, the level set of P passing through z is generically (2n−m)-dimensional
and the phase space is locally foliated into an m-dimensional family of level sets in the
neighborhood of z parameterized by µ ∈ g.

The form ΠB ∈ Ωn2(Φ12) associated with momentum map −B on Φ12 is thus

ΠB ≡ (−1)n2

n2∧
I=1

dBI ∈ Ωn2(Φ12). (2.3.12)

The n1-form σI on I is constructed from the (n1 + n2)-form σM on LM and the n2-form ΠB

on Φ12 by a “division of forms” procedure. Consider a set of n1 vectors Ξi ∈ TzI and n2

vectors YI ∈ TzLM such that {Ξi;YI} span TzLM . Implicitly define σI so that

σM(Ξ1, · · · ,Ξn1 , Y1, · · · , Yn2) =
(
σI ∧ ΠB

)
(Ξ1, · · · ,Ξn1 , Y1, · · · , Yn2). (2.3.13)

Since Ξi is a vector in the tangent space of the intersection I, it is also tangent to the level
set B−1(µb). Therefore, dBI(Ξj) = 0 and any term in the expansion of the wedge product
that involves one of the Ξi being acted on by ΠB will vanish. Thus the wedge product on the
right-hand side of Eq. 2.3.13 factors into σI(Ξ1, · · · ,Ξn1)ΠB(Y1, · · · , Yn2). By Eq. 2.3.12 and
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the definition of the wedge product, the action of ΠB on the n2 vectors YI can be re-expressed
as an n2 × n2 determinant of 1-forms acting on vectors,

ΠB(Y1, · · · , Yn2) = det [−dBI(YJ)] = (−1)n2 det [dBI(YJ)] . (2.3.14)

Solving for σI gives

σI(Ξ1, · · · ,Ξn1) = (−1)n2
σM(Ξ1, · · · ,Ξn1 , Y1, · · · , Yn2)

det [dBI(YJ)]
. (2.3.15)

We now show that the expression on the right-hand side of Eq. 2.3.15 is independent
of the choice of vectors YI used (as long as the determinant in Eq. 2.3.14 does not vanish)
and thus that σI is well-defined. Consider the quotient vector space TzLM/TzI and let
[YI ] ∈ TzLM/TzI be the equivalence class with representative YI . The matrix dBI(YJ)
evaluated at z is non-singular if and only if the set of vectors {[YI ]} are linearly independent.
Another way of expressing this is to say that {[YI ]} forms a basis of TzLM/TzI. Let YI
and Y ′I be two elements of the same equivalence class. There exists a ξI ∈ TzI such that
Y ′I = YI +ξI . Since dBI annihilates vectors in the tangent plane to B−1(µb) and by definition
I ⊂ B−1(µb), dBI(ξJ) = 0 for all I and J . Thus dBI(Y

′
J) = dBI(YJ). The set of vectors

{Ξi} span TzI by construction and thus any ξI is a linear combination of the Ξi. Since the
n1 Ξi vectors are used in the first n1 slots of σM , any ξI appearing in a later slot results in
the form evaluating to zero. Therefore σM(Ξi, Y

′
I ) = σM(Ξi, YI + ξI) = σM(Ξi, YI). Thus,

given a basis {[YI ]}, σI in Eq. 2.3.15 is independent of which representative vector in [YI ] is
used in Eq. 2.3.15.

Let {[YI ]} and {[Y ′I ]} be separate bases of TzLM/TzI and let ZJ
I be the non-singular

n2 × n2 transformation matrix, so [Y ′I ] = ZJ
I [YJ ]. Let YI and Y ′I be representative elements

[YI ] and [Y ′I ] such that Y ′I = ZJ
I YJ . The numerator of Eq. 2.3.15 transforms as σM(Ξi, Y

′
I ) =

σM(Ξi, Z
J
I YJ) = (detZ)σM(Ξi, YI) and the matrix elements in the denominator transforms

as dBI(Y
′
J) = ZK

J dBI(YK). Thus det [dBI(Y
′
J)] = (detZ) det [dBI(YJ)]. Therefore,

σM(Ξi, Y
′
I )

det [dBI(Y ′J)]
=

(detZ) σM(Ξi, YJ)

(detZ) det [dBI(YJ)]
=

σM(Ξi, YJ)

det [dBI(YJ)]
. (2.3.16)

The definition 2.3.15 of σI is thus independent of the set of vectors YI chosen and is well-
defined.

As shown in Figure 2.3.1, there are a set of points indexed by ρ that project onto the
same point in Lβ and thus I breaks up into branches Iρ. Define a set of n1-forms σT ,ρ on
the transported manifold TM(Lb) such that σI is the pullback of σT ,ρ by π1. Here ρ is used
as in Section 2.3.1 to index the set of points in I that project onto the same point on the
transported manifold. Given a ρ, the projection map from Iρ to TM(Lb) is invertible and
thus σT ,ρ is defined to be the pullback of σI under the inverse of the projection. Thus, given
a point zk̃ on the ρ-th branch of I that projects onto z1 as shown in Figure 2.3.1 and a set
of vectors Ξi ∈ Tzk̃I,

σT ,ρ|z1(π1∗Ξi) =
σM(Ξi, YI)

det [dBI(YJ)]

∣∣∣∣
zk̃

, (2.3.17)
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σT ,ρ = ΩT ,k̃(x) dx1 ∧ · · · ∧ dxn1 . (2.3.18)

It remains to be shown that Eq. 2.3.17 is equal to the expression given in Eq. 2.3.5.

2.3.4 The Transported Density in Cases of Symmetry

Now we construct the density form on Lβ in the case where there is a common symmetry
group GH . Using the Lie algebra bases and momentum maps of Section 2.3.2 we may express
the form ΠB defined in Eq. 2.3.12 as ΠB ≡ ΠH ∧ΠB̃, where ΠH is the analogous form for H
and ΠB̃ is defined as

ΠB̃ ≡ (−1)n2−s
n2−s∧
Ĩ=1

dBĨ ∈ Ωn2−s(Φ12). (2.3.19)

Similarly, the density on LM may be expressed as σM = σH ∧ σM̃ , where σH =
∧s
α=1 λα and

σM̃ =
∧n1+n2

α=s+1 λα and the 1-forms λα are dual to the Hamiltonian vector fields Xα on LM as
in Section C.2. Note that by construction σM̃ acting on any of the Hamiltonian vector fields
generated by the momentum map H of the subgroup GH is zero.

As discussed in Section 2.2.4 the intersection manifold I has dimension (n1 + s) so the
density σI must be defined as an (n1 + s)-form on I. Following Eq. 2.3.13,we implicitly
define σI in the case of symmetry as

σM(Ξı̃, YĨ) =
(
σI ∧ ΠB̃

)
(Ξı̃, YĨ), (2.3.20)

where vectors Ξı̃ (̃ı = 1, · · · , n1 + s) span TzI and {Ξı̃, YĨ} span TzLM . Similarly we may
define an n1-form σĨ by

σM̃(Ξ′i, YĨ) =
(
σĨ ∧ ΠB̃

)
(Ξ′i, YĨ), (2.3.21)

where {Ξ′i} are a subset of n1 vectors of {Ξı̃}. We may perform the division of forms
procedure as in Section 2.3.3 to define σI and σĨ ,

σI(Ξı̃) = (−1)n2−s σM(Ξı̃, YĨ)

det [dBĨ(YJ̃)]
, σĨ(Ξ

′
i) = (−1)n2−s σM̃(Ξ′i, YĨ)

det [dBĨ(YJ̃)]
. (2.3.22)

Next we shown that σI = σH ∧σĨ . By definition of the set {Ξı̃} we may always construct
an invertible linear transformation Z such that first s vectors in {Ξı̃} are mapped to the
Hamiltonian vector fields XH

m generated by the components of H. Acting either of the
n1 + s-forms σI or σH ∧ σĨ on {Ξı̃} is the same as (detZ) times the forms acting on the
transformed set and thus we may show that the forms are equal by showing that their
evaluation on the spanning set of n1 + s vectors {XH

m ,Ξ
′
i} are equal. Since σM = σH ∧ σM̃ ,

σM̃ acting on any of the XH
m is zero, and σH(XH

1 , · · · , XH
s ) = 1,

σI(X
H
m ,Ξ

′
i) = (−1)n2−s σM̃(X ′i, YĨ)

det [dBĨ(YJ̃)]
= σĨ(X

′
i). (2.3.23)
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Similarly, σĨ acting on any of the XH
m is zero and thus (σH∧σĨ)(XH

m ,Ξ
′
i) = σĨ(X

′
i). Compar-

ing this result with Eq. 2.3.23 shows that σI = σH ∧ σĨ . Another perspective on this result
is that σI is the wedge product of the density σH on the H-group orbits with the pull-back
of the density σI on the reduced intersection manifold when a symplectic reduction by H is
performed. Symplectic reductions are discussed in Section B.4 and Sections 2.4.3 and 2.4.4
provide a full discussion of the role of symplectic reduction in the remodeling geometry.

Since GH is the common symmetry group between GM and Gb, the GH group action on
Φ12 is purely vertical over the target phase space Φ1 and thus any GH-group orbit projects
to a single point of Φ1. In cases of symmetry the points shown in Figure 2.3.1 all become
GH group orbits and project onto the same point in Lβ. The different group orbits are
disconnected and thus I breaks up into branches Iρ, as in Section 2.3.1. The s-form density
σH naturally lives on these group orbits and the n1-form σĨ is invariant under the flows
generated by H.

Let zk̃ be a point on the ρ-th branch of I that projects onto z1, a point on the k-th x-
representation branch of Lβ and let {Ξi} be a set of n1 vectors in Tzk̃I such that π1∗Ξi 6= 0.
Then the density σT ,ρ on the transported manifold TM(Lb) is defined through

σT ,ρ|z1(π1∗Ξi) =

∫
ϕH(zk̃)

σĨ(Ξi, ·). (2.3.24)

We may “sum” the densities over points on the same group orbit because the relative phase
between any two points on the same group orbit will be zero. Note that this reproduces the
definition of σT ,ρ in Eq. 2.3.17in the case where the common symmetry group is trivial. The
density functions ΩT ,k̃(x) are then defined as in Eq. 2.3.18.

2.3.5 Equality of the WKB and Transported Densities

To show that the WKB densities σβ,ρ are identical to the transported densities σT ,ρ we show
that the density functions Ωβ,k̃ defined in Eq. 2.3.4 are equal to the density functions ΩT ,ρ
defined in Eq. 2.3.18.

Consider σT ,ρ evaluated at a point z1,k on the k-th x-representation branch of Lβ and let
zk̃ ∈ I be the point on the ρ-th branch of I that projects onto z1,k as in Figure 2.3.1. Let
XM
α ∈ Tzk̃LM be the (n1 +n2) Hamiltonian flow vectors for the momentum map components

Mα. Consider a non-singular linear transformation matrix, Zβ
α such that Z acting on the

first n1 flow vectors XM
α gives vectors in the subspace TzI. Define Ξi ≡ Zα

i X
M
α ∈ Tzk̃I as

the first n1 transformed vectors and define YI ≡ Zα
(n1+I)X

M
α ∈ Tzk̃LM . Since the matrix Z is

non-singular, the set of vectors {Ξi, YI} span Tzk̃LM . Furthermore the first n1 vectors span
Tzk̃I. The vectors Ξi can be pushed-forward by π1 into Tz1Lβ and the set {[YI ]} are linearly
independent in Tzk̃LM/TzI. The transformed vectors can therefore be used in Eq. 2.3.17.

We now evaluate σT ,ρ on the pushed-forward vectors π1∗Ξi. Consider first the evaluation
of σT ,ρ using the x-representation expression in Eq. 2.3.18,

σT ,ρ(π1∗Ξi) = ΩT ,k̃(x)
(
dx1 ∧ · · · ∧ dxn1

)
(π1∗Ξi). (2.3.25)
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The wedge product on the right-hand side of the above equation evaluates to det [dxi(π1∗Ξj)]
= det [(π∗1dxi)(Ξj)]. The pull-back of the forms dxi on Φ1 are the forms dxi on Φ12. Solving
for ΩT ,k̃ in Eq. 2.3.25 therefore gives

ΩT ,k̃(x) =
(σT (π1∗Ξi))z1,k
det [dxi(Ξj)]zk̃

. (2.3.26)

We now evaluate σT ,ρ on the pushed-forward vectors π1∗Ξi using Eq. 2.3.17. The nu-
merator σM(Ξi, YI) expressed in terms of the Hamiltonian flow vectors is σM(Zα

βX
M
α ) =

(detZ) σM(XM
α ). By Eq. C.2.3, σM(XM

α ) = 1 and thus σM(Ξi, Yi) = detZ. Therefore,

ΩT ,k̃(x) = (−1)n2
detZ

det [dxi(Ξj)] det [dBI(YJ)]
, (2.3.27)

where all forms and vectors on the right-hand side are evaluated at point zk̃ ∈ I.
Let A be an n1 × n1 matrix and let D be an n2 × n2 matrix. The product of the

determinants of A and D can be expressed as a single (n1 + n2)× (n1 + n2)-determinant,

(
detA

)(
detD

)
= det

[
A B
0 D

]
, (2.3.28)

where B is an arbitrary n1×n2 matrix. The denominator of Eq. 2.3.27 can thus be combined
into the (n1 + n2)× (n1 + n2)-determinant

det

[
dxi(Ξj) dxi(YJ)

0 dBI(YJ)

]
, (2.3.29)

where the matrix dxi(YJ) is used as the arbitrary matrix in the upper-right block. Since the
Ξi lie in the tangent space to the intersection and thus are tangent to the B level sets, the
matrix dBI(Ξj) evaluates to the n2 × n1 zero matrix and Eq. 2.3.29 can be written

det

[
dxi(Ξj) dxi(YJ)
dBI(Ξj) dBI(YJ)

]
= det

[
dxi(Z

α
βX

M
α )

dBI(Z
α
βX

M
α )

]
, (2.3.30)

where the transformation matrix Z has been used to express all vectors in terms of the
Hamiltonian flow vectors XM

α . The transformation matrix comes out of the determinant
and the forms acting on Hamiltonian flow vectors become Poisson brackets, yielding

det [dxi(Ξj)] det [dBI(YJ)] =
(

detZ
)

det

[
{xi,Mα}
{BI ,Mα}

]
. (2.3.31)

The determinant of Z cancels when using the above in Eq. 2.3.27 and therefore

ΩT ,k̃(x) = (−1)n2

(
det

[
{xi,Mα}
{BI ,Mα}

]
zk̃

)−1

. (2.3.32)
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The expression in Eq. 2.3.32 for the transported density functions is equal to the expression
in Eq. 2.3.4 for the density functions resulting from the WKB evaluation and thus the
transported densities σT ,ρ of Eq. 2.3.17 are equal to the WKB densities σβ,ρ of Eq. 2.3.5. A
similar analysis holds with the same result when a non-trivial common symmetry group is
present.

2.4 The Transport of a Momentum Map

The transport procedure that generates Lβ from LM and Lb allows the level set conditions
defining Lβ to be expressed in terms of the momentum maps M and B that define LM
and Lb. At the heart of this construction is the “core isomorphism” generated by M̂ which
defines a “core symplectomorphism”M between certain symplectic reductions of the source
and target spaces.

We start in Sections 2.4.1 and 2.4.2 by looking at the linear algebra description of the
β-state. First we construct a “core isomorphism” for M̂ between subspaces of H2 and H1

and then use this core isomorphism to construct the observables that describe |β〉. Then we
turn to symplectic geometry. In Section 2.4.3 we explore the two geometric objects that are
the classical analogues of Hilbert subspaces, which allows us to construct a “core symplec-
tomorphism” between symplectic reductions of Φ2 and Φ1 in Section 2.4.4. In Section 2.4.5
we describe how the core symplectomorphism in the geometric construction of a momentum
map on Φ1 for which the β-manifold is a level set. Finally in Section 2.4.6 we show that the
density functions that arise from this new momentum map are equal to the density functions
found via the WKB method in the previous section.

2.4.1 The Core Isomorphism of M̂

Consider two Hilbert spaces H1 and H2 and a linear map M̂ : H2 → H1. The first isomor-
phism theorem of linear algebra [57] says that the quotient space H2/(ker M̂), is isomorphic
to the image of M̂ . This quotient space is called the coimage of M̂ . Furthermore, the
inner product structure on H2 provides a natural isomorphism between the coimage of M̂
and the orthogonal compliment of ker M̂ , (ker M̂)⊥. Since img M̂ and (ker M̂)⊥ are vector
subspaces of H1 and H2 they inherit an inner product structure. Thus we may treat img M̂
and (ker M̂)⊥ as either subspaces or as Hilbert spaces in their own right. We write img M̂
and (ker M̂)⊥ as Himg and Hker when explicitly treating them as separate Hilbert spaces.

Let Π̂img : H1 → img M̂ and Π̂ker : H2 → (ker M̂)⊥ be projection operators. Note that

we may also treat the projections as linear maps Π̂img : H1 → Himg and Π̂ker : H2 → Hker.

We also define the inclusion maps Îimg : Himg → H1 and Îker : Hker → H2. Note that the

composition Π̂img ◦ Îimg is the identity on Himg, with a similar statement for Hker.

We define the “core isomorphism” M̂C : Hker → Himg associated with M̂ by

M̂C = Π̂img ◦ M̂ ◦ Îker. (2.4.1)
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H2

Hker

H1

Himg

M̂ //

M̂C

//

Π̂img

��

Îimg

OO

Π̂ker

��

Îker

OO

Figure 2.4.1: The core isomorphism M̂C : Hker → Himg.

We include Π̂img in the above composition so that M̂C is explicitly a map onto the Hilbert

space Himg. In terms of the core isomorphism, the map M̂ is

M̂ = Îimg ◦ M̂C ◦ Π̂ker, (2.4.2)

where Π̂ker is needed in the composition because M̂C acts on the Hilbert space Hker. We
may also treat M̂C as a map : (ker M̂)⊥ → img M̂ whose range and domain are treated as
subsets of H2 and H1 rather than independent Hilbert spaces. The spaces and maps involved
in forming the core isomorphism are shown in Figure 2.4.1.

Consider the subspace (img M̂) ⊗ (ker M̂)∗⊥ of the product Hilbert space H12. By con-
struction M̂ ∈ (img M̂) ⊗ (ker M̂)∗⊥. As with img M̂ and (ker M̂)⊥, (img M̂) ⊗ (ker M̂)∗⊥
inherits an inner product structure from H12 and we may treat it as a Hilbert space. We
write (img M̂) ⊗ (ker M̂)∗⊥ as Hrp when explicitly treating it as a separate Hilbert space
(the subscript “rp” stands for “reduced product”). This space is the product Hilbert space
Himg ⊗ H∗ker, whose elements are linear maps : Hker → Himg, so M̂C ∈ Hrp. We may also
define the “core Hilbert space” Hcore

∼= Himg
∼= Hker so that Hrp

∼= Hcore ⊗H∗core. The core
isomorphism is thus an operator on Hcore.

In many spin network examples the map M̂ is an SU(2) intertwiner. In such cases we may
express M̂ in terms of a set of unitary maps between the irreducible subspaces of (ker M̂)⊥
and img M̂ . We call these maps the “unitary core” of the intertwiner. Intertwiners and their
unitary cores will be discussed in more detail in Section 3.1.3.

Describe img M̂ as the simultaneous eigenspace of a set of observables Ĉa : H1 → H1 at
eigenvalues µc,a,

Ĉa|ψ〉 = µc,a|ψ〉 ∀ |ψ〉 ∈ img M̂, (2.4.3)

where the observables Ĉa must all mutually commute on img M̂ ,

[Ĉa, Ĉb]|ψ〉 = 0 ∀ a, b, |ψ〉 ∈ img M̂. (2.4.4)

The number of observables needed to specify img M̂ is, at most, n1 (since a set of n1 mutually
commuting observables will uniquely specify a one-dimensional subspace of H1). Define ñ so
that index a runs from 1 to n1−ñ and thus img M̂ is described as the simultaneous eigenspace
of a set of (n1 − ñ) observables. A state in img M̂ may be specified as a non-degenerate
eigenstate of a set of n1 independent observables, (n1−ñ) of which are Ĉa. Thus an additional
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ñ observables are needed to specify a state within img M̂ . Alternatively, a complete set of
observables in the Hilbert space Himg must consist of ñ independent operators.

Similarly, describe (ker M̂)⊥ as the simultaneous eigenspace of a set of observables D̂A :
H2 → H2 at eigenvalues µd,A,

D̂A|φ〉 = µd,A|φ〉 ∀ |φ〉 ∈ (ker M̂)⊥, (2.4.5)

where the observables D̂A must all mutually commute on (ker M̂)⊥,

[D̂A, D̂B]|φ〉 = 0 ∀ |φ〉 ∈ (ker M̂)⊥. (2.4.6)

Since img M̂ and (ker M̂)⊥ are isomorphic, a complete set of observables in the Hilbert
space Hker must consist of ñ operators. A complete set of observables in H2 contains n2

independent operators so it must require and additional (n2 − ñ) independent operators to
specify (ker M̂)⊥ as an eigenspace of H2. Index A runs from 1 to (n2 − ñ).

As in Section 2.1.1, the operators Ĉa and D̂A can be promoted to operators Ĉ
(12)
a and

D̂
(12)
A onH1⊗H∗2. These operators naturally commute in the product space, [Ĉ

(12)
a , D̂

(12)
A ] = 0.

The subspace (img M̂)⊗(ker M̂)∗⊥ is the simultaneous eigenspace of the set of (n1 +n2−2ñ)

observables Ĉ
(12)
a and D̂

(12)
A with eigenvalues (µc,a, µ

∗
d,A). Note that since operators D̂A are

assumed to be observables, the eigenvalues µd,A are real and thus the complex conjugation
can be dropped.

2.4.2 Observables of the β-State

In most spin network applications we have some choice as to how to define the b- and M -
states when setting up the remodeling algebra. In particular, if |b〉 6∈ (ker M̂)⊥ then we make
the replacement |b〉 7→ Π̂ker|b〉. If such a replacement is made then a new set of operators B̂A

and eigenvalues µb,A must be used in Eq. 2.1.4 and these operators define a new Lie algebra

g∗B. Since |b〉 is now an element of (ker M̂)⊥ by construction, it is a simultaneous eigenstate
of all (n2− ñ) observables D̂A. Thus a basis of g∗B may be chosen such that the first (n2− ñ)
components of the g∗B-valued operator B̂ on H2 are D̂A. Call the remaining ñ components
B̂` (` = 1 · · · ñ). In this basis the generalized momentum µb has components (µd,A, µ

R
b,`) and

|b〉 may be expressed as

|b〉 =

∣∣∣∣ D̂1

µd,1
· · · D̂n2−ñ

µd,n2−ñ

B̂1

µRb,1
· · · B̂ñ

µRb,ñ

〉
. (2.4.7)

Note that [D̂A, B̂`]|b〉 = 0 and [B̂`, B̂`′ ]|b〉 = 0 for all A, `, `′. We make the stricter assumption
that operators D̂A and B̂` commute on the entire subspace (ker M̂)⊥, [D̂A, B̂`]|ψ〉 = 0
for all |ψ〉 ∈ (ker M̂)⊥. This assumption is met in all of our spin network applications
and guarantees that operators B̂` leave the subspace (ker M̂)⊥ invariant. Therefore the
ñ operators B̂` may be restricted to observables B̂` : Hker → Hker and moreover the ñ
observables are enough to completely characterize a non-degenerate eigenstate on Hker.
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We define the “transported operators” β̂` : Himg → Himg as the operators B̂` conjugated

by the core isomorphism M̂C ,
β̂` ≡ M̂C ◦ B̂` ◦ M̂−1

C . (2.4.8)

Since |β〉 ∈ img M̂ by definition, the β-state is a simultaneous eigenstate of all (n1 − ñ)
observables Ĉa. We now show that |β〉 is also an eigenstate of the transported operators.
By Eq. 2.4.8 and 2.1.5,

β̂`|β〉 = M̂C ◦ B̂` ◦ M̂−1
C ◦ M̂ |b〉. (2.4.9)

Since |b〉 was chosen to be an element of (ker M̂)⊥ we may interpret |b〉 as an element of
Hker and use the relation M̂ |b〉 = M̂C |b〉 to express the right-hand side of Eq. 2.4.9 as

M̂C ◦ B̂` ◦ M̂−1
C ◦ M̂C |b〉 = M̂C ◦ B̂`|b〉. (2.4.10)

By construction, B̂`|b〉 = µb,`|b〉 and thus 2.4.10 simplifies to µb,`M̂C |b〉, or

β̂`|β〉 = µb,`|β〉. (2.4.11)

Since M̂C is an isomorphism between (ker M̂)⊥ and img M̂ , and B̂` form a complete set of
observables on (ker M̂)⊥, operators β̂` form a complete set of observables in the subspace
img M̂ . Furthermore, these operators commute with Ĉa on img M̂ and thus we may express
|β〉 as

|β〉 =

∣∣∣∣ Ĉaµc,a · · · Ĉn1−ñ
µc,n1−ñ

β̂1

µb,1
· · · β̂ñ

µb,ñ

〉
. (2.4.12)

2.4.3 Subspaces and Symplectic Reduction

In this section we adopt a general notation, independent of the notation of the remodeling
algebra and geometry. In particular the operators Â bear no relation to the operators defined
in Section 2.1.1.

We now turn to general semiclassical considerations and expand the “semi-classical dictio-
nary” presented in Chapter 2 of Bates and Weinstein [58] to include subspaces. As noted in
Sections 2.1.2 and 2.1.4, a Hilbert space H may be represented semiclassically by a symplec-
tic manifold Φ and individual states in the Hilbert space may be represented by Lagrangian
submanifolds of Φ. If a state is presented as the simultaneous non-degenerate eigenstate of a
set of operators Âi at eigenvalues µi (i = 1 · · ·n) then the Lagrangian manifold that supports
the semiclassical approximation to the state is described as the simultaneous level set of the
Weyl symbols Ai at contour values µi. Now let {Âi} (i = 1 · · ·m < n) be an incomplete set of
independent operators and consider the simultaneous µi-eigenspace Hµ ⊂ H. In other words

the simultaneous eigenstates of operators Âi are degenerate and the set of such eigenstates
form the eigenspace Hµ. The existence of such an eigenspace requires [Âi, Âj]|ψ〉 = 0 for all
|ψ〉 ∈ Hµ. The obvious classical manifold corresponding to this subspace is the simultaneous
level set of the Weyl symbols Ai at contour values µi,

Hµ ⊂ H =⇒
(
A1

µ1
· · · Am

µm

)
⊂ Φ. (2.4.13)
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The commutation of the operators Âi on Hµ semiclassically becomes the statement that
the functions Ai Poisson commute on this level set and thus the level set is a co-isotropic
manifold. The subspace Hµ contains all states |ψ〉 that satisfy Âi|ψ〉 = µi|ψ〉 for all i. The
set of Lagrangian manifolds supporting the semi-classical approximations for these states
are therefore contained in the simultaneous Ai = µi level set (i = 1, · · · ,m). Thus, in the
semi-classical dictionary, a basis of a subspace corresponds to a Lagrangian foliation of the
co-isotropic level set.

As in Section 2.1.1 we assume the set of operators {Âi} form a Lie algebra under the
commutator so that they may be the generators of a Lie group G on H. Once again this
assumption will be valid for all spin network applications. The operators Âi can be considered
the components of the g∗-valued operator Â : H → g∗ × H and the eigenvalues µi can be
considered the components of a generalized momentum µ ∈ g∗ with respect to some basis. A
simultaneous eigenspace of Â will exist when µ is a fixed point under the co-adjoint action
of G on g∗. In this case the level set in Eq. 2.4.13 may be written A−1(µ). The Poisson
bracket conditions on the components Ai are equivalent to requiring that µ be a fixed point
in g∗.

The eigenspaceHµ inherits an inner product structure fromH and thus may be considered
a Hilbert space in its own right and thus there should be an associated phase space Φµ

corresponding to Hµ. Since the Hilbert space Hµ is constructed by considering the µ-

eigenspace of Â in H, we should be able to construct the phase space Φµ from the level
set A−1(µ) in Φ. If A is an Ad∗-equivariant momentum map then this may be achieved
by performing a symplectic reduction of Φ. As discussed in Abraham and Marsden [56],
symplectic reduction is a way of constructing a new, smaller phase space from an old one by
exploiting a symmetry of the old phase space. As summarized in Section B.4, the first step
in the reduction is to form an equivalence relation on the level set A−1(µ), where two points
are equivalent if they lie on the same isotropy subgroup orbit. This divides the level set into
a union of isotropic submanifolds. In this example µ is a fixed point and thus the isotropy
subgroup is the entire group G. The reduced manifold Φµ is then the set of equivalence
classes A−1(µ)/Gµ. Let ω be the symplectic form on Φ, πµ : A−1(µ) → Φµ be the natural
projection of the quotient operation and ıµ : A−1(µ)→ Φ be the inclusion map of the level
set. Then the symplectic form ωµ on Φµ is uniquely defined by π∗µωµ = ı∗µω. As in Section B.4
we write the symplectic reduction of Φ by A at µ as Φ//(A=µ).

We assume that the momentum map components Ai are independent on the level set so
that the set of Hamiltonian flow vectors {Xi} has full rank at points z ∈ A−1(µ). Thus the
co-dimension of the level set is m, the number of components of A and thus the dimension of
the Lie group G. The group orbits will generically be m-dimensional as well, though isolated
orbits may in the level set may have lower dimensions. The reduced space thus has m fewer
dimensions than the (2n−m)-dimensional level set, dim Φµ = 2(n−m).

In summary, let H be a Hilbert space with associated phase space (Φ, ω), let G be a
group with generators Â on H and a symplectic action on Φ with momentum map A, and
let µ ∈ g∗ be a fixed point under the co-adjoint action. The µ-eigenspace of Â in Hµ is



CHAPTER 2. THE REMODELING OF AN INNER PRODUCT 42

associated with two semiclassical manifolds. If Hµ is interpreted as a subspace of H then
the associated semiclassical object is a co-isotropic manifold, A−1(µ). If Hµ is interpreted
as a Hilbert space then the associated semiclassical object is the phase space Φµ obtained
by the symplectic reduction Φ//(A=µ).

2.4.4 The Core Geometry and Symplectomorphism

We now apply the results of the previous section to define the spaces on which a “core sym-
plectomorphism” may be defined, which will allow construction of the defining momentum
map of Lβ.

As in Section 2.1.1 we assume the sets of operators {Ĉa} and {D̂A} introduced in Sec-
tion 2.4.1 form Lie algebras under the commutator so that they may be the generators of
group Gimg on H1 and Gker on H2, respectively. Since the operators are assumed to be
independent, dim Gimg = (n1 − ñ) and dim Gker = (n2 − ñ). Define dual algebra valued

operators Ĉ : H1 → g∗img × H1 and D̂ : H2 → g∗ker × H2 whose components with respect

to some basis are Ĉa and D̂A. For conditions 2.4.4 and 2.4.6 to be satisfied we require that
µc and µd are Ad∗-fixed points of g∗img and g∗ker. Using these definitions we may express the
subspaces from Section 2.4.1 as

img M̂ =
{
|ψ〉 ∈ H1 | Ĉ|ψ〉 = µc|ψ〉

}
, (2.4.14)

(ker M̂)⊥ =
{
|φ〉 ∈ H2 | D̂|φ〉 = µd|φ〉

}
. (2.4.15)

The co-isotropic submanifolds corresponding to these subspaces are

C−1(µc) =

(
C
µc

)
⊂ Φ1, D−1(µd) =

(
D
µd

)
⊂ Φ2, (2.4.16)

with dim C−1(µc) = (n1 + ñ) and dim D−1(µd) = (n2 + ñ).
Following the discussion in Section 2.4.3, we may interpret the subspaces img M̂ and

(ker M̂)⊥ as Hilbert spaces Himg and Hker. We form the associated phase spaces Φimg and
Φker by symplectic reduction,

Φimg ≡ Φ1//(C=µc), Φker ≡ Φ2//(D=µd). (2.4.17)

We call Φimg the “reduced target phase space” and Φker the “reduced source phase space.”
Let ıimg, ıker, πimg, and πker be the inclusion and projection maps of the reductions, as shown
in Figure 2.4.2. The groups Gimg and Gker are (n1 − ñ)- and (n2 − ñ)-dimensional so the
reduced phase spaces both have dimension 2ñ.

The Lagrangian manifold Lβ is a submanifold of C−1(µc) and thus the projection LRβ ≡
πimgLβ is a Lagrangian manifold of the reduced target phase space Φimg. We may con-
sider LRβ to be the Lagrangian manifold that supports the semiclassical approximation of

Π̂img|β〉 ∈ Himg. Similarly, we specified that |b〉 ∈ (ker M̂)⊥ so the Lagrangian manifold Lb



CHAPTER 2. THE REMODELING OF AN INNER PRODUCT 43

is a submanifold of D−1(µd) and thus the projection LRb ≡ πkerLb is a Lagrangian manifold
of the reduced source phase space Φker.

Now we turn to the product space. We lift operators Ĉa and D̂A into operators on the
product Hilbert space as in Section 2.1.1. In particular, (Ĉ

(12)
a (M̂))(|ψ〉) = ĈaM̂ |ψ〉 and

(D̂
(12)
A (M̂))(|ψ〉) = M̂D̂A|ψ〉 for all |ψ〉 ∈ H2. Since img M̂ and (ker M̂)⊥ are eigenspaces

of Ĉa and D̂A, respectively, M̂ is a simultaneous eigenstate of operators Ĉ
(12)
a and D̂

(12)
A

at eigenvalues µc and µd. In Section 2.1.1 we expressed the map M̂ as the simultaneous
eigenstate of a g∗M -valued operator ÔM on H12. We choose a basis of g∗M such that the first

(n1 − ñ) components of ÔM are the operators Ĉ
(12)
a and the next (n2 − ñ) components are

the operators −D̂(12)
A . We choose to add the negative sign to ensure that the Lie algebra

generated by −D̂(12) on H12 is identical to the Lie algebra generated by D̂ on H2. Thus the

operators Ĉ(12) and − ˆD(12) generate the Lie group Gimg ×Gker on H12 which is a subgroup

of GM . We express the subspace (img M̂)⊗ (ker M̂)∗⊥ ⊂ H12 as the simultaneous eigenspace

of Ĉ(12) and −D̂(12) with eigenvalues µc and −µd,

(img M̂)⊗ (ker M̂)∗⊥ =
{
Ô ∈ H12 | Ĉ(12)(Ô) = µcÔ, −D̂(12)(Ô) = −µdÔ

}
. (2.4.18)

As in Section 2.1.4, we may lift momentum maps C and D to the momentum map (C,−D)
for the group Gimg × Gker on the product phase space Φ1 × Φ∗2. The eigenspace conditions
in Eq. 2.4.18 translate to level set conditions defining the co-isotropic submanifold of Φ12

corresponding to (img M̂)⊗ (ker M̂)∗⊥,

Lrp ≡
(

C
µc

−D
−µd

)
⊂ Φ12, (2.4.19)

which has dimension (n1 + n2 + 2ñ). This is guaranteed to be a co-isotropic manifold since
(µc,−µd) is a fixed point of g∗img⊕g∗ker under the co-adjoint action. We may also consider Lrp

to be the intersection of the inverse images of C−1(µc) and D−1(µd) according the remodeling
geometry.

As above, we treat the subspaces (img M̂) ⊗ (ker M̂)∗⊥ as the Hilbert spaces Hrp and
form the associated phase spaces Φrp by symplectic reduction,

Φrp ≡ Φ1 × Φ∗2//((C,−D)=(µc,−µd)), (2.4.20)

where rp stands for “reduced product.” We call Φrp the “reduced product phase space” and
define ırp and πrp to be the inclusion and projection maps of the reductions, as shown in
Figure 2.4.2. The reduced product phase space has dimension 4ñ. We may carry out the
reduction in two steps, first reducing by C, which only affects the Φ1 variables, and then by
D, which only affects the Φ2 variables. Thus the reduced product phase space is the product
space of the reduced phase spaces,

Φrp = Φimg × Φ∗ker, (2.4.21)
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Figure 2.4.2: The core geometry and core symplectomorphism M : Φker → Φimg, with
Φrp ≡ Φimg×Φ∗ker and Lrp ≡ C−1(µc)∩D−1(µd). The left column, bottom row, and diagonal
show the symplectic reductions of Φ1, Φ2, and Φ12, respectively.

with projectors πR1 : Φrp → Φimg and πR2 : Φrp → Φ∗ker.
The Lagrangian manifold LM is a submanifold of Lrp and thus the projection LRM ≡

πrpLM is a Lagrangian manifold of the reduced product phase space Φimg. We may consider
LRM to be the Lagrangian manifold that supports the semiclassical approximation of the core
isomorphism M̂C .

As discussed in Section B.1, the graph of a symplectomorphism is a Lagrangian manifold
in a product phase space and furthermore this Lagrangian manifold supports the semiclassical
approximation to a unitary operator on the associated Hilbert space. In such a case the
transport procedure described in Section 2.2.2 applied to a single point of the source phase
space results in a single point of the target phase space, the image of the source phase space
point under the symplectomorphism. In fact, it was this observation in Miller [39] that
led to our development of the remodeling geometry. Scaling the unitary operator affects
structures such as the density that live on the Lagrangian manifold but does not affect
the manifold itself. In order to proceed we make the assumption that M̂C is proportional
to an isometry of Hcore and thus M̂C = a Û for some constant a and unitary operator Û .
This will be the case for all spin network applications discussed. Under this assumption
the reduced Lagrangian manifold LRM associated with the core isomorphism M̂C may be
interpreted as the graph of some symplectic map M : Φker → Φimg which we call the
“core symplectomorphism.” Geometrically, given a point z̃2 ∈ Φker, there is a unique point
z̃1 ∈ ΦR

img such that (z̃1, z̃2) ∈ LRM . This unique point defines the symplectomorphism,
z̃1 = M(z̃2). Note that LRM itself is isomorphic as a manifold to Φimg and Φker, with the
projection maps πR1 and πR2 providing the isomorphism.

We collectively refer to the spaces, reductions, and maps described above that are used
to form the core symplectomorphism as the “core geometry” associated with M̂ . The spaces
and maps in the core geometry are shown in Figure 2.4.2.
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2.4.5 Momentum Maps in the Core Geometry

For the following discussion we define local Darboux coordinates z̃1 = (q`, p`) on Φimg and
z̃2 = (Q`, P`) on Φker. These provide coordinates z̃12 = (z̃1, z̃2) = (q`, p`;Q`, P`) on Φrp in
which the symplectic form is ωrp =

∑
` dp`∧dq`−dP`∧dQ`. Treating q` and p` as coordinate

functions : Φimg → R, we may use the symplectic core to define the 2ñ functions

MR
q,` : Φrp → R : (z̃1, z̃2) 7→ q`(z̃1)− q`(M(z̃2)), (2.4.22)

MR
p,` : Φrp → R : (z̃1, z̃2) 7→ p`(z̃1)− p`(M(z̃2)), (2.4.23)

These may be combined into the two ñ-component functions MR
q ,M

R
p : Φrp → Rñ. Since

LRM was defined to be the graph of the symplectomorphism M, it is the simultaneous level
set,

LRM =

(
MR

q

0
MR

p

0

)
. (2.4.24)

The symplectic nature of M ensures that these 2ñ functions all mutually Poisson commute
on Φrp.

In Eq. 2.4.7, a basis of g∗B was chosen that split the operators B̂ into the ordered set
{D̂, B̂`}. We assume that the Lie algebra GB may be expressed as a Cartesian product
Gker×Gcore and choose a basis so that the functions B̂` generate the Lie group Gcore on H2.
This assumption will be true for our spin network applications. Let B̂′ : H2 → gcore × H2

be the gcore-valued operator on the source space whose ñ components are B̂`. The prime
on B̂′ is used to distinguish it from the full g∗B-valued operator defined in Eq. 2.1.4. The
momentum map B on Φ2 splits into component functions D and B` (` = 1 · · · ñ) and the
generalized momentum µb splits into (µd, µb,`). The ñ functions B` are components of a
Gcore momentum map B′ and the values µb,` are components of the generalized momentum
µRb ∈ gcore so that the b-manifold may be expressed as the level set

Lb =

(
D
µd

B′

µRb

)
. (2.4.25)

The Cartesian product decomposition of GB ensures that the momentum map B′ is constant
under the flows generated by D and thus projects down under the reduction to BR on Φker.
Alternatively, we may define the functions BR

` as the Weyl symbols of operators B̂` on Hker

and then let B` be the local extension of BR
` into a neighborhood of D−1(µd) as discussed

later on. In terms of these functions,

LRb =

(
BR

µRb

)
(2.4.26)

The core symplectomorphism M induces a symplectic action ϕimg of Gcore on Φimg by
conjugation of the symplectic action ϕker of Gcore on Φker,

ϕimg
g ≡M◦ ϕker

g ◦M−1, ∀ g ∈ Gcore. (2.4.27)
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Let X img
` be the infinitesimal generators of ϕimg corresponding to the basis vectors ξ` of g∗core.

Since M is a symplectomorphism it preserves the symplectic structure, ωimg =M∗ωker and
X img
` =M∗X

ker
` . Therefore the momentum map βR is the pull-back of BR,

βR ≡ BR ◦M−1 : Φimg → g∗core. (2.4.28)

We now show that the level set [βR]−1(µRb ) is identical to the reduced β-manifold LRβ .
Since Lβ may be obtained by transporting Lb using LM , the reduced manifold LRβ may be
obtained by transporting LRb using LRM . Since LRM is the graph ofM, the transport procedure
implies that the points of LRβ and LRb are in one-to-one correspondence andM(LRb ) = LRβ . Let

z̃1 ∈ LRβ . Then βR(z̃1) = BR(M−1(z̃1)) = BR(z̃2). Since z̃2 must be in LRb , BR(z̃2) = µRb and

thus LRβ is a subset of the level set [βR]−1(µRb ). Conversely, consider a point z̃1 ∈ [βR]−1(µRb ).
By Eq 2.4.28, BR(M−1(z̃1)) = µRb . Therefore M−1(z̃1) is in the level set [BR]−1(µRb ) which
is the manifold LRb . We may then conclude that z̃1 is point of LRβ since M(z̃2) ∈ LRβ for all
z̃2 ∈ LRb . Thus the level set is both a subset and a superset of LRβ and we may conclude

LRβ =

(
βR

µRb

)
. (2.4.29)

Now we construct the extensions of functions in the core geometry into neighborhoods
of the level sets of the reduction. The main reason we need to do this is so that we can take
Poisson brackets of these functions in the next section. First consider some phase space Φ
with a symplectic group action under group G with an Ad∗-equivariant momentum map P
and the symplectic reduction ΦR = Φ//(P =µ) for some generalized momentum µ ∈ g∗. A
function A on Φ may be projected down to ΦR if it is constant on the isotropy subgroup orbits
of G in the level set P−1(µ). Conversely, we may lift a function AR from the reduced space
into P−1(µ) by demanding that the lifted function be constant along the isotropy subgroup
orbits. We actually consider a broader definition of the lift and demand that the lifted
function A be fully G-invariant in the space of G-orbits that intersect P−1(µ). In terms of
Poisson brackets this means that {A,P} = 0. Consider two functions G-invariant functions
Ai and Aj on P−1(µ). The Poisson bracket {Ai, Aj} is then also a G-invariant function as
a result of the Jacobi identity. Since Ai, Aj, and {Ai, Aj} are G-invariant, they may be

projected down to the reduced space functions ARi , ARj , and {Ai, Aj}R. The projection of

the Poisson bracket is then the Poisson bracket of the projection, {Ai, Aj}R =
{
ARi , A

R
j

}
[56]. Thus the lifting procedure described above ensures that, when evaluated on the level
set, the Poisson bracket of lifted functions is identical to the Poisson bracket of the functions
on the reduced space.

Consider the reduced space Φimg with local Darboux coordinates (q`, p`). Lift these coor-
dinates into C−1(µc) as defined above. We may then locally define new Darboux coordinates
(q`, p`; q̃a, p̃a) in Φ1 for points on C−1(µc). If Gimg is an Abelian group, as it will be in
spin network applications, then these extra coordinates may be taken to be the momentum
map components µc,a and their conjugate angles ϑc,a. We define the lift of a function into a
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neighborhood of C−1(µc) so that the function is locally independent of these new coordinates
on C−1(µc). For an Abelian group the lift as defined earlier is already independent of the
conjugate angles ϑc,a. We may construct similar lifts for the source space and product space.
Again, the reduction groups for these spaces are Abelian in our spin network applications.

Let Mq,` and Mp,` be the extensions of functions MR
q,` and MR

p,` defined in a neighborhood
of Lrp. The 2ñ functions Mq,` and Mp,` all mutually Poisson commute on Lrp and furthermore
Poisson commute with C and D on Lrp. Therefore we may choose a basis of g∗M such that the
components of the momentum map M are the ordered set {Ca, DA,Mq,`,Mp,`} and express
LM as

LM =

(
C
µc

D
µd

Mq

0
Mp

0

)
. (2.4.30)

Similarly, we construct the extension β′ in a neighborhood of C−1(µc) whose components
are the extensions of the components of βR. In terms of β′ we may express the β-manifold
as

Lβ =

(
C
µc

β′

µRb

)
. (2.4.31)

The component functions β` correspond to the observables β̂` and Eq. 2.4.31 is the semi-
classical version of Eq. 2.4.12.

2.4.6 The Density on Lβ Using β

Consider the x-representation wavefunction for the β-state ψβ(x) defined in Eq. 2.1.13. As
discussed in Section 2.1.3, the phase function Sβ(x) of ψβ(x) generates the Lagrangian man-
ifold Lβ ⊂ Φ1. Let Lβ be described as the level set of momentum map β as discussed in
Section 2.1.4 and construct the density σβ ∈ Ωn1(Lβ) as in Eq. C.2.2. Each x-representation
branch (indexed by k) of Lβ carries a density function Ωβ,k(x) defined by

σβ|z = Ωβ,k(x)dx1 ∧ · · · ∧ dxn1 , (2.4.32)

where x is a point of configuration space (with coordinates x1, · · ·xn1) and z1 ∈ Lβ is the
point on the k-th branch of Lβ over point x. The density functions are expressed in terms
of an n1 × n1-matrix of Poisson brackets,

Ωβ,k(x) =
(

det
[
{xi, βj}

]
z1

)−1

. (2.4.33)

Choose an ordered bases of gb, gM , and gβ such that the components of the momentum
maps B, M, and β decompose into the ordered sets (DA, B`), (Ca,−DA,Mq,`,Mp,`), and
(Ca, β`), respectively. The manifolds Lb, LM , and Lβ are thus expressed in terms of the level
sets 2.4.25, 2.4.30, and 2.4.31 and the density functions on Lβ are

Ωβ,k(x) =
1

det
[
{xi, Ca} {xi, β`}

]
z1

. (2.4.34)
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We want to show that Eq. 2.4.34 is the same as the result from the WKB evaluation.
The manifolds Lb and LM share a common symmetry group Gker and thus the analysis of
Section 2.3.2 must be used to find the WKB density functions. Comparing with the notation
of that section, −D serves as the common symmetry group momentum map H, functions
B` serve as the other components BĨ of momentum map B and (Ca,Mq,`,Mp,`) serve as the
other components Mα̃ of momentum map M. Therefore the matrix of Poisson brackets in
Eq. 2.3.9 becomes the (n1 + ñ)× (n1 + ñ)-matrix W ,

W =

[ {xi, Ca} {xi,Mq,`} {xi,Mp,`}
{−B`, Ca} {−B`,Mq,`′} {−B`,Mp,`′}

]
, (2.4.35)

where the double lines separate the rows and columns of the matrix into sets of n1 and
ñ entries and the single line separates the first n1 rows into (n1 − ñ) and ñ rows. The
Poisson brackets in 2.4.35 are all to be evaluated at a point zk̃ of the intersection manifold
I ∈ Φ12. The intersection manifold is naturally subset of the level set Lrp and so we evaluate
these brackets using the local coordinates (q`, p`; q̃a, p̃a;Q`, P`; Q̃A, P̃A), where (q`, p`) and
(Q`, P`) on Lrp project to Darboux coordinates on the reduced spaces Φimg and Φker. In
these coordinates the symplectic form on Φ12 near Lrp is

ω12 =
ñ∑
`=1

(dp` ∧ dq` − dP` ∧ dQ`) +

n1−ñ∑
a=1

dp̃a ∧ dq̃a −
n2−ñ∑
A=1

dP̃A ∧ dQ̃A. (2.4.36)

We now start evaluating the Poisson brackets in the block matrix W to show that detW is
equal to the determinant in Eq. 2.4.34. The functions Ca only depend on the Φ1-coordinates
and the functions Bi only depend on the Φ2-coordinates, so the Poisson brackets {−B`, Ca}
are all zero. Next we consider the Poisson brackets {xi,Mq,`} evaluated at points zk̃. By the
choice of extension of functions MR

q,` into Mp,`, the partial derivatives of Mq,` with respect to

variables q̃a, p̃a, Q̃A, and P̃A at zk̃ are all zero. Furthermore, the functions xi are independent
of all Φ2 variables so the bracket simplifies to

{xi,Mq,`} =
∂xi
∂q`′

∂Mq,`

∂p`′
− ∂xi
∂p`′

∂Mq,`

∂q`′
. (2.4.37)

The definition of Mq,` ensures that the partial derivatives ∂Mq,`/∂q`′ and ∂Mq,`/∂p`′ when
evaluated at points zk̃ ∈ I are equal to the partial derivatives ∂MR

q,`/∂q`′ and ∂MR
q,`/∂p`′

of the reduced functions on Φrp evaluated at πrp(zk̃). Using Eq. 2.4.22 for the definition of
MR

q,` gives ∂Mq,`/∂p`′ = ∂q`/∂p`′ = 0 and ∂Mq,`/∂q`′ = ∂q`/∂q`′ = δ``′ . Therefore Eq. 2.4.37
simplifies to {xi,Mq,`} = −∂xi/∂p`. A similar calculation shows {xi,Mp,`} = ∂xi/∂q`.

The functions B` and M q
` are lifts from the reduced space so their Poisson bracket in the

product space at zk̃ is equal to the Poisson bracket in the reduced space,

{B`,Mq,`′} =
{
BR
` ,M

R
q,`′

}
= − ∂B`

∂Q`′′

∂Mq,`′

∂P`′′
+
∂B`

∂P`′′

∂Mq,`′

∂Q`′′
. (2.4.38)
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By Eq. 2.4.28 the functions BR
` may be expressed as βR` ◦M so by the chain rule,

∂BR
`

∂Q`′′
=
∂βR`
∂q˜̀

∂(q` ◦M)

∂Q`′′
+
∂βR`
∂p˜̀

∂(p` ◦M)

∂Q`′′
, (2.4.39)

where q` and p` are considered to be coordinate functions on Φimg. By Eqs. 2.4.22 and 2.4.23
we may express the partial derivatives of the coordinate components of ∂(q` ◦M)/∂Q`′′ and
∂(p` ◦M)/∂Q`′′ as −∂MR

q,`/∂Q`′′ and −∂MR
p,`/∂Q`′′ Similar expressions hold for derivative

with respect to P`. Therefore the right-hand side of Eq. 2.4.38 becomes

+

(
∂βR`
∂q˜̀

∂MR
q,˜̀

∂Q`′′
+
∂βR`
∂p˜̀

∂MR
p,˜̀

∂Q`′′

)
∂MR

q,`′

∂P`′′
−

(
∂βR`
∂q˜̀

∂MR
q,˜̀

∂P`′′
+
∂βR`
∂p˜̀

∂MR
p,˜̀

∂P`′′

)
∂MR

q,`′

∂Q`′′
. (2.4.40)

Consider the coefficients of ∂βR` /∂q˜̀,

∂MR
q,˜̀

∂Q`′′

∂MR
q,`′

∂P`′′
−
∂MR

q,˜̀

∂P`′′

∂MR
q,`′

∂Q`′′
. (2.4.41)

Using the fact that the Poisson brackets
{
MR

q,`,M
R
q,`′

}
vanish at the relevant evaluation points

we may re-express 2.4.41 as,

∂MR
q,˜̀

∂q`′′

∂MR
q,`′

∂p`′′
−
∂MR

q,˜̀

∂p`′′

∂MR
q,`′

∂q`′′
. (2.4.42)

Since
∂MR

q,`

∂p`′
= 0 the terms of 2.4.40 containing ∂βR` /∂q˜̀ cancel out. The coefficients of

∂βR` /∂p˜̀ similarly may be expressed as

∂MR
p,˜̀

∂q`′′

∂MR
q,`′

∂p`′′
−
∂MR

p,˜̀

∂p`′′

∂MR
q,`′

∂q`′′
. (2.4.43)

The first term vanishes but ∂MR
q,`/∂q`′ = ∂MR

p,`/∂p`′ = δ``′ and thus the second term becomes
δ ˜̀̀ ′′δ`′`′′ . Therefore Eq. 2.4.38 evaluates to

{B`,Mq,`′} = −∂β
R
`

∂p`′
. (2.4.44)

A similar calculation shows

{B`,Mp,`′} =
∂βR`
∂q`′

. (2.4.45)

Therefore the matrix of Poisson brackets 2.4.35 simplifies to[
{xi, Ca} −∂xi

∂p`
+∂xi
∂q`

0
∂βR`
∂p`′

−∂βR`
∂q`′

]
. (2.4.46)
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The top block of rows contains n1 rows and the bottom block contains ñ rows. From
left to right, the three blocks of columns contain n1 − ñ, ñ, and ñ columns. To simplify this
matrix, consider the determinant of the following similar block matrix,

W =

[
A E B

0 −C −D

]
, (2.4.47)

where we will assume that D is an invertible matrix. First we decompose 2.4.47 into the
product of two block matrices,

W =

[
Idn1 B

0 −D

] [
A E −BD−1C 0

0 D−1C Idñ

]
. (2.4.48)

Since both matrices are block-triangular the determinant detW simplifies to

detW = (−1)ñ(detD) det
[
A E −BD−1C

]
(2.4.49)

We interpret detD as the determinant of an n1 × n1-matrix

detD =

[
Idn1−ñ 0

0 D>

]
. (2.4.50)

Eq. 2.4.50 may be used in 2.4.49 to express detW as the determinant of the single ñ × ñ-
matrix[

A E −BD−1C
]

det

[
Idn1−ñ 0

0 D>

]
=
[
A ED> −BD−1CD>

]
. (2.4.51)

The matrix CD> is the product of partial derivative matrices
∂βR`
∂p`′′

∂βR
`′

∂q`′′
. Since the functions

βR` all mutually Poisson commute the order of the p`′′ and q`′′ derivatives may be flipped and
thus CD> = DC>. Therefore the matrix BD−1CD> in 2.4.51 simplifies to BC>.

The above results allow the determinant of matrix 2.4.46 to be expressed as

detW = (−1)ñ det
[
{xi, Ca} −∂xi

∂p`

∂βR
`′

∂q`
+ ∂xi

∂q`

∂βR
`′

∂p`

]
, (2.4.52)

By definition of the extension of βR on Φimg into β′ in a neighborhood of C−1(µc), the right-
hand block in the above matrix is equal to the matrix of Poisson brackets {xi, β`} on the
target phase space Φ1. Similarly we may interpret {xi, Ca} as a matrix of Poisson brackets
on Φ1 rather than Φ12. Thus the density functions 2.3.9 are

Ω̃β,k̃(x) =
(−1)ñ

det

[
{xi,Mα̃}
{BĨ ,Mα̃}

]
zk̃

=
1[

{xi, Ca} {xi, β`}
]
z1

, (2.4.53)
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where the Poisson brackets in the first expression are evaluated in the product space at
zk̃ and the Poisson brackets in the second expression are evaluated in the target space at

z1. The density functions Ω̃β,k̃(x) determined from the WKB approximation of the matrix

element 〈x|M̂ |b〉 are identical to the density functions Ωβ,k(x) in Eq. 2.4.34 from the WKB

approximation of the inner product 〈x|β〉 using the observables β̂ and momentum maps β
defined in Sections 2.4.2 and 2.4.5. Note that Eq. 2.4.53 is true for all I branches ρ and
thus the density functions on the target space are independent of the index ρ and only need
to be indexed by the x-representation branch index k. Thus the combined index k̃ on the
amplitudes Aβ and density functions Ωβ defined in Eqs. 2.3.3 and 2.3.4 may be replaced by
the single branch index k and the I branch index on the density σβ in Eq. 2.3.5 may be
dropped.

The above analysis hold when the x-representation momentum map components xi are
replaced with the components of A,

(−1)ñ

det

[
{Ai,Mα̃}
{BĨ ,Mα̃}

]
zk̃

=
1[

{Ai, Ca} {Ai, β`}
]
z1

. (2.4.54)

The amplitude determinants in the stationary phase evaluation of the inner products 2.1.36
and 2.1.41 may be considered to be the amplitude functions in the local “A” representation
[54]. The amplitude determinants, assuming no non-trivial common symmetry group in the
target space model, are

Ω(1)(z1,k) =
1[

{Ai, Ca} {Ai, β`}
]
z1,k

, (2.4.55)

Ω̃(12)(zk̃) =
(−1)ñ

det

[
{Ai,Mα̃}
{BĨ ,Mα̃}

]
zk̃

, (2.4.56)

where z1,k = π1(zk̃). By Eq. 2.4.54, Ω(1)(z1,k) = Ω̃(12)(zk̃). A similar analysis holds when
there is a non-trivial common symmetry group in the target space model, which requires
the elimination of the momentum map components for the common symmetry group in
both Eq. 2.4.55 and Eq. 2.4.56. Therefore we may conclude that the target space amplitude
determinants are identical to the product space amplitude determinants,

Ω̃(1)(z1,k) = Ω̃(12)(zk̃). (2.4.57)

2.5 Phases in the Remodeling Geometry

Now we turn to a calculation of the phases ϕ1 and ϕ12 that occur in the stationary phase
results in Eqs. 2.1.36 and 2.1.39. The goal of this section is to demonstrate that the relative
phases that occur in terms of these stationary phase evaluations are equal.
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In Section 2.5.1 the relative phases and stationary phase sets for the models in the
remodeling geometry are defined. The relative phases calculations depend on closed paths,
which are defined in Section 2.5.2. The relative phases contain three main terms, an action
integral, a Maslov index, and a signature index. We show that the difference in relative
phases between the two models is zero in three steps. First in Section 2.5.3 we show that
the action integrals around the paths defined in Section 2.5.2 are equal. Then the Maslov
indices are analyzed in Section 2.5.4 and ultimately combined and re-expressed as a single
signature index. Finally in Section 2.5.5 the signature indices are all combined into a single
term which evaluates to zero. Once the equality of the target and product space relative
phases is proven we prove in Section 2.5.6 that, if LM is a quantized manifold, then the
transport of a quantized Lagrangian manifold is itself a quantized manifold.

In the following we assume that the source and target phase space manifolds Φ1 and Φ2 are
isomorphic to R2n for some n and thus Φ1

∼= R2n1 , Φ2
∼= R2n2 , and Φ12

∼= R2(n1+n2). This is
certainly the case in spin network applications, where the target, source, and product spaces
are products of the Schwinger phase spaces defined in Section A.2, which are isomorphic to
R4. It is worth noting that symplectic reductions of these phase spaces will, in general, have
other topologies. However, this will not affect the analysis in this section.

2.5.1 Relative Phases

Let I(12) and I(1)be the stationary phase sets of the product and target phase space models
in the remodeling geometry as discussed in Section 2.1.5,

I(12) = Lab ∩ LM , I(1) = La ∩ Lβ. (2.5.1)

The target model stationary phase set I(1) is the projection of the product model station-
ary phase set I(12), as we now demonstrate. Since Lab is a subset of the inverse image π−1

2 (Lb̄),
I(12) is a subset of the intersection manifold of the transport I defined in Eq. 2.2.10. By the
geometric construction of the transported manifold in Eq. 2.2.13, the projection π1(I(12))
is a subset of Lβ. Similarly, since π1(Lab) = La, the projection π1(I(12)) is a subset of La.
Therefore π1(I(12)) ⊂ I(1). Conversely, consider a point z1 ∈ I(1). Since z1 ∈ Lβ, the trans-
port procedure ensures that there exists at least one point z12 ∈ I such that π1(z12) = z1.
By definition of I, z12 ∈ LM and z12 ∈ π−1

2 (Lb̄). Furthermore, since z1 ∈ La, this z12 lies
in π−1

1 La and therefore z12 ∈ π−1
1 (La) ∩ π−1

2 (Lb̄) = Lab. Thus I(1) ⊂ π1(I(12)) and we may
conclude that π1(I(12)) = I(1).

For the following analysis we use indices i and j to label points in the stationary phase
sets. Let zi ∈ I(12) and define z1,i = π1(zi) and z2,i = π2(zi). We use a subscript ‘1’ and ‘2’
to refer to target and source phase space points and assume that z without a subscript is
a product phase space point. Let ϕ12

i be the phase of the term in Eq. 2.1.39 for stationary
phase point zi in the product space and let ϕ1

i be the phase of the term in Eq. 2.1.36 for
stationary phase point z1,i in the target space. Given a pair of points zi and zj in I(12), define
the relative phase in the product space as ∆ϕ12

ij ≡ ϕ12
j − ϕ12

i and the relative phase in the
target space as ∆ϕ1

ij ≡ ϕ1
j − ϕ1

i .
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Let Γ12
ij be a closed path required to start at zi ∈ I(12), travel along the M -manifold to

zj ∈ I(12), and then travel back to zi along the ab-manifold. Similarly, let the path Γ1
ij be

a closed path required to start at z1,i ∈ I(1), travel along the β-manifold to z1,j ∈ I(1), and
then travel back to z1,i along the a-manifold. Then the relative phases may be computed as
in Eq. C.5.7,

∆ϕ12
ij =

∮
Γ12
ij

θ12 − µ(Γ12
ij )
π

2
+ ∆σ(M,ab)

π

4
, (2.5.2)

∆ϕ1
ij =

∮
Γ1
ij

θ1 − µ(Γ1
ij)
π

2
+ ∆σ(β, a)

π

4
, (2.5.3)

where in both equations the first term is the action integral around the closed path, the
second term is the Maslov index that is accumulated around the path, and the last term is
the difference in the signature index between the two stationary phase points.

2.5.2 Paths in the Remodeling Geometry

To show the relationship between ∆ϕ1
ij and ∆ϕ12

ij we first need to construct the target and
product space paths that are used in Eqs. 2.5.3 and 2.5.2. We start with a given target
space path and use that path to construct a related product space path. We then show
that the relative phases are equal for these related paths. Once we have that result, we may
use the quantization conditions on the manifolds in the remodeling geometry to argue that
∆ϕ12

ij = ∆ϕ1
ij mod 2π for any path Γ12

ij that starts at zi, travels to zj along LM , and then
travels back to zi along Lab.

Let Γ
(a)
ij ⊂ La be a path from z1,i to z1,j on La. Similarly let Γ

(β)
ij ⊂ Lβ be a path from

z1,i to z1,j on Lβ. Define the closed path Γ1
ij to be the concatenation of Γ

(β)
ij with the inverse

of Γ
(a)
ij , which we write as

Γ1
ij ≡ Γ

(β)
ij − Γ

(a)
ij . (2.5.4)

This target space path satisfies all of the conditions required for use in Eq. 2.5.3 by con-
struction.

We use the geometry of the transport described in Section 2.2.2 to lift Γ
(β)
ij into a path

Γ
(M)
ij ∈ LM . Recall that for every point in Lβ there exists at least one point in the intersection

I defined in Eq. 2.2.10. Define Γ
(M)
ij to be a path in I such that such that Γ

(M)
ij starts at

zi, ends at zj, and projects onto Γ
(β)
ij . For such a path to be continuous we require that

the points zi and zj lie on the same connected piece of I. Define the path Γ
(b)
ij to be the

projection of LM onto the dual source space so that Γ
(M)
ij satisfies

π1(Γ
(M)
ij ) = Γ

(a)
ij , π2(Γ

(M)
ij ) = Γ

(b)
ij . (2.5.5)

By the geometry of the transport procedure, Γ
(b)
ij is a path on Lb̄ from z2,i to z2,j. Figure 2.5.1

shows the construction of Γ
(M)
ij and Γ

(b)
ij from Γ

(β)
ij using the transport procedure.
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•

•

•

•

•

•

• •

•

⇐
π1

⇓ π2

Lb̄

Lβ I
⊂ LM

•z1,i

•z1,j

z2,i

z2,j

zi

zj

Γ
(b)
ij

•Γ(M)
ij•Γ(β)

ij

Figure 2.5.1: The path Γ
(β)
ij on the β-manifold Lβ lifts to a path Γ

(M)
ij on a connected piece of

the intersection submanifold I of the M -manifold LM . The path Γ
(b)
ij on the dual b-manifold

Lb̄ is the projection of Γ
(M)
ij by π2.

Next define the auxiliary point zaux ≡ (π1(zi), π2(zj)) ∈ Φ12 so that π1(zaux) = z1,i and
π2(zaux) = z2,j. Since z1,i ∈ La by definition and z2,j ∈ Lb̄ by construction, zaux is a point

on the product manifold Lab. Define path Γ
(ab)
a,i to be the lift of Γ

(a)
ij into Lab such that Γ

(ab)
a,i

starts at zi and is vertical over Φ∗2 and similarly define Γ
(ab)
b,j to be the lift of Γ

(b)
ij into Lab

such that Γ
(ab)
b,j ends at zj and is vertical over Φ1. These paths satisfy

π1(Γ
(ab)
a,i ) = Γ

(a)
ij , π2(Γ

(ab)
a,i ) = z2,i, (2.5.6)

π1(Γ
(ab)
b,j ) = z1,j, π2(Γ

(ab)
b,j ) = Γ

(b)
ij . (2.5.7)

By construction the end point of Γ
(ab)
a,i is zaux, as is the initial point of Γ

(ab)
b,j . Therefore we

may concatenate the paths to create a path from zi to zj on Lab,

Γ
(ab)
ij ≡ Γ

(ab)
a,i + Γ

(ab)
b,j . (2.5.8)

Figure 2.5.1 shows the construction of Γ
(ab)
a,i , Γ

(ab)
b,j , and Γ

(ab)
ij from Γ

(a)
ij and Γ

(b)
ij .

Finally, define the closed path Γ12
ij to be the concatenation of Γ

(M)
ij with the inverse of

Γ
(ab)
ij ,

Γ12
ij ≡ Γ

(M)
ij − Γ

(ab)
ij . (2.5.9)

This product space path satisfies all of the conditions required for use in Eq. 2.5.2 by con-
struction. Note that the construction of Γ12

ij from Γ1
ij is not unique but depends on how we

choose to lift the portion of the path along Lβ onto the intersection manifold.
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•

•

• •

JT
Γ

(a)
ij

*4

Γ
(b)
ij

•zi

•
zaux •

zj
JT

Γ
(ab)
a,i

*4

Γ
(ab)
b,j

La

z1,i

z1,j

Lb̄ z2,i z2,j

Lab

⇐
π1

⇓ π2

Figure 2.5.2: That paths Γ
(a)
ij on the a-manifold La and Γ

(b)
ij on the dual b-manifold Lb̄

define the paths Γ
(ab)
a,i and Γ

(ab)
b,j on the product manifold Lab. The path Γ

(ab)
ij on Lab is the

concatenation of Γ
(ab)
a,i with Γ

(ab)
b,j .

2.5.3 The Action Integrals

Given the paths defined in Eqs. 2.5.4 and 2.5.9, the action integral parts of the relative
phase expressions 2.5.3 and 2.5.2 are equal, as we now demonstrate. We work in the x-
representation of Φ1, the y-representation of Φ2, and the xy-representation of Φ12, as de-
scribed in Section 2.1.2.

The form of the product space symplectic potential in Eq. 2.1.10 allows the action integral
of an arbitrary path Γ in the product phase space to be expressed as integrals over the
projected paths π1(Γ) and π2(Γ) in the target and dual source phase spaces,∫

Γ

θ12 =

∫
Γ

π∗1θ1 +

∫
Γ

π∗2θ2̄ =

∫
π1(Γ)

θ1 +

∫
π2(Γ)

θ2̄. (2.5.10)

Eq. 2.5.10 can be used to evaluate the product space action integral over Γ12
ij , which we do

piece by piece. First evaluate the action integral over path Γ
(ab)
a,i ,∫

Γ
(ab)
ij

θ12 =

∫
Γ

(a)
ij

θ1 +

∫
Γ

(b)
ij

θ2̄, (2.5.11)

where Eqs. 2.5.6 and 2.5.7 have been used to write the projections of Γ
(ab)
ij in terms of

target and dual source space paths. Similarly, evaluating the action integral over Γ
(M)
ij using

Eqs. 2.5.10 and 2.5.5 yields ∫
Γ

(M)
ij

θ12 =

∫
Γ

(β)
ij

θ1 +

∫
Γ

(b)
ij

θ2̄. (2.5.12)
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By definition 2.5.9 of closed path Γ
(12)
ij the product space action integral contribution to the

relative phase is ∮
Γ12

θ12 =

∫
Γ

(M)
ij

θ12 −
∫

Γ
(ab)
ij

θ12. (2.5.13)

Using results 2.5.11 and 2.5.12, Eq. 2.5.13 simplifies to∮
Γ12
ij

θ12 =

∫
Γ

(β)
ij

θ1 −
∫

Γ
(a)
ij

θ1, (2.5.14)

where the two dual source space integrals over Γ
(b)
ij cancel each other out. The terms in

Eq. 2.5.14 can be combined into a single integral over path Γ
(β)
ij −Γ

(a)
ij , which is the definition

of the closed target space path Γ1
ij. Therefore it may be concluded that the product and

target space action integrals are identical,∮
Γ12
ij

θ12 =

∮
Γ1
ij

θ1, (2.5.15)

This result is independent of the choice of lift of Γ(β) into the intersection manifold I.
Moreover, since the final result is a relationship between integrals of the symplectic potential
over closed paths, the statement 2.5.15 is independent of representation.

2.5.4 Maslov Indices

We now turn our attention to the Maslov indices µ(Γ1
ij) and µ(Γ12

ij ) of the relative phases.
The Maslov index along a path is additive by definition [59] and therefore we may express
the total Maslov indices as sums over open-path Maslov indices,

µ(Γ1
ij) = µ(Γ

(β)
ij )− µ(Γ

(a)
ij ), (2.5.16)

µ(Γ12
ij ) = µ(Γ

(M)
ij )− µ(Γ

(ab)
b,j )− µ(Γ

(ab)
a,i ). (2.5.17)

As described in Section C.1, the Maslov index along a path Γ on L computed in the x-
representation tracks the change of the matrix signature of the Hessian matrix ∂2T (p), where
T (p) is the action of the conjugate p-representation WKB wavefunction. The actions on any
given branch of the product manifold Lab decomposes in the (p, r)-representation as a sum
of target and dual source space actions, Tab(p, r) = Ta(p) + Tb̄(r). Therefore, the Hessian
matrix ∂2Tab(p, r) is block-diagonal and the matrix signature of the product space Hessian
becomes the sum of the target and dual source space Hessians,

sgn ∂2Tab(p, r) = sgn ∂2Ta(p) + sgn ∂2Tb̄(r). (2.5.18)

The second signature in Eq. 2.5.18 remains constant along path Γ
(ab)
a,i since the z2-coordinate

is fixed. Similarly, the first signature remains constant along Γ
(ab)
b,j . The Maslov index
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contributions along the product manifold Lab thus are equal to the Maslov indices on La and
Lb̄,

µ(Γ
(ab)
a,i ) = µ(Γ

(a)
ij ), µ(Γ

(ab)
b,j ) = µ(Γ

(b)
ij ). (2.5.19)

The difference in Maslov indices between the product and target space paths is therefore

µ(Γ12
ij )− µ(Γ1

ij) = µ(Γ
(M)
ij )− µ(Γ

(b)
ij )− µ(Γ

(β)
ij ). (2.5.20)

The Maslov indices occurring in equation 2.5.20 can be re-expressed in terms of the
signature index through the analysis of the matrix element

〈β|M̂ |b〉 = tr
(

(|β〉〈b|)†M̂
)

= 〈β|β〉 = |N |2 , (2.5.21)

where |β〉〈b| ∈ H1 ⊗ H∗2. Consider the remodeling geometry for matrix element 2.5.21.
The Lagrangian manifolds in the product phase space are LM and the product manifold
Lβb = Lβ × Lb. Recall that I, defined by Eq. 2.2.10, is the intersection of the inverse
image of Lb̄ under the projection π2 and the manifold LM . By the geometric construction of
Section 2.2.2, π1(I) = Lβ and π2(I) ⊂ Lb̄. Therefore I ⊂ Lβb. Since by definition I ⊂ LM ,

this implies that I ⊂ Ĩ(12), where Ĩ(12) ≡ LM ∩Lβb, the set of stationary phase points in the
product space evaluation of 2.5.21. Moreover, LM ∩Lβb is a subset of I since Lβb ⊂ π−1

2 (Lb̄).
Therefore I = Ĩ(12) and the stationary phase set for the WKB evaluation of the product
space model of 2.5.21 is the entire intersection manifold I. The intersection manifold reflects
that there is at least an n1-dimensional common symmetry group between LM and Lβb. The
relative phase between two points on the same common symmetry group orbit is zero. Since
we assumed that zi and zj were on the same connected piece of I we may thus conclude that
∆ϕ̃12

ij , the relative phase between these two points in the product space WKB evaluation of

〈β|M̂ |b〉, is zero.

Consider the target space closed path Γ̃1
ij ≡ Γ

(β)
ij − Γ

(β)
ij . Note that the action integral,

Maslov index, and signature indices are all trivially zero for this path. Create a product
space closed path Γ̃12

ij from this by the same method as in Section 2.5.2, where Γ
(a)
ij = Γ

(β)
ij .

As shown in Section 2.5.3 the action integral around Γ̃12
ij is identical to the action integral

around Γ̃1
ij and thus vanishes. By the analysis of Section 2.5.4, the Maslov index µ(Γ̃12

ij )
is equal to the difference of Maslov indices in Eq. 2.5.20. Since the total relative phase
between points zi and zj is zero, we may conclude from an equation like Eq. 2.5.2 for matrix
element 2.5.21 that (

µ(Γ
(M)
ij )− µ(Γ

(b)
ij )− µ(Γ

(β)
ij )
) π

2
= ∆σ(M,βb)

π

4
. (2.5.22)

Applying Eq. 2.5.22 to Eq. 2.5.20 yields

µ(Γ12
ij )− µ(Γ1

ij) =
1

2
∆σ(M,βb). (2.5.23)
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2.5.5 The Signature Index

Eqs. 2.5.15 and 2.5.23 allows the difference in relative phases 2.5.2 and 2.5.2 in the two
models to be expressed entirely in terms of signature indices,

∆ϕ12
ij −∆ϕ1

ij = (∆σ(M,ab)−∆σ(β, a)−∆σ(M,βb))
π

4
. (2.5.24)

We now shown that the combination of signature indices in Eq. 2.5.24 evaluates to zero.
The target space signature index σi(β, a) at intersection point z1,i is identical to the

product space signature index σi(βb, ab) at zi, as we now show. As described in Section C.5,
the target space signature index is the matrix signature of the Hessian ∂2(Sβ,kβ−Sa,ka)/∂xi∂xj,
where Sa(x) and Sβ(x) are the WKB phase functions for the a- and β-states and zi is on
the ka-th and kβ-th x-representation branch of La and Lβ over point x. As discussed in
Section 2.1.3, the phase function for the product manifold Lab is Sab(x, y) = Sa(x) + Sb̄(y).
Therefore Sβb(x, y)− Sab(x, y) = Sβ(x)− Sa(x) and thus the product space Hessian is

∂2(Sβb − Sab)
∂Qα∂Qβ

=

[
∂2(Sβ−Sa)

∂xi∂xj
0

0 0

]
, (2.5.25)

where Qα = (xi, yI). The matrix signature of the product space Hessian is thus equal to the
matrix signature of the target space Hessian and we may conclude that σi(β, a) = σi(βb, ab).
This allows us to express all of the signature indices in Eq. 2.5.24 as signature indices in the
product phase space.

As discussed in Section B.5, the Lagrangian signature [59] is a map from a triplet of
Lagrangian planes to Z. By Eq. C.5.4, the signature index in a given representation of a pair
of Lagrangian manifolds at an intersection point is equal to the Lagrangian signature of the
Lagrangian plane defining the representation and the two planes tangent to the Lagrangian
manifolds. Applying this to Eq. 2.5.24 lets the signature indices be expressed as

σ(Λxy,ΛM ,Λab)− σ(Λxy,Λβb,Λab)− σ(Λxy,ΛM ,Λβb), (2.5.26)

where Λxy is the Lagrangian plane defining the xy-representation at zi and ΛM , Λab, and
Λβb are the tangent planes to Lagrangian manifolds LM , Lab, and Lβb at zi. The Lagrangian
signature is a 2-cocycle and thus obeys the cocycle property Eq. B.5.6 [60, 61]. Thus ex-
pression 2.5.26 may be expressed as a single Lagrangian signature σ(ΛM ,Λab,Λβb) and the
difference in relative phases is

∆ϕ12
ij −∆ϕ1

ij = ∆σ(ΛM ,Λab,Λβb)
π

4
. (2.5.27)

Note that the above equation is now independent of representation, since the representation
plane Λxy no longer appears.

The intersection of tangent planes Λab and Λβb minimally contains the isotropic plane
{0} × Λb and the intersection of tangent planes ΛM ∩ Λβb minimally contains the isotropic
plane Λβ × {0}. Since Λβb = Λβ × Λb, we can conclude

Λβb ⊂ (Λβb ∩ ΛM)⊕ (Λβb ∩ Λab). (2.5.28)
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Therefore, by the discussion leading up to Eq. B.5.10,

σ(ΛM ,Λab,Λβb) = 0, (2.5.29)

for tangent planes ΛM , Λab, and Λβb to any intersection point in I(12).
Applying Eq. 2.5.29 to Eq. 2.5.27 yields

∆ϕ12 = ∆ϕ1. (2.5.30)

Therefore the phase difference between related pairs of intersection points in the product
space model and the target space model are equal when the product space path Γ12

ij is
constructed from the target space path Γ1

ij as in Section 2.5.2. This statement is independent
of representation, up to the requirement that the product space representation contains the
target space representation.

2.5.6 Quantization

As discussed in Section C.1, a Lagrangian manifold L is said to be quantized if, for all closed
paths Γ on L, ∮

Γ

θ − µ(Γ)
π

2
= 0 mod 2π, (2.5.31)

which comes from the requirement that the WKB wavefunction be single-valued. In this
section we demonstrate two results relating to quantization in the remodeling geometry.
The first result involves deforming the product space path from the path constructed in
Section 2.5.2 and the second result demonstrates that the transport procedure described in
Section 2.2.2 results in a quantized manifold as long as LM and Lb are also quantized.

Consider the open paths Γ
(M)
ij and Γ

(ab)
ij defined in Eqs. 2.5.5 and 2.5.8, and the closed

path Γ12
ij defined in Eq. 2.5.9. Let γ

(M)
ij ⊂ LM and Γ

(ab)
ij ⊂ Lab be any other paths that start

at zi, end at zj and form the closed path γ12
ij = γ

(M)
ij − γ(ab)

ij . Let ∆ϕ(Γ12
ij ) and ∆ϕ(γ12

ij ) be
the relative phases for these two paths as in Eq. 2.5.2. The signature index pieces of both
relative phases will be equal since the intersection points zi and zj used to define the paths
are the same for both Γ12

ij and γ12
ij . Therefore,

∆ϕ(Γ12
ij )−∆ϕ(γ12

ij ) =

∮
Γ12
ij

θ12 −
∮
γ12
ij

θ12 −
(
µ(Γ12

ij )− µ(γ12
ij )
) π

2
. (2.5.32)

Since the action integral and Maslov index are both additive this expression may be rewritten

∆ϕ(Γ12
ij )−∆ϕ(γ12

ij ) =
(∮

Γ
(M)
ij −γ

(M)
ij

θ12 − µ(Γ
(M)
ij − γ

(M)
ij )π

2

)
−
(∮

Γ
(ab)
ij −γ

(ab)
ij

θ12 − µ(Γ
(ab)
ij − γ

(ab)
ij )π

2

)
. (2.5.33)

Since Γ
(M)
ij and γ

(M)
ij are both paths in LM and share the same starting and ending points,

the concatenation Γ
(M)
ij − γ

(M)
ij is a closed path on LM . Similarly, Γ

(ab)
ij − γ

(ab)
ij is a closed
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path on Lab. Both LM and Lab are quantized manifolds so, by Eq. 2.5.31, each of the two
parenthetical expressions in Eq. 2.5.33 equals 0 modulo 2π. Thus

∆ϕ(γ12
ij ) = ∆ϕ(Γ12

ij ) mod 2π. (2.5.34)

As was shown in the previous sections, the relative phase for the path Γ12
ij is equal to the

relative phase for the target space path Γ1
ij Thus the relative phase for any product space

path that starts at zi, travels along LM to zj, and then returns to zi along Lab is equal
modulo 2π to any target space path that starts at z1,i, travels along Lβ to z1,j, and then
returns to zi along La.

Next we turn to the β manifold and the remodeling geometry for 〈β|M̂ |b〉. Since every

point on Lβ is a stationary phase point in Ĩ(1) we may proceed as above and consider the
relative phase around any closed loop starting at an arbitrary point zβ ∈ Lβ. Let Γ(β) in Lβ
be a closed loop starting at zβ, and lift it to a closed path Γ(M) in I. Let the starting point

of Γ(M) be zI so π1(zI) = zβ. These paths act like the open paths Γ
(β)
ij and Γ

(M)
ij defined in

Section 2.5.2 with zβ = zi,1 = zj,1 and zI = zi = zj. Define Γ(a) to be the trivial path that
starts and remains at zi. Then the target space closed path is simply Γ1 = Γ(β), the path
Γ(b) is a closed loop on Lb̄. The auxiliary point zaux is the same as zI , and thus the path

Γ
(ab)
a,i is the trivial path at zI and Γ

(ab)
b,j is the lift of Γ(b) onto the z1 = zβ plane of Φ12, which

we write as Γ̃(b). Thus the product space closed path is the concatenation Γ12 = Γ(M)− Γ̃(b).
We first turn our attention to the relative phase ∆ϕ1 for the target space closed path

Γ1. The signature index σi(β, β) in the x-representation is equal to the Lagrangian signature
σ(Λx,Λβ,Λβ), where Λx is the Lagrangian plane defining the x-representation at the base
point zβ and Λβ is the tangent plane to Lβ at zβ. Since the Lagrangian signature is defined
to be antisymmetric, σ(Λx,Λβ,Λβ) = 0 and thus Eq. 2.5.3 becomes

∆ϕ1 =

∮
Γ1

θ1 − µ(Γ1)
π

2
. (2.5.35)

Next we analyze the relative phase ∆ϕ12 for the product space closed path Γ12. Since

both component paths Γ(M) and Γ̃(b) are closed paths the relative phase Eq. 2.5.2 may be
written

∆ϕ12 =

∮
Γ(M)

θ12 −
∮

Γ̃(b)

θ12 − µ(Γ(M))
π

2
+ µ(Γ̃(b))

π

2
+ ∆σ(M,βb)

π

4
. (2.5.36)

Since zI serves as both stationary phase points in the above analysis the difference in signa-
ture index between the two points is zero. The two terms in Eq. 2.5.36 that depend on Γ̃(b)

can be expressed in terms of the dual source space path Γ(b). Therefore,

∆ϕ12 =

(∮
Γ(M)

θ12 − µ(Γ(M))
π

2

)
−
(∮

Γ(b)

θ2̄ − µ(Γ(b))
π

2

)
. (2.5.37)

As discussed in Section C.1, the requirement that the WKB wavefunction be single-
valued is what defines the quantization condition on the Lagrangian manifold generated by
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the wavefunction. According to Eq. 2.5.31, each of the two terms in Eq. 2.5.37 is 0 mod 2π
since LM and Lb̄ are both quantized manifolds and thus ∆ϕ12 = 0 mod 2π. Applying this
result to Eqs. 2.5.30 and 2.5.35 yields∮

Γ1

θ1 − µ(Γ1)
π

2
= 0 mod 2π, (2.5.38)

for all closed paths Γ1 on Lβ. Therefore, by Eq. 2.5.31, the transported manifold Lβ is
quantized if LM and Lb are.

2.6 Summary

In this chapter we introduced the linear algebra and semiclassical geometry involved in the
remodeling of an inner product. The core idea was that a linear map between Hilbert
spaces may itself be interpreted as an element of a product Hilbert space. The Lagrangian
manifold that supports the semiclassical approximation to this state allows the Lagrangian
manifolds that correspond to source space states to be mapped to Lagrangian manifolds that
correspond to target space states. The transport was achieved geometrically by taking the
inverse image of the dual of the source Lagrangian manifold under the canonical projection
: Φ1 × Φ∗2 → Φ∗2, forming the intersection with the manifold corresponding to the map, and
projecting onto the target space. We found that this geometric procedure indeed gave the
same manifold as the stationary phase approximation applied to the WKB wavefunctions.
Moreover, we showed how the momentum maps that define the source space manifolds get
transported to become the momentum maps that define the transported manifold. Then we
showed that the amplitude and phase calculations for the target and product space inner
product models are equal in the remodeling geometry.

The remodeling of an inner product ultimately is a general procedure that creates two
models of the same matrix element, one in a larger product space and one in a smaller target
space. The amplitude determinant, action integral, and combined Maslov and signature
index pieces that occur in the stationary phase approximations of these models are identical
so that, once the remodeling geometry is set up, the action integral can be evaluated in the
product space and the amplitude and Maslov index can be computed in the target space.
When the remodeling geometry connects a one degree of freedom model with a two degree of
freedom model, as in our first concrete example, the evaluation of the 3j-symbol in Chapter 3,
the advantages of the remodeling of an inner product may not be apparent. However in the
evaluation of more complicated spin networks, such as the 6j- or 9j-symbols, the ability to
take determinants in a low-dimensional space becomes important. Moreover the product
space models of such symbols tend to be symmetric and treat all of the angular momenta
involved on the same footing, a feature which the target space models lack. Given this
symmetry, paths are easier to construct from Hamiltonian flows along the relevant manifolds
and the action integrals become much easier to evaluate.
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The main example for comparing the advantages of different models is the 6j-symbol
which was studied in a symmetric 12j-model by Roberts [2] and in an asymmetric 4j-model
by Aquilanti et al [1]. The phase calculation in the 12j-model is elegant and clean and easily
reproduces the expected result of Ponzano and Regge [27]. However, the computation of the
amplitude involved taking the determinant of a complicated 9 × 9 matrix and the Maslov
correction not even attempted. In contrast, the amplitude in the 4j-model is a single Poisson
bracket, essentially the determinant of a 1× 1 matrix on the phase space S2. Moreover the
amplitude has a clear geometric meaning, being proportional to the volume of a tetrahedron.
We developed and applied a method for the calculation of the Maslov index to the 4j-model
of the 6j-symbol in Esterlis et al [55]. Again, the low dimensionality of the 4j-model made
this calculation much more tractable. The path in this model is less intuitive, however, and
is more computationally involved. As we will see in Chapter 4, we can easily set up the
remodeling geometry and then cherry-pick where we want to perform certain calculations,
transforming potentially tedious calculations into simple exercises in symplectic geometry.
First, however, we turn our attention to the simpler 3j-symbol in Chapter 3 and use it as
an example to demonstrate the various features and ideas involved in the remodeling of an
inner product.
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Chapter 3

Models of the 3j-Symbol

The Wigner 3j-symbol and the closely related Clebsch-Gordan coefficients are some of the
central objects of standard angular momentum theory. The semiclassical behavior of the
3j-symbol has been studied extensively (Ponzano and Regge [27], Neville [38], Miller [39],
Schulten and Gordon [40, 41], Biedenharn and Louck [42], Aquilanti et al [44]) since it is
one of the simplest nontrivial objects in angular momentum theory. It also provides one of
the simplest nontrivial spin networks. In the notation explained in Aquilanti et al [1], the
3j-symbol is

(
j1 j2 j3

m1 m2 m3

)
= •

KS j1

t|
j2

"*
j3

∗m1

∗m2 ∗m3

. (3.0.1)

This is the spin network representing the “completely contravariant components” of the 3j-
intertwiner as shown in Figure 28 of Aquilanti et al [1]. We use this version rather than the
conjugate because it involves fewer dual Schwinger Hilbert spaces.

For given values of the three j’s and m’s, the 3j-symbol is just a number, but to study its
semiclassical limit it is useful to write it as a scalar product 〈A|B〉 of wavefunctions in some
Hilbert space. This can be done in many different ways, with different choices of Hilbert
space corresponding to different “models”. There are two models for the 3j-symbol, called
the “3j-model” and the “2j-model.”

The 3j-model is an inner product in a Hilbert space formed by taking the tensor product
of three copies of the Schwinger Hilbert space discussed in Section A.1. The advantage of the
3j-model is that it is the most symmetric way of expressing the 3j-symbol. The analysis of
Aquilanti et al [44] used the 3j-model of the 3j-symbol. The 2j-model is an inner product in
a Hilbert space formed by taking the tensor product of two copies of the Schwinger Hilbert
space. The 2j-model is not as symmetric as the 3j-model, but has the advantage of living in
a smaller Hilbert space. The Clebsch-Gordan coefficients are usually expressed as an inner
product on a space very closely related to the 2j-Hilbert space which makes their connection
to the 3j-symbol more apparent than in the 3j-model.
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The relationship between the 2j- and 3j-models provides our first example of the remod-
eling of an inner product discussed in Chapter 2. In Section 3.1 the remodeling algebra for
the 3j-symbol is constructed and the connections between the states in the two different
models is explored. Then in Section 3.2 the remodeling geometry will be constructed, which
sets the stage for the comparison of the semiclassical evaluations of the 2j- and 3j-models of
the 3j-symbol in Section 3.3. Throughout this chapter the various concepts and relationships
described abstractly in Chapter 2 will be demonstrated explicitly.

3.1 Linear Algebra of the 3j-Symbol

The 2j- and 3j-models of the 3j-symbol may be interpreted as the target- and product-
space models for a remodel of the spin network in Eq. 3.0.1. The “operator” at the heart
of the 3j-symbol is the Wigner intertwiner, which is defined and discussed in Section 3.1.1.
Then in section 3.1.2 the Hilbert spaces, states, and inner product models of the 3j-symbol
are constructed. We explore Schur’s Lemma as it applies to intertwiners between different
carrier spaces of (potentially reducible) representations in Section 3.1.3 in order to more fully
understand the core isomorphism in spin network applications. The core isomorphism for
the 3j-remodeling geometry turns out to be proportional to a 2j-intertwiner, which we define
and explore in Section 3.1.4. In Section 3.1.5 we define all of the states and the subspaces
img Ŵ and (ker Ŵ )⊥ as simultaneous eigenspaces of sets of observables and show how the
core isomorphism is used to derive the observables for the β-state from the observables from
the b-state. Finally in Section 3.1.6 we show how the 2j-model of the 3j-symbol is related
to the Clebsch-Gordan coefficients.

3.1.1 The Wigner Intertwiner and the 3j-Symbol

Consider a triplet of irreps (j1, j2, j3) and the tensor product of carrier spaces Cj1 ⊗Cj2 ⊗Cj3 ,
as described in Section A.1. This space contains a nontrivial, SU(2)-invariant vector iff
(j1, j2, j3) satisfy the triangle inequalities and j1 + j2 + j3 is an integer, in which case the
vector is unique up to a phase and normalization. Using the standard angular momentum
basis discussed in Section A.1 (due to Schwinger [62] and Bargmann [63]) and the standard
notation and definition for the Wigner 3j-symbol [28, 64], we construct an invariant reference
vector,

|W 〉 =
∑

m1m2m3

|j1m1〉 ⊗ |j2m2〉 ⊗ |j3m3〉
(

j1 j2 j3

m1 m2 m3

)
. (3.1.1)

Under this construction, the vector |W 〉 is normalized, 〈W |W 〉 = 1 (see Eq. (3.7.8) in Ed-
monds [28]). The vector |W 〉 is the “Wigner state” discussed from a semiclassical standpoint
in Aquilanti et al [44].

The Wigner state can be considered a map : C∗j1 ⊗ C
∗
j2
⊗ C∗j3 → C via the inner product.

Since the state |W 〉 is invariant under the action of the group SU(2), the map is an SU(2)



CHAPTER 3. MODELS OF THE 3J-SYMBOL 65

intertwiner. In general, an SU(2) intertwiner is a linear map between vector spaces that
commutes with the actions of SU(2) on the two spaces. The Wigner state is closely associated
with several other intertwiners, such as the dual of the Wigner state, 〈W | : Cj1⊗Cj2⊗Cj3 → C,

and the map Ŵ : C∗j3 → Cj1 ⊗ Cj2 which is defined by the action of Ŵ (〈ψ3|) on dual vectors
in C∗j1 ⊗ C

∗
j2

via

Ŵ (〈ψ3|) : 〈ψ12| 7→ (〈ψ12| ⊗ 〈ψ3|) |W 〉. (3.1.2)

These intertwiners will all be called 3j-intertwiners since the vector spaces involved are
composed from three SU(2) carrier spaces.

The various 3j-intertwiners are all unique up to a normalization and phase. By Eq. 3.1.1,
the 3j-symbol forms the contravariant components of the 3j-intertwiner associated with the
Wigner state in the standard angular momentum basis,

〈j1j2j3m1m2m2|W 〉 =

(
j1 j2 j3

m1 m2 m3

)
. (3.1.3)

Thus the normalization and phase conventions for the 3j-symbol fix a conventional normal-
ization and phase for the 3j-intertwiners.

In spin network language the Wigner vector in Eq. 3.1.1 is written

•
j1

j2

j3

. (3.1.4)

This is also the spin network for the map Ŵ as in Eq. 3.1.2. The normalization of the various
3j-intertwiners is expressed using the “theta graph”,

〈W |W 〉 = .• •+3
j2−

+3
j1

+3
j3

= 1, (3.1.5)

where the minus sign on the left node indicates an inverted orientation in the ordering of
the three legs following the notation used in Yutsis [7] and Stedman [8].

3.1.2 The Remodeling Algebra of the 3j-Symbol

The different inner product models of the 3j-symbol are constructed by interpreting the
3j-symbol as a matrix element and then forming the remodeling algebra as in Section 2.1.1
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of Chapter 2. This is accomplished by “cutting” the network in Eq. 3.0.1 into three pieces,

•

j1

∗m1

j2

∗m2 j3 ∗m3

. (3.1.6)

These pieces represent the dual of the a-state, the b-state, and the operator M̂ of the matrix
element 2.1.1.

We take the dual of the a-state to be the subnetwork of network 3.1.6 consisting of the two
legs ending in labels “∗m1” and “∗m2.” These legs end in bra chevrons and the subnetwork
is an element of S∗1⊗S∗2 . The a-state is the conjugate of this subnetwork and is an element of
the 2j-Hilbert space S1⊗S2, which serves as the target Hilbert space H1 in the language of
Chapter 2. The Schwinger Hilbert spaces and operators used to describe angular momenta
are defined and described in detail in Section A.1. The 2j-Hilbert space may be described in
the Schwinger model by four degrees of freedom and thus n1 = 4. The a-state is a standard
basis ket in the 2j-Hilbert space and is the simultaneous eigenstate of observables Î1, Î2, Ĵ1z,
and Ĵ2z,

“a-state” =

∣∣∣∣ Î1

j1

Î2

j2

Ĵ1z

m1

Ĵ2z

m2

〉
=

j1m1

j2m2

∈ S1 ⊗ S2. (3.1.7)

The group GA is therefore U(1)4 since these four operators all mutually commute on all of the
target Hilbert space and thus form a U(1)4 Lie algebra under the commutator. The basis of
gA ∼= R4 is chosen so that the components of the R4-valued operator Â are {Î1, Î2, Ĵ1z, Ĵ2z}.
We write the a-state in this chapter as either |a〉 or |j1j2m1m2〉. We may also call the a-state
the “2jm-state” since it is the standard basis vector in the 2j-Hilbert space.

The b-state is taken to be to be the subnetwork of 3.1.6 consisting of the leg ending in
label “∗m3.” This leg ends in a bra chevron and the subnetwork is an element of S∗3 . The
source Hilbert space H2 is thus the space of bras S∗3 . A complete set on the Schwinger
Hilbert space consists of two operators so n2 = 2. The b-state is a standard basis bra in the
Schwinger Hilbert space,

“b-state” =

〈
Î3

j3

Ĵ3z

m3

∣∣∣∣ =
j3∗m3 ∈ S∗3 . (3.1.8)

The group GB is U(1)2 and the basis of gB ∼= R2 is chosen so that the components of the
R2-valued operator B̂ are {Î>3 , Ĵ>3z} where, as discussed in Section A.1, Î>3 is the natural
action of Î3 on dual vectors from the right. We write the b-state in this chapter as either 〈b|
or 〈j3m3|.

The product Hilbert space of this remodeling algebra is (S1⊗S2)⊗ (S∗3 )∗ = S1⊗S2⊗S3.
We call this space the 3j-Hilbert space H3j. The last piece of network 3.1.6 is a subnetwork
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ending in ket chevrons for S1, S2, and S3 and is thus an element of the product space. The
labels on the three legs of this subnetwork mean that the state is an element of the space
Cj1 ⊗ Cj2 ⊗ Cj3 , which is a subspace of H3j. This subnetwork is equal to the vector |W 〉
defined in Eq. 3.1.1, with the space Cj1 ⊗ Cj2 ⊗ Cj3 being interpreted as a subspace of the
full 3j-Schwinger Hilbert space H3j. As in Eq. 3.1.2, the Wigner state may be interpreted

as a map : S∗3 → S1 ⊗ S2, where Ŵ annihilates vectors outside the C∗j3 subspace of S∗3 and
the range space Cj1 ⊗ Cj2 is interpreted as a subspace of the target Hilbert space H2j. We
therefore interpret this subnetwork as the M -state of the remodeling algebra. The Wigner
state is invariant under SU(2) and thus is a zero eigenvector of the total angular momentum
vector operator ĴT |W 〉 = 0, where ĴT ≡ Ĵ1 + Ĵ2 + Ĵ3. While the components of ĴT in general
do not commute on H3j, they do commute on the 0-eigenspace and can be used, along with

operator Îr (r = 1, 2, 3) to characterize the Wigner state [44],

“M -state” =

∣∣∣∣ Î1

j1

Î2

j2

Î3

j3

ĴT
0

〉
= •

j1

j2

j3

∈ S1 ⊗ S2 ⊗ S3. (3.1.9)

The operators Îr and ĴT form the Lie algebra for the group GM ≡ U(1)3⊗SU(2) under the
commutator. The basis of gM is chosen so that the components of the gM -valued operator
ÔM are {Î1, Î2, Î3, ĴTx, ĴTy, ĴTz}. We write the M -state in this chapter as either |W 〉 or

|j1j2j30〉 when we want to emphasize that it is a ket in the 3j-Hilbert space or as Ŵ when
we want to emphasize that it is a map : S∗3 → S1 ⊗ S2. We may also refer to this state as
the “Wigner state” or the “Wigner intertwiner” as in Section 3.1.1.

The product state in H3j is the tensor product of the a-state and the dual of the b-state,

“Product state” =

∣∣∣∣ Î1

j1

Î2

j2

Î3

j3

Ĵ1z

m1

Ĵ2z

m2

Ĵ3z

m3

〉
=

j1m1

j2m2

j3m3

, (3.1.10)

which we recognize as a standard basis ket for the 3j-Hilbert space. We write the product
state in this chapter as either |ab〉 or |j1j2j3m1m2m3〉. We may also call the product state
the “ab-state” or the “3jm-state” since it is the standard basis vector in the 3j-Hilbert space.

Finally, the β-state is the map Ŵ acting on the b-state, |β〉 = Ŵ (〈j3m3|). This state is
proportional to the coupled-basis state of standard angular momentum theory |j1j2; JM〉,
with J = j3 and M = −m3. In terms of spin networks, the subnetwork for |β〉 is found by
contracting the source space chevrons,

“β-state” = Ŵ

(〈
Î3

j3

Ĵ3z

m3

∣∣∣∣) = •
j1

j2

j3 m∗3

= •
"*

j3

j1

j2

m∗3

. (3.1.11)
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Target Space

S1⊗S2

|j1j2m1m2〉, |β〉

Product Space

S1⊗S2⊗S3

|W 〉, |j1j2j3m1m2m3〉

Dual Source Space

S3

|j3m3〉

Source Space

S∗3
〈j3m3|

Figure 3.1.1: Spaces and states in the remodeling algebra for the 3j-symbol.

This spin network illustrates the multiple roles that elements can play, an advantage of the
spin network notation over the standard Dirac notation. As expected, the two open ket
chevrons that are left in the network after the contraction demonstrate that |β〉 ∈ S1 ⊗ S2.
The action of this Wigner map in Dirac notation can be extracted by adding a resolution of
the identity to each of the open chevrons, yielding

Ŵ : 〈j′3m3| 7→
∑
m1m2

|j1j2m1m2〉δj3j′3

(
j1 j2 j3

m1 m2 m3

)
. (3.1.12)

The four operators Î1, Î2, Ĵ2
12, and J12z all mutually commute and therefore Gβ is U(1)4.

The basis of gβ ∼= R4 is chosen so that the components of the R4-valued operator β̂ are

{Î1, Î2, Ĵ
2
12, Ĵ12z}. To avoid confusion with the coupled basis states we write the β-state in

this chapter as simply |β〉. Since the β-state involves the coupling of two angular momenta
into a third we may refer to |β〉 as the “coupled state”, though this is understood to be
distinct from the standard coupled basis states of Φ2j.

The identification of the spaces and states of the remodeling algebra for the 3j-symbol
are summarized in Figure 3.1.1.

The product space model of this remodeling algebra is the 3j-model of the 3j-symbol
and takes places in the Hilbert space H3j. The two states involved are the product state in
Eq. 3.1.10 and the Wigner state in Eq. 3.1.9,

(
j1 j2 j3

m1 m2 m3

)
= 〈ab|W 〉 = •

j1

∗m1

j2

∗m2 j3 ∗m3

. (3.1.13)

This is precisely the inner product presented in Eq. (22) of Aquilanti et al [44]. The target
space model is the 2j-model of the 3j-symbol and takes place in the Hilbert space H2j =
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S1 ⊗ S2. The two states involved are the a-state in Eq. 3.1.7 and the β-state in Eq. 3.1.11,

(
j1 j2 j3

m1 m2 m3

)
= 〈a|β〉 = •

"*
j3

j1

∗m1

j2

∗m2 ∗m3

. (3.1.14)

3.1.3 Schur’s Lemma and the 3j-Intertwiner

To construct observables for |β〉 as in Section 2.4.2 we need to construct the core isomorphism
for the Wigner state as in Section 2.4.1. As discussed in Section 3.1.1, the Wigner state is
an example of an intertwiner. The linear map in the remodeling algebra for all of our spin
network examples will be intertwiners, in fact. Therefore we turn our attention in this
section to the more general consideration of how to construct the core isomorphism for an
intertwiner.

Schur’s lemma [65] allows any intertwiner between two vector spaces carrying unitary
representations of a group to be expressed in terms of unitary maps between invariant sub-
spaces. We will only be interested in unitary representations in the work. These unitary
maps will be called the “unitary core of the intertwiner.” The core isomorphism for an
intertwiner will ultimately be expressed in terms of this unitary core.

Consider two vector spaces E and F and a linear map Â : E → F . As in Section 2.4.1,
the core isomorphism is the map ÂC = Π̂F ◦ Â ◦ ÎE : (ker Â)⊥ → img Â, where the range
and domain spaces are treated as vector spaces in their own right, ÎE : (ker Â)⊥ → E is the
inclusion map and Π̂F : F → img Â is a projection map. Conversely, Â = ÎF ◦ ÂC ◦ Π̂E.

Now let E and F be two carrier spaces for unitary representations Û(g) and V̂ (g) of
SU(2), respectively. Define the vector space of intertwiners Z to be the subspace of linear
maps : E → F that commute with SU(2),

Z =
{
M̂ : E → F | M̂ ◦ Û(g) = V̂ (g) ◦ M̂, ∀ g ∈ SU(2)

}
. (3.1.15)

The space Z is isomorphic to the space of intertwiners : E ⊗ F∗ → C and the subspace of
SU(2)-invariant elements of the product vector space F ⊗ E∗.

The representations Û and V̂ are called equivalent if there exists some invertible map
Â : E → F such that

Â ◦ Û(g) ◦ Â−1 = V̂ (g), ∀ g ∈ SU(2). (3.1.16)

Thus Û(g) and V̂ (g) are equivalent representations if there exists an invertible intertwiner
between the carrier spaces. If no such intertwiner exists, then Û(g) and V̂ (g) are inequivalent.
This terminology will be used for reducible as well as irreducible representations.

In the following subsections we analyze how Schur’s lemma applies to cases where both
E and F are carrier spaces for irreducible representations, where either E or F carries a
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reducible representation but the other carries an irreducible representation, and where both
E and F carry reducible representations.

3.1.3.1 Case I - Both Û(g) and V̂ (g) Irreducible

The traditional form of Schur’s lemmas deals with the case where both E and F are carrier
spaces for finite-dimensional irreducible representations. If Û(g) and V̂ (g) are inequivalent
representations then Schur’s lemma says that M̂ = 0 is the only intertwiner between E and F ,
so Z is a zero-dimensional vector space. On the other hand, if Û(g) and V̂ (g) are equivalent
irreducible representations then Schur’s lemma states that any non-zero intertwiner between
E and F is invertible and all such intertwiners are proportional. Furthermore, if Û(g) and
V̂ (g) are both unitary representations, then there exists a unitary intertwiner Â ∈ Z which
is unique up to a phase. Thus every nontrivial intertwiner M̂ ∈ Z from a finite-dimensional
irreducible carrier space to a finite-dimensional irreducible carrier space can be decomposed
as

M̂ = cÂ, (3.1.17)

where c ∈ C and Â : E → F is a unitary map. As a result, Z is at most one-dimensional,
with dim Z = 0 if E and F carry inequivalent irreducible representations and dim Z = 1
if E and F carry equivalent irreducible representations. Given a non-zero intertwiner M̂
in this case, (ker M̂)⊥ and img M̂ are the entire spaces E and F and M̂ itself is the core
isomorphism. If E and F are Hilbert spaces then the unitary core Â in Eq. 3.1.17 is an
isometry. In the theory of angular momenta, the carrier spaces of irreducible representations
Cj are parameterized by j = 0, 1/2, 1, · · · , with dim Cj = 2j + 1. The space of intertwiners
: Cj → Cj′ therefore has dimension δjj′ .

3.1.3.2 General Considerations for the Other Cases

The spaces E and F may carry reducible representations in which case the results of Schur’s
lemma can be generalized. Suppose Û(g) and V̂ (g) are unitary, potentially reducible repre-
sentations and let M̂ : E → F be an intertwiner in Z. For any y ∈ img M̂ there exists some
x ∈ E such that y = M̂x. By the intertwiner property, V̂ (y) = V̂ (M̂(x)) = M̂(Û(x)) ∈
img M̂ . Thus, img M̂ ⊂ F is an invariant subspace of F . Similarly, let x ∈ ker M̂ so
M̂x = 0. By the intertwiner property, 0 = V̂ (M̂(x)) = M̂(Û(x)) so Ûx ∈ ker M̂ which
means ker M̂ is an invariant subspace of E . Since Û(g) is a unitary action, the invariant sub-
spaces of E are orthogonal and thus (ker M̂)⊥ ⊂ E is an invariant subspace. Since (ker M̂)⊥
and img M̂ are invariant subspaces of E and F , they can be considered carrier spaces for
the restricted representations ÛR(g) and V̂R(g), respectively.

Let M̂C = Π̂img ◦ M̂ ◦ Îker : (ker M̂)⊥ → img M̂ be the isomorphic core of the intertwiner

M̂ . Since img M̂ and (ker M̂)⊥ are invariant subspaces, the restricted map M̂C inherits the
intertwiner property from M̂ and

M̂C ◦ ÛR(g) ◦ M̂−1
C = V̂R(g), ∀ g ∈ SU(2). (3.1.18)
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Thus (ker M̂)⊥ and img M̂ are not only isomorphic but carry equivalent representations ÛR
and V̂R.

In summary, the core isomorphism of any intertwiner is an intertwiner between subspaces
carrying equivalent representations.

3.1.3.3 Case II - Û(g) Reducible and V̂ (g) Irreducible

Now consider the case where Û(g) is a reducible representation and V̂ (g) is a finite-dimen-
sional irreducible representation. Since F is a carrier space for an irreducible representation
there are no proper invariant subspaces of F and any non-zero intertwiner M̂ ∈ Z must
have img M̂ = F . The “restricted” representation V̂R(g) in Eq. 3.1.18 is therefore just the
original representation V̂ (g). By Eq. 3.1.18, representation V̂ (g) on F is equivalent to the
restricted representation ÛR(g) on (ker M̂)⊥. The core isomorphism M̂C : (ker M̂)⊥ → F
is thus an intertwiner between two equivalent irreducible representations. By the discussion
leading up to Eq. 3.1.17, M̂C = cÂ for some unitary Â : (ker M̂)⊥ → F and scalar c ∈ C. If
E and F are Hilbert spaces then this says that the core isomorphism is proportional to an
isometry.

Let the space E be decomposed into a direct sum of invariant subspaces E =
⊕
Ei. Any

intertwiner M̂ then decomposes as

M̂ =
∑

ciÂi ◦ Π̂i, (3.1.19)

where ci ∈ C, Âi : Ei → F is either a unitary map or zero depending on whether Ei is
equivalent to F or not, and Π̂i : E → Ei is a projection map. The direct sum decomposition
of E is not unique if it contains multiple copies of a single irrep carrier space. If there are
multiple copies of an irrep carrier space that is equivalent to F then the set of unitary core
maps Âi is not unique. The set of non-zero maps Âi ◦ Π̂i acts as a basis for the space of
intertwiners Z. Choosing a different basis in Z corresponds to a different choice of maps
and a different direct-sum decomposition of E .

The space of Z of SU(2) intertwiners : E → F is isomorphic to the space Z̃ of intertwiners
: E ⊗F∗ → C. The space C, considered as a one-dimensional vector space, is invariant under
SU(2) and thus is an irreducible carrier space for the j = 0 representation of SU(2). We

may therefore apply Eq. 3.1.19 to intertwiners in Z̃, making the replacements E 7→ E ⊗ F∗
and F 7→ C. The only non-zero terms of Eq. 3.1.19 are the those corresponding to the j = 0
irreps that occur in the direct-sum decomposition of E ⊗ F∗, so Z̃ is spanned by {Âi ◦ Π̂i},
where i indexes the j = 0 irreps in the direct-sum decomposition. Since Z is isomorphic to
Z̃, and the dimension of space of intertwiners Z is thus equal to the number of j = 0 irreps
that occur in a direct-sum decomposition of E ⊗ F∗. Conversely, every element of Z picks
out a j = 0 irreducible subspace of E ⊗F∗. For example, let E = Cj1 ⊗Cj2 ⊗Cj3 and consider
the space of intertwiners E → C. If (j1, j2, j3) is a triangle-allowed triplet, then there is a
unique (up to a phase) normalized invariant vector in Cj1 ⊗ Cj2 ⊗ Cj3 , |W 〉. The dual of the
Wigner state 〈W | forms the basis of Z and thus Z is one-dimensional in this case. The



CHAPTER 3. MODELS OF THE 3J-SYMBOL 72

core isomorphism for any intertwiner M̂ with (ker M̂)⊥ ∼= Cj1 ⊗Cj2 ⊗Cj3 and img M̂ ∼= C is
therefore proportional to the Wigner state 〈W |. If (j1, j2, j3) are not triangle-allowed, then
there does not exist an invariant vector in E and Z is zero-dimensional.

3.1.3.4 Case III - Û(g) Irreducible and V̂ (g) Reducible

Next consider the case where Û(g) is a finite-dimensional irreducible representation and V̂ (g)
is a reducible representation. Since E is a carrier space for an irreducible representation, there
are no proper invariant subspaces of E . Thus any non-zero intertwiner M̂ ∈ Z must have
ker M̂ = 0 and (ker M̂)⊥ = E . The representation Û(g) is therefore the same as the restricted
representation ÛR(g) and, by Eq. 3.1.18, is equivalent to the restricted representation V̂R(g)
on img M̂ . The core isomorphism M̂C : E → img M̂ is thus an intertwiner between two
equivalent irreducible representations. By the discussion leading up to Eq. 3.1.17, M̂C = cÂ
for some unitary Â : E → img M̂ and scalar c ∈ C. If E and F are Hilbert spaces then this
says that the core isomorphism is proportional to an isometry.

Let the space F be decomposed into a direct sum of invariant subspaces F =
⊕
Fi. Any

intertwiner M̂ then decomposed as

M̂ =
∑

ciÎi ◦ Âi, (3.1.20)

where c ∈ C, Âi : E → Fi is either a unitary map or zero depending on whether Fi is
equivalent to E or not, and Îi is the inclusion map : Fi → F . The direct sum decomposition
of F is not unique if it contains multiple copies of a single irrep carrier space. If there are
multiple copies of an irrep carrier space that is equivalent to E then the set of unitary core
maps Âi is not unique. The set of non-zero maps Îi ◦ Âi acts as a basis for the space of
intertwiners Z. Choosing a different basis in Z corresponds to a different choice of maps
and a different direct-sum decomposition of F .

The Wigner map Ŵ : C∗j3 → Cj1 ⊗Cj2 defined in Eq. 3.1.2 is an example of an intertwiner
from an irreducible to a reducible carrier space. If the triplet (j1, j2, j3) is triangle-allowed
then the intertwiner will be nontrivial and Eq. 3.1.20 can be applied. A familiar result from
standard angular momentum theory says that the target space Cj1 ⊗Cj2 breaks into a direct
sum of irreducible subspaces as

Cj1 ⊗ Cj2 =

j1+j2⊕
J=|j1−j2|

CJ . (3.1.21)

The image of the Wigner map must carry a representation equivalent to the representation on
C∗j3 . A simple dimension count implies that img Ŵ must be Cj3 . The restricted intertwiner is

therefore a map : C∗j3 → Cj3 . Let Îj3 : Cj3 → Cj1⊗Cj2 be the inclusion map of the j3-subspace
in the direct sum decomposition Eq. 3.1.21. Then, by Eq. 3.1.20, the Wigner map can be
written as

Ŵ = cÎj3 ◦ Â, (3.1.22)
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where Â : C∗j3 → Cj3 is the unitary core of the Wigner map. This map is closely related
to the 2j intertwiner that will be explored more fully in the context of the 2j-symbol, in
section 3.1.4. The prefactor c can be determined by considering the operator Ŵ ◦ Ŵ †. By
the orthogonality of the 3j-symbol (Eq. (3.7.7) of Edmonds [28]),

Ŵ ◦ Ŵ † = • •−

+3
j2

j3 j3

+3
j1

=
1

2j3 + 1

j3
. (3.1.23)

On the other hand, the decomposition in Eq. 3.1.22 says

Ŵ ◦ Ŵ † = |c|2 Â† ◦ Î†j3 ◦ Îj3 ◦ Â = |c|2 Îdj3 = |c|2
j3

. (3.1.24)

Therefore, the Wigner operator is determined (up to a phase) to be

Ŵ =
1√

2j3 + 1
Îj3 ◦ Â. (3.1.25)

3.1.3.5 Case IV - Both Û(g) and V̂ (g) Reducible

Finally consider the case where both Û(g) and V̂ (g) are reducible representations. Let
M̂ ∈ Z be a particular intertwiner and create the restricted intertwiner M̂R : (ker M̂)⊥ →
img M̂ . This restricted map is an isomorphism but the restricted representations ÛR(g) and
V̂R(g) are still potentially reducible so Eq. 3.1.17 can’t be directly applied. Let the invariant
subspace (ker M̂)⊥ be decomposed into irreducible subspaces Ei ⊂ (ker M̂)⊥ ⊂ E such that
(ker M̂)⊥ =

⊕
Ei. The intertwiner M̂R can be block-diagonalized in this decomposition.

Each block on the diagonal corresponds to a map M̂i : Ei → img M̂ . Since by definition Ei is
irreducible, the decomposition in Eq. 3.1.20 can be applied. Thus every nontrivial intertwiner
M̂ ∈ Z from a reducible carrier space to a reducible carrier space can be decomposed as

M̂ =
∑
ij

cijÎj ◦ Âij ◦ Π̂i, (3.1.26)

where cij ∈ C, Π̂i : E → Ei are projection maps onto the irreducible subspaces of E , Îj :

Fj → F are inclusion maps, and Âij : Ei → Fj are unitary maps.

For example, we may apply Eq. 3.1.26 to the operator Ŵ : S∗3 → S1 ⊗ S2 defined in
Eqs. 3.1.9 and 3.1.12. Both domain and target spaces are infinite-dimensional reducible
carrier spaces. We first identify the relevant invariant subspaces of the target and domain
space. The dual Schwinger Hilbert space decomposes into the direct sum of irreducible
carrier spaces, S∗3 =

⊕
J C∗J , where each of the carrier spaces is considered a vector subspace

of S∗3 . The Wigner map annihilates any vector outside of the j3 subspace so

ker Ŵ =
⊕
J 6=j3

C∗J , (ker Ŵ )⊥ = C∗j3 . (3.1.27)
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Thus (ker Ŵ )⊥ is a carrier space for a finite-dimensional irreducible representation and there
is only a single term in the sum over index i in Eq. 3.1.26. Restricting the domain of the
Wigner map to (ker Ŵ )⊥ yields an intertwiner Ŵ ′ : C∗j3 → S1⊗S2 from a finite-dimensional
irreducible carrier space to a reducible carrier space and so Eq. 3.1.20 can be applied. By
definition, img Ŵ is a subspace of Cj1 ⊗ Cj2 ⊂ S1 ⊗ S2 and thus Eq. 3.1.22 can be applied,
yielding

Ŵ =
1√

2j3 + 1
Îj3 ◦ Â ◦ Π̂j3 . (3.1.28)

Note that all versions of the Wigner map encountered in this section share the same unitary
core Â : C∗j3 → Cj3 .

3.1.4 The 2j-Intertwiner State

As shown in the previous section, the core isomorphism of the Wigner intertwiner is partially
constructed from a “2j-intertwiner” : C∗j → Cj, which we explore in this section.

Consider the space Z2j of 2j-intertwiners : Cj ⊗ C ′j → C, where the domain is the tensor
product of two identical irrep carrier spaces. The prime on the second copy of Cj is used
to distinguish the second carrier space from the first. This space is isomorphic to the space
of 2j-intertwiners : C ′j → C∗j which, by Schur’s lemma, is one-dimensional. According to
the discussion following Eq. 3.1.19, any non-zero SU(2)-invariant element in C∗j ⊗ C ′j∗ spans
Z. The components of such an element can be expressed in terms of the “2j-symbol” (a
terminology found in Stedman [8] and Aquilanti et al [1]), which is defined in terms of the
3j-symbol as (

j j
m m′

)
=

(
j j 0
m m′ 0

)
=

(−1)j−m√
2j + 1

δm,−m′ . (3.1.29)

Thus the 2j-symbol is seen as a special case of the 3j-symbol. The 2j-symbol represents the
covariant components of the 2j-intertwiner 〈K| ∈ C∗j ⊗ C ′j

∗ in the standard basis,

〈K| =
∑
mm′

√
2j + 1

(
j j
m m′

)
〈jm| ⊗ 〈jm′|. (3.1.30)

The prefactor
√

2j + 1 is due to the normalization convention 〈K|K〉 = 2j + 1. The phase
convention for 〈K| is tied to the phase convention of the 2j-symbol which ultimately de-
rives from the phase convention for the 3j-symbol. The spin network notation for the 2j-
intertwiner 〈K| ∈ C∗j ⊗ C ′j∗ is given by

〈K| =
〈
Î
j

Ĵ + Ĵ′

0

∣∣∣∣ =
j

, (3.1.31)

where by convention the chevron counterclockwise of the stub corresponds to the first (un-
primed) carrier space. The “stub” notation for the 2j-intertwiner is further explained in
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Stedman [8] and Aquilanti et al [1]. Since 〈K|(Ĵ + Ĵ′) = 0 the operator identity Eq. A.1.3
implies that 〈K| is also an eigenstate of Î ′ with eigenvalue j.

It follows from Eq. 3.1.30 that the components of the 2j-intertwiner are proportional to
the 2j-symbol,

j
m′m +3 ks =

√
2j + 1

(
j j
m m′

)
= (−1)j−mδm,−m′ . (3.1.32)

The spin network in Eq. 3.1.31 can also be interpreted as a map K̂j : Cj → C∗j , where an
input Cj ket is contracted against the right bra chevron. This is a unitary map from kets
to bras and is thus distinct from Hermitian conjugation, which is anti-unitary. The inverse
map is given by

K̂−1
j : C∗j → Cj =

j
, (3.1.33)

where an input C∗j bra is contracted against the left ket chevron. The spin network in
Eq. 3.1.33 can also be interpreted as the ket |K〉 ∈ Cj ⊗ C ′j∗, where by convention the
first and second chevrons correspond to the first and second (unprimed and primed) carrier
spaces. As in Eq. (3.27) of Aquilanti et al [1], the action of K̂j and K̂−1

j on the standard
basis kets gives

K̂j(|jm〉) = (−1)j−m〈j,−m|, K̂−1
j (〈jm|) = (−1)j+m|j,−m〉. (3.1.34)

The 2j intertwiner is closely related to the time-reversal operator. The time reversal
operator Θ̂ on a carrier space Cj is an anti-linear map : Cj → Cj : |jm〉 7→ (−1)j−m|j,−m〉
[66]. Note that the square of time reversal is Θ̂2 = (−1)2j when acting on Cj and therefore

Θ̂−1 = (−1)2jΘ̂. The time reversal operator is Θ̂ = K̂−1
j ◦ Ĝ [1] and so the 2j-intertwiner

may be expressed as
K̂−1
j = Θ̂ ◦ Ĝ−1, K̂j = (−1)2jĜ ◦ Θ̂. (3.1.35)

3.1.5 Observables of 3j-Remodeling Algebra

Eqs. 3.1.7, 3.1.8, 3.1.10, 3.1.9, and 3.1.11 express the states of the remodeling algebra as non-
degenerate eigenstates of sets of observables. In this section we find the sets of observables
that define the core Hilbert spaces for the Wigner intertwiner and show how the method in
Section 2.4.2 reproduces the β-list of observables in Eq. 3.1.11.

Consider the operator Ŵ : S∗3 → S1 ⊗ S2 defined in Eqs. 3.1.9 and 3.1.12. As already
stated in Eq. 3.1.27, (ker Ŵ )⊥ = C∗j3 ⊂ S

∗
j3

. The set of operators {D̂A} that define (ker Ŵ )⊥
through Eq. 2.4.5 thus contains a single entry (the index A only takes on a single value),

D̂A = Î>3 , µd,A = j3. (3.1.36)

Since S∗j3 is the Hilbert space for a system described by two classical degrees of freedom,

n2 = 2. Since only a single operator is needed to classify (ker Ŵ )⊥, n2 − ñ = 1 and thus



CHAPTER 3. MODELS OF THE 3J-SYMBOL 76

ñ = 1 for the 3j-symbol remodeling algebra. Note that since there is only one entry in the
“D-list” of operators, Eq. 2.4.6 is automatically satisfied. Furthermore, Î>3 generates the
group U(1) on S∗j3 so GD = U(1) and gD ∼= R. The “B-list” of operators is chosen to be

{Î>3 , Ĵ>3z} as in Eq. 3.1.8. Note that the b-state is an element of (ker Ŵ )⊥, as required by
Section 2.4.2. This B-list is already written in the form of Eq. 2.4.7 and thus the single
operator (since ñ = 1) B̂` can be read off as

B̂` = Ĵ>3z, µb,` = m3. (3.1.37)

As already discussed in Section 3.1.3, img Ŵ is the invariant subspace Cj3 contained in

Cj1⊗Cj2 ⊂ S1⊗S2. The Cj1⊗Cj2 subspace is the simultaneous eigenspace of operators Î1 and

Î2 at eigenvalues j1 and j2. The Cj3 subspace is further specified as the eigenspace of operator

Ĵ2
12 at eigenvalue j3(j3 + 1), as can be seen by the following analysis. Recall that the Wigner

state in the product space (which serves as the map Ŵ ) is in the simultaneous eigenspace of
operators Î3 and ĴT at eigenvalues j3 and 0. By the operator identity A.1.3, the eigenvalue
condition Î3|W 〉 = j3|W 〉 may be replaced by Ĵ2

3|W 〉 = Î3(Î3 + 1)|W 〉 = j3(j3 + 1)|W 〉.
Moreover, ĴT |W 〉 = 0|W 〉 implies that Ĵ3|W 〉 = −Ĵ12|W 〉. Therefore,

Ĵ2
12|W 〉 = j3(j3 + 1)|W 〉, (3.1.38)

where Ĵ12 ≡ Ĵ1 + Ĵ2. Since Ĵ12 only acts on the target space component of the product
Hilbert space, img Ŵ is a subset of the j3(j3 + 1)-eigenspace of Ĵ12. The set of operators
{Ĉa} that define img Ŵ through Eq. 2.4.3 thus contains three entries,

{Ĉa} = {Î1, Î2, Ĵ
2
12}, µc,a = j1, j2, j3(j3 + 1). (3.1.39)

The target Hilbert space Sj1⊗Sj2 is the Hilbert space for a system described by four classical
degrees of freedom, n1 = 4. Thus n1 − ñ = 3 is the appropriate number of operators needed
to define img Ŵ . The “C-list” of operators are easily shown to commute on the entire
target space so Eq. 2.4.4 is satisfied. These operators generate a group U(1)3 on S1 ⊗ S2 so
GC = U(1)3 and gC ∼= R3.

In Section 3.1.3 the core isomorphism of Ŵ was determined to be an intertwiner : C∗j3 →
Cj3 . By Schur’s lemma, this intertwiner must be proportional to the (unitary) 2j-intertwiner

K̂−1
j3

defined in Eq. 3.1.33. Applying this to Eq. 3.1.28 yields

Ŵ =
1√

2j3 + 1
Îj3 ◦ K̂−1

j3
◦ Π̂j3 , ŴC =

1√
2j3 + 1

K̂−1
j3
. (3.1.40)

By Eq. 2.4.12, |β〉 may be described using the three operators in Eq. 3.1.39 and the single
operator β̂ which is defined via Eq. 2.4.8 to be

β̂ ≡ ŴC ◦ B̂ ◦ Ŵ−1
C = K̂−1

j3
◦ Ĵ>3z ◦ K̂j3 , (3.1.41)

where K̂j3 is understood in this context to be a map from the Cj3 subspace of C1⊗C2 to the

space C∗j3 subspace on which Ĵ>3z acts. Operator β̂ is equal to −Ĵ12z ≡ −(Ĵ1z + Ĵ2z), which



CHAPTER 3. MODELS OF THE 3J-SYMBOL 77

may be shown by analyzing the action of the operator on the coupled angular momentum
basis vectors in Cj3 ⊂ C1 ⊗ C2,

β̂|j1j2; JM〉 = K̂−1
j3
◦ Ĵ>3z ◦ K̂j3|j1j2; JM〉. (3.1.42)

By Eq. 3.1.34, the left-hand side of Eq. 3.1.42 becomes

(−1)j3−MK̂−1
j3
◦ Ĵ>3z(〈j3,−M |). (3.1.43)

The bra 〈j3,−M | is an eigenbra of Ĵ>3z with eigenvalue −M . Applying this and Eq. 3.1.34
once again yields

β̂|j1j2; JM〉 = −M |j1j2; j3M〉 = −Ĵ12z|j1j2; j3M〉, ∀M. (3.1.44)

This operator is naturally expanded to an operator Ĵ12z on all of S1⊗S2. Thus, in agreement
with Eq. 2.4.11,

β̂` = −Ĵ12z, β̂`|β〉 = µb,`|β〉, (3.1.45)

where µb,` = m3 as in Eq. 3.1.37.
Combining the results in this section with Eq. 2.4.12 yields

|β〉 =
1√

2j3 + 1

∣∣∣∣ Î1

j1

Î2

j2

Ĵ2
12

j3(j3 + 1)
−Ĵ12z

m3

〉
, (3.1.46)

where |β〉 is assumed normalized and an explicit normalization factor has been included.
Note that Ĵ12z does indeed commute with all operators in the C-list on all of the target
space as required by Section 2.4.2. Moreover, the “β-list” of operators {Î1, Î2, Ĵ

2
12, Ĵ12z}

agrees with the expected list from Eq 3.1.11. Note that the state |β〉 as written in Eq. 3.1.46
differs from the standard coupled basis vector |j1j2; j3,−m3〉 of angular momentum theory
by a normalization and a phase factor.

We summarize the operator lists and eigenvalues for the various states and subspaces of
interest in the 3j-symbol remodeling algebra in Table 3.1.

3.1.6 The Clebsch-Gordan Coefficients and Map

Related to the 3j-symbol are the Clebsch-Gordan coefficients, which may be considered the
components of an intertwiner between a space of two angular momenta to a space of one
angular momentum (the coefficients are used to “couple” two angular momenta into a third).
This intertwiner is distinct from the Wigner intertwiners explored in Section 3.1.3, however,
since both the domain and the range Hilbert spaces are considered to be spaces of kets.
The Clebsch-Gordan coefficients are related to the 3j-symbol through the 2j-intertwiner of
Section 3.1.4 and are naturally analyzed using a 2j-model (as was carried out in Miller [39]).

The Clebsch-Gordan intertwiner is the map Ĉ : Cj1 ⊗ Cj2 → CJ ,

Ĉ =
∑

m1m2M

|JM〉 CJMj1j2m1m2
〈j1m1| ⊗ 〈j2m2|, (3.1.47)
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State or
Subspace

Group Operators Eigenvalues

〈b| U(1)2 Î>3 , Ĵ
>
3z j3,m3

(ker Ŵ )⊥ U(1) Î>3 j3

|a〉 U(1)4 Î1, Î2, Ĵ1z, Ĵ2z j1, j2,m1,m2

|β〉 U(1)4 Î1, Î2, Ĵ
2
12,−Ĵ12z j1, j2, j3(j3 + 1),m3

img Ŵ U(1)3 Î1, Î2, Ĵ
2
12 j1, j2, j3(j3 + 1)

|ab〉 U(1)6 Î1, Î2, Î3, Ĵ1z, Ĵ2z, Ĵ3z j1, j2, j3,m1,m2,m3

|W 〉 U(1)3×SU(2) Î1, Î2, Î3, ĴT j1, j2, j3,0

img Ŵ⊗(ker Ŵ )∗⊥ U(1)4 Î1, Î2, Î3, Ĵ
2
12 j1, j2, j3, j3(j3 + 1)

Table 3.1: Subspaces and states in the remodeling algebra for the 3j-symbol. The first two
rows are source space subspaces, the next three are target space subspaces, and the last three
are product space subspaces.

where CJMj1j2m1m2
are the standard Clebsch-Gordan coefficients. It is related to the 3j- and

2j-intertwiners by
Ĉ = (−1)j1−j2−J

√
2J + 1 K̂−1

J ◦ Ŵ
†, (3.1.48)

where Ŵ † is the Hermitian conjugate of the 3j-intertwiner, interpreted as a map : Cj1⊗Cj2 →
C∗J .

In spin network language, the Clebsch-Gordan map is expressed as

Ĉ = (−1)j1−j2−J
√

2J + 1 •
j1

j2J
, (3.1.49)

where the rules for converting bras to kets covered in Aquilanti et al [1] have been used to
remove the stub and internal arrow that arise when the K̂−1 network is contracted with the
Ŵ † network. The Clebsch-Gordan coefficients are then found as the components of this map
in the standard angular momentum basis,

CJMj1j2m1m2
= (−1)j1−j2−J

√
2J + 1 •

T\ j1

�
 j2J
ks

m1

m2

∗M . (3.1.50)

Flipping the internal arrow on the J-leg by replacing the stub that was removed in Eq. 3.1.49
and inserting a resolution of the identity expresses the Clebsch-Gordan coefficients in terms
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of the components of the 2j- and 3j-intertwiners,

(−1)j1−j2−J
√

2J + 1
∑
m3

J
∗m3∗M ks +3 •

�
 j2

T\ j1

+3
J

m2

m1

m3 . (3.1.51)

The first spin network in the above equation evaluates to (−1)J−m3δM,−m3 by Eq. 3.1.32 and
the second network gives the 3j-symbol. Summing over m3 yields the standard result for
the relationship between the Clebsch-Gordan coefficients and the 3j-symbol [28],

CJMj1j2m1m2
= (−1)j1−j2+M

√
2J + 1

(
j1 j2 J
m1 m2 −M

)
. (3.1.52)

3.2 Remodeling Geometry for the 3j-Symbol

In this section we construct the remodeling geometry for the 3j-symbol and explore the
various aspects of transport in the remodeling geometry discussed in Chapter 2. First in
Section 3.2.1 we set up the phase spaces for the 3j-remodeling geometry and then in Sec-
tion 3.2.2 define the Lagrangian manifolds that will support the semiclassical approximations
to all of the states defined in Section 3.1.2. Then in Section 3.2.3 we see how the transport
procedure of Section 2.2.2 applies to the b-manifold to give the β-manifold. In Section 3.2.4
the core geometry associated with the Wigner manifold is described. Once the core geometry
has been established, in Section 3.2.5 the core symplectomorphism is constructed and we
show how the B-momentum map gets transported to the β-momentum map.

3.2.1 Phase Spaces

Each of the Hilbert spaces S in the remodeling algebra corresponds semiclassically to a copy
of the Schwinger phase space Σ . Let Σr be the Schwinger phase space for angular momentum
r with the standard symplectic form ωr as in Section A.2. The dual phase space Σ ∗r is the
same manifold but with the opposite symplectic form and is the classical analogue of the
dual Hilbert space Sr.

The source Hilbert space is S∗3 so Φ2 = Σ ∗3 in the remodeling geometry of Section 2.1.2.
This space is 4-dimensional and carries the symplectic form −ω3. The dual source phase
space is Φ∗2 = S3, which is also 4-dimensional and carries the symplectic form ω3.

The semiclassical analysis of the 2j-model of the 3j-symbol (Eq. 3.1.14) takes place in
the 8-dimensional target phase space Φ2j = Σ1 × Σ2, which carries the symplectic form
ω2j = ω1 + ω2 as described in Section A.2. We visualize a point of Φ2j as a pair of spinors
(z1, z2). These spinors project onto the product of two copies of angular momentum space,
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Figure 3.2.1: Phase spaces and the maps between them in the remodeling geometry for the
3j-symbol.

Name Phase Space Dimension

Source Space Σ∗3 2n2 = 4

Dual Source Space Σ3 2n2 = 4

Target Space Φ2j = Σ1×Σ2 2n1 = 8

Product Space Φ3j = Σ1×Σ2×Σ3 2(n1 + n2) = 12

Table 3.2: Phase spaces in the remodeling geometry for the 3j-symbol.

Λ2j = R6, via the map : (z1, z2) 7→ (J1(z1),J2(z2)). The “2j-angular momentum space” may
also be considered the Poisson reduction of Φ2j by the pair of momentum maps I1 and I2.

Similarly, the semiclassical analysis of the 3j-model of the 3j-symbol (Eq. 3.1.13) takes
place in the 12-dimensional product phase space Φ3j = Σ1 × Σ2 × Σ3, which carries the
symplectic form ω3j = ω1 + ω2 + ω3. We visualize a point of Φ3j as a set of three spinors zi.
The triplet of maps (J1,J2,J3) act as a Poisson map onto three copies of angular momentum
space, Λ3j = (R3)3. A point of Λ3j may be visualized as a set of three vectors in R3. Angular
momentum space is constructed by doing a Poisson reduction on Φ3j by the three momentum
maps Ii, as discussed in Section A.2.

Figure 3.2.1 shows the phase spaces in the 3j-remodeling geometry and the relevant maps
between these spaces and Table 3.2 lists the phase spaces and their dimensions. Note that
the subscripts on the maps are referring to which of the three angular momenta the map is
concerned with, in contrast to the general notation used in Section 2.1.2.

3.2.2 Lagrangian Manifolds

Before describing the Lagrangian manifolds in the remodeling geometry, we describe a general
“1jm-state” |jm〉 in an Schwinger Hilbert space S and the Lagrangian manifold L1jm in the
Schwinger phase space Σ that supports its semiclassical approximation. This state is the
simultaneous eigenstate of operators Î and Ĵz with eigenvalues j and m. As discussed in
Littlejohn [54], the Lagrangian manifold that supports the semiclassical approximation to
this state is the level set of the list of classical observables, with appropriate quantized
contour values. The Lagrangian manifold in the Schwinger phase space Σ corresponding to



CHAPTER 3. MODELS OF THE 3J-SYMBOL 81

this state is described as the level set,

L1jm =

(
I
J

Jz
m

)
⊂ Σ , (3.2.1)

where the classical contour value J is related to the quantum eigenvalue j via J ≡ j + 1/2.
The functions I and Jz serve as the two components of a U(1)2 momentum map. As described
in Section A.3, the Hamiltonian function I generates a U(1) phase rotation z 7→ exp(−iψ/2)
of period 4π and Jz generates an SU(2) rotation about the z-axis z 7→ exp(−iφσz/2)z,
which is a U(1) subgroup of SU(2) with period 4π. The manifold L1jm is also a U(1)2 group
orbit. Let (ψ, φ) be the 4π-periodic coordinates on U(1)2 so that we can take Haar measure
on U(1)2 to be dψ ∧ dφ. The forms dψ and dφ may be locally pulled back to L1jm. The
pull-backs of these forms are dual to the Hamiltonian vector fields XI and XJz on L1jm.
Therefore by Eq. C.2.2 the density σ on L1jm is the pull-back of dψ ∧ dφ. This density is
the pullback of the Haar measure on U(1)2, as expected.

Since U(1)2 is a compact Abelian group, the Liouville-Arnold theorem [67] says that the
manifold L1jm has the topology of a torus. In coordinates (ψ, φ) on U(1)2, the isotropy
subgroup is generically generated by a single element, (2π, 2π). The isotropy subgroup
becomes larger if I = 0 (in which case the isotropy subgroup is all of U(1)2) or if Jz = ±I
(in which case the isotropy subgroup is the group U(1) generated by Jz). If the observables
are constrained to take on quantized values, j ≥ 0 implies I ≥ 1/2 and j −m ∈ Z prevents
the situation where Jz = ±I = ±(j + 1/2). Therefore, the quantized torus has the topology
U(1)2/Z2. The volume of L1jm with respect to density σ is thus (4π)2/2 = 23π2.

Now we turn to the Lagrangian manifolds associated with the states described in Sec-
tion 3.1.2. First consider the b-state Eq. 3.1.8, which is an element of the Schwinger Hilbert
space S∗3 and is the simultaneous eigenstate of operators Î>3 and Ĵ>3z with eigenvalues j3 and
m3. The Lagrangian manifold Lb in the source phase space Σ ∗3 corresponding to the b-state
is a 1jm-Lagrangian manifold in a dual Schwinger space and is generated by the group
GB = U(1)2. The symplectic action of U(1)2 on the dual Schwinger space is defined to be
the action in Σ3 conjugated by the dual map, as in Eq. 2.1.27. Thus the momentum map
defining Lb is the negative of the pull-back of the momentum map defining the 1jm-manifold,

Lb =

(
−I3

−(j3 + 1/2)
−J3z

−m3

)
⊂ Σ ∗3 . (3.2.2)

This manifold is the image of a 1jm-Lagrangian manifold under the dual map G3 and thus
has the topology U(1)2/Z2 and volume 23π2. Because of the antisymplectic nature of the
dual map, the conjugate angles to −I3 and −J3z on the source phase space Σ ∗3 are again
ψ3 and φ3 and thus the pull-back of the Haar measure to Lb is σb = dψ3 ∧ dφ3. Since
Lb̄ = G−1

3 (Lb), and the dual map only affects the symplectic structure of the phase space
the topology and volume of Lb̄ and Lb are identical.

The a-state of Eq. 3.1.7 in the target Hilbert space H2j is the simultaneous eigenstate of

operators Î1, Î2, Ĵ1z, and Ĵ2z with eigenvalues j1, j2, m1, and m2. The Lagrangian manifold
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Figure 3.2.2: A point on the 2jm-manifold L2jm projected onto a pair of vectors in R3 of
fixed lengths |J1| = J1 and |J2| = J2 and fixed z-components J1,z = m1 and J2,z = m2. The
two azimuthal angles are independent.

in the target phase space Φ2j corresponding to the a-state is described as the level set,

La =

(
I1

J1

I2

J2

J1z

m1

J2z

m2

)
⊂ Σ1×Σ2, (3.2.3)

where the classical contour values Jr are related to the quantum eigenvalues jr via Jr ≡
jr + 1/2 (r = 1, 2). The maps I1, I2, J1z, and J2z serve as the four components of a
GA = U(1)4 momentum map, comprised of two copies of the U(1)2 group described earlier
for the 1jm-manifold. The topology and volume of the a-manifold is given by

La ∼=
[
U(1)2

Z2

]2

, Va =

(
(4π)2

2

)2

= 26π4, (3.2.4)

where the volume is taken with respect to the measure dψ1∧dψ2∧dφ1∧dφ2. The projection
of La onto the 2j-angular momentum space Λ2j consists of the pair of vectors in R3 of fixed
lengths j1 + 1/2 and j2 + 1/2 and fixed z-components m1 and m2, as illustrated in Fig. 3.2.2.
The quantization conditions ensure that neither of the vectors is aligned with the z-axis so
the projection is topologically a 2-torus, formed by rotating each of the vectors independently
about the z-axis. The 2jm-manifold can then be considered a T 2 bundle over T 2.

The ab-state of Eq. 3.1.10 in the product Hilbert space H3j is the simultaneous eigenstate

of operators Îr and Ĵrz with eigenvalues jr and mr for r = 1, 2, 3. The Lagrangian manifold
in Φ3j corresponding to the 3jm-state is described as the level set,

Lab =

(
I1

J1

I2

J2

I3

J3

J1z

m1

J2z

m2

J3z

m3

)
⊂ Σ1×Σ2×Σ3. (3.2.5)

Note that this level set may arise directly as the list of classical functions corresponding
to the “ab-list” of operators or as the combination of the conditions for La and Lb̄, as in
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Section 2.1.4. The group generating Lab is GA×GB = U(1)4×U(1)2 = U(1)6, which may be
interpreted as three copies of the U(1)2 group generating the 1jm manifold. The functions
Ir and Jrz are the six components of a GA×GB momentum map. The topology and volume
of the a-manifold is given by

Lab ∼=
[
U(1)2

Z2

]3

, Vab =

(
(4π)2

2

)3

= 29π6, (3.2.6)

where the volume is taken with respect to the measure dψ1∧dψ2∧dψ3∧dφ1∧dφ2∧dφ3. The
projection of Lab onto the 3j-angular momentum space Λ3j consists of a triplet of vectors in
R3 of fixed lengths jr + 1/2 and fixed z-components mr. The quantization conditions ensure
that none of the vectors is aligned with the z-axis so the projection is topologically a 3-torus,
formed by rotating each of the vectors independently about the z-axis. The 3jm-manifold
can then be considered a T 3 bundle over T 3.

The Wigner state of Fig. 3.1.9 is the simultaneous eigenstate of operators Îr (r = 1, 2, 3)
and ĴT with eigenvalues jr and 0. The Lagrangian manifold LW ⊂ Φ3j corresponding to the
Wigner state is described as the level set,

LW =

(
I1

J1

I2

J2

I3

J3

JT
0

)
⊂ Σ1×Σ2×Σ3, (3.2.7)

where the classical function JT is the sum of the three classical angular momenta, J1+J2+J3.
The Wigner manifold is generated by the group GM = U(1)3×SU(2), where each of the

Ir generates a U(1) rotation and JT generates a diagonal SU(2) rotation on all three spinors.
If we denote coordinates on U(1)3 × SU(2) by (ψ1, ψ2, ψ3, g), where g ∈ SU(2) and where
the three angles are the 4π-periodic evolution variables conjugate to (I1, I2, I3), respectively,
then the isotropy subgroup is generated by a single element, (2π, 2π, 2π,−1). Therefore, the
Wigner manifold has the topology and volume

LW ∼=
U(1)3 × SU(2)

Z2

, VW =
1

2
(4π)3(16π2) = 29π5, (3.2.8)

where the volume is taken with respect to the Haar measure on the group U(1)3 × SU(2)
and the 1/2 compensates for the 2-element isotropy subgroup. Explicitly, the Haar measure
on GM may be written dψ1 ∧ dψ2 ∧ dψ3 ∧ dα∧ sin βdβ ∧ dγ, where α, β, and γ are the SU(2)
Euler angles.

The projection of LW onto Λ3j consists of the set of three vectors Jr in R3 of fixed lengths
jr + 1/2 such that the vectors sum to zero. This allows the three angular momentum vectors
to fit together into a triangle as in Fig. 3.2.3. We choose to place the three vectors end-to-
end in the order (J1,J2,J3). This choice of ordering fixes the orientation of the area vector
∆ = (J1 × J2)/2 and the unit vector n = ∆/ |∆| normal to the triangle. Note that even
though we have asymmetrically chosen two of the three vectors making up the triangle, the
condition JT = 0 allows any pair to define ∆, up to an overall sign. The area of the triangle
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Figure 3.2.3: A point on the Wigner manifold LW projected onto a triplet of vectors in R3 of
fixed lengths |Jr| = Jr (r = 1, 2, 3). The three vectors satisfy the condition J1 + J2 + J3 = 0
and can therefore be arranged into a closed chain to form a triangle.

is a fixed value based on the three parameters jr and can be written in a symmetric fashion
using Heron’s formula,

|∆| = 1

4

√
j123(j123 − 2j1)(j123 − 2j2)(j123 − 2j3), (3.2.9)

where j123 ≡ j1 + j2 + j3. The set of orientations SO(3) of ∆ parametrizes the projection of
LW onto Λ3j and thus the Wigner manifold may be seen as a T 3 bundle over SO(3).

Finally we turn to the β-state of Eq. 3.1.11. We first provide a direct analysis of Lβ
based on the β-list of operators in Eq. 3.1.11. In Section 3.2.3 we demonstrate how the
transport procedure of Sections 2.2.2 and 2.4.5 reproduces these results. The β-state is the
simultaneous eigenstate of operators Î1, Î2, Ĵ2

12, and −Ĵ12z with eigenvalues ji, j3(j3 +1), and
m3, respectively. The Lagrangian manifold in Φ2j corresponding to this state is described as
the level set,

Lβ =

(
I1

J1

I2

J2

J2
12

J2
3

−J12z

m3

)
. (3.2.10)

As discussed in Section C.3, the Weyl symbol for operator Ĵ2
12 is J2

12 − 3/4 [1]. Since the
eigenvalue of Ĵ2

12 on |β〉 is j3(j3+1), the classical contour value for J2
12 may näıvely be expected

to be j3(j3 + 1) + 3/4 = (j3 + 1/2)2 + 1/2. However, the appropriate quantized contour value
is in fact just J2

3 , where J3 ≡ j3 + 1/2. This mismatch in contour values occurs because Ĵ2
12

is a quartic polynomial in the fundamental x̂’s and p̂’s defining the Schwinger Hilbert space
and so the Weyl quantization is not exact. This is in contrast to all of the other operators
considered so far, which are quadratic in the fundamental operators. However, the error is of
relative order ~2 (or 1/j2), which is the expected error for the semiclassical approximations
we are performing. As we will see in Section 3.2.3, this contour value is naturally reproduced
by the transport of Lb through LW .

The β-manifold is generated by a Gβ = U(1)4 symmetry group whose momentum map
components are (I1, I2,J

2
12,−J12z). Components I1 and I2 generate phase rotations of z1 and

z2, J2
12 generates a U(1) subgroup of the diagonal SU(2) group consisting of rotations about

the axis J12 and J12z generates a U(1) subgroup of the diagonal SU(2) group consisting of
rotations about the z-axis. Let coordinates on U(1)4 be (ψ1, ψ2, θ12, φ12), where the angles are
the 4π-periodic evolution variables corresponding to the four momentum map components.
The isotropy subgroup is generically generated by two elements, say, x = (2π, 2π, 2π, 0) and
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Figure 3.2.4: A point on the “coupled” manifold Lβ projected onto a pair of vectors in R3

of fixed lengths |J1| = J1 and |J2| = J2 arranged into a chain. The length of the sum of
the two vectors is constrained to be |J1 + J2| = J3. A triangle is formed by including vector
J12 ≡ J1 + J2 in the diagram.

Lagrangian
Manifold

Space Topology Volume

Lb Σ∗3 U(1)2/Z2 23π2

Lb̄ Σ3 U(1)2/Z2 23π2

Lab Φ3j

[
U(1)2/Z2

]3
29π6

LW Φ3j (U(1)3×SU(2))/Z2 29π5

La Φ2j

[
U(1)2/Z2

]2
26π4

Lβ Φ2j U(1)4/(Z2)2 26π4

Table 3.3: Lagrangian manifolds in the remodeling geometry for the 3j-symbol.

y = (2π, 2π, 0, 2π). This isotropy subgroup becomes larger if either I1 = 0, I2 = 0, |J12| = 0,
or if J12 is parallel to the z-axis. The quantization conditions rule out all of these conditions
except the possibility that J12 = 0. Such a situation arises in the analysis of the 2j-symbol
of Eq. 3.1.29. We proceed explicitly ruling out this situation. We may therefore conclude
that the isotropy subgroup is the 4-element group (Z2)2 and the coupled manifold has the
topology and volume

Lβ ∼=
U(1)4

(Z2)2
, Vβ =

1

4
(4π)4 = 26π4, (3.2.11)

where the volume is taken with respect to the Haar measure dψ1 ∧ dψ2 ∧ dθ12 ∧ dφ12 and the
1/4 compensates for the 4-element isotropy subgroup.

The projection of Lβ onto Λ2j consists of the set of two vectors J1 and J2 in R3 of fixed
lengths such that the vector sum J12 has length J3 and z-component −m3 as in Fig. 3.2.4.
For future use we may again define the vector ∆ = (J1 × J2)/2 for points on Lβ which is
the area vector for the oriented triangle formed by the triplet of vectors (J1,J2,−J12). The
projection is topologically a 2-torus, formed by simultaneously rotating the pair of vector
about the z-axis and then about the axis defined by J12. The β-manifold is then seen as a
T 2 bundle over T 2.

A summary of the topologies and volumes of the Lagrangian manifolds in the 3j-remodel-
ing geometry is given in Table 3.3.
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3.2.3 The Transport of Lb Through LW
Now we show how the transport procedure of Section 2.2.2 applies to the 3j-remodeling
geometry to produce Lβ. We start with Lb as described by Eq. 3.2.2. Step one of the
transport procedure is to form the manifold Lb̄ using the dual map. Since the source space
is Σ ∗3 , the appropriate map from the source space to the dual source space is G−1

3 , as shown
in Figure 3.2.1. The dual b-manifold obeys the same level set conditions as Lb, with the
functions interpreted as functions on the dual source space. Therefore,

Lb̄ =

(
I3

J3

J3z

m3

)
⊂ Σ3. (3.2.12)

This is a Lagrangian manifold of Σ3 and has dim Lb̄ = dim Σ3/2 = 2. Alternatively,
Eq. 3.2.12 contains two independent conditions on a four-dimensional space and so spec-
ifies a two-dimensional manifold.

The next step of the transport procedure, Eq. 2.2.9, is to take the inverse image of Lb̄
under the projection map π3 : Φ3j → Σ3,

π−1
3 (Lb̄) =

(
I3

J3

J3z

m3

)
⊂ Φ3j. (3.2.13)

As discussed in Section 2.2.2, the inverse image obeys the same level set conditions as Lb̄,
but in a larger space. This manifold is the Cartesian product Φ2j ×Lb̄. Once again the level
set conditions represent two independent conditions and thus π−1

3 (Lb̄) has co-dimension 2.
Since the product space is 12-dimensional, dim π−1

3 (Lb̄) = 10.
Next we form the intersection manifold I between the inverse image and the Wigner map,

as in Eq. 2.2.10. This may be expressed as the combination of the level set conditions in
Eq. 3.2.13 for π−1

3 (Lb̄) and in Eq. 3.2.7 for LW . This amounts to eight conditions. However,
these conditions are not all independent, as can be seen by the fact that I3 occurs in both
sets of conditions. This is because the Wigner state and b-state share a non-trivial common
symmetry group and thus the analysis of Section 2.2.4 must be used. In particular, the
Hamiltonian vector XI3 is in both the tangent plane to LM and in the tangent plane to
the GB group orbits at points on I. The intersection of these tangent planes is only one-
dimensional (s = 1 in the notation of Section 2.2.4) since the group orbits of GB are only
two-dimensional and the flow under J3z takes one off LW . Therefore the common symmetry
group H is the group U(1) generated by I3. The intersection manifold is thus written as the
simultaneous level set of n1 + 2n2 − s = 7 independent functions,

I =

(
I1

J1

I2

J2

I3

J3

JT
0

J3z

m3

)
⊂ Φ3j. (3.2.14)

Since dim Φ3j = 12, the intersection manifold is five-dimensional, one greater dimension
than generically expected.

The last step Eq. 2.2.13 in the transport procedure is the projection of I onto the target
space. Note that the U(1) orbits of the common symmetry group are purely vertical over
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Manifold Space
Momentum Map

Components
Co-Dimension Dimension

Lb Σ∗3 −I3,−J3z 2 2

Lb̄ Σ3 I3, J3z 2 2

π−1
3 Lb̄ Φ3j I3, J3z 2 10

LM Φ3j I1, I2, I3,JT 6 6

I Φ3j I1, I2, I3,JT , J3z 7 5

TW (Lb) Φ2j I1, I2,J
2
12,−J12z 4 4

Table 3.4: Manifolds, spaces, and momentum maps involved in the construction of the
transport TW (Lb).

Φ2j and thus the projection will eliminate one dimension from the intersection manifold.
We construct the projected manifold by looking at how the seven level set conditions in
Eq. 3.2.14 combine to form four level set conditions on Φ2j. Conditions I1 = J1 and I2 = J2

only depend on target-space variables and thus are still valid for the projected manifold. As
discussed in Section 3.2.4, conditions JT = 0 and I3 = J3 combine to form the condition
J2

12 = J2
3 on the projection. Finally, z-component of the condition JT = 0 may be re-

expressed as J12z = −J3z thus the condition J3z = m3 becomes the target-space condition
J12z = −m3. Thus we have four independent conditions for a four-dimensional manifold in
Φ2j and we may conclude that the transported manifold is

TW (Lb) =

(
I1

J1

I2

J2

J2
12

J2
3

J12z

−m3

)
. (3.2.15)

These are the same level set conditions as in Eq. 3.2.10 for Lβ and thus we see that the
transported manifold is the β-manifold as promised.

Table 3.4 lists the manifolds, spaces, and momentum maps involved in the transport of
Lb by LW .

3.2.4 The Core Geometry

Next we study the core geometry associated with the Wigner manifold LW as described in
Section 2.4.4. As discussed in Section 3.1.5, the D-list of operators defining (ker Ŵ )⊥ as a
subspace of S∗3 is the single operator Î>3 , with (ker Ŵ )⊥ the j3 eigenspace. This operator
generates a Gker = U(1) Lie group. The co-isotropic manifold in Σ ∗3 corresponding to this
subspace is the level set

(ker Ŵ )⊥ =⇒
(
−I3

−J3

)
⊂ Σ ∗3 , (3.2.16)

where J3 = j3 + 1/2 as usual and the momentum map −I3 is used so that the symplectic
flow under −I3 on Σ ∗3 maps to the symplectic flow of I3 on Σ3 under the dual map. This
level set is a 3-sphere S3 ⊂ C2. The projection of the level set onto angular momentum
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space R3 is the set of all vectors −J3 of fixed length J3 and is thus a 2-sphere. The level
set itself may then be interpreted as an S1 bundle over S2, with the fibers being Gker group
orbits. Note that since Gker is an abelian group the group orbits lie entirely in the level
set. This foliation of S3 into S1 group orbits is the Hopf fibration [68]. The phase space
Φker associated with (ker Ŵ )⊥ treated as a Hilbert space is the symplectic reduction of Σ ∗3
by Gker. The reduced space Φker ≡ Σ ∗3 //(I

>
3 = J3) is precisely the 2-sphere of radius J3 in

angular momentum space, which is a symplectic leaf of angular momentum space, a Poisson
manifold. The projection map for the reduction is the Hopf map : S3 → S2, as discussed
in Aquilanti et al [1]. The symplectic form on Φker is ωker = −J3dΩ, where dΩ is the solid
angle element. This may also be expressed as −dJ3z ∧ dφ3, where φ3 is defined to be the
azimuthal angle with respect to the z-axis in angular momentum space.

The C-list of operators defining img Ŵ as a subspace of H2j are the three mutually com-

muting operators Î1, Î2, and Ĵ2
12, with img Ŵ the simultaneous (j1, j2, j3(j3 + 1))-eigenspace

of these operators. These operators are the generators of a Gimg = U(1)3 Lie group. The
co-isotropic manifold in Σ ∗3 corresponding to this subspace is the level set

img Ŵ =⇒
(
I1

J1

I2

J2

J2
12

J2
3

)
⊂ Σ1×Σ2. (3.2.17)

As discussed earlier, the contour value J2
3 for J2

12 ultimately derives from the Weyl symbol
correspondence and the quantization condition for Lagrangian manifold Lβ. We now demon-
strate a more geometric determination of this value. First consider the Wigner manifold as
described by Eq. 3.2.7. The condition JT = 0 for points on LW may be re-expressed as
J12 = −J3 which implies

J2
12(z) = J2

3(z) = I2
3 (z) = J2

3 , ∀ z ∈ LW , (3.2.18)

where the identity in Eq. A.2.3 is used in the second equality. The projection π12(LW ) of
the Wigner manifold onto the target space will therefore lie in the level set J2

12 = J2
3 and

thus the appropriate contour value for J2
12 in Eqs. 3.2.10 and 3.2.17 is indeed J2

3 .
The projection of the co-isotropic manifold in Eq. 3.2.17 onto the 2j-angular momentum

space Λ2j = (R3)2 is the pair of vectors J1 and J2 such that J1 and J2 have fixed lengths
J1 and J2 and the vector sum J1 + J2 has fixed length J3. This projection generated by
simultaneous SO(3) rotations of vectors J1 and J2 and is thus topologically SO(3) (as
long as J1 and J2 are not collinear, in which case the triangle formed by J1, J2, and -J12

has zero area). Thus the level set is a T 2 bundle over SO(3) with the fibers being group
orbits generated by I1 and I2. This SO(3) manifold is the level set (J2

12)−1(J2
3 ) in the

symplectic leaf S2 × S2 of Λ2j, which is the symplectic reduction of Φ2j under the U(1)2

subgroup of Gimg generated by I1 and I2. The symplectic form on this reduced space is
ωj1j2 = dJ1z ∧ φ1 + dJ2z ∧ φ2. The reduced phase space Φimg is formed by the symplectic
reduction of S2 × S2 by the remaining U(1) group generated by J2

12. This group generates
SO(2) rotations about the J12-axis which foliate SO(3). This forms another Hopf fibration
and the projection map of the final symplectic reduction is the Hopf map π : SO(3) → S2.
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Thus the reduced space Φimg is a two-sphere. This is what was expected since Himg is
isomorphic to Hker and therefore Φimg should be topologically identical to Φker. Note that
the function J12 is invariant under these SO(2) rotations and thus may be projected down
to Φimg. Points on Φimg give the orientation of the vector J12 and the symplectic form may
be expressed as ωimg = dJ12z ∧ dφ12, where J12z = J1z + J2z and φ12 is defined to be the
azimuthal angle of J12 with respect to the z-axis.

The product Hilbert space subspace (img Ŵ )⊗ (ker Ŵ )∗⊥ is the simultaneous eigenspace

of the combined list of operators Î1, Î2, Ĵ2
12, and Î3 at eigenvalues (J1, J2, J

2
3 , J3). These

operators generate a Lie algebra for the group Gimg × Gker = U(1)4. Following Eq. 2.4.19,
the co-isotropic manifold Lrp ⊂ Φ3j corresponding to this subspace is the level set

(img Ŵ )⊗ (ker Ŵ )∗⊥ =⇒
(
I1

J1

I2

J2

I3

J3

J2
12

J2
3

)
⊂ Σ1×Σ2×Σ3. (3.2.19)

The projection of Lrp onto the 3j-angular momentum space Λ3j = (R3)3 is the triplet of
vectors J1, J2, and J3 with fixed lengths J1, J2, and J3 such that the vector sum J1 + J2

also has fixed length J3. Symplectic reduction by I1, I2, and J2
12 only affects the target

space component of Φ3j and symplectic reduction by I3 only affects the dual source space
component so the reduced product phase space is Φrp = Φimg × Φ∗ker. This is the manifold
S2 × S2 with symplectic form ωrp = dJ12z ∧ dφ12 + dJ3z ∧ dφ3.

3.2.5 The Core Symplectomorphism

Now we turn to the core symplectomorphism M : Φker → Φimg, where Φker = (S2,−dJ3z ∧
dφ3) and Φimg = (S2, dJ12z ∧ dφ12) as in Section 3.2.4. First consider the projection of
the Wigner manifold LW onto the reduced product space Φrp. By construction of the core
geometry the Wigner manifold is a submanifold of the level set Lrp defined in Eq. 3.2.19
and projects onto a Lagrangian manifold LRW in Φrp. Since target and dual source space
functions J12 and J3 are invariant under the reduction group U(1)4 of the reduction they
may be considered functions on the reduced space as well and the reduced Wigner manifold
may be expressed as the level set

LRW =

(
JT
0

)
⊂ Φrp = Φimg×Φ∗ker, (3.2.20)

where JT is interpreted as the sum J12 + J3 on the reduced space. This is three conditions
on a four-dimensional phase space but only two of these conditions are independent. In
particular, the two vectors J12 and J3 are already constrained to have the same length by
the reduction so JT = 0 really just constrains the unit vectors j12 and j3 to be equal and
opposite, which amounts to two conditions.

Another interpretation is to consider JT as the momentum map for a SO(3) group on
Φrp. The two S2 components of Φrp may be interpreted as giving the orientation of vectors
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J12 and J3 and so the isotropy subgroup of SO(3) is the rotations that leave these orienta-
tions unchanged. At every point on the level set LRW there is an SO(2) isotropy subgroup,
consisting of rotations about the axis defined by J12 or J3. Thus the SO(3) group orbit in
Φrp is only 2-dimensional. The topology of LRW is given by the quotient SO(3)/SO(2) which
is another occurrence of the Hopf map. Thus LRW has the topology of a two-sphere on the
reduced product space. This is exactly what we would expect since we now wish to interpret
LRW as the graph of a symplectomorphism : S2 → S2 and thus must have the same topology
as the reduced source and reduced target space.

Next we show that LRW is indeed the graph of the symplectomorphism associated with the
core isomorphism for the Wigner map. As discussed in Section 3.1.5, the core isomorphism
for the Wigner map is proportional to the inverse of the 2j-intertwiner K̂−1

j3
: C∗j3 → Cj3 ,

where the domain C∗j3 is (ker Ŵ )⊥ and the range Cj3 is img Ŵ , the j3-irrep carrier space in
the decomposition of Eq. 3.1.21. The proportionality 1/(2j3 +1) in Eq. 3.1.28 will only affect
the overall scale of the density on the manifold that supports the semi-classical approximation
of Ŵ so the core symplectomorphism for ŴC is the classical map associated with the isometry
K̂−1
j3

. The classical phase space associated with the carrier space for representation j is an
S2 of radius j + 1/2 which is constructed via symplectic reduction by I = j + 1/2 from the
Schwinger phase space. The source and target phase spaces for the semiclassical version of
K̂−1
j3

are thus both two-spheres of radius j3 + 1/2 and have symplectic forms −dJ3z ∧ dφ3

and +dJ3z ∧ dφ3, respectively. These are exactly the reduced source and target spaces that
occur in the core geometry, with J12z and φ12 taking the role of the target space coordinates
J3z and φ3. We use the subscript ‘12’ in the following to distinguish the target carrier space
from the source carrier space. Since K̂−1

j3
is an SU(2) intertwiner, it may be treated as an

SU(2)-invariant element of the product Hilbert space Cj12 ⊗ Cj3 . The Lagrangian manifold
supporting the semiclassical approximation to this vector is thus invariant under the group
SU(2) and must obey the level set condition J12 +J3 = 0. This is exactly the condition given
for LRW in Eq. 3.2.20 and therefore the reduced Wigner manifold is the manifold supporting
the semiclassical approximation of the core isomorphism, as expected.

As in Eq. 3.1.35, the operator K̂−1
j3

may be expressed in terms of the time reversal operator

as Θ̂ ◦ Ĝ−1, where Ĝ−1 : C∗j3 → Cj3 is the dual map. The core symplectomorphism M may
therefore be expressed as the composition of the classical time reversal map θ : Cj3 → Cj3 with
the classical dual metric map G−1 : C−1

j3
→ Cj3 . Consider first the action of time reversal and

the dual metric on the full Schwinger space. As in Eq. A.2.7, the classical metric and dual
metric leave coordinates z and z̄ unchanged, with the antisymplectic nature of the metric
coming solely from the change in sign of the symplectic form. The classical time reversal
map is θ : z 7→ exp(−iσ2π/2)z̄ [1]. This has the effect of mapping J into −J, which is what
is expected of a time reversal map. Therefore, the classical version of K̂−1

j3
maps J3 into −J3

and the core symplectomorphism is

M : S2∗ → S2 : J3 7→ −J3, (3.2.21)

where both spheres are interpreted as the symplectic leaves of radius j3 + 1/2 in some
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angular momentum space R3 and the star indicates that the source space carries the opposite
symplectic form. The graph of this map is the manifold satisfying J12 −M(J3) = 0 on Φrp

which is again identical to the condition J12 + J3 = 0 given in Eq. 3.2.20.
Let canonical coordinates on the reduced target space be φ12 and J12z. The functions

MR
q and MR

p from Eqs. 2.4.22 and 2.4.23 are then

MR
q = φ12 − (φ3 + π), MR

p = J12z + J3z. (3.2.22)

Note that
{
MR

q ,M
R
p

}
= {φ12, J12z} − {φ3, J3z} = 1 − 1 = 0 as expected. In terms of these

functions the reduced Wigner manifold is expressed as

LRW =

(
MR

q

0
MR

p

0

)
=

(
φ12 − φ3

−π
J12z + J3z

0

)
⊂ Φrp. (3.2.23)

The functions on MR
q and MR

p on the reduced space are easily lifted to the full Φ3j phase
space in a way consistent with Section 2.4.5. The coordinates involved are all well-defined
on the full 3j-angular momentum space, with J12z and J3z the z-components of J1 + J2

and J3 and φ12 and φ3 the azimuthal angles of J1 + J2 and J3 with respect to the z-axis.
Angular momentum space Λ3j is the Poisson reduction of Φ3j, so these functions are lifted
into the full 3j-Schwinger phase space by requiring that they are constant on the U(1)3

orbits generated by I1, I2, and I3 that define the reduction. In particular, this lift leaves
the functions (Gker × Gimg)-invariant. In terms of the lifted functions Mq ≡ φ12 − φ3 and
Mp ≡ J12z + J3z = JTz Eq. 3.2.7 is rewritten in the form Eq. 2.4.30 as

LW =

(
I1

J1

I2

J2

J2
12

J2
3

I3

J3

φ12 − φ3

−π
JTz
0

)
⊂ Σ1×Σ2×Σ3, (3.2.24)

with the first three columns acting as the C-list, the fourth column acting as the D-list, and
the last two columns the lifted version of the core symplectomorphism graph conditions.

Now we show how the momentum map conditions Eq. 3.2.2 for Lb are transported via
the core symplectomorphism Eq. 3.2.21 to the momentum map conditions Eq. 3.2.10 for Lβ.
Note that Eq. 3.2.2 is already in the form Eq. 2.4.25, with D = −I3 (as in Eq. 3.2.16) and
B′ = −J3z. The transported function β′ on the reduced target space Φimg is the pullback of
the reducedB-list (which will be the single function−J3z) under the core symplectomorphism
as in Eq. 2.4.28. Therefore β′ = J12z, which may be interpreted as a function on just the
reduced target space or on the full target space Φ2j. Thus the β manifold expressed in the
form of Eq. 2.4.31 is

Lβ =

(
I1

J1

I2

J2

J2
12

J2
3

J12z

−m3

)
, (3.2.25)

which is exactly the expected result as described in Eqs. 3.2.10 and 3.2.15.
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3.3 Analysis of the Inner Product Models

Now that the remodeling geometry has been determined we turn our attention to the various
aspects of the semiclassical approximations to the 2j- and 3j-models of the 3j-symbol. As
mentioned in the introduction these approximations have been studied extensively [27, 38,
39, 40, 41, 42, 44], so the main focus of the rest of this chapter is comparing the calculations
for the two models to demonstrate the results claimed in Chapter 2.

In this section we determine the various pieces of the stationary phase approximation for
the 3j-symbol in the 3j-model and the 2j-model. In Section 3.3.1 the stationary phase sets
for the 3j- and 2j-models of the 3j-symbol are determined and we show that the stationary
phase set in the target-space model is indeed the projection of the stationary phase set in the
product space model. Then in Section 3.3.2 the amplitude determinants in the two models
are computed and compared. In Section 3.3.3 we review the calculation of the action integral
piece of the phase in the 3j-model and in Section 3.3.4 with a calculation of the Maslov index
and signature index pieces of the phase in the 2j-model. Combining these results yields the
standard formula for the asymptotics of the 3j-symbol.

3.3.1 Stationary Phase Sets

Now we construct the stationary phase sets for the 3j- and 2j-models of the 3j-symbol and
show that, as discussed in Section 2.5.1, the 2j-stationary phase set I(2j) is the projection
of the 3j-stationary phase set I(3j) under π12. We fix the values Jr > 0 and treat all
other variables as continuous. We also assume that the parameters are in the classically
allowed region so that at least one real intersection point exists. This implies the constraint
m1 +m2 +m3 = 0 and restricts (J1, J2, J3) to triangle-allowed triplets.

As in Eq. 2.5.1 the stationary phase set for the 3j-model is the intersection I(3j) =
Lab∩LW . The intersection will be comprised of group orbits of the common symmetry group
shared by the U(1)6 group that generates Lab and the U(1)3 × SU(2) group that generates
LW . Comparing the lists in Eqs. 3.2.5 and 3.2.7 shows that the momentum map components
I1, I2, I3, and JTz occur as generators in both groups. In particular, the Hamiltonian vector
field XJTz = XJ1z +XJ2z +XJ3z is tangent to both Lab and LW . Thus the stationary phase
set is generated by the common symmetry group H3j = U(1)4 and is the simultaneous level
set

I(3j) =

(
I1

J1

I2

J2

I3

J3

JTz
0

J2z

m2

J3z

m3

JTx
0

JTy
0

)
⊂ Φ3j, (3.3.1)

where the four common symmetry group momentum map components are listed first and
all eight conditions are independent so dim I(3j) = 12 − 8 = 4. Note that the condition
J1z = m1 is implied by the three conditions JTz = 0, J2z = m2, J3z = m3, and the initial
constraint m1 +m2 +m3 = 0. Since U(1)4 is Abelian every point of the dual Lie algebra u(1)
is a fixed point of the co-adjoint action and thus the level set LI defined by Ir = Jr, JTz = 0
is a co-isotropic submanifold of Φ3j. This level set includes not only the intersections I(3j)

but the full Lagrangian manifolds Lab and LW .
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Since both manifolds are invariant under the group orbits defining the Poisson reduction
onto angular momentum space, the stationary phase set may be interpreted as a U(1)3

bundle over the intersection of the projections of the product and Wigner manifolds in Λ3j.
Following Section 3.2.2, the intersection in angular momentum space consists of all triplets
of vectors (J1,J2,J3) of fixed lengths (J1, J2, J3) such that Jrz = mr and JT = 0. Rotation
of all three vectors about the z-axis leaves all nine of these conditions invariant and so the
intersection will be foliated by SO(2) group orbits. The full intersection manifold in angular
momentum space is one-dimensional and consists of two disconnected group orbits [44]. For
example, we may use a rotation generated by JTz to orient the vector J3 in the xz-plane
with J3x > 0, in which case reflection through the xz-plane maps one intersection point into
another. This operation reverses parity and so the two points lie on different SO(2) group
orbits. Label the two group orbits comprising the intersection in angular momentum space
S1
±, where the subscript indicates the sign of J1y when J3 lies in the xz-plane with J3x > 0.

Each of the SO(2) orbits in Λ3j lifts to a U(1)3 bundle over S1 in Φ3j. Let I± label the two

disconnected pieces of the intersection manifold so I(3j) is the disjoint union I
(3j)
+ ∪ I(3j)

− . Let
(ψ1, ψ2, ψ3, φT ) be the 4π-periodic coordinates on the common symmetry group H3j. The
isotropy subgroup on I(3j) consists of only one nontrivial element, (2π, 2π, 2π, 2π). Therefore
each of the two connected pieces of the intersection manifold have the properties

I
(3j)
±
∼=
U(1)4

Z2

, V 3j
± =

1

2
(4π)4 = 27π4, (3.3.2)

where the volume is taken with respect to the Haar measure on the group, dψ1∧dψ2∧dψ3∧dφT
and the 1/2 compensates for the 2-element isotropy subgroup.

Next we turn our attention to the 2j-model. As in Eq. 2.5.1 the stationary phase set
for the 2j-model is the intersection I(2j) = La ∩ Lβ and will be comprised of group orbits
of the common symmetry group shared by the two U(1)4 groups that generate La and Lβ.
The common symmetry group in this case is H2j = U(1)3, where the U(1)3 subgroup of GA

and Gβ is generated by the momentum map components I1, I2, and J12z. The 2j stationary
phase set is thus the simultaneous level set

I(2j) =

(
I1

J1

I2

J2

J12z

−m3

J2z

m2

J2
12

J2
3

)
⊂ Φ2j, (3.3.3)

where the three common symmetry group momentum map components are listed first and
all five conditions are independent so dim I(3j) = 8−5 = 3. Again the conditions J12z = −m3

and J2z = m2 combined with the initial constraint m1 + m2 + m3 = 0 imply the condition
J1z = m1. The Abelian nature of H2j means that the level set LI defined by I1 = J1,
I2 = J2, and J12z = 0 is a co-isotropic submanifold of Φ2j. This level set includes not only
the stationary phase set I(2j) but the full Lagrangian manifolds La and Lβ.

The topology of I(2j) is determined by looking at the projection onto the 2j-angular
momentum space Λ2j. Since both manifolds are invariant under the group orbits defining the
Poisson reduction, the stationary phase set is a U(1)2 bundle over the intersection manifold
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in angular momentum space. The intersection in angular momentum space consists of all
pairs of vectors (J1,J2) of fixed lengths (J1, J2) such that J1z = m1, J2z = m2, and J2

12 = J2
3 .

As in the 3j-model, these conditions are all invariant under the SO(2) group or rotations
about the z-axis so the projection of I(2j) will be foliated into SO(2) group orbits. Again the
intersection is comprised of two disconnected group orbits, which can be seen by using this
U(1) freedom to fix the vector J12 in the xz-plane with J12x > 0 and then reflecting through
the xz-plane, which maps from one group orbit to a different group orbit. Let the two circles
of intersection in angular momentum space be labeled S1

± as in the 3j-model. Each circle

lifts to a U(1)2 bundle over U(1). Let I
(2j)
± label the two intersection manifolds in Φ2j so I(2j)

is the disjoint union I
(2j)
+ ∪ I(2j)

− . Let (ψ1, ψ2, φ12) parameterize H2j, with φ12 parametrizing
group flows under the U(1) subgroup generated by J12z. The isotropy subgroup consists of
only one nontrivial element, (2π, 2π, 2π), and thus the connected pieces of the intersection
manifold have the properties

I
(2j)
±
∼=
U(1)3

Z2

, V 2j
± =

1

2
(4π)3 = 25π3, (3.3.4)

where the volume is taken with respect to the Haar measure on the group, dψ1 ∧ dψ2 ∧ dφ12

and the 1/2 compensates for the 2-element isotropy subgroup.
Finally, consider the projection of I(3j) onto the target space. The equality of the pro-

jection of the product space stationary phase set and the target space stationary phase set
was proved in Section 2.5.1 so we just demonstrate here that π12(I(3j)) satisfies the same
level set conditions as I(2j) to support the equality. As shown in Section 3.2.3 the conditions
JT = 0 and I3 = J3 on I(3j) imply the condition J2

12 = J2
3 . Similarly, the conditions JTz = 0

and J3z = m3 imply J12z = −m3. Therefore the eight conditions in Eq. 3.3.1 imply five
independent conditions on target space variables, with I1, I2, and J2z already expressed only
in terms of the target space. The projection therefore satisfies

π12(I(3j)) ⊂
(
I1

J1

I2

J2

J2z

m2

J2
12

J2
3

J12z

−m3

)
⊂ Φ2j, (3.3.5)

which is exactly the same conditions as in Eq. 3.3.3.
With the intersections understood the results from Section 2.1.5 for the stationary phase

approximations for the 3j- and 2j-models can be set up. The semiclassical approximation
of the 3j-model is given by the product space stationary phase expression Eq. 2.1.41,

〈ab|W 〉 ≈ (2πi)(n1+n2−s12)/2

√
VabVW

∑
±

V 3j
±

∣∣∣Ω̃3j
±

∣∣∣1/2 eiϕ3j
± . (3.3.6)

In the 3j-model the phase space contains n1+n2 = 6 degrees of freedom and the common sym-
metry group is s12 = 4-dimensional. Plugging in the volumes determined in Eqs. 3.2.6, 3.2.8,
and 3.3.2 simplifies Eq. 3.3.6 to

1√
4π

∑
±

∣∣∣Ω̃3j
±

∣∣∣1/2 eiϕ3j
± , (3.3.7)
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where a prefactor of i has been left out of the above expression because we are unconcerned
with the overall phase of the answer, which depends on various phase conventions of the
states and manifolds. Similarly, the semiclassical approximation of the 2j-model is given by
the target space stationary phase expression Eq. 2.1.38,

〈a|β〉 ≈ (2πi)(n1−s1)/2√
VaVβ

∑
±

V 2j
±

∣∣∣Ω̃2j
±

∣∣∣1/2 eiϕ2j
± . (3.3.8)

The target space contains n1 = 4 degrees of freedom and the common symmetry group is
s1 = 3-dimensional. Plugging in the volumes determined in Eqs. 3.2.4, 3.2.11, and 3.3.4
simplifies Eq. 3.3.8 to

1√
2π

∑
±

∣∣∣Ω̃2j
±

∣∣∣1/2 eiϕ2j
± , (3.3.9)

where again an overall phase factor of
√
i has been left out of the above expression.

3.3.2 Amplitude Determinants

The amplitude of the 3j-symbol in the 3j-model is found by taking the determinant of the
appropriate matrix of Poisson brackets. Since the two manifolds L3jm and LW share a com-
mon symmetry group, the matrix of brackets of the defining momentum map components is
singular. This is dealt with as in Aquilanti et al [44] and Section 2.3.4 by first performing a
symplectic reduction by the momentum map of the common symmetry group and then find-
ing the amplitude determinant in the reduced space. In practice this just involves removing
the shared momentum map components from L3jm and LW and taking the determinant of
the matrix of Poisson brackets among the remaining momentum map components.

As discussed in the previous section, the common symmetry group in the 3j-model is
H3j = U(1)4 whose momentum map contains the four shared components I1, I2, I3, and
JTz. Points on the reduced 3jm-phase space ΦR

3j represent equivalence classes of the level
set LI where two points are said to be equivalent on LI if they are connected by a group
flow of the common U(1)4 symmetry. The level set is a co-dimension four manifold of Φ3j

and the group orbits are generically four-dimensional tori. Thus the reduced phase space has
dimension dim ΦR

3j = dim Φ3j − 8 = 4, which is a phase space with two degrees of freedom.
The amplitude determinant thus is reduced from a singular 6 × 6 matrix to a non-singular
2× 2 matrix.

Let ΦR
3j be the symplectic reduction of Φ3j by the intersection group H3j. The reduction is

performed in two steps, a reduction by the U(1)3 group generated by the three Ir at contour
values Jr followed by a reduction by the diagonal U(1) group generated by JTz at contour
value 0. As discussed in Section 3.2.4 the reduction by U(1)3 yields the reduced phase space
(S2×S2×S2,

∑
r dJrz∧dφr), where the r-th sphere has radius jr+1/2 and φr is the azimuthal

angle with respect to the z-axis. This reduced space can also be interpreted as a symplectic
leaf of the Poisson reduction onto the 3j-angular momentum space Λ3j. Restricting to the
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symplectic leaf given by the level set Ir = jr + 1/2 is equivalent to individually fixing the
lengths of the three vectors. Under this reduction the ab-manifold reduces to a three-torus
T 3 given by the level set Jrz = mr and the Wigner manifold reduces to the level set JT = 0,
which is isomorphic to the manifold of triangle-orientations SO(3). The intersection of these
two manifolds in this reduced space is a pair of circles generated by the U(1) action of JTz.

A canonical transformation may be performed to express the symplectic form after the
first stage of this reduction as dJ1z ∧ dφ̃13 + dJ2z ∧ dφ̃23 + dJTz ∧ dφ3, where φ̃r3 ≡ φr − φ3.
In these coordinates the group orbits of the rotations generated by JTz are parameterized by
φ3 and the other five coordinates are invariant. The level set JTz = 0 is a four-dimensional
region foliated by these group orbits. Even though we will not determine the topology of
the reduced space we can give the reduced symplectic form, ωR3j = dJ1z ∧ φ̃13 + dJ2z ∧ φ̃23.

In ΦR
3j the reduced ab- and Wigner manifolds are the level sets

LRab =

(
J1z

m1

J2z

m2

)
, LRW =

(
JTz
0

JTy
0

)
. (3.3.10)

The reduced 3j-model amplitude determinant is thus given by the determinant of the 2× 2-
matrix of Poisson brackets [

{J1z, JTx} {J1z, JTy}
{J2z, JTx} {J2z, JTy}

]
. (3.3.11)

Evaluating the Poisson brackets at the two intersection points yields the determinant for the
two terms in the WKB expansion,

Ω̃3j
± =

(
det

[
J1y −J1x

J2y −J2x

])−1

±
= [z · (J1 × J2)]−1

± =
1

2∆z|±
, (3.3.12)

where ∆z is the z-component of the area vector ∆ defined in Section 3.2.2. Note that this
expression is invariant under the common symmetry group H3j and thus may be evaluated

in the unreduced product space Φ3j at any point on the group orbits I
(3j)
± . Similarly, given

the point on I
(3j)
+ with J3 oriented in the xz-plane, reflection through the xz-plane generates

a point on I
(3j)
− . This reflection leaves the z-component of ∆ invariant and thus Ω̃3j

+ = Ω̃3j
− =

(2∆z)
−1 and expression 3.3.7 becomes

1

2
√

2π |∆z|

∑
±

eiϕ
3j
± . (3.3.13)

Removing a common phase of exp(i(ϕ3j
+ + ϕ3j

− )/2) lets the sum over phase factors be re-
expressed as a cosine so the semi-classical approximation of the 3j-symbol in the 3j-model
becomes, up to an overall phase,

〈ab|W 〉 ≈ cos(∆ϕ3j/2)√
2π |∆z|

, (3.3.14)
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where ∆ϕ3j is the relative phase between points on I
(3j)
+ and I

(3j)
− .

Now we turn to the evaluation of the amplitude determinant in the 2j-model. The two
manifolds La and Lβ in the target space share a common symmetry group H2j = U(1)3

that generates the intersection I(2j). Let ΦR
2 be the symplectic reduction of Φ2j by H2j. The

momentum map for H2j consists of the three components I1, I2, and J12z. The level set of this
momentum map is a co-dimension three manifold of Φ2j and the group orbits are generically
three-dimensional tori so the reduced phase space has dimension dim ΦR

2j = dim Φ2j−6 = 2,
which is a phase space of one degree of freedom. The amplitude determinant thus is reduced
from a singular 4× 4 matrix to a single Poisson bracket.

As in the 3j-model, the reduced space is best explored by taking the symplectic reduction
in steps, first by the U(1)2 group generated by I1 and I2 and then by the diagonal U(1) group
generated by J12z. The first stage of the reduction yields the reduced space (S2 × S2, dJ1z ∧
dφ1 + dJ2z ∧ dφ2), where the two spheres have radii j1 + 1/2 and j2 + 1/2, respectively. This
reduced space can also be interpreted as a symplectic leaf of the Poisson reduction onto the
2j-angular momentum space Λ2j. Restricting to the symplectic leaf given by the level set
I1 = J1 and I2 = J2 is equivalent to individually fixing the lengths of the pair of vectors.
Under this reduction the a-manifold reduces to a two-torus T 2 satisfying J1z = m1 and
J2z = m2 and the β-manifold reduces to a two-torus T 2 satisfying J2

12 = J2
3 and J12z = −m3.

The intersection of these two manifolds in this reduced space is a pair of circles generated
by the U(1) action of J12z.

A canonical transformation may be performed to express the symplectic form after the
first stage of this reduction as dJ1z ∧ dφ̃12 + dJ12z ∧ dφ2, where φ̃12 ≡ φ1 − φ2. In these
coordinates the group orbits of the rotations generated by J12z are parameterized by φ2 and
the other three coordinates are invariant. The level set J12z = −m3 is a two-dimensional
region foliated by these group orbits. The reduced space has the topology of a two-sphere
and carries the reduced symplectic form ωR2j = dJ1z ∧ φ̃12.

In ΦR
2j the reduced a- and β-manifolds are the level sets

LRa =

(
J1z

m1

)
, LRβ =

(
J2

12

J2
3

)
. (3.3.15)

The reduced 3j-model amplitude determinant is thus given by the Poisson bracket {J1z,J
2
12}.

Expressing J2
12 as J2

1 + J2
2 + 2J1 · J2 simplifies this bracket to 2 {J1z,J1} · J2 and therefore

Ω̃2j
± = [−2(z× J1) · J2]−1

± = [−2z · (J1 × J2)]−1
± =

1

−4∆z|±
. (3.3.16)

The amplitude in Eq. 3.3.16 is invariant under the common symmetry group H2j and thus

may be evaluated in the unreduced product space Φ2j at any point on the group orbits I
(2j)
± .

Once again points on I
(2j)
+ and I

(2j)
− may be related by a reflection through a plane containing

the z-axis so ∆z is the same on both orbits and expression 3.3.9 becomes

〈a|β〉 ≈ cos(∆ϕ2j/2)√
2π |∆z|

, (3.3.17)
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where the sum of the two phase factors has been replaced by a cosine involving the relative
phase ∆ϕ2j between points on I

(2j)
+ and I

(2j)
− and an overall phase factor has been removed.

Note that, by Eqs. 3.3.12 and 3.3.16, Ω̃3j
± = −2Ω̃2j

± . In Section 2.4.6 we showed that these
two amplitudes will be the same when the momentum map components of the M -manifold
are expressed in terms of the core symplectomorphism functions Mq and Mp. Since we used
the components in Eq. 3.2.7 rather than in Eq. 3.2.24 the amplitudes differ by a factor. (Use
of the list in Eq. 3.2.24 would result in the reduced W -list of functions J2

12 and φ12 − φ3.
Brackets involving φ12 are particularly messy to compute, unfortunately.) However, we see
that this discrepancy doesn’t affect the final equality of the overall pre-factors in Eqs. 3.3.14
and 3.3.17. This is because the choice of momentum map components Mα also affects the
Hamiltonian vector fields Xα. This in turn affects the dual forms λα and ultimately the
density form σW on LW . Since σW is constructed to be invariant under the group flows, the
different choice in momentum map components scales σW by a constant factor. The scaling
of σW affects the amplitude determinant, as we see here, and the expressed volume of the
manifold. In general this means that if we compute the amplitude determinant in the target
space model, we need to use the target space model volume factors in the stationary phase
approximation expressions.

3.3.3 The Action Integral

Now we turn to the calculation of the phase ∆ϕ that occurs in Eqs. 3.3.14 and 3.3.17. As in
Eqs. 2.5.2 and 2.5.3, the relative phase consists of an action integral, a Maslov index, and a
signature index,

∆ϕ =

∮
Γ

θ − µ(Γ)
π

2
+ ∆σ

π

4
, (3.3.18)

where Γ is a closed path that starts at one of the connected pieces of the stationary phase
set, traverses one Lagrangian manifold to the other connected piece, and returns along the
other Lagrangian manifold. In Section 2.5.3 we showed that the action integrals in the two
models of a remodeling geometry are equal and in Section 2.5.5 we showed that the combined
Maslov and signature index pieces in the two models of a remodeling geometry are equal.

The phase calculations in the various models of the 3j-symbol are more complicated
than similar calculations in the analysis of the 6j-symbol. Therefore we defer a comparison
of the phase calculations in different models of a remodeling geometry to the analysis of
the 6j-symbol in Chapter 4. Instead we present here a summary of the path and phase
calculation that was calculated in the 3j-model in Aquilanti et al [44] and in Section 3.3.4
find the Maslov and signature index in the 2j-model. By the results of Section 2.5 we may
combine these in Eq. 3.3.18 to create the relative phase and complete the derivation of the
asymptotics of the 3j-symbol.

To compute the action integral in the 3j-model we need to construct an appropriate path
in Φ3j. To help construct this path we will utilize the 3j-angular momentum space Λ3j and
consider Φ3j a U(1)3 bundle over this space. For the start of the path we choose a standard
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reference point z+ = (z1+, z2+, z3+) on I
(3j)
+ such that the vector J3 in angular momentum

space lies within the xz-plane with J3x ≥ 0,

zr+ =
√

2Jr

(
cos(θr/2)e−iζr/2

sin(θr/2)e+iζr/2

)
, Jr+ =

 √
J2
r −m2

r cos ζr√
J2
r −m2

r sin ζr
mr

 , (3.3.19)

where θr is defined such that Jr cos θr = mr and Jr sin θr = +
√
J2
r −m2

r and ζr is the
azimuthal angle of Jr with respect to the z-axis. Let j3 be the unit vector for J3 at z+ and
let ∆ as the area vector for the triangle formed by the three vectors at z+ as in Section 3.2.2.

In addition, consider a reference fiber in I
(3j)
− over the reflection of Jr+ through the xz-plane

in angular momentum space,

Jr− =

 √
J2
r −m2

r cos ζr
−
√
J2
r −m2

r sin ζr
mr

 . (3.3.20)

Let Γ = ΓW + Γab + ΓI be the path for the computation of the relative phase between I
(3j)
+

and I
(3j)
− , where ΓW ⊂ LW , Γab ⊂ Lab, and ΓI ⊂ I

(3j)
+ . The projection of ΓW onto angular

momentum space is a path that maps vectors Jr+ to Jr− and the projection of Γab is a path
that maps vectors Jr− back to Jr+. The path ΓI lies in the fiber over Jr+ and closes the
path.

Path ΓW is chosen to follow the Hamiltonian flow of j3 ·JT , which generates simultaneous
SU(2) rotations of all three angular momenta about the j3-axis. The path on Lab is chosen to
follow the Hamiltonian flows of J1z and J2z by angles −φ1, and −φ2 which generate rotations
of vectors J1 and J2 about the z-axis. The path is closed by following the Hamiltonian flows
of Ir by angles −ψr, for r = 1, 2, 3. The angles are φ1, φ2, and ψr were computed in Aquilanti
et al citeAquilanti2007 to be

φ1 = cos−1

(
−J2

1 + J2
2 − J2

3 − 2m1m3

2
√
J2

1 −m2
1

√
J2

3 −m2
3

)
, (3.3.21)

φ2 = − cos−1

(
J2

1 − J2
2 − J2

3 − 2m2m3

2
√
J2

2 −m2
2

√
J2

3 −m2
3

)
, (3.3.22)

ψ1 = cos−1

(
J2

1 (m3 −m2) +m1(J2
3 − J2

2 )

4 |∆|
√
J2

1 −m2
1

)
, (3.3.23)

with ψ2 and ψ3 found by cyclicly permuting the indices 1, 2, 3.
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The action integral for this path is evaluated using Eqs. A.4.7 and A.4.4,∫
ΓW

θ =
3∑
r=1

(j3 · Jr+)∆φ = (j3 · JT+)∆φ, (3.3.24)∫
Γab

θ = −J1−,zφ1 − J2−,zφ2, (3.3.25)∫
ΓI

θ = −
3∑
r=1

Irψ, (3.3.26)

where ∆φ is the total angle of evolution for the Wigner manifold. On the Wigner manifold
JT = 0 so the action integral in Eq. 3.3.24 evaluates to zero. The remaining segments of
the path are along the 3jm-manifold Lab and thus Jrz = mr and Ir = Jr = jr + 1/2 on this
path. Therefore the total action integral along the closed path Γ is∮

Γ

θ = −S3j ≡ −
∑
r

(Jrψr +mrφr) , (3.3.27)

where we define φ3 ≡ 0 for symmetry and φ1, φ2, and ψr are given by Eqs. 3.3.24, 3.3.25,
and 3.3.26. This is the phase function found, for example, in Ponzano and Regge [27], and
Miller [39], among others.

3.3.4 Maslov and Signature Indices

Now we turn our attention to the Maslov and signature indices µ and σ. We compute the
Maslov index in ΦR

2j, the two-dimensional phase space of the symplectic reduction of the
2j-model. As determined in Section 3.3.2, coordinates on ΦR

2j are J1z and φ12, where φ12 =
φ1 − φ2, the difference in the azimuthal angles of vectors J1 and J2 in angular momentum
space. The symplectic reduction of Φ2j by I1 and I2 may be considered the symplectic leaf in
the 2j-angular momentum space satisfying constraints J2

1 = J2
1 and J2

2 = J2
2 . The reduction

by J12z is accomplished by restricting to the level set J1z + J2z = −m3 and dividing by the
group orbits of J12z. These group orbits are simultaneous rotations of J1 and J2 about the
z-axis. We may therefore choose a representative point on each group orbit where the vector
sum J12 lies in the xz-plane with J12x > 0. Thus we may interpret the space ΦR

2j as the space
of pairs of vectors J1 and J2 in angular momentum space of fixed lengths J1 and J2 such that
J12x > 0, J12y = 0 and J12z = −m3, as shown in Figure 3.3.1. Given this interpretation the
projection of the stationary phase set I(2j) onto the reduced space are precisely the points
where vectors J1± and J2± agree with the vectors in Eqs. 3.3.19 and 3.3.20. Note that, in

this interpretation of ΦR
2j, the projections of I

(2j)
+ and I

(2j)
− satisfy J1y > 0 and J1y < 0,

respectively.
To calculate the Maslov index we need to again construct a path in the reduced space

and choose a fixed representation to work in. The two manifolds in the reduced space are



CHAPTER 3. MODELS OF THE 3J-SYMBOL 101

• −m3

•

••
��
•J2

Tb

J1

•

•••

JT
Jz

*4
Jy

r�
Jx

gq

J12

Figure 3.3.1: A point on the reduced 2j-phase space ΦR
2j interpreted as a pair of vectors in

R3 of fixed lengths |J1| = J1 and |J2| = J2 with the tip of the vector J12 constrained to lie
on the dashed line (J12,x > 0, J12,y = 0, and J12,z = −m3).

LRa and LRβ , which were defined in Eq. 3.3.15. Let the path be Γ = Γβ + Γa, where Γβ

starts at the projection of I
(2j)
+ and follows the flow of J2

12 along LRβ to the projection of I
(2j)
−

and Γa starts at the projection of I
(2j)
− and follows the flow of J1z back to the projection of

I
(2j)
+ along LRa . We choose to work in the J1z-representation of ΦR

2j, in which case J1z is the
configuration coordinate and−φ12 is conjugate momentum coordinate. In this representation
the symplectic potential is θ = −φ12dJ1z. In terms of these coordinates the Hamiltonian J2

12

that defines LRβ is

J2
12 = J2

1 + J2
2 + 2J1zJ2z + 2J1⊥J2⊥ cosφ12, (3.3.28)

where J2z = −m3 − J1z and Jr⊥ ≡
√
J2
r − J2

rz.
Consider a one degree-of-freedom phase space Φ. Let H be a Hamiltonian and let L be

a level set of this Hamiltonian, let x define the representation, and let p be the conjugate
momentum to x. The caustics occur at points on L where the function e ≡ {x,H} is zero.
This condition specifies where L becomes tangent to one of the constant-x manifolds that
defines the Lagrangian foliation for the representation. As in Esterlis et al [55], we define
f ≡ {p,H} and express the Maslov index accumulated by a path that crosses through the
caustic point as

µ =
1

2
∆sgn fe. (3.3.29)

That is, the Maslov index in one degree-of-freedom tracks how the sign of fe changes upon
passing through the caustic.

Since LRa is one of the manifolds in the Lagrangian foliation of the J1z-representation
there is no Maslov contribution from Γa. In particular, x = H = J1z so e = 0 (every point
on Γa is a caustic) and thus sgn fe = 0 at all points on LRa so µ = 0 for Γa. For Γβ we still
have x = J1z but now H = J2

12. Thus on the reduced β-manifold, e = {J1z,J
2
12} = −4∆z,
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where ∆z is the z-component of (J1 × J2)/2. The caustics on LRβ are therefore points where
∆z = 0. In the interpretation of ΦR

2j from earlier, this is when J1y = 0 (or, equivalently,
when J2y = 0). Since Jr+ and Jr− are related by reflection through the xz-plane and the
flow of J2

12 leaves J12 invariant and in the xz-plane, Γβ crosses a caustic exactly once. The
entirety of the Maslov index for the 2j-model, then, occurs at the single point where the
path crosses a caustic on the β-manifold. We defer performing a complete calculation of a
Maslov index to the analysis of the 6j-symbol in Chapter 4, which may be analyzed simply
using the method we developed in Esterlis et al [55]. Here we simply quote the result that
µ = +1 for this caustic point. The determination of the Maslov correction to the phase for
the 3j-symbol was found numerically by Ponzano and Regge [27] and analytically using a
different one degree-of-freedom phase space model by Schulten and Gordon [41].

Finally, we turn our attention to the signature index. We wish to compute σ(β, a) at the
two intersection points in ΦR

2j in the J1z-representation. As in Cappell, Lee, and Miller [59]
and Section C.5, we may express this signature index in terms of the Lagrangian signature,

σ(β, a) = σ(Λx,Λβ,Λa), (3.3.30)

where Λβ and Λa are the tangent planes to LRβ and LRa at the stationary phase points and
Λx is the plane tangent to the Lagrangian manifold in the Lagrangian foliation that defines
the representation. Since LRa is itself part of the representation-defining foliation Λx and Λa

are equal and, due to the antisymmetry of the Lagrangian signature, Eq. 3.3.30 evaluates to
zero at both stationary phase points.

Using the fact that the action integral piece of the phase and the Maslov and signature
index pieces of the phase in the 3j- and 2j-models are separately equal gives that the total
phase difference between the two connected pieces of the stationary phase set in the 2j-model
of the 3j-symbol is

∆ϕ = −S3j −
π

2
, (3.3.31)

where S3j is defined by Eq. 3.3.27. Combining everything yields the well-established result
[27, 64, 44] for the asymptotics of the 3j-symbol,(

j1 j2 j3

m1 m2 m3

)
= 〈a|β〉 = 〈ab|W 〉 ≈ cos(S3j/2 + π/4)√

2π |∆z|
. (3.3.32)

3.4 Summary

In this chapter we saw how the remodeling of an inner product generated two models of the
Wigner 3j-symbol. In particular the product space model was a 3j-model of three angular
momenta and the target space model was a 2j-model of two angular momenta. The 3j-model
treats all three angular momenta symmetrically. It is a model where we consider how three
angular momenta of fixed lengths and z-components couple to zero. The 2j-model involves
three angular momenta as well, but two of the angular momenta are treated on a different
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footing than the third. It is a model where we consider how two angular momenta of fixed
lengths and z-components couple to create a third angular momentum of fixed length and z-
component and is closely related to the Clebsch-Gordan coefficients. We analyzed the linear
algebra and phase space geometry of the two models and saw how they were related by the
remodeling procedure developed in Chapter 2. In particular we saw how the transport of a
manifold geometrically plays out and demonstrated how the transport of a momentum map
yields the appropriate functions to describe the transported manifold. We demonstrated how
the amplitude determinant calculations play out in the two models and saw the advantages of
the target-space model in computing such determinants. Finally, we presented an overview
of the phase calculation, utilizing both models to simplify the work necessary. The action
integral was calculated in the 3j-model following Aquilanti et al [44] and the Maslov and
signature indices were computed in the reduced 2j-model.

Since the models of the 3j-symbol do not involve many degrees of freedom the advan-
tages of using an inner product remodeling are not readily apparent. In particular, the
simplification of a 2 × 2 matrix of Poisson brackets to a single Poisson bracket is not very
dramatic and the geometry involved in the phase calculation is fairly involved in both 2j-
and 3j-models. However, the 3j-symbol provided a very simple playground to demonstrate
how the remodeling procedure plays out. In practice we do not need to tediously construct
the core symplectomorphism or analyze in detail the transport of a manifold. It is enough to
know that given a remodeling geometry setup the relevant manifolds are connected in such
a manner. Thus we turn our attention in the next chapter to seeing how the remodeling
procedure does simplify calculations in the case of the 6j-symbol. In fact, most of the work
in that chapter will be in setting up the remodeling algebras and geometries. Once the
playground has been constructed the actual analysis of the asymptotics of the 6j-symbol
will be straightforward. We will be able to avoid the headaches involved in the calculation
of a 9× 9 determinant, instead calculating a single Poisson bracket. We will also be able to
take advantage of the symmetry of the product space model to simplify the calculation of
the action integral in the phase. Since we did not do so in this chapter, the action integral
calculation will be performed in both relevant models to demonstrate that they are equal.
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Chapter 4

Models of the 6j-Symbol

Now we turn to the Wigner 6j-symbol (which is related to the Racah W -coefficient by a
phase). The 6j-symbol is a central object in angular momentum theory with applications
wherever three angular momenta are coupled together, such as in molecular, atomic, and
nuclear physics. Traditionally the 6j-symbol is considered as the unitary matrix elements
involved in a change-of-basis between the various recoupling schemes of three angular mo-
menta [28]. These basis vectors involve four angular momenta (the three original angular
momenta and the coupled angular momentum) and we call such interpretations of the 6j-
symbol “4j-models.” The asymptotic (large j or small ~) expression for the 6j-symbol was
first obtained by Ponzano and Regge [27], though rigorous derivations of the formula did not
come until later.

The Ponzano-Regge formula has since been derived by many different methods. Neville
[38] presented the first derivation of the asymptotic formula, using the recursion relations of
the 6j-symbol and a discrete form of WKB theory. Schulten and Gordon [40, 41] provided
another proof along similar lines. Biedenharn and Louck [42] proved a proof of the Ponzano-
Regge formula by showing that the formula satisfied all of the defining properties of the
6j-symbol. Roberts [2] presented a derivation of the Ponzano-Regge formula by introducing
a “12j-model” of the 6j-symbol, which involves twelve angular momenta all treated on
the same footing. Aquilanti et al [1] similarly used symplectic geometry of the sort used
extensively in this work to derive the asymptotics in the 4j-model. Charles [43] derived
the formula using the formalism of geometric quantization [69, 70, 71]. Dupuis and Livine
[72, 73] expanded on the previous works and analytically presented a next-to-leading order
approximation for the 6j-symbol.

The “Ponzano-Regge phase” that occurs in the asymptotic expression of the 6j-symbol
is precisely the three-dimensional Einstein-Hilbert action integrated over a tetrahedron in
the Regge calculus approach to quantum gravity [74]. In fact, the “Ponzano-Regge model”
presented in Ponzano and Regge [27], a state-sum model for 3d-Euclidean quantum gravity
treated as an SU(2) gauge theory, is the first spin-foam model ever presented and uses the
6j-symbol as a fundamental building block. The 6j-symbol enters because the Ponzano-
Regge model uses a triangulation of 3d-Euclidean spacetime into tetrahedra with SU(2)-
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irreps labeling the edges of the triangulation. A tetrahedron whose edges carry SU(2)
representations is one of the ways of interpreting the spin network for the 6j-symbol,

{
j1 j2 j3

j4 j5 j6

}
= •

•

• •

KS
1

t|2 "*
3+3

4

T\ 5�
6

. (4.0.1)

Turaev and Viro [29], unaware of the previous work by Ponzano and Regge, defined a similar
state sum. They also expanded the formalism and created a state sum using the 6j-symbol for
the Hopf algebra SLq(2). This naturally provides a cutoff for the values of j that characterize
the irreps and thus provides a regularized version of the Ponzano-Regge model. Turaev
[75] and Roberts [34], among others, also showed that the Turaev-Viro state sum for the
“q-deformed” 6j-symbol is a model for 3d-Euclidean quantum gravity with cosmological
constant.

In this chapter we explore how the various models of the 6j-symbol fit in to the remodeling
of an inner product presented in Chapter 2. The two treatments that are most applicable
to this work are the symplectic derivations of the asymptotics of the 6j-symbol in the 12j-
model [2] and 4j-model [1], which are connected by two applications of an inner product
remodel. We choose to use a “symmetric” labeling of the in this work, where each of
the six angular momenta in Eq. 4.0.1 are treated on an equal footing. In many of the
works listed above, an “asymmetric” or “coupled” labeling scheme is preferred, where the
angular momenta j1, · · · j6 are instead written j1, j2, j12, j3, j4, j23. This labeling emphasizes
the different coupling schemes used in the 4j-model but are inconvenient to use in the
remodeling algebras that will be set up in this chapter.

We start in Section 4.1 by discussing the 2j-, 3j-, and 4j-intertwiner states that are the
building blocks of the various models of the 6j-symbol. Then in Section 4.2 we build the two
remodeling algebras that connect the 12j-model with the 4j-model. We discuss the classical
phase spaces and Lagrangian manifolds that support the semiclassical approximations to the
elements of the remodeling algebras in Section 4.3. With the remodeling geometry in place,
in Section 4.4 we perform the action integral calculations in both models and show that they
are related exactly as claimed. Finally, in Section 4.5 we complete the derivation of the
asymptotic form of the 6j-symbol by computing the amplitude determinant and Maslov and
signature indices in the 4j-model, where they are easiest to analyze.

4.1 Intertwiner States

The states that occur in the various models of the 6j-symbol can all be thought of as direct
products of two-, three-, or four-valent intertwiner states. More generally, the states involved
in the inner-product models for all 3nj-symbols are composed of k-valent intertwiners, where
k may vary from 2 to n + 2. In this section we treat all k-valent intertwiners as states in
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a kj-Hilbert space. The semi-classical versions of these states are then SU(2)-invariant
Lagrangian manifolds in the corresponding kj-phase space.

In Section 4.1.1 we relate the SU(2)-invariant states in a 2j-Hilbert space to the 2j-
intertwiner introduced in Section 3.1.4 and explore the properties of the Lagrangian manifold
that supports the semiclassical approximation to these states in the 2j-phase space. The
analysis of the 3j-intertwiner state was already carried out in Sections 3.1.1, 3.1.2, and 3.2.2.
Section 4.1.2 summarizes the relevant features of this state and the associated Lagrangian
manifold. Finally, Section 4.1.3 introduces the space of 4j-intertwiners and the various
4j-intertwiner states that occur in the analysis of the 6j-symbol. The properties of the
associated classical manifolds are then determined.

4.1.1 The 2j-Intertwiner (“Diangle”) States

Consider the tensor product of two copies of the Schwinger Hilbert space, H2j = Sa ⊗ Sb
where the two Hilbert spaces are labeled by a and b and let Cjajb be the Cja ⊗Cjb subspace of
H2j. Let Zjajb be the space of 2j-intertwiners : Cjajb → C. As discussed in Section 3.1.3, Zjajb
is non-trivial iff ja = jb, in which case each element of Zjajb picks out a j = 0 irreducible
subspace of Cjajb . The j = 0 irreducible subspaces of a Hilbert space are precisely the
SU(2)-invariant states. We call such states in H2j the “2j-intertwiner states”. Note that
the 2j-intertwiner states only exist for ja = jb. Since dim Zjajb = 1 in such a case there is a
unique 2j-intertwiner state (up to phase and normalization) in each Cjj subspace of H2j.

In Dirac notation we may label the 2j-intertwiner states with the notation |Kab〉 for
the normalized SU(2)-invariant state in the Cjj subspace of Sa ⊗ Sb. The irrep label j will
always be clear from context and it is understood that ja = jb = j for these states. Since
|Kab〉 ∈ Cjj it is an eigenstate of operators Îa and Îb with eigenvalue j. The SU(2)-invariant

nature of the 2j-intertwiner state implies that |Kab〉 is a simultaneous eigenstate of Ĵab at
eigenvalue 0, where Ĵab ≡ Ĵa + Ĵb. As in Section 3.1.4, the eigenstate condition for Îb is a
direct consequence of the eigenstate conditions for Îa and Ĵab. The normalized 2j-intertwiner
states are thus written

|Kab〉 =

∣∣∣∣ Îaj Ĵab
0

〉
=

1√
2j + 1

b

a
∈ Sa⊗Sb, (4.1.1)

where we use the convention that the chevron for the first Hilbert space in H2j is directly
counterclockwise of the stub and the j irrep label on the spin network is understood from
context. The normalization factor is necessary on the spin network since

�� ��
j =

+3

ks
j = dim Cj = 2j + 1. (4.1.2)
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Ja /9

Jboy

Figure 4.1.1: A point on the diangle manifold LK projected onto a pair of vectors in R3 of
fixed length |Ja| = |Jb| = J . The two vectors satisfy the condition Ja + Jb = 0 and can
therefore be arranged into a closed chain to form a “diangle”. The two vectors are slightly
separated in the drawing so that they do not overlap.

The phase of these 2j-intertwiner state is defined such that the components of |Kab〉 with
respect to the standard angular momentum basis vectors are the 2j-symbols of Section 3.1.4.

The classical phase space corresponding to H2j is the 2j-phase space Φ2j ≡ Σa × Σb

and the Lagrangian manifold LK that supports the semi-classical approximation to the 2j-
intertwiner state is described as the level set,

LK =

(
Ia
J

Jab
0

)
⊂ Φ2j (4.1.3)

where the classical function Jab is the sum Ja+Jb and J = j+1/2. We may have also included
the level set condition Ib = J in Eq. 4.1.3, however this condition is not independent of the
four functions already listed. This manifold is generated by the group GK = U(1)× SU(2).
The isotropy subgroup is trivial for this manifold so LK has the topology and volume

LK ∼= U(1)× SU(2), VK = (4π)(16π2) = 26π3, (4.1.4)

where the volume is taken with respect to the Haar measure dψa ∧ dα ∧ sin βdβ ∧ dγ.
The projection of LK onto the 2j-angular momentum space Λ2j consists of the pair of

vectors in R3 of equal fixed lengths j + 1/2 that add to zero. That is, the two vectors
Ja and Jb are equal and opposite each other. We call the figure formed by placing the
two vectors end-to-end in the order (Ja,Jb) as in Figure 4.1.1 a “diangle,” in analogy with
the triangle formed by the three vectors in the Wigner manifold. We commonly refer to
the Lagrangian manifold LK as the “diangle manifold” and the state |Kab〉 as the “diangle
state.” The projection of the diangle manifold onto angular momentum space is a manifold
generated by the group of rotations SO(3). However, the subgroup of SO(2) rotations about
the axis ja of Ja leaves both vectors invariant and thus is an isotropy subgroup. The diangle
manifold in Λ2j is thus a two-sphere, parameterized by orientations of ja and thus the diangle
manifold may be seen as a T 2 bundle over S2. The S1 subset of these fibers generated by
the Hamiltonian ja · Jab are Hopf circles over S2 and thus the manifold may be expressed as
S1 × S3, as expected for the topology U(1)× SU(2).

4.1.2 The 3j-Intertwiner (“Triangle”) States

Consider the tensor product of three copies of the Schwinger Hilbert space, H3j = Sa⊗Sb⊗Sc
where the three Hilbert spaces are labeled by a, b, and c and let Cabc be the Cja ⊗ Cjb ⊗ Cjc
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subspace of H3j. Let Zabc be the space of 3j-intertwiners : Cabc → C. As discussed in
Section 3.1.3.3, Zabc is non-trivial iff the triplet (ja, jb, jc) is triangle-allowed, in which case
there is a unique j = 0 (one-dimensional) irreducible subspace of Cabc. This subspace is
spanned by the Wigner state introduced in Section 3.1.1. As in Section 3.1.2 we will treat
the Wigner state as an element of H3j and label the normalized state in the Dirac notation
as |Wabc〉, where the subscripts indicate the three component Schwinger Hilbert spaces in
H3j and it is understood that this state carries the irrep labels ja, jb, and jc. Following
Eq. 3.1.9, we define

|Wabc〉 =

∣∣∣∣ Îaja Îb
jb

Îc
jc

Ĵabc
0

〉
= •

a

b c ∈ Sa⊗Sb⊗Sc, (4.1.5)

where Ĵabc = Ĵa + Ĵb + Ĵc and the label a, b, and c on the legs of the spin network represent
the understood irrep labels ja, jb, and jc. This state is normalized and the phase is defined
such that the components of |Wabc〉 with respect to the standard angular momentum basis
vectors are the 3j-symbols.

The properties of the Lagrangian manifold LW ⊂ Φabc ≡ Σa×Σb×Σc corresponding to the
3j Wigner state were already discussed in detail in Sec. 3.2.2. Specifically, the manifold LW
was defined as a level set in Eq. 3.2.7 and the topology and volume were given in Eq. 3.2.8.
On LW the three angular momentum vectors may be configured to form a triangle as in
Figure 3.2.3 so LW may be called a “triangle manifold” and |Wabc〉 a “triangle state.”

4.1.3 The 4j-Intertwiner (“Butterfly”) States

Consider the tensor product of four copies of the Schwinger Hilbert space, H4j =
⊗
Sr, with

r = a, b, c, d and let Cabcd be the Cja ⊗ Cjb ⊗ Cjc ⊗ Cjd subspace of H4j. Let Zjajbjcjd be the
space of 4j-intertwiners : Cabcd → C. According to the standard rules for addition of angular
momenta this space is non-trivial iff the “polygon inequality” max{jr+1/2} ≤ 1

2

∑
(jr+1/2)

is satisfied and
∑
jr ∈ Z where the sums are taken over r = {a, b, c, d}. The polygon

inequality is a necessary and sufficient condition for line segments of length jr + 1/2 to be
fit together to form a closed polygon in Rn. The space Zabcd is spanned by the set of j = 0
irreducible subspaces of Cabcd and so may be defined as the simultaneous eigenspace

Zabcd ≡
{
|ψ〉 ∈ H4j | Îr|ψ〉 = jr|ψ〉, Ĵabcd|ψ〉 = 0|ψ〉

}
, (4.1.6)

where r = a, b, c, d and Ĵabcd =
∑

r Ĵr. We call elements of Zabcd “4j-intertwiner states.”
Unlike the space of 2j- and 3j-intertwiners, the dimension of the space of 4j-intertwiners is in
general greater than one when the polygon inequality is satisfied. In fact, the 6j-symbol may
be interpreted in the 4j-model as the coefficients for a change-of-basis of Zabcd. (This is why
there is no need to define a rotationally-invariant 3j-symbol. The space of intertwiners is
one-dimensional so the “change-of-basis” amounts to the normalization condition Eq. 3.1.5.)
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Orthonormal basis states in Zabcd may be constructed by coupling 2j and 3j Wigner
states [28]. Let H6j be a 6j Hilbert space for the six angular momenta a through f . Consider
first a coupling scheme that couples angular momenta a and b into the intermediate angular
momentum e. Consider the two triangle states |Wabe〉 ∈ Habe and |Wfcd〉 ∈ Hfcd and the dual
diangle state 〈Kef |. For these states to be non-zero we require je = jf ≡ jab and (ja, jb, jab)
and (jab, jc, jd) to be triangle-allowed triplets. We may treat 〈Kef | as a map : H6j → H4j

which effectively projects a state |ψ〉 ∈ H6j into the simultaneous (Îe, Ĵef )-eigenspace of H6j

at eigenvalues (jab,0) followed by the natural projection of Habcd ⊗Hef onto Habcd. Let |ψ〉
be the result of 〈Kef | acting on |WabeWfcd〉. This is an element of Zabcd since it is an element

of the Ĵabc, Ĵfcd, and Ĵef null eigenspace and therefore

Ĵabcd|ψ〉 = (Ĵabe + Ĵfcd − Ĵef )|ψ〉 = 0. (4.1.7)

As discussed in Section 3.1.5 the triangle state |Wabe〉 is in the jab(jab + 1)-eigenspace of Ĵ2
ab.

Similarly, |Wfcd〉 is in the jab(jab + 1)-eigenspace of Ĵ2
cd. Therefore |ψ〉 is in the jab(jab + 1)-

eigenspace of both Ĵ2
ab and Ĵ2

cd. Note that the eigenvalue condition on Ĵ2
ab combined with the

SU(2)-invariance condition implies the eigenvalue condition on Ĵ2
cd. We write the normalized

state coupled in this way |Ba(bc)d, jab〉. A different basis arises from acting 〈Kef | on the state
|WbceWfad〉 which couples angular momenta b and c together. The (normalized) states are
written in terms of eigenvalues as

|B(ab)cd, jab〉 =

∣∣∣∣ Îrjr Ĵ2
ab

jab

Ĵabcd
0

〉
, |Ba(bc)d, jbc〉 =

∣∣∣∣ Îrjr Ĵ2
bc

jbc

Ĵabcd
0

〉
, (4.1.8)

where the quantum number jab means that the state is an eigenstate of Ĵ2
ab with eigenvalue

jab(jab + 1). A third basis which couples a and c exists but will not be considered in this
work.

In spin network notation we define these 4j-intertwiner states to be

|B(ab)cd, jab〉 = (−1)ja−jb−jc+jd
√

2jab + 1 • •
ab

a

b c

d

∈ Habcd, (4.1.9)

|Ba(bc)d, jbc〉 = (−1)2jb
√

2jbc + 1 • •bc

c

b a

d

∈ Habcd. (4.1.10)

where the phases are chosen to agree with standard recoupling theory results [28]. Following
the conventions in Stedman [8] we simplify our spin networks by assuming that all arrows
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point away from the 3j-nodes and towards the 2j-stubs on an internal line with a stub unless
explicitly drawn otherwise. Allowing jab or jbc to run over the full range of triangle-allowed
values yields the two bases of Zabcd that occur in the 6j-symbol.

The classical phase space corresponding to H4j is the 4j-phase space Φ4j ≡ Σa×Σb×Σc×
Σd. Following Section 2.4.3, the space of intertwiners Zabcd corresponds to the co-isotropic
manifold

LZ =

(
Ia
Ja

Ib
Jb

Ic
Jc

Id
Jd

Jabcd
0

)
⊂ Φ4j. (4.1.11)

The Lagrangian manifold LB,ab and LB,bc that support the semi-classical approximations to
the 4j-intertwiner states are Lagrangian manifolds in this co-isotropic submanifold,

LB,ab =

(
J2
ab

J2
ab

)
⊂ LZ ⊂ Φ4j, LB,bc =

(
J2
bc

J2
bc

)
⊂ LZ ⊂ Φ4j, (4.1.12)

where the contour values are (jab + 1/2)2 and (jbc + 1/2)2 as shown in Section 3.2.3. It is
more convenient to use the Hamiltonians |Jab| as the Hamiltonian that defines LB,ab since the
angle θ conjugate to |Jab| is 4π-periodic while period of the angle conjugate to J2

ab depends
on the contour value Jab. Therefore we choose to use the following equivalent description of
LB,ab and LB,bc,

LB,ab =

(
|Jab|
Jab

)
⊂ LZ ⊂ Φ4j, LB,bc =

(
|Jbc|
Jbc

)
⊂ LZ ⊂ Φ4j, (4.1.13)

These manifolds are generated by the group GB = U(1)5×SU(2). Coordinate on GB are
(ψr, θ, u), where ψr are the 4π-periodic evolution variables for Ir, θ is the 4π-periodic evolu-
tion variable for either |Jab| or |Jbc|, and u ∈ SU(2). The isotropy subgroup is then generated
by two elements, (2π, 2π, 2π, 2π, 0,−1) and either (0, 0, 2π, 2π, 2π,−1) or (2π, 0, 0, 2π, 2π,−1)
(for the ab- and bc-coupling schemes, respectively). In either case the manifolds have topol-
ogy and volume

LB ∼=
U(1)5 × SU(2)

(Z2)2
, VB =

1

4
(4π)5(16π2) = 212π7, (4.1.14)

where the volume is taken with respect to the Haar measure (
∧
dψr)∧dθ∧dα∧ sin βdβ∧dγ.

The projection of LB,ab onto the 4j-angular momentum space Λ4j consists of the four
vectors in R3 with fixed lengths Jr that add to zero and satisfy |Jab| = Jab. We can construct
such a figure by placing the four vectors end-to-end in the order (Ja,Jb,Jc,Jd) adding the
fixed-length vector Jab to the diagram, basing it at the origin, as shown in Figure 4.1.2. The
SU(2) group generates SO(3) rotations of the entire figure and the U(1) group generated
by |Jab| = jab · Jab generates SO(2) rotations of vectors Ja and Jb about the axis jab ≡
Jab/ |Jab|. This leaves the triangle formed by the triplet (Jab,Jc,Jd) invariant. Treating the
(Ja,Jb,−Jab) and (Jab,Jc,Jd) triangles as “wings” lets this SO(2) rotation be visualized as
a “flapping.” Thus the figure is referred to as a “butterfly figure,” with the coupled vector
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r�
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(2
Jb

•
R` Ja
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Jd

CN
Jab
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jab

hp

Figure 4.1.2: A point on the butterfly manifold LB,ab projected onto a set of four vectors
in R3 of fixed lengths |Jr| = Jr (r = a, b, c, d). The four vectors satisfy the condition
Ja + Jb + Jc + Jd = 0 and can therefore be arranged into a closed chain. The length of the
vector sum Jab is constrained to be Jab. The two wings of the “butterfly” are the triangles
formed by the triplets (Ja,Jb,−Jab) and (Jc,Jd,Jab) and the body is the vector Jab. The
“flapping” motion generated by J2

ab (or |Jab|) rotates Ja and Jb about the axis jab ≡ Jab/Jab.

Jab acting as the body of the butterfly. We call manifolds LB,ab and LB,bc the “butterfly
manifolds” and the 4j-intertwiner states in Eq. 4.1.8 the “butterfly states.”

Finally, consider again the co-isotropic manifold LZ defined in Eq. 4.1.11. The projection
of this manifold onto Λ4j may be interpreted as the set of four vectors Ja, Jb, Jc, and Jd
of fixed lengths arranged end-to-end into a closed chain. By adding vectors Jab connecting
the tail of Ja to the tip of Jb and Jbc connecting the tail of Jb to the tip of Jc as shown
in Figure 4.1.3 we see that each point on LZ defines a tetrahedron. Thus we may define a
volume function on LZ ,

V ≡ 1

6
Ja · (Jb × Jc) : LZ → R. (4.1.15)

We may in fact define such a function everywhere on Φ4j, but we may only interpret it as a
tetrahedron volume on LZ .

4.2 Remodeling Algebra of the 6j-Symbol

Connecting the 4j- and 12j-models of the 6j-symbol requires two applications of the remod-
eling procedure. The first remodel of the 6j-symbol, connects the “symmetric” 12j-model of
Roberts [2] to an “intermediate” 8j-model. The product space inner product serves as the
12j-model in this case and the target space inner product serves as the 8j-model. The two
states in the 12j-model are a quartet of 3j-intertwiners and a sextet of 2j-intertwiners while
the two states in the 8j-model are a quartet of 2j-intertwiners and a pair of 4j-intertwiners.



CHAPTER 4. MODELS OF THE 6J-SYMBOL 112

r�
Jc

(2
Jb

•
R` Ja

*4
Jd

|

Jbc

CN
Jab

Figure 4.1.3: A point in LZ projected onto a set of four vectors in R3 of fixed lengths |Jr| = Jr
(r = a, b, c, d). The four vectors satisfy the condition Ja+Jb +Jc +Jd = 0 and can therefore
be arranged into a closed chain. The tetrahedron is formed by including vectors Jab ≡ Ja+Jb
and Jbc ≡ Jb + Jc in the diagram.

“4j-Model”

Butterfly State

vs.

Butterfly State

“8j-Model”

4 Diangle States

vs.

2 Butterfly States

“12j-Model”

6 Diangle States

vs.

4 Triangle States

First

Remodel
ooSecond

Remodel
oo

Figure 4.2.1: Schematic of the spaces and states involved in the two remodeling algebras for
the 6j-symbol.

The second remodel connects the intermediate 8j-model with the “coupled” or “asymmet-
ric” 4j-model which was explored in Aquilanti et al [1]. Here the 8j-model arises from the
product space inner product and the target space inner product produces the 4j-model. The
two states in the 4j-model are both single copies of a 4j-intertwiner. A schematic of the two
remodelings is shown in Figure 4.2.1.

We start in Section 4.2.1 by defining all of the Hilbert spaces that occur in this pair of
remodels. In Section 4.2.2 we construct the algebra for the first remodel, connecting the
12j- and 8j-models of the 6j-symbol. Then in Section 4.2.3 we construct the algebra for the
second remodel, connecting the 8j- and 4j-models of the 6j-symbol.

4.2.1 Hilbert Spaces for the Remodels of the 6j-Symbol

The symmetric labeling of the 6j-symbol in Eq. 4.0.1 specifies six irrep labels jr, r = 1, · · · , 6.
In the symmetric 12j-model of Roberts [2] each of these irreps is assigned to a pair of
Schwinger spaces and thus the 12j-model Hilbert space is a space describing twelve angular
momenta. We label these pairs of Schwinger spaces Sr and Sr′ , where the irrep label jr
picks out the relevant irreducible carrier subspace of both Sr and Sr′ The 12j-Hilbert space
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is defined as

H12j ≡
6⊗
r=1

Sr ⊗ Sr′ . (4.2.1)

Spin networks for states in H12j will therefore contain twelve ket chevrons, labeled by 1
through 6 and 1′ through 6′, with appropriate irrep labels jr implied for the legs ending in
both the primed and unprimed chevrons.

The 8j-model takes place in a Hilbert space comprised of a subset of eight of the Schwinger
spaces comprising H12. These eight Schwinger spaces may be separated into the four pairs
of primed and unprimed spaces for r = 1, 2, 4, 5. The 8j-Hilbert space which carries the
8j-model of the 6j-symbol is thus

H8j ≡
⊗

r∈{1,2,4,5}

Sr ⊗ Sr′ . (4.2.2)

Note that a different 8j-model was briefly introduced in Aquilanti et al [1], involving the
four unprimed spaces for r = 1, 2, 4, 5 and the primed and unprimed pairs for r = 3, 6. We
will not consider this 8j-model in this chapter as it is unrelated to the remodeling algebra
that we are setting up here.

The 12j-Hilbert space is the product space of the first remodel and the 8j-Hilbert space
is the target space so the dual of the source space must be the 4j-Hilbert space

H33′66′ ≡ S3 ⊗ S3′ ⊗ S6 ⊗ S6′ . (4.2.3)

We explicitly label the four angular momenta involved in this 4j-Hilbert space because the
pair of remodeling algebras for the 6j-symbol contain a total of three different 4j-Hilbert
spaces and their duals, rendering notation “H4j” insufficient. The source space for the first
remodel is thus the dual 4j-Hilbert space H∗33′66′ . Note that indeed H8j ⊗ (H∗33′66′)

∗ = H12j.
In the second remodel the dual of the 8j-Hilbert space H∗8j serves as the product Hilbert

space so the target Hilbert space, which will carry the 4j-model of the 6j-symbol, is a dual
4j-Hilbert space containing a subset of four of the Schwinger spaces comprising H∗8j. The
4j-model uses irrep labels j1, j2, j4, and j5, with j3 and j6 acting as the coupled angular
momenta (in the asymmetric labeling of the 6j-symbol, j3 is replaced by j12, for example).
We define the target space as

H∗1245 ≡ S∗1 ⊗ S∗2 ⊗ S∗4′ ⊗ S∗5 . (4.2.4)

The dual source space is made of the remaining spaces,

H∗1′2′4′5′ ≡ S∗1′ ⊗ S∗2′ ⊗ S∗4 ⊗ S∗5′ , (4.2.5)

which means that the source space for the second remodel is H1′2′45′ .
A summary of the Hilbert spaces introduced in this Section and what roles they take in

the remodeling algebras for the 6j-symbol is given in Table 4.1.
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First Remodel Second Remodel

Name Hilbert Space
Angular

Momenta
Hilbert Space

Angular
Momenta

Source Space H∗33′66′
3, 6

3′, 6′
H1′2′45′ 1′, 2′, 4, 5′

Target Space H8j
1, 2, 4, 5

1′, 2′, 4′, 5′
H∗124′5 1, 2, 4′, 5

Product Space H12j
1, 2, 3, 4, 5, 6

1′, 2′, 3′, 4′, 5′, 6′
H∗8j

1, 2, 4, 5
1′, 2′, 4′, 5′

Table 4.1: The various Hilbert spaces in the remodeling algebras for the 6j-symbol.

4.2.2 The First Remodeling Algebra

To construct the remodeling algebra for the first remodel we begin with the standard spin
network of the 6j-symbol,

{
j1 j2 j3

j4 j5 j6

}
= •

•

• •

KS
1

t|2 "*
3+3

4

T\ 5�
6

= •

•

• •

1

2

3

4

56

. (4.2.6)

The first spin network is the version of the 6j-symbol network given in Figure 30 of Aquilanti
et al [1], which is based on Figure 16.1 from Yutsis et al [7]. The second spin network follows
from the rules for inserting stubs and more resembles the spin network given in Section 2.4
of Stedman [8]. On the second spin network we have again suppressed all arrows assuming
that arrows point away from the 3j-nodes and towards the 2j-stubs. As in Section 4.1 the
labels r = 1, · · · 6 on the legs of the spin network imply an irrep label jr.

The remodel is then constructed by severing all twelve legs of the second spin network
in Eq. 4.2.6,

{
j1 j2 j3

j4 j5 j6

}
= •

•

••

1

1′

2
2′

3
3′

4 4′

5

5′6

6′

(4.2.7)

This network can then be separated into four 3j-intertwiners and six 2j-intertwiners. We
separate these into three sets which act as the b-, M -, and dual of the a-state for the first
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remodel. Specifying H12j as the product Hilbert space means that the network for the M -
state must contain one ket chevron for each of the twelve Schwinger spaces (six primed and
six unprimed). The spin network for the M -state is therefore the four 3j-intertwiners,

|M1〉 = •
1

2 3 •
1′

5′ 6 •
2′

6′ 4 •
3′

4′ 5 ∈ H12j, (4.2.8)

where the ‘1’ subscript in |M1〉 is used to highlight that this is the map state of the first
remodel. In Dirac notation this state is written |M1〉 ≡ |W123〉|W1′5′6〉|W2′6′4〉|W3′4′5〉 which
is the simultaneous eigenstate

|M1〉 =

∣∣∣∣ Îrjr Îr′
jr

Ĵ123

0
Ĵ1′5′6

0
Ĵ2′6′4

0
Ĵ3′4′5

0

〉
∈ H12j, (4.2.9)

where r = 1, · · · , 6 and |Wabc〉 was defined in Eq. 4.1.5.
The remaining pieces of the spin network form the dual of the product state. Therefore

the product state in the first remodel is

|ab1〉 =
1′

1

2′

2

3′

3

4′

4

5′

5

6′

6
∈ H12j. (4.2.10)

In terms of the normalized 2j-states |Kab〉 defined in Eq. 4.1.1 this state is the product of√
2jr + 1|Krr′〉,

|ab1〉 =
6∏
r=1

√
2jr + 1

∣∣∣∣ Îrjr Ĵrr′
0

〉
∈ H12j, (4.2.11)

The 12j-model of the 6j-symbol is represented by spin network 4.2.7 and is formed from
the inner product of the ab-state with the M -state,

“12-Model”: 〈ab1|M1〉 = N12〈K11′ · · ·K66′|W123W1′5′6W2′6′4W3′4′5〉, (4.2.12)

where N12 is the prefactor Π6
r=1

√
2jr + 1.

The a- and b-states are found by splitting the product state spin network into two sub-
networks. The a-state is an element of the target space H8j of the first remodel so its spin
network is made of the subnetwork of Eq. 4.2.10 containing ket chevrons for primed and
unprimed Schwinger spaces 1, 2, 4, and 5,

|a1〉 =
1′

1

2′

2

4′

4

5′

5
∈ H8j, (4.2.13)
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which in Dirac notation is

|a1〉 =
∏

r∈{1,2,4,5}

√
2jr + 1

∣∣∣∣ Îrjr Ĵrr′
0

〉
∈ H8j. (4.2.14)

The dual of the b-state is then the remaining pieces of the spin network,

|b1〉 =
3′

3

6′

6
∈ H33′66′ . (4.2.15)

Thus the b-state is

〈b1| =
3′

3

6′

6

=
√

2j3 + 1
√

2j6 + 1

〈
I3

j3

I6

j6

J33′

0
J66′

0

∣∣∣∣ ∈ H∗33′66′ . (4.2.16)

The M -state in the first remodel acts as a map : H∗33′66′ → H8j. In particular, each of the
four 3j-networks in Eq. 4.2.8 acts as a map from a dual Schwinger Hilbert space to a tensor
product of two Schwinger Hilbert spaces as in Eq. 3.1.2. Acting this map on the b-state of
Eq. 4.2.16 yields the β-state,

|β1〉 = • •
3

1

2 4′

5

• •6

4

2′ 1′

5′

∈ H8j, (4.2.17)

In terms of the normalized butterfly states defined by Eqs. 4.1.9 and 4.1.10 the β-state is

|β1〉 =
(−1)2s+2j4

√
2j3 + 1

√
2j6 + 1

|B(12)4′5, j3〉|B1′(2′4)5′ , j6〉, (4.2.18)

where s is the semi-perimeter,

s ≡ 1

2
(j1 + j2 + j4 + j5). (4.2.19)

By Eqs. 4.1.8 the β-state can therefore be expressed as the simultaneous eigenstate

|β1〉 =
(−1)2s+2j4

√
2j3 + 1

√
2j6 + 1

∣∣∣∣ Îrjr Îr′
jr

Ĵ2
12

j3

Ĵ2
2′4

j6

Ĵ124′5

0
Ĵ1′2′45′

0

〉
, (4.2.20)

where r = 1, 2, 4, 5 and the quantum number j for coupled operator Ĵ2
ab indicates an eigen-

value j(j + 1).
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State Space Components Group

〈b1| H∗33′66′ 2 Diangle Bras (U(1)×SU(2))2

|ab1〉 H12j 6 Diangle Kets (U(1)×SU(2))6

|M1〉 H12j 4 Triangle Kets (U(1)3×SU(2))4

|a1〉 H8j 4 Diangle Kets (U(1)×SU(2))4

|β1〉 H8j 2 Butterfly Kets (U(1)5×SU(2))2

Table 4.2: States in the first remodeling algebra for the 6j-symbol.

The 8j-model of the 6j-symbol is represented by spin network 4.2.24 and is formed from
the inner product of the a-state with the β-state,

“8-Model”: 〈a1|β1〉 = N8〈K11′K22′K44′K55′ |B(12)4′5, j3;B1′(2′4)5′ , j6〉, (4.2.21)

where N8 is the prefactor

N8 = (−1)2s+2j4

∏6
r=1

√
2jr + 1

(2j3 + 1)(2j6 + 1)
. (4.2.22)

The states of the first remodel for the 6j-symbol are summarized in Table 4.2.
Note that the 12j-model allows the 6j-symbol to be expressed as a sum of 3j-symbols.

By inserting a resolution of the identity in the standard angular momentum basis between
each pair of chevrons in the 12j-model spin network 4.2.7 and using Eqs. 3.0.1 and 3.1.32,
the 6j-symbol evaluates to{

j1 j2 j3

j4 j5 j6

}
=
∑
mr

(−1)
∑
r jr−mr

(
j1 j2 j3

m1 m2 m3

)(
j1

−m1

j5

−m5

j6

m6

)
(

j2

−m2

j6

−m6

j4

m4

)(
j3

−m3

j4

−m4

j5

m5

)
. (4.2.23)

Apart from differences in phase conventions which all cancel out in the end, this formula is
the same as Eq. (6.2.3) of Edmonds [28].

4.2.3 The Second Remodeling Algebra

Construction of the second remodeling algebra starts with the spin network for the 8j-target
space model of the first remodel from Section 4.2.2, which pairs the dual of the a-state with
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the β-state of the first remodel,

{
j1 j2 j3

j4 j5 j6

}
= •

•

••

1

1′

2
2′

3

4 4′

5

5′

6

(4.2.24)

The network can then be separated into two 2j-intertwiner networks and four 2j-intertwiner
networks. These are then separated into three sets which act as the b-, M -, and dual of the
a-state for the second remodel. We choose to take the four 2j-intertwiners as the map for
this remodel,

〈M2| =
1′

1

2′

2

4′

4

5′

5

∈ H∗8j, (4.2.25)

where the ‘2’ subscript in 〈M2| is used to highlight that this is the map state of the second
remodel. The subnetwork containing the 2j-intertwiners ends in eight bra chevrons, which
is why we need to take the dual of the 8j-Hilbert space as the product space in the second
remodel. In particular, we treat 〈M2| as a map : H1′2′45′ → H∗124′5. Note that the map state
for the second remodel is the dual of the a-state of the first remodel,

〈M2| = (|a1〉)† =
∏

r∈{1,2,4,5}

√
2jr + 1〈Krr′|. (4.2.26)

The remaining pieces of the spin network form the dual of the product state,

〈ab2| = • •
3

1

2 4′

5

• •6
4

2′ 1′

5′

∈ H∗8j, (4.2.27)

This is just the dual of the β-state of the first remodel,

〈ab2| = (|β1〉)† =
(−1)2s+2j4

√
2j3 + 1

√
2j6 + 1

〈B(12)4′5, j3|〈B1′(2′4)5′ , j6|. (4.2.28)

The product space model of the second remodel is the “dual model” of the target space
model of the first remodel. We define dual models in the following manner. First consider a
general setting, with H a Hilbert space of kets. The inner product 〈A|B〉 in this space may
be expressed as

〈A|B〉 = tr
(
(|A〉)†|B〉

)
= tr

(
(〈B|)†〈A|

)
. (4.2.29)
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These forms of the inner product emphasize which Hilbert space the inner product takes
place in. The first expression for 〈A|B〉 shows the inner product in H of |A〉 with |B〉. The
second expression shows the “dual model,” which is the inner product of 〈B| with 〈A| in the
dual Hilbert space of bras H∗. It is important to recognize that forming the dual model is
not the same as forming the Hermitian conjugate of the original model, which would be an
inner product 〈B|A〉.

The product space model in the second remodel is represented by spin network 4.2.24
and is formed from the inner product of the ab-state with the M -state. Since this model
takes place in H∗8j we call it the “dual 8j-model” of the 6j-symbol,

“Dual 8j-Model”: tr
(
(〈ab2|)†〈M2|

)
= 〈M2|ab2〉 = 〈a1|β1〉, (4.2.30)

where the first expression is presented in a form that emphasizes that it is an inner product
in H∗8j. The second and third expressions show that the dual 8j-model is indeed equal to
the dual inner product model of the 8j-model of Eq. 4.2.21.

The a-state is an element of the second remodel target space H∗124′5 so its spin network
is made of the subnetwork of Eq. 4.2.27 containing bra chevrons for Schwinger spaces 1, 2,
4′, and 5,

〈a2| = • •
3

1

2 4′

5

∈ H∗124′5, (4.2.31)

while the dual of the b-state is the remaining 4j-intertwiner network and thus the b-state is

|b2〉 = • •6

4

2′ 1′

5′

∈ H1′2′45′ . (4.2.32)

In terms of the normalized butterfly states defined by Eqs. 4.1.9 and 4.1.10 the a- and b-states
are

〈a2| =
(−1)−j1+j2+j4−j5
√

2j3 + 1
〈B(12)4′5, j3|, (4.2.33)

|b2〉 =
(−1)2j2

√
2j6 + 1

|B1′(2′4)5′ , j6〉, (4.2.34)

The β-state is formed by attaching the four 2j-nodes to the b-state of Eq. 4.2.32. Fol-
lowing the rules for converting kets into bras established in Aquilanti et al [1], the β state is
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〈β2| = (−1)2j4 • •64

4′

2′

2

1′

1

5′

5

= (−1)2j4 • •6
4′

2 1

5

∈ H1′2′45′ , (4.2.35)

where the phase of (−1)2j4 is used to invert the orientation of the stub for the 2j-intertwiner
: S4 → S∗4′ in Eq. 4.2.25. Thus the β-state is

〈β2| =
(−1)2j2+2j4

√
2j6 + 1

|B1(24′)5, j6〉 ∈ H124′5. (4.2.36)

The target space model in the second remodel is formed from the inner product of the
a- and β-states,

{
j1 j2 j3

j4 j5 j6

}
= (−1)2j4 •

•

••

1

2

3

4′

5

6

. (4.2.37)

Since this model is interpreted as an inner product between states in the dual space H124′5

we call it the “dual 4j-model,”

“Dual 4j-Model”: tr
(
(〈a2|)†〈β2|

)
= N4〈B1(24′)5, j6|B(12)4′5, j3〉, (4.2.38)

where N4 is the prefactor

N4 = (−1)2s 1√
2j3 + 1

√
2j6 + 1

. (4.2.39)

The dual inner product model of the dual 4j-model is the standard 4j-model treated, for
example, in Aquilanti et al [1].

The states of the second remodel of the 6j-symbol are summarized in Table 4.3 and the
various inner product models of the 6j-symbol are presented in Table 4.4.

4.3 Remodeling Geometries of the 6j-Symbol

In this section we construct the remodeling geometries for the two inner product remodelings
of the 6j-symbol. First in Section 4.3.1 we set up the phase spaces and Lagrangian manifolds
that occur in the remodeling geometries and then in Section 4.3.2 show how the transport
procedure is used to create the butterfly manifolds of the 8j- and 4j-models. With the
remodeling geometries set up, in Section 4.3.3 we describe the stationary phase sets which
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State Space Components Group

|b2〉 H1′2′45′ 1 Butterfly Ket U(1)5×SU(2)

〈ab2| H∗8j 2 Butterfly Bras (U(1)5×SU(2))2

〈M2| H∗8j 4 Diangle Bras (U(1)×SU(2))4

〈a2| H∗124′5 1 Butterfly Bra U(1)5×SU(2)

〈β2| H∗124′5 1 Butterfly Bra U(1)5×SU(2)

Table 4.3: States in the second remodeling algebra for the 6j-symbol.

Name Space Remodel Interpretation Inner Product

12j-Model H12j First Product Space Model 〈ab1|M1〉
8j-Model H8j First Target Space Model 〈a1|β1〉

Dual 8j-Model H∗8j
First Dual Target Space Model tr

(
(〈β1|)†〈a1|

)
Second Product Space Model tr

(
(〈ab2|)†〈M2|

)
Dual 4j-Model H∗124′5 Second Target Space Model tr

(
(〈a2|)†〈β2|

)
4j-Model H124′5 Second Dual Target Space Model 〈β2|a2〉

Table 4.4: Summary of the inner product models of the 6j-symbol.

will be needed for the stationary phase approximation of the various inner product models.
Finally, in Section 4.3.4 a symplectic reduction is carried out in the 4j-model to create
the one-degree-of-freedom phase space on which the amplitude determinant is most easily
computed.

4.3.1 Phase Spaces and Lagrangian Manifolds

As in Section 3.2.1, each of the Hilbert spaces S in the remodeling algebra corresponds
semiclassically to a copy of the Schwinger phase space Σ and thus the phase spaces in the
remodeling geometries for the 6j-symbol are products of Schwinger phase spaces or their
duals. The product, source, and target phase spaces for the first remodel are labeled Φ12j,
Φ∗33′66′ , and Φ8j, respectively while the product, source, and target phase spaces for the
second remodel are labeled Φ∗8j, Φ1′2′45′ , and Φ∗124′5. The dual map G8j : Φ8j → Φ∗8j is used to
map the Lagrangian manifolds for the 8j-model of the first remodel to the relevant manifolds
of the dual 8j-model of the second remodel. Similarly, we introduce the 4j-phase space Φ124′5

and the dual map G−1
4j : Φ∗124′5 → Φ124′5 to map the manifolds from the dual 4j-model of the

second remodel to the manifolds described in the standard 4j-model of Aquilanti et al [1].
Figure 4.3.1 shows the phase spaces in the two remodeling geometries and the relevant

maps between these spaces. Subscripts on the two dual maps G−1 and G′ between the
source and dual source phase spaces of the first and second remodels, respectively, have been
omitted because they are bulky and we will not be using these maps extensively in the rest
of this chapter. Table 4.5 lists the phase spaces, their roles in the remodeling geometries,
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Φ8j Φ12j

Φ33′66′ Φ∗33′66′

π8joo

π33′66′

��
G−1
oo

Φ124′5 Φ∗124′5 Φ∗8j

Φ∗1′2′45′ Φ1′2′45′

π4joo

π1′2′45′

��
G′oo

G8joo
G−1

4joo

Figure 4.3.1: Phase spaces and the maps between them in the remodeling geometries for the
6j-symbol.

First Remodel Second Remodel

Name Phase Space Dimension Phase Space Dimension

Source Space Φ∗33′66′ 16 Φ1′2′45′ 16

Dual Source Space Φ33′66′ 16 Φ∗1′2′45′ 16
Target Space Φ8j 32 Φ∗124′5 16

Product Space Φ12j 48 Φ∗8j 32

Table 4.5: Phase spaces in the remodeling geometries for the 6j-symbol.

and their dimensions.
Each of the states in the remodeling algebras for the 6j-symbol are tensor products of

diangle, triangle, and butterfly states and thus the Lagrangian manifolds that support the
semiclassical approximations of these states are simply Cartesian products of the diangle,
triangle, and butterfly manifolds described in Section 4.1.

For example, the a-manifold in the first remodel algebra is the product of four diangle
manifolds since |a1〉 is proportional to the tensor product of four diangle states,

La,1 = LK1 × LK2 × LK4 × LK5, (4.3.1)

where LKr is the submanifold of the 2j-phase space Σr×Σr′ defined by the level set conditions
in Eq. 4.1.3 and whose topology and volume is given by Eq. 4.1.4. The rest of the states
from Sections 4.2.2 and 4.2.3 are translated in a similar manner, with the properties of
the triangle manifolds described by Eqs. 3.2.7 and 3.2.8 and the properties of the butterfly
manifolds described by Eqs. 4.1.11, 4.1.13, and 4.1.14.

Table 4.6 summarizes the Lagrangian manifolds that occur in the remodeling geometries
of the 6j-symbol.

4.3.2 Transporting Manifolds

Now we briefly demonstrate how the transport procedure of Section 2.2.2 applies in the two
remodel geometries. Rather than use the full machinery of Section 2.4 we will be able to
illustrate the transport using an intuitive analysis of the level sets involved.

In the first remodel geometry, the two-diangle manifold Lb,1 is transported through the
four-triangle manifold LM,1 to become the two-butterfly manifold Lβ,1. The inverse image
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Manifold
Phase
Space

Momentum Map
Components

Topology Volume

Lb,1 Φ∗33′66′ Ir,Jrr′ r = 3, 6 (LK)2 212π6

LM,1 Φ12j
I1 · · · I6
I1′ · · · I6′

J123,J1′5′6,J2′6′4,J3′4′5 (LW )4 236π20

Lab,1 Φ12j Ir,Jrr′ r = 1 · · · 6 (LK)6 236π18

La,1 Φ8j Ir,Jrr′ r = 1, 2, 4, 5 (LK)4 224π12

LM,2 Φ∗8j
Lβ,1 Φ8j I1, I2, I4, I5

I1′ , I2′ , I4′ , I5′
|J12| , |J2′4| ,J124′5,J1′2′45′ (LB)2 224π14

Lab,2 Φ∗8j

Lb,2 Φ1′2′45′ I1′ , I2′ , I4, I5′ , |J2′4| ,J1′2′45′ LB 212π7

La,2 Φ∗124′5 I1, I2, I4′ , I5, |J12| ,J124′5 LB 212π7

Lβ,2 Φ∗124′5 I1, I2, I4′ , I5, |J24′ | ,J124′5 LB 212π7

Table 4.6: Topologies and volumes of the Lagrangian manifolds that occur in the remodeling
geometries of the 6j-symbol.

π−1
33′66′(Lb̄,1) is a co-dimension 8 co-isotropic manifold in the 12j-phase space,

π−1
33′66′(Lb̄,1) =

(
I3

J3

I6

J6

J33′

0
J66′

0

)
⊂ Φ12j. (4.3.2)

Recall that this pair of diangle conditions also implies the condition I3′ = J3 and I6′ = J6

on the manifold. The intersection of this inverse image shares a U(1)4 symmetry group
with the M -manifold LM,1, generated by momentum map components I3, I3′ , I6, and I6′ .
Therefore the intersection manifold I1 ≡ π−1

33′66′(Lb̄,1)∩LM,1 has co-dimension 24+8−4 = 28
and dimension 48 − 28 = 20. The group orbits of this symmetry group are purely vertical
over Φ8j so the projection onto the target space will be 16-dimensional, as expected. The
intersection may be written as the level set

I1 =

(
Ir
Jr

Ir′
Jr

J33′

0
J66′

0
J123

0
J1′5′6

0
J2′6′4

0
J3′4′5

0

)
⊂ Φ12j, (4.3.3)

where r = 1, · · · , 6. Note that the 30 conditions in Eq. 4.3.3 are not all independent.
Since the transported manifold will be 16-dimensional we need to construct sixteen level set
conditions in this list that only depend on the target space variables. The eight conditions
for Ir and Ir′ for r = 1, 2, 4, 5 make up half of this set. Next consider the combination J124′5.
This may be expressed in terms of the functions in Eq. 4.3.3 as J123−J33′+J3′4′5 and is thus
0 on I∞. Similarly, J1′2′45′ = J1′5′6−J66′ + J2′6′4 = 0. Finally, as in Section 3.2.3, conditions
J123 = 0 and I3 = J3 imply the condition J2

12 = J2
3 and thus |J12| = J3 and J2′6′4 = 0 and

I6 = J6 similarly implies |J2′4| = J6. Therefore the projection of I12 by π8j is the level set

TM,1(Lb,1) =

(
Ir
Jr

Ir′
Jr

|J12|
J3

|J2′4|
J6

J124′5

0
J1′2′45′

0

)
⊂ Φ8j. (4.3.4)
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for r = 1, 2, 4, 5. Comparing Eq. 4.3.4 with Eqs. 4.1.11 and 4.1.13 shows

TM,1(Lb,1) ∼= LB,12 × LB,2′4 ∼= Lβ,1, (4.3.5)

where LB,12 is the “ab”-coupled butterfly manifold of Φ124′5 and LB,2′4 is the “bc”-coupled
butterfly manifold of Φ1′2′45′ .

In the second remodel geometry, the butterfly manifold Lb,2 is transported through
the four-diangle M -manifold to become the butterfly manifold Lβ,2. The inverse image
π−1

1′2′45′(Lb̄,2) is a co-dimension 8 co-isotropic manifold in the dual 8j-phase space,

π−1
1′2′45′(Lb̄,2) =

(
I1′

J1

I2′

J2

I4

J4

I5′

J5

|J2′4|
J6

J1′2′45′

0

)
⊂ Φ∗8j. (4.3.6)

This inverse image shares a U(1)4 symmetry group with the M -manifold LM,2, generated
by momentum map components I1′ , I2′ , I4, and I5′ and thus the intersection manifold I2

between the inverse image and the map manifold has co-dimension 16 + 8 − 4 = 20 and
dimension 32 − 20 = 12. The group orbits of this symmetry group are purely vertical
over Φ∗124′5 so the projection onto the target space will be 8-dimensional, as expected. The
intersection may be written as the level set

I2 =

(
Ir
Jr

Ir′
Jr

|J2′4|
J6

Jrr′
0

J1′2′45′

0

)
⊂ Φ∗8j, (4.3.7)

where r = 1, 2, 4, 5. The four conditions on I1, I2, I4′ , and I5 only depend on target-space
variables and thus apply to the transported manifold. The conditions Jrr′ = 0 can be used
to exchange Jr with −Jr′ in functions |J2′4| and J1′2′45′ and thus the projection of I2 by
π124′5 is the level set

TM,2(Lb,2) =

(
I1

J1

I2

J2

I4′

J4

I5

J5

|J24′|
J6

J124′5

0

)
⊂ Φ∗124′5, (4.3.8)

which is precisely Lβ,2, the “bc”-coupled butterfly manifold of Φ∗124′5.

4.3.3 Stationary Phase Sets

Now we construct the stationary phase sets for the 12j- and 4j-models of the 6j-symbol.
We fix the six values Jr > 0 and treat all other variables as continuous. We also assume
that the parameters are in the classically allowed region which implies that at least one real
intersection point exists and that the polygon inequalities from Section 4.1.3 hold.

The stationary phase set I(12j) for the 12j-model is the intersection Lab,1 ∩ LM,1 and
is comprised of group orbits of the common symmetry group G12 shared by the groups
that generate Lab,1 and LM,1. As in Table 4.2, the product manifold is generated by the
group (U(1)× SU(2))6 and the map manifold is generated by the group (U(1)3 × SU(2))4.
The common symmetry group is U(1)12 × SU(2), a 15-dimensional group generated by the
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functions Ir, Ir′ , and JT,12 ≡
∑

r Jr + Jr′ , with r = 1, · · · , 6. Symplectic reduction by
this group yields the 18-dimensional phase space on which Roberts [2] computed a 9 × 9-
amplitude determinant in his analysis of the 6j-symbol. In this work we are only going to
use the 12j-model to find the action integral piece of the phase and so we are not concerned
with this symplectic reduction.

Combining the level set conditions for Lab,1 and LM,1 yields a set of level set conditions
for I(12j),

I(12j) =

(
Ir
Jr

Ir′
Jr

Jrr′
0

J123

0
J1′5′6

0
J2′6′4

0
J3′4′5

0

)
⊂ Φ12j, (4.3.9)

with r = 1, · · · , 6. In the 12j-angular momentum space Λ12j this is interpreted as the set of
twelve angular momentum vectors such that ordered triplets 123, 1′5′6, 2′6′4, and 3′4′5 may
be placed end-to-end to form triangles and such that each of the six pairs of primed and
unprimed vectors are equal and opposite (they form diangles). The diangle conditions may be
interpreted as ‘gluing’ the primed and unprimed edges of two triangles together. Each of the
six diangles glues a pair of edges together so that the four triangles and six diangles are the
four faces and six edges of a tetrahedron, as shown in Figure 4.3.2. The diangle and triangle
conditions are invariant under O(3) transformations. An explicit method for constructing a
tetrahedron from six known edge lengths which uses the singular value decomposition of a
Gram matrix was given in Appendix A of Littlejohn and Yu [76]. This method shows that
any constructible tetrahedron is unique (up to O(3) transformations) and therefore we may
conclude that I(12j) projected to angular momentum space consists of a single O(3) group
orbit. This orbit may be decomposed into two SO(3) group orbits related by time-reversal
(J 7→ −J). Unless the constructed tetrahedron is flat (in which case the volume of the
tetrahedron is zero) these two SO(3) group orbits are disjoint (no proper rotation will map a
tetrahedron to its time-reversed image). We label the two disconnected SO(3) group orbits
in angular momentum space Tet12±, where the sign specifies the sign of the tetrahedron’s
oriented volume, V = 1

6
J1 · (J2 × J4′).

The manifolds I
(12j)
± are U(1)12 bundles over Tet12± and are U(1)12×SU(2) group orbits

in Φ12j. This group is precisely the common symmetry group G12 introduced earlier. The

two manifolds I
(12j)
+ and I

(12j)
− are related by time-reversal and their union is the 12j-model

stationary phase set, I(12j) = I
(12j)
+ ∪ I(12j)

− . Let coordinates on G12 be (ψr, ψr′ , u), where
u ∈ SU(2). In these coordinates the isotropy subgroup on I(12j) consists of only one nontrivial
element, (2π, 2π,−1) and thus each of the two group orbits comprising the intersection
manifold have the topology

I
(12j)
±
∼=
U(1)12 × SU(2)

Z2

. (4.3.10)

If the lengths Jr are allowed to take on any value then situations may arise where the only
constructible tetrahedra are flat (V = 0). In this case the tetrahedron can be transformed
into the time-reversed tetrahedron by a proper rotation and the two disconnected pieces of
I(12j) merge into a single group orbit. However, this never occurs when all six lengths are
quantized and constrained so that all four of the triangle manifolds making up LM,1 exist
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Figure 4.3.2: A point on the stationary phase set I(12j) projected onto a set of twelve vectors
in R3 of lengths |Jr| = |Jr′ | = Jr (r = 1, · · · , 6). The vectors simultaneously obey the six
diangle conditions Jrr′ = 0 and the four triangle conditions J123 = J1′5′6 = J2′6′4 = J3′4′5 = 0.
Such a point defines a tetrahedron.

(which in part requires the sum of the three quantum numbers j for each triangle to be an
integer) [1].

Now we briefly turn to the stationary phase set in the 8j-model, which is the intersection
between the two manifolds La,1 and Lβ,1 and, by the results of Section 2.5.1, the projection
of I(12j) onto Φ8j. In the 8j-angular momentum space Λ8j this involves removing J3, J3′ ,
J6, and J6′ as independent variables and instead expressing them in terms of the other
eight angular momenta using the four triangle conditions in Eq. 4.3.9. We may consider
the intersection points as places where the four diangles that make up La,1 are used to glue
together the four primed and unprimed pairs of vectors on the border of the two butterfly
figures that make up Lβ,1, as shown in Figure 4.3.3.

Next we turn to the stationary phase set I(4j) for the 4j-model, which is the intersection
La,2 ∩ Lβ,2. This may also be considered the projection of I(8j) in the dual 8j-model onto
Φ124′5. It is comprised of group orbits of the common symmetry group G4 shared by the
groups that generate La,2 and Lab,2. As in Table 4.3, both a- and β-manifolds are generated
by the group U(1)5 × SU(2). Of the eight independent level set conditions that are needed
to specify a Lagrangian manifold in Φ124′5, La,2 and Lβ,2 share seven, specifying the contour
values of I1, I2, I4′ , I5, and J124′5. These momentum map components generate the common
symmetry group G4 = U(1)4 × SU(2). Symplectic reduction by this group yields the 2-
dimensional phase space ΦR

4j on which Aquilanti et al [1] computed the single Poisson bracket
necessary for the amplitude determinant in their analysis of the 6j-symbol.

Combining the level set conditions for La,2 and Lβ,2 yields a set of nine independent level
set conditions for I(12j),

I(4j) =

(
I1

J1

I2

J2

I4′

J4

I5

J5

J124′5

0
|J12|
J3

|J24′|
J6

)
⊂ Φ4j, (4.3.11)
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Figure 4.3.3: A point on the stationary phase set I(8j) projected onto a set of eight vectors
in R3 of lengths |Jr| = |Jr′| = Jr (r = 1, 2, 4, 5). The vectors simultaneously obey the four
diangle conditions Jrr′ = 0 for r = 1, 2, 4, 5 and two sets of butterfly conditions, J124′5 =
J1′2′45′ = 0, |J12| = J3, |J2′4| = J6. Such a point defines a tetrahedron.

In the 4j-angular momentum space Λ4j this is interpreted as the set of four angular momen-
tum vectors J1, J2, J4′ , and J5 of fixed lengths that close when put tip-to-tail and such that
in intermediate couplings J12 and J24′ also have fixed lengths. We may again interpret such
geometric figures as tetrahedra and, as in the 12j-model, the projection of the stationary
phase set onto Λ4j yields a pair of SO(3) group orbits Tet4± that are related by time-reversal.
The two orbits are labeled by the sign of the oriented volume V = 1

6
J1 · (J2 × J4′).

The manifolds I
(4j)
± are U(1)4 bundles over Tet4± and are G4 = U(1)4 × SU(2) group

orbits in Φ12j. The 4j-model stationary phase set I(4j) is the union of I
(4j)
+ and its time-

reversed image, I
(4j)
− . Let coordinates on G4 be (ψ1, ψ2, ψ4′ , ψ5, u), where u ∈ SU(2). In

these coordinates the isotropy subgroup on I(12j) consists of a single nontrivial element,
(2π, 2π, 2π, 2π,−1) and thus each of the two connected pieces of the intersection manifold
has the topology and volume

I
(4j)
±
∼=
U(1)4 × SU(2)

Z2

, V± =
1

2
(4π)4(16π2) = 211π6. (4.3.12)

4.3.4 Reduction of the 4j-Model

Finally, we consider the symplectic reduction of Φ12′45 by the common symmetry group G4 to
create the reduced 4j-phase space ΦR

4j. This phase space is where the amplitude determinant
and Maslov index for the 6j-symbol will be computed. The reduced space and the features
of the reduced 4j-model were derived and discussed in Aquilanti et al [1].

As usual we perform the symplectic reduction in stages. First we reduce by the U(1)4

subgroup generated by I1, I2, I4′ , and I5 to get the manifold (S2)4, the symplectic leaf in the
4j-angular momentum space Λ4j obtained by fixing the lengths of all four angular momentum
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vectors. The remaining SU(2) symmetry projects to an SO(3) symmetry on this reduced
space and so next we reduce by the SO(3) symmetry generated by J124′5 at the fixed point
value 0.

The first stage in this reduction is to form the level set of the momentum map in (S2)4,

LRZ ≡
(

J124′5

0

)
⊂ (S2)4 ⊂ Λ4j. (4.3.13)

The “Z” subscript is a mnemonic for “zero” and the inverse image of this level set under the
projection map of the first symplectic reduction is precisely the level set LZ ⊂ Φ124′5 from
Eq. 4.1.11. In this level set the four angular momentum vectors J1, J2, J4′ , and J5 can be
formed into a closed, four-sided, generically non-planar polygon. By adding in intermediate
angular momenta J12 and J24′ we see points on LRZ may all be represented as tetrahedra.
Since this level set is at a fixed point under the SO(3) action the group orbits generated
by J124′5 are entirely contained within LRZ and the reduced space is the “shape space” of
tetrahedra with four fixed edge lengths modulo SO(3) rotations. Such phase spaces seem to
have first appeared in the work of Kapovich and Millson [77, 78]. Any rotational invariant
associated with a tetrahedron, such as the Hamiltonians |J12| and |J24′ | which define the
reduced a- and β-manifolds, the dihedral angle between two faces, and the volume, is a
well-defined function on ΦR

4j.
The Hamiltonian |J12| generates the “flapping” motion about the j12-axis as described

in Section 4.1.3. The conjugate angle to J12 on angular momentum space is the 2π-periodic
angle φ12. This angle is related to the interior dihedral angle α12 about the edge J12 of
the tetrahedron. In this work we consider all interior dihedral angles α to lie in the range
0 ≤ α ≤ π. Thus if V is the oriented tetrahedral volume, φ12 = ±α12 when sgn V = ±1. Note
that the interior dihedral angles are all rotational invariants and thus well-defined functions
on the reduced space. Similar statements hold for the Hamiltonian |J24′|, with φ24′ = ∓α24′

for sgn V = ±1. By construction the a- and β-manifolds project onto (one-dimensional)
Lagrangian manifolds on the reduced space and are defined by

LRa,2 =

(
|J12|
J3

)
⊂ ΦR

4j, LRβ,2 =

(
|J24′ |
J6

)
⊂ ΦR

4j. (4.3.14)

The projection of the 4j-model stationary phase set I(4j) becomes a pair of points in ΦR
4j

which are related by time-reversal.
By allowing J3 or J6 to take on a continuum of values we may create a Lagrangian foliation

of ΦR
4j and thus when computing the Maslov index we may use a “|J24′|”-representation

on this reduced phase space. This foliation also allows the topology of the reduced space
to be determined. For a real tetrahedron to be constructible J3 must lie in the triangle-
allowed range |J1 − J2| ≤ J3 ≤ J1 + J2. On the interior of this range, varying φ12 creates
different tetrahedra and thus the group orbit generated by |J12| is a circle. However when
J3 saturates one of the inequalities then only a single tetrahedron (modulo proper rotations)
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is constructible and thus the group orbit generated by |J12| degenerates to a point. See, for
example, Figure 49 of Aquilanti et al [1]. Thus ΦR

4j must have the topology of a sphere,

ΦR
4j = (S2, d |J12| ∧ φ12). (4.3.15)

Note that (|J12| , φ12) are precisely the action-angle variables discovered by Kapovich and
Millson [77, 78]. A similar analysis holds for the Hamiltonian |J24′ | and the conjugate angle
φ24′ . It was noted in Aquilanti et al [1] that, given quantized values for all six lengths Jr,
the symplectic volume of ΦR

4j is 2πdim Z124′5. That is, the reduced manifold contains one
Planck cell of area 2π for each state in the space of 4j-intertwiners, as expected.

Another interesting function on ΦR
4j is the volume V . As in Eq. 4.1.15, we define the

volume on the level set LRZ ⊂ Λ4j as

V =
1

6
J1 · (J2 × J4′). (4.3.16)

Since this expression is rotationally invariant V may be projected to a function on ΦR
4j. In

this chapter we are only be concerned with this function insofar as it appears as part of a
Poisson bracket in the amplitude determinant. However, the volume itself may be considered
a Hamiltonian and the semiclassical version of a volume operator V̂ on the Hilbert space of
4j-intertwiners. Some works about this operator include Chakrabarti [79], Lèvi-Leblond and
Lèvi-Nahas [80], Ashtekar and Lewandowski [20], Major and Seifert [81], Carbone et al [82],
Neville [83], Brunneman and Thiemann [84], Brunneman and Rideout [85, 86], Ding and
Rovelli [87], and Bianchi and Haggard [88, 89], among others. The volume operator plays an
important role in loop quantum gravity, where the volume of a spatial region is determined
by spin network nodes with valence of four or higher, as described in Rovelli and Smolin
[19] and Thiemann [90]. These nodes may themselves be recoupled into the 4j-intertwiners
introduced earlier. Bianchi and Haggard [88] applied Bohr-Sommerfeld quantization to V
on a space similar to ΦR

4j and derived the semiclassical spectrum of the volume operator in
terms of complete elliptic integrals of the third kind and found the spectra to be remarkably
in agreement with the spectrum computed in loop quantum gravity.

4.4 Action Integrals in the 6j-Remodeling Geometry

Now we turn to the relative phase between the two disconnected group orbits that make
up the stationary phase set. As usual the relative phase consists of an action integral and
a correction due to the Maslov and signature indices. As shown in Section 2.5 the action
integrals are the same in models connected by a remodeling geometry, as are the combined
Maslov and signature indices. In Section 4.4.1 we construct a closed path between the
two pieces I

(12j)
+ and I

(12j)
− of the stationary phase set of the 12j-model and compute the

action integral. This is the calculation performed by Roberts [2]. The symmetry of the
12j-model allows for a very simple construction of the path in terms of Hamiltonian flows
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Figure 4.4.1: The closed path for computing the action integral in the 12j model. The path
starts at P on the intersection manifold I

(12j)
+ , traverses LM,1 to a point Q on I

(12j)
− , traverses

Lab,1 to a point P ′ on I
(12j)
+ on the same Hopt fiber over 12j-angular momentum space as P ,

and then finally closes the path by traversing the Hopf fiber in I
(12j)
+ back to P .

and the Ponzano-Regge phase [27], minus the Maslov correction, emerges naturally. Then
in Section 4.4.2 we review a similar calculation for the 4j-model which was performed in
Aquilanti et al [1]. We will see how the asymmetric treatment of the angular momenta
results in a more complicated path and thus highlight the advantages of working in a higher-
dimensional model when analyzing action integrals.

4.4.1 The Action Integral in the 12j-Model

The goal of this section is to compute the action integral part of the relative phase between
the two connected pieces I

(12j)
+ and I

(12j)
− of the stationary phase set in the 12j-model. We

start by constructing an appropriate closed path that starts on I
(12j)
+ , traverses LM,1 to I

(12j)
− ,

and then returns to the starting point along Lab,1. This path is sketched in Figure 4.4.1.

Let P be an arbitrary starting point on I
(12j)
+ . The twelve vectors Jr, Jr′ fit together

into a tetrahedron Tet+ of positive volume at point P , as in Figure 4.3.2. Let n123 be
the normal vector to the triangle formed by the ordered triplet of vectors (J1,J2,J3), with
similar definitions for n1′5′6, n2′6′4, and n3′4′5. It is convenient to define a map ∆ : {r, r′} →
{123, 1′5′6, 2′6′4, 3′4′5} from the twelve angular momentum indices to the four ordered triplets
that define the four triangles of LM,1 that picks out which of the four triplets the index belongs
to (so, for example, ∆(1) = 123 and ∆(1′) = 1′5′6).

The Hamiltonian vector fields associated with J∆(r) are tangent to LM,1 for all r, r′ so we

may generate the path from I
(12j)
+ to I

(12j)
− by flows under these Hamiltonians. In particular,

we take the path ΓM,1 to be the flow of the following Hamiltonian function

HM,1 ≡
∑

n∆(r)(P ) · Jr, (4.4.1)
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where the sum is over both primed and unprimed r. Written explicitly in terms of the
momentum map components of LM,1, this Hamiltonian is

n123(P ) · J123 + n1′5′6(P ) · J1′5′6 + n2′6′4(P ) · J2′6′4 + n3′4′5(P ) · J3′4′5. (4.4.2)

We define the start of the path to be ΓM,1(0) = P . Since n∆(r) is by definition perpendicular
to Jr a flow by π generates a time-reversal on all twelve angular momentum vectors and
thus we take the endpoint of the path to be Q ≡ ΓM,1(π) ∈ I(12j)

− . Explicitly, the spinors
and angular momentum vectors at Q are

zr(Q) = e−iπn∆(r)·σ/2zr(P ), (4.4.3)

Jr(Q) = R(n∆(r), π)Jr(P ) = −Jr(P ), (4.4.4)

where r runs over both primed and unprimed values. By Equation A.4.7 the action accu-
mulated along this path is ∫

ΓM,1

θ12 =
∑
r

(
n∆(r) · Jr

)
|P π = 0, (4.4.5)

where the sum evaluates to zero since J123 = J1′5′6 = J2′6′4 = J3′4′5 = 0 on LM,1.
Next, since the Hamiltonian vector fields associated with Jrr′ for r = 1, · · · , 6 are all

tangent to Lab,1 we may generate the path from Q ∈ I
(12j)
− back to I

(12j)
+ by flows under

these Hamiltonians. In particular, we take the path Γab,1 to be the flow of the following
Hamiltonian function

Hab,1 ≡
∑
r

n∆(r′)(P ) · Jrr′ . (4.4.6)

We define the start of the path to be Γab,1(0) = Q. Since n∆(r′)(P ) is perpendicular to Jr′(P )
and the angular momenta at Q are related to the angular momenta at P by time-reversal
n∆(r′)(P ) is perpendicular to Jr′(Q) . Moreover, on Lab,1 the six diangle conditions hold
so Jr = −Jr′ and thus n∆(r′) is also perpendicular to Jr(Q). Therefore the flow of Hab,1

by −π generates a time-reversal on all twelve angular momentum vectors and thus we take
the endpoint of the path to be P ′ ≡ Γab,1(−π) ∈ I(12j)

+ . Explicitly, the spinors and angular
momentum vectors at P ′ are(

zr
zr′

)
P ′

= e+iπn∆(r′)(P )·σ/2
(
zr
zr′

)
Q

, (4.4.7)(
Jr
Jr′

)
P ′

= R(n∆(r′)(P ),−π)

(
Jr
Jr′

)
P

= −
(

Jr
Jr′

)
Q

. (4.4.8)

By Equation A.4.7 the action accumulated along this path is∫
Γab,1

θ12 =
∑
r

(
n∆(r′)(P ) · Jrr′(Q)

)
π = 0, (4.4.9)
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Finally we close the loop by creating a path ΓI,1 ∈ I(12j)
+ from P ′ to P . The net result of

following ΓM,1 followed by Γab,1 leaves the primed spinors unaltered,

zr′(P
′) = e+iπn∆(r′)·σ/2e−iπn∆(r′)·σ/2zr′(P ) = zr′(P ). (4.4.10)

The unprimed spinors at P ′ are

zr(P
′) = e+iπn∆(r′)·σ/2e−iπn∆(r)·σ/2zr(P ). (4.4.11)

The rotation matrices by π can be simplified by noting that, given a unit vector a,

e±iπa·σ/2 = cos(π/2)± i sin(π/2)a · σ = ±ia · σ. (4.4.12)

Thus,
e+iπa·σ/2e−iπb·σ/2 = (a · σ)(b · σ) = a · b + i(a× b) · σ. (4.4.13)

For spinor zr, the unit vectors a and b are the normal vectors n∆(r) and n∆(r′), respectively.
Let ψr be the exterior dihedral angle of the two faces of the tetrahedron sharing edge Jr.
Then Eq. 4.4.11 reduces to

zr(P
′) = cos(ψr) + i sin(ψr)jr · σzr = e+iψrjr·σzr(P ) = e+iψrzr(P ), (4.4.14)

where jr is the unit vector for the unprimed angular momentum Jr at P . Thus we form
ΓI,1 by following the flows of each of the six Hamiltonians Ir by angle 2ψr. Note that these
Hamiltonians are components of the momentum map for the common symmetry group G12

and the Hamiltonian flow vectors are all tangent to I
(12j)
+ . Under these flows the primed

spinors are unaffected and the unprimed spinors transform as

zr(P
′) 7→ e−i(2ψr)/2zr(P

′) = e−iψre+iψrzr(P ) = zr(P ). (4.4.15)

By Equation A.4.4 the action accumulated along this path is∫
ΓI,1

θ =
∑
r

Ir(P )(2ψr) = 2
∑
r

(jr + 1/2)ψr. (4.4.16)

The total action integral in the 12j-model of the 6j-symbol is thus

S12 ≡
∫

ΓM,1+Γab,1+ΓI,1

θ = 2
∑
r

(jr + 1/2)ψr = 2Ψpr, (4.4.17)

where Ψpr is the Ponzano-Regge phase [27], defined as

Ψpr ≡
∑
r

(jr + 1/2)ψr. (4.4.18)

Note that the entirety of this phase came from the path that closes the loop. This fact was
exploited in Hedeman et al [51] to create a purely symplectic proof of the Schläfli identity
[91].
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4.4.2 The Action Integral in the 4j-Model

Now we construct the same phase in the 4j-model of the 6j-symbol to highlight the advan-
tages of using the more symmetric 12j-model to find the action integral. We choose to work
in the standard 4j-model (an inner product in H124′5), rather than the dual 4j-model (an
inner product in H∗124′5) that is the target space model of the second remodel because this
is the model considered by Aquilanti et al [1]. This will not affect our conclusions since the
path used to compute the phase in a given model is just the inverse of the path used in the
dual model.

The main difficulty in the 4j-model is in constructing an appropriate closed path that
starts on I

(4j)
+ , traverses La,2 to I

(4j)
− , and then returns to the starting point along Lβ,2.

Recall that La,2 is the butterfly manifold in LZ ⊂ Φ124′5 satisfying |J12| = J3 and Lβ,2 is the
manifold satisfying |J24′| = J6. We construct a path similar to the path used in Aquilanti et
al [1] except we choose to start on the piece of the stationary phase set where the oriented
tetrahedral volume is positive and we continue using the “symmetric” labeling of the angular
momenta.

Let P be an arbitrary starting point on I
(4j)
+ . The four vectors J1, J2, J4′ , and J5 and

the two “coupled” vectors J12 and J24′ form the six edges of a tetrahedron Tet+ of positive
volume at point P . Let αr be the interior dihedral angle between the two faces sharing edge
Jr for the tetrahedron Tet+ and let jr be the unit vectors for angular momenta Jr, with
r = 1, 2, 12, 4′, 5, 24′.

We may generate the path Γa,2 from I
(4j)
+ to I

(4j)
− along La,2 by following the flow of

|J12| = j12 · J12 to a point Q ∈ I
(4j)
− . We define the start of the path to be Γa,2(0) = P .

The time-reversed tetrahedron is characterized by the same dihedral angles as Tet+ so the
appropriate angle of evolution for this flow is, −2α12, which takes the conjugate angle φ12

from +α12 (since V > 0 at P ) to −α12 (since V < 0 at Q). Explicitly, the spinors and
angular momentum vectors at Q are

zr(Q) =

{
e+iα12j12·σzr(P ), r = 1, 2,
zr(P ), r = 4′, 5,

(4.4.19)

Jr(Q) =

{
R(j12,−2α12)Jr(P ), r = 1, 2,
Jr(P ), r = 4′, 5.

(4.4.20)

Already we see that we are generating a more complicated path since this flow does not bring
us cleanly to the time-reversed image of Tet+ but rather a tetrahedron related to Tet+ by
both time-reversal and an overall SO(3) rotation. By Equation A.4.7 the action accumulated
along this path is∫

Γa,2

θ4 =
∑
r=1,2

(j12 · Jr)|P (−α12) = −(j12 · J12)|P α12 = −J3α12. (4.4.21)

Since the tetrahedron at Q is related to the tetrahedron at P by a time-reversal (up to an
overall SO(3) rotation) and the Hamiltonian flow of |J12| leaves J4′ and J5 invariant, we
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may consider the net result of this rotation to be a reflection of all four angular momentum
vectors through the plane defined by J4′(P ) and J5(P ). This characterization of the rotation
will be needed to determine the proper angles needed to close the path later.

Next we generate the path Γβ,2 from Q back to I
(4j)
+ along Lβ,2 by following the flow of

|J24′ | = j24′ · J24′ . This flow rotates the “2− 4′ − 24′ wing” about the J24′(Q) axis. Let α24′

be the interior dihedral angle for edge J24′ and define P ′ to be the endpoint of this flow. As
with the J2

12 flow along La,2, the appropriate angle of evolution is −2α24′ , which takes the
conjugate angle φ24′ from +α24′ (since V < 0 at Q) to −α24′ (since V > 0 at P ′). Explicitly,
the spinors and angular momentum vectors at P ′ are

zr(P
′) =

{
e+iα24′ j̃24′ ·σzr(Q), r = 2, 4′,
zr(Q), r = 1, 5,

(4.4.22)

Jr(P
′) =

{
R(̃j24′ ,−2α24′)Jr(Q), r = 2, 4′,
Jr(Q), r = 1, 5,

(4.4.23)

where j̃24′ is the unit vector for J24′(Q). The action accumulated along this path is∫
Γβ,2

θ4 = (̃j24′ · J24′)|Q (−α24′) = −J6α24′ . (4.4.24)

We may again consider the net result of this rotation to be a reflection of all four angular
momenta, this time through the plane defined by J1(Q) and J5(Q).

Now we need to close the path by following flows along I
(4j)
+ . First we close the path

in the 4j-angular momentum space Λ4j along a path ΓI,2 which follows a global SO(3)
flow (generated by the SU(2) subgroup of the common symmetry group G4). To find the
appropriate axis and angle of rotation for the SU(2) path we treat the two rotations generated
by |J12| (P ) and |J24′ | (Q) as reflections and use the fact that the product of two reflections
is itself a rotation, following Aquilanti et al [1]. Let A(n) be a reflection through the plane
normal to n. Given planes with outward-pointing normals n and n′ and interior dihedral
angle α,

A(n)A(n′) = R

(
n× n′

sinα
, 2α

)
. (4.4.25)

The path from P to P ′ amounts to the product of reflections A(n15(Q)) and A(n4′5(P ))
acting on all four angular momentum vectors. The axis of rotation in Eq. 4.4.25 is thus

(J1(Q)× J5(Q))× (J4′(P )× J5(P )) ∝ −j5, (4.4.26)

where J5(Q) = J5(P ) and the negative sign is due to the negative volume of the tetrahedron
at Q. Since the two reflection planes contain the tetrahedron faces that share edge j5 the
appropriate interior dihedral angle to be used in Eq. 4.4.25 is α5. The tetrahedron at P ′

is thus the tetrahedron at P rotated about the j5 axis by angle −2α5. Thus the path ΓI,2
follows the flow of the Hamiltonian j5 · J124′5 by angle 2α5. Let P ′′ be the endpoint of this
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flow. By construction P and P ′′ lie on the same T 4 fiber over angular momentum space.
Explicitly, the spinors at P ′ are

zr(P
′′) = e−iα5j5·σzr(P

′), (4.4.27)

The action accumulated along this path is∫
ΓI,2

θ4 = (j5 · J124′5)|P ′ (−α5) = 0, (4.4.28)

since J124′5 = 0 on I
(4j)
+ .

Finally we close the path in Φ124′5 along a path ΓI′,2 which follows the flows generated
by Ir. To properly close the loops each of the products of SU(2) transformation matrices
in Eqs. 4.4.19, 4.4.22, and 4.4.27 must be combined and written as zr(P

′′) = eiθrjr·σ/2zr(P )
for some angles θr, in which case θr becomes the appropriate angle of evolution for the flow
of Ir. In Aquilanti et al [1] these angles were found using the Rodrigues-Hamilton formula
[92] and considering the paths traced out by individual angular momenta as the edges of a
spherical triangle to make the product of SO(3) rotations the identity and then determining
the Z2 homotopy class of the path in SU(2). After much work the appropriate evolution
angles θ1, θ2, θ4′ , and θ5 were determined to be −2α1 + 2π, −2α2, −2α4′ + 2π, and −2α5,
respectively. By Equation A.4.4 the action accumulated along this last bit of path is∫

ΓI′,2

θ =
∑
r

Ir(P
′′)(θr) = −2(J1α1 + J2α2 + J4α4′ + J5α5) + 2π(J1 + J4). (4.4.29)

The exterior dihedral angles ψr are given by π− αr. Treating α12 and α24′ as α3 and α6,
respectively, the total action integral around the path Γ2 = Γa,2 + Γβ,2 + ΓI,2 + ΓI′,2 for the
4j-model is therefore

S4 ≡
∮

Γ2

θ = 2
∑
r

Jrψr + 2π(J1 + J4) = 2Ψpr + 2π(J1 + J4). (4.4.30)

The final term must be an integer multiple of 2π for triangle-allowed values of the quantum
numbers jr and thus

S4 = S12 mod 2π. (4.4.31)

The reason the action integrals are only equal modulo 2π is because lifting the path Γ2 into
the 12j-phase space using the methods of Section 2.5.2 yields a different path than the one
described in Section 4.4.1. However, as discussed in Section 2.5.6 this difference in paths at
most contributes a difference of integer multiples of 2π, as demonstrated in Eq. 4.4.31.

Comparing the calculations for the action integral in the 12j-model and the 4j-model
it is clear that the symmetric treatment of the angular momenta in the 12j-model offers
many advantages over the asymmetric treatment of the 4j-model. For one, the entirety of
the action integral in the 12j-model is accumulated by flows along the common symmetry
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group orbits whereas the path in the 4j-model asymmetrically splits up the contributions to
the phase over all legs of the path. The asymmetric treatment makes a condensed analysis
inherently harder as well. In general the symmetric treatment of the larger models offers the
cleanest construction of the paths because the manifolds in these models will simply be the
products of triangle and diangle manifolds, as will be discussed in Section 5.1. In particular,
constructing a path to find the relative phase between two stationary phase points related
by time-reversal is very easy to implement on the manifolds of such a symmetric model.
Implementing time-reversal on smaller phase spaces where the Lagrangian manifolds are
more complicated is more involved. In this treatment, we did not even bother to connect
two time-reversed tetrahedra with our paths, only concerning ourselves with mapping to a
tetrahedron with the opposite signed volume.

4.5 Asymptotics of the 6j-Symbol

Now we are ready to compute the remaining pieces of the stationary phase approximation
for the 6j-symbol. We saw in Section 3.3.2 that the smaller dimensionality of the 2j-target
space models made the amplitude determinant easier to compute than in the 3j-product
space model of the 3j-symbol. This is even more apparent in the remodeling geometries of
the 6j-symbol, where the 9× 9 amplitude determinant computed by Roberts [2] in the 12j-
model simplifies to a single Poisson bracket in the 4j-model. Since we find the amplitude in
the 4j-model the appropriate semiclassical expression for the inner product 〈B1(24′)5|B(12)4′5〉
is, up to an overall phase,

〈B1(24′)5, j6|B(12)4′5, j3〉 ≈
(2π)(n4−s4)/2√

Va,2Vβ,2

∑
±

V±

∣∣∣Ω̃4j
±

∣∣∣1/2 eiϕ± , (4.5.1)

where V± was defined in Eq. 4.3.12, n4 = 8 is the number of degrees of freedom in Φ4j, and
s4 = 7 is the dimension of the common symmetry group G4. By Eq. 4.2.38 the 6j-symbol is
thus approximated in the 4j-model as{

j1 j2 j3

j4 j5 j6

}
≈ 1√

2j3 + 1
√

2j6 + 1

√
2π√

Va,2Vβ,2

∑
±

V±

∣∣∣Ω̃4j
±

∣∣∣1/2 eiϕ± . (4.5.2)

Plugging in the volumes from Table 4.6 and Eq. 4.3.12 and using 2jr + 1 = 2Jr yields{
j1 j2 j3

j4 j5 j6

}
≈ 1

2
√
J3J6

√
2π

∑
±

∣∣∣Ω̃4j
±

∣∣∣1/2 eiϕ± . (4.5.3)

In Section 4.5.1 we find the amplitude in the 4j-model. We already found the action
integral piece of the relative phase between I

(4j)
+ and I

(4j)
− for the 4j-model in Section 4.4.2,

though as we saw we could have confined that calculation to the 12j-model. In Section 4.5.2
we continue the calculation of the relative phase by computing the Maslov index using the
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method developed in Esterlis et al [55]. Finally, in Section 4.5.3 we compute the signature
index and put everything together to find the Ponzano-Regge formula for the asymptotics
of the 6j-symbol.

4.5.1 Computing the Amplitude in the 4j-Model

Consider the calculation of the amplitude determinant in the 12j-model. Initially, the ampli-
tude determinant is a 24× 24-singular matrix of Poisson brackets on Φ12j. Upon symplectic
reduction by the 15-dimensional common symmetry group G12 this becomes a non-singular
9×9 matrix of Poisson brackets on the 18-dimensional reduced phase space of the 12j-model.
Even though many entries of this matrix are zero, the computation, carried out by Roberts
[2], is computationally intense when compared to the calculation in the 4j-model. As seen
in Section 3.3.2 we get the same amplitude determinant (up to a factor that will be com-
pensated for by the volume factors in Eq. 4.5.1) in both models. Therefore, we just consider
the amplitude determinant in the 4j-model.

The amplitude of the 6j-symbol in the 4j-model is found by taking the determinant of
the appropriate matrix of Poisson brackets. As in Section 3.3.2 we need only consider the
projection of the manifolds La,2 and Lβ,2 of the 4j-model onto the reduced space ΦR

4j intro-
duced in Section 4.3.4. The reduced manifolds in ΦR

4j are the level sets of Hamiltonians |J12|
and |J24′|, as in Eq. 4.3.14. Since the reduced 4j-model is two-dimensional, the amplitude
determinant is given by a single Poisson bracket,

Ω̃4j
± = {|J24′|, |J12|}−1

± , (4.5.4)

where the subscript indicates on which of the two stationary phase points in the reduced
phase space the expression is to be evaluated. To compute this Poisson bracket we lift
the bracket into angular momentum space Λ4j, which is a Poisson manifold whose Poisson
bracket is given by

{f, g} =
∑
r

Jr ·
(
∂f

∂Jr
× ∂g

∂Jr

)
, (4.5.5)

where r = 1, 2, 4′, 5 and f and g are any functions on Λ4j. Therefore

{|J24′ |, |J12|} = J2 ·
(
∂|J2 + J4′ |

∂J2

× ∂|J1 + J2|
∂J2

)
. (4.5.6)

This evaluates to

{|J24′ |, |J12|} =
J2 · (J24′ × J12)

|J24′| |J12|
=

J2 · (J4′ × J1)

|J12| |J24′|
=

6V

|J12| |J24′ |
, (4.5.7)

where the numerator is 6V due to cyclic property of the scalar triple product. Note that
this volume function is a rotational invariant and thus projects to ΦR

4j. On the stationary
phase points J12 = J3 and J24 = J6 so

Ω̃4j
± = ± J3J6

6 |V |
, (4.5.8)
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where V = ± |V | on the projection of I
(4j)
± to ΦR

4j.
Plugging these results into Eq. 4.5.3 and pulling out an overall phase yields{

j1 j2 j3

j4 j5 j6

}
≈ 1

2

1
√
J3J6

√
2π

√
J3J6

6 |V |
∑
±

eiϕ± =
cos(∆ϕ/2)√

12π |V |
, (4.5.9)

where ∆ϕ is the sum of the action integral around the closed path in the 4j-model, Eq. 4.4.30,
and the Maslov and signature index corrections.

∆ϕ ≡ 2Ψpr − µ(Γ)
π

2
+ ∆σ

π

4
mod 2π. (4.5.10)

4.5.2 Computing the Maslov Index in the 4j-Model

We review here the method developed in Esterlis et al [55] for the computation of the Maslov
index applied to a one degree-of-freedom phase space Let H be a Hamiltonian and let L be
a level set of this Hamiltonian and let x define the representation. The caustics occur at
points on L where the function e ≡ {x,H} is zero. At a caustic we define functions u and
v (up to a scale factor) such that udx = −vdH. The Maslov index along a path on L that
follows the flow of H is given by

µ =
∑
i

sgn [u {e,H} v]i , (4.5.11)

where i indexes the caustic points encountered along the path.
Now we apply this method to the calculation of the Maslov index in the 4j-model of the

6j-symbol. We choose to work in the reduced 4j-phase space ΦR
4j and work in the |J24′|-

representation. Let ΓR2 be the projection of the path Γ2 ⊂ Φ4j from the 4j-model onto the
reduced phase space. The reduced space path is must simpler to construct than the full
path Γ2 since we do not need to concern ourselves with overall rotations or phases. The
path starts at the projection of I

(4j)
+ , follows the flow of |J12| along the reduced a-manifold

to the projection of I
(4j)
− , and then follows the flow of |J24′ | along the reduced β-manifold.

We denote the two legs of this path ΓRa,2 and ΓRβ,2. The reduced a- and β-manifolds were
defined in Eq. 4.3.14 by the level set conditions |J12| = J3 and |J24′| = J6, respectively.

Since LRβ,2 is one of the manifolds that defines the |J24′ |-representation there is no Maslov
contribution from ΓRβ,2. In particular, x = H = |J24′| so e = 0 (every point on ΓRβ,2 is a
caustic) and {e,H} = 0, so the argument of the sign function in Eq. 4.5.11 is uniformly
zero and thus µ = 0. For ΓRa,2 we still have x = |J24′ | but now H = |J12|. On the reduced
a-manifold e = {|J24′ |, |J12|}, which we determined in Eq. 4.5.7 to be 6V/ |J12| |J24′ |. The
caustics on LRa,2 are therefore points where V = 0, which corresponds to flat configurations
of the tetrahedron. Since the start and end points of ΓRa,2 are related by time-reversal and
the flat tetrahedra are related to their time-reversed image by a proper rotation ΓRa,2 crosses
a caustic exactly once. The entirety of the Maslov index for the 4j-model in the |J24′|-
representation, then, occurs at the single point where the path crosses a caustic on the
reduced a-manifold.
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To find u and v we need to satisfy ud |J24′ | = −vd |J12| at the caustic. We find u and v by
first finding a general differential relation between V , |J12|, and |J24′ | and then setting V = 0
at the caustic. First note that on ΦR

4j we have canonically conjugate pairs (|J24′ | ,−φ24′) and
(|J12| ,−φ12) and therefore, by Eq. 4.5.7 and definition of the Poisson bracket,

{|J24′ |, |J12|} = −d|J12|
dφ24′

= +
d|J24′ |
dφ12

=
6V

|J12| |J24′ |
. (4.5.12)

Next we find the Poisson brackets {V, |J12|} and {V, |J24′ |}. To do this we define the vectors
Ars ≡ Jr×Js and let Ars ≡ |Ars|, which is twice the area of the face spanned by Jr and Js.
By Eq. 4.5.5,

{V, |J12|} =
2∑
r=1

Jr ·
(
∂V

∂Jr
× ∂|J12|

∂Jr

)
= −A4′5 ·A12

6 |J12|
, (4.5.13)

where the second equality follows from J1 = −J2 − J4′ − J5 (valid on the level set LZ on
which the Poisson bracket is being evaluated), the properties of the scalar triple product,
and the definition of Ars. Since the planes defined by A12 and A4′5 intersect along J12,
A4′5 ·A12 = A12A4′5 cosψ12, where ψ12 = π − φ12 is the exterior dihedral angle about edge
J12. Therefore,

{V, |J12|} =
dV

dφ12

=
A12A4′5 cosφ12

6 |J12|
= {|J24′ |, |J12|}

∂V

∂|J24′ |
, (4.5.14)

where the last expression is a different way of expanding out the Poisson bracket. Combining
Eqs. 4.5.12 and 4.5.14, and performing a similar analysis on the bracket {V, |J24′ |} yields

∂V

∂|J24′ |
=
A12A4′5 |J24′| cosφ12

36V
,

∂V

∂|J12|
=
A24′A15 |J12| cosφ24′

36V
. (4.5.15)

Thus the sought-for differential relation between V , |J12|, and |J24′ | is

36V dV = A12A4′5 |J24′ | cosφ12d |J24′|+ A24′A15 |J12| cosφ24′d |J12| . (4.5.16)

At the caustic V = 0 and ud |J24′ |+ vd |J12| = 0 so Eq. 4.5.16 implies

u = A12A4′5 |J24′ | cosφ12, v = A24′A15 |J12| cosφ24′ . (4.5.17)

We may also use the above results to find

{e, |J12|}V=0 = {{|J24′ |, |J12|}, |J12|}V=0 =
A24′A15 cosφ24′

|J12|J2
24′

. (4.5.18)

Using Eqs. 4.5.17 and 4.5.18 in Eq. 4.5.11, then, gives the Maslov index for a path on
LRa,2 following the Hamiltonian flow of |J12| through a caustic

µ = sgn
A12A4′5A

2
24′A

2
15 cos2 φ24′ cosφ12

|J24′ |

∣∣∣∣
V=0

= sgn(cosφ12)|V=0. (4.5.19)
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The caustic condition V = 0 implies the tetrahedron is flat at the caustic points and thus
all dihedral angles are either 0 or π. Thus µ = +1 when φ12 = 0 and µ = −1 when φ12 = π.

As described in Section 4.4.2, the path ΓRa,2 follows the flow of |J12| through a negative
angle −2α12, which takes the angle φ12 through 0 from +α12 to −α12. Thus the path ΓRa,2
is more accurately described as following the Hamiltonian flow of − |J12|. By Eq. 4.5.19 the
Maslov index for the flow by |J12| as it passes through φ12 = 0 is +1 and thus the Maslov
index for the flow by − |J12| which defines ΓRa,2 is −1. We may conclude then that the total
Maslov index for the path ΓR2 is µ = −1.

4.5.3 The Asymptotic Expression for the 6j-Symbol

Finally, we turn our attention to the signature index. We wish to compute the signature
index σ at the two intersection points in ΦR

4j in the |J24′|-representation. As in Cappell,
Lee, and Miller [59] and Section C.5, we may express this signature index in terms of the
Lagrangian signature,

σ = σ(Λx,Λa,Λβ), (4.5.20)

where Λa and Λβ are the tangent planes to LRa,2 and LRβ,2 at the stationary phase points and
Λx is the plane tangent to the Lagrangian manifold in the Lagrangian foliation that defines
the representation. Since LRβ,2 is itself part of the representation-defining foliation Λx and Λβ

are equal and, due to the antisymmetry of the Lagrangian signature, Eq. 4.5.20 evaluates to
zero at both stationary phase points.

Plugging in the Maslov and signature indices into Eq. 4.5.10 yields a relative phase
∆ϕ = 2Ψpr + π/2. Thus the asymptotic expression for the 6j-symbol is, up to an overall
phase, {

j1 j2 j3

j4 j5 j6

}
≈ cos(Ψpr + π/4)√

12π |V |
, (4.5.21)

where Ψpr is the Ponzano-Regge phase given in Eq. 4.4.18. This is indeed the well-established
asymptotic formula for the 6j-symbol [27, 38, 42, 2, 1]. Note that we have routinely ignored
the contributions of overall phases in our calculations of the 6j-symbol. Since the 6j-symbol
is real the overall phase correction for Eq. 4.5.21 amounts to a sign ±1.

4.6 Summary

The remodeling of the 6j-symbol demonstrates many of the advantages of working with
different models. The pair of remodels that were used in the remodeling algebra generalizes
to the 3nj-symbols, with a maximally symmetric 6nj-model connected via two remodels to
a minimally-sized (n+ 2)j-model.

The manifolds in the symmetric model will all be products of diangle and triangle man-
ifolds and this simple geometry allows for the construction of particularly simple paths
between the stationary phase points. The action integrals are thus easy to compute in these
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models. In particular the only contribution to the action integrals will come from flows gen-
erated by the 6nj I maps on the phase space, and thus all action integrals take on the form of
an obvious generalization of the Ponzano-Regge phase. We saw that a similar action integral
for the 6j-symbol in the 4j-model was much messier to calculate since the flapping motion of
the butterfly manifolds also generates non-zero action integrals and thus the Ponzano-Regge
phase is asymmetrically split and is generated by a combination of I and |J| flows.

The semiclassical approximation in the (n+ 2)j-model has the advantage of taking place
in a phase space containing significantly fewer degrees of freedom than the symmetric model.
Moreover symplectic reduction of the model yields a reduced phase space with merely n− 1
degrees of freedom. This is the phase space model with the fewest dimensions and is thus ideal
for computing any quantity that involves a determinant, such as the amplitude or Maslov
phase. In the case of the 6j-symbol we are able to express the amplitude as a single Poisson
bracket and we were able to compute the Maslov index in a one degree-of-freedom context.
This has significant advantages over similar calculations in the larger symmetric model which
involve 9 × 9 determinants. These advantages are only increased in the other 3nj-symbols
with the reduced symmetric model involving 6n− 3 degrees of freedom in contrast with the
n− 1 degrees of freedom in the reduced (n+ 2)j-model.
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Chapter 5

Other Applications

Now that we have seen in detail how the various aspects of the remodeling of an inner
product apply to the 3j- and 6j-symbols we turn to other applications. First in Section 5.1
we consider the 3nj-symbols, which may be interpreted as recoupling coefficients for n + 1
angular momenta. As with the 6j-symbol we form three models, an (n+ 2)j-, a 2(n+ 2)j-,
and a 6nj-model, and connect them with two applications of an inner product remodeling.
In Section 5.2 we introduce SU(2) rotation operators into our spin networks. We call such
operators “g-insertions” since they involve adding a line carrying a group element g to our
spin networks. The g-inserted spin networks ultimately may be interpreted as the amplitudes
of loop quantum gravity. That is, we may treat spin network states in loop quantum gravity
as wavefunctionals on the space of connections. The action of a spin network state on a
connection will be equivalent to performing a g-insertion on all legs of the spin network.
Once the loop quantum gravity amplitudes are expressed in terms of spin networks they
may be subjected to remodeling, producing models in Schwinger Hilbert spaces as well as
models in the space of wavefunctions on the group manifold SU(2). Finally, in Section 5.3
we analyze how the remodeling geometry may be used to associate a Lagrangian manifold
in a certain product phase space to a co-isotropic manifold. This relationship enables us to
consider the quantization of co-isotropic manifolds.

5.1 3nj-Symbols (n ≥ 2)

We define k ≡ n+2 for the rest of this section. Let Zk be the space of kj-intertwiners. When
n = 1 (k = 3) this space is non-trivial iff the three irreps involved form a triangle-allowed
triplet, in which case the space Z3 of 3j-intertwiners is one-dimensional. When n = 2 and
the four irreps satisfy the polygon inequalities the space Z4 of 4j-intertwiners is non-trivial
and, in general, has a dimension greater than one. As we saw in Section 4, we may put
different bases on Z4, corresponding to different ways of coupling the four angular momenta
into an SU(2)-invariant. The 6j-symbol is then interpreted as the components for a unitary
change-of-basis in Z4. In general, we define the 3nj-symbols for n ≥ 2 which are interpreted
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as the components for a unitary change-of-basis for the space of (n+ 2)j-intertwiners Zn+2.
The 3nj-symbols have applications in molecular, atomic, and nuclear physics but our

primary interest in them comes from their applications to quantum gravity. Just as the
6j-symbol is the basic building block of the Ponzano-Regge model [27] for the state sum
in 3d-Euclidean quantum gravity, the 15j-symbol is the basic building block of models for
4d-Lorentzian gravity. The 15j-symbol appears, for example, in analogues of the Ponzano-
Regge and Turaev-Viro [29] models in 4d such as the Ooguri model [30] and the Archer [31,
32], Crane-Yetter [33], and Roberts [34] models which involve the q-deformed 15j-symbol.
Of particular note is the Barrett-Crane model [35] which generalizes these models to a
Lorentzian setting. The 15j-symbol enters because the amplitude is fundamentally a state
sum over four-simplices. The fifteen irrep labels represent the areas of the ten triangular
faces of the four-simplex as well as five recoupling irreps. The 15j-symbol has also recently
been used in loop quantum gravity and spin-foam models by Engle et al [36], Livine and
Speziale [93], and Freidel and Krasnow [37].

We start in Section 5.1.1 by introducing “k-valent nodes” into the spin network notation.
These nodes allow us to discuss general kj-intertwiners. With this notation we then proceed
to construct the myriad inner product models of the 3nj-symbols, paying special attention
to the 9j-symbol and the 15j-symbol. Then in Section 5.1.2 we construct the remodeling
algebras that link these inner product models together. Finally in Section 5.1.3 we construct
the remodeling geometries corresponding the the remodeling algebras and describe how the
Kapovich-Millson shape space [77, 78] emerges as a symplectic reduction of the “kj-model”
of the 3nj-symbol.

5.1.1 Inner Product Models of the 3nj-Symbol

Define k ≡ n+ 2 for this section. Given k-irrep labels j1, · · · jk, we may schematically write
a general state in Zk as

k

1

k

· ·
·
··

v
∈ Zk. (5.1.1)

We call such a spin network a “k-valent node.” Since the space of intertwiners Zk greater
than one-dimensional for k ≥ 4 (n ≥ 2) we need to label or “color” such nodes when they
occur to indicate which element of Zk the network represents. The coloring of the k-valent
node in spin network 5.1.1 is indicated by the label “v” to the left of the node.

One way of representing such a node is to expand it in a basis of recoupled angular
momenta, as we did with the “butterfly states” in Z4 in Section 4.1.3. In particular, consider
a trivalent spin network containing n trivalent nodes connected by n− 1 internal lines (each
carrying an irrep label) and n + 2 = k external lines (each carrying an irrep label) ending
in ket chevrons. The internal lines represent a definite coupling scheme in this network.
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Following terminology from Feynman diagrams we call such networks “tree-level networks”
since there are no internal “loops” or “bubbles.” A basis of Zk may be formed from any
tree-level network, with the individual basis states differing only by the irrep labels on the
n− 1 internal lines. For example, a general four-valent node may be written,

4

a

b c

d

v =
∑
ab

cab • •
ab

a

b c

d

, (5.1.2)

where v is a coloring of the four-valent intertwiner and we have expanded Z4 in the (ab)-
coupled basis of Eq. 4.1.9 and cab are the expansion coefficients.

The 3nj-symbol is fundamentally a matrix element of a transformation from one basis
in the space Zk of kj-intertwiners to another. The bases in question represent the different
recoupling schemes for the k angular momenta. We express any 3nj-symbol spin network as

“3nj-symbol” = k k

+3
1

+3
k

···

·

·
v1 v2

, (5.1.3)

where each of the two k-valent nodes stands for a specific tree-level network in Zk representing
a particular recoupling scheme. The colorings v1 and v2 label the recoupling schemes and
the irrep labels on the internal lines. The “3n” j labels of the 3nj-symbol are the n+2 irreps
1, · · · , k explicitly shown in Eq. 5.1.3 and the two sets of n − 1 irrep labels on the internal
lines of the expansion of the k-valent nodes into tree-level networks. For example, n = 2
gives the 6j-symbol. In the “coupled” labeling, we may express Eq. 4.0.1 as the four-valent
spin network

{
j1 j2 j12

j3 j4 j23

}
= 4 4

+3
1

+3
2

+3
3

+34
12 23

, (5.1.4)

where the four-valent nodes on the left and right represent the dual of the spin network in
Eq. 4.2.31 and the spin network in Eq. 4.2.35, respectively. The colorings “12” and “23” on
the nodes indicate the intermediate (hidden) couplings in the four-valent intertwiners.

By cutting the spin network in Eq. 5.1.3 down the middle we form an inner product in
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Zk representing the 3nj-symbol and thus we have a kj-model of the 3nj-symbol,

“kj-Model”: k

1

k

· ·
·
··

v1
, vs. k

1′

k′

··
·
· ·

v2
. (5.1.5)

where we are only schematically showing the bra and ket vectors that make up the inner
product model. Since this model is a pairing of a kj-intertwiner bra with a kj-intertwiner ket
we may also refer to Eq. 5.1.5 as a “kj-vs.-kj” model. When we talk about the 3nj-symbol
being the unitary change-of-basis components in Zk we are naturally talking about this kj-
model of the 3nj-symbol. This is the smallest Hilbert space model of the 3nj-symbol. In
the case of n = 2, this is the 4j-model of the 6j-symbol as defined in Eqs. 4.2.38 and 4.2.37.

Before cutting the spin network in Eq. 5.1.3 we may replace the arrows on all lines by
oriented stubs and use the convention that arrows come out of all trivalent (and higher)
nodes and go in to all stubs (which we may consider bivalent nodes). We may then create
another inner product model by separating the spin network into a set of k 2j-intertwiner
states (the k bivalent nodes) and two kj-intertwiner states (the two k-valent nodes) to create
a 2kj-model,

“2kj-Model”: 2× k

· ·
·
··
, vs. k × . (5.1.6)

We also refer to this model as an “kj-vs.-2j” model. In the case of n = 2, this is the 8j-model
of the 6j-symbol as defined in Eqs. 4.2.21 and 4.2.24.

Next we may expand out the spin network Eq. 5.1.3 into a spin network purely containing
tri- and bi-valent nodes and then cut the spin network along each leg leading out of a trivalent
node (and thus into a bivalent node). We then separate the spin network into two pieces,
a piece containing 2n 3j-intertwiner states (the 2n trivalent nodes) and a piece containing
3n 2j-intertwiner states (the 3n bivalent nodes). This model takes place in a space of 6n
angular momenta so it is a 6nj-model of the 3nj-symbol,

“6nj-Model”: 2n× • , vs. 3n× . (5.1.7)

We also refer to this model as a “3j-vs-2j” model. This is the largest Hilbert space model
that we will consider for a given 3nj-symbol. Note that this model treats all 6nj angular
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momenta on an equal footing and is thus the most symmetric model. In the case of n = 2,
this is the 12j-model of the 6j-symbol as defined in Eqs. 4.2.12 and 4.2.7.

The kj-, 2kj-, and 6nj-models are not the only models that may be formed. Let m 6= 2n
be a factor of 2n. Then we may form a 2n(m+2)

m
j-model of the 3nj symbol by splitting the

spin network into a set of 2n
m

(m + 2)j-intertwiner states and n(m+2)
m

2j-intertwiner states.
Note that m = n reproduces the 2kj-model of Eq. 5.1.6 and m = 1 reproduces the 6nj-model
of Eq. 5.1.7. Another interesting distinct case for n > 2 is m = 2, which is a 4nj-model
containing n 4j-intertwiner states and 2n 2j-intertwiner states. Thus we may always form a
“4j-vs.-2j” model of the 3nj-symbol,

“4nj-Model”: n× 4 , 2n× . (5.1.8)

One consequence of this construction is that we may insert resolutions of the identity in
different bases in Z4 to each of the 4j-intertwiner states in the 4nj-model and thus express
the 3nj-symbols as sums of products of n 6j-symbols [7, 8].

Consider for example the 9j-symbol (n = 3, k = 5),


j1 j2 j12

j3 j4 j34

j13 j24 j5

 = •

••

•

• •

12

1

3

4
24

5

34

2

13

, (5.1.9)

where we use a coupled, rather than symmetric, labeling and the convention that all lines have
arrows pointing away from the trivalent nodes and towards the stubs. In addition to the 5j-
model there are three relevant models of the 9j-symbol: m = 3 gives a 10j-model (a 5j-vs.-2j
model), m = 2 gives a 12j-model (a 4j-vs.-2j model), and m = 1 gives the symmetric 18j-
model (a 3j-vs.-2j-model). The spin networks for these models are sketched schematically
(without decorations such as irrep labels, stubs, arrows, or chevrons) in Figure 5.1.1.

As stated earlier, the four-valent spin network for 9j-symbol may be used to express the
9j-symbol as a sum over a triple product of 6j-symbols [66],

j1 j2 j12

j3 j4 j34

j13 j24 j5

 =
∑
J

(−1)2J
√

2J + 1

{
j1 j2 j12

j34 j5 J

}
{
j3 j4 j34

j2 J j24

}{
j13 j24 j5
J j1 j3

}
. (5.1.10)

Because of its central importance to 4d-Lorentzian gravity spin-foam models we also
mention here the various models of the 15j-symbol (n = 5). There are in fact five physically
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Figure 5.1.1: Spin network schematics for models of the 9j-symbol.

distinct types of 15j-symbol, which in Yutsis [7] are called the 15j-symbols of the first
through fifth kind. We also refer to these in this section as Type I through Type V. The
trivalent spin networks are sketched schematically (without decorations such as irrep labels,
stubs, arrows, or chevrons) in Figure 5.1.2(a) through (e). These may be cut as described
above to produce a 30j-model (m = 1 or 3j-vs.2j model). For each of the five types of
15j-symbol there is a single 30j-model. We may also recouple these networks into a spin
network containing a pair of seven-valent nodes. This spin network may be cut as described
above to produce the 7j- and 14j-models of the 15j-symbols. Note that there are may be
different 7j- and 14j-models for a given type of 15j-symbol depending on how the angular
momenta have been recoupled. All 7j- and 14j-models may be schematically represented
by the seven-valent spin network shown in Figure 5.1.2(j). Finally, we may couple pairs of
trivalent nodes together in the trivalent spin networks to produce four-valent spin networks.
There are four distinct types of four-valent spin networks that occur when the five types
of trivalent spin networks are coupled in this fashion. We label these in this section as
Types A through D. The four-valent spin networks that represent the various types of 15j-
symbol are shown in Figure 5.1.2(f) through (i). Cutting the four-valent spin networks as
described above yields various 20j-models. The 15j-symbol of the first kind (Type I) may
be recoupled to give all four types of four-valent spin networks and thus admits four distinct
20j-models. The 15j-symbol of the second kind (Type II) on the other hand can not be
recoupled to give the four-valent spin network of Type D thus admits only three distinct
20j-models (corresponding to the four-valent spin networks of Type A, B, and C). Similarly
the 15j-symbol of the fourth kind (Type IV) admits three 20j-models, corresponding to the
four-valent spin networks of Type B, C, and D. The 15j-symbol of the third kind (Type III)
only admits two distinct 20j-models, corresponding to the four-valent spin networks of Type
C and D. Finally, the 15j-symbol of the fifth kind (Type V) only admits a single 20j-model,
corresponding to the four-valent spin network of Type D.

Of particular importance to the Barrett-Crane model is the four-valent spin network
of Type D, as shown in Figure 5.1.2(i). We call this spin network the “four-simplex spin
network” since it is comprised of five four-valent nodes with each node connected to every
other node by an edge, just as the spin network for the 6j-symbol may be considered a
“three-simplex” or “tetrahedron spin network” since it is comprised of four three-valent nodes
with each node connected to every other node by an edge. The four-simplex spin network
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Figure 5.1.2: Spin network schematics for the various types of 15j-symbol.

represents the “Riemannian 10j-symbol” (Barrett and Crane [35], Barrett [94], Barrett and
Williams [95], Baez and Christensen [96], Christensen and Egan [97], Baez et al [49], Freidel
and Louapre [50], Barrett and Steele [98]). The ten irrep values (one for each of the ten
lines connecting two four-valent nodes) physically represent the areas of the ten triangular
faces in the four-simplex. Note that five additional colorings are needed for each of the five
four-valent nodes in the 10j-spin network. If the four-valent nodes are allowed to represent
arbitrary elements of the space of 4j-intertwiners then this network may be expanded into
a basis of 15j-symbols of the first, third, fourth, or fifth kind (but not the second kind). For
example, Baez and Christensen [96] use an expansion of the four-simplex spin network into
15j-symbols of the first kind in order to prove the positivity of the 10j-symbol.

5.1.2 Remodeling Algebras for the 3nj-Symbols

Just as we connected the symmetric 12j-model of the 6j-symbol with the small 4j-model
of the 6j-symbol in Section 4.2 we may connect the symmetric 6nj-model to the small kj-
model of the 3nj symbol via two applications of the remodeling of an inner product. The
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Figure 5.1.3: Schematic of the spaces and states in the remodeling algebras for the 3nj-
symbols.

first remodel connects the symmetric 6nj-model (represented schematically by a trivalent
spin network) to an intermediate 2kj-model (represented schematically by a k-valent spin
network). The product space inner product serves as the 6nj-model in this case and the
target space inner product serves as the 2kj-model. Note that to set up such a remodeling
algebra we need to commit to a particular coupling scheme for the two kj-intertwiner states
that appear in the 2kj-model.

The second remodel connects the “dual 2kj-model” with the “dual kj-model” (also rep-
resented schematically by a trivalent spin network). The dual inner product models are used
here for the same reason they were used in the 6j-symbol, as will be discussed below. The
dual 2kj-model is the product space inner product and the target space inner product pro-
duces the dual kj-model. We may also perform a separate remodel to connect the 6nj-model
to the 4nj-model (represented schematically by a four-valent spin network). The 6nj-model
again serves as the product space model but the target-space model is now the 4nj-model
inner product. If n is even then the 4nj-model may itself serve as a product space model
for a remodel connecting it to the 2kj-model. However if n is odd no such direct remodel
exists. A schematic of the remodelings for the 3nj-symbol is shown in Figure 5.1.3. These
remodels are by no means an exhaustive list (in particular we may also connect the 6nj-

model to any of the 2n(m+2)
m

j-models and other remodels may exist between these models)
but rather a highlighting of the remodels that connect the models of most physical interest
and calculational use.

To construct the remodeling algebra for the first remodel we first begin with the standard
trivalent spin network with stubs inserted on each line and arrows pointing away from all
trivalent nodes and towards all stubs. The remodel is then constructed by severing all 6nj
legs of the trivalent spin network. This network can then be separated into a set of 2n
3j-intertwiners and 3n 2j-intertwiners. We separate these into three sets which act as the
b-, M -, and dual of the a-state for the first remodel. In particular the 2n 3j-intertwiners is
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a ket in the 6nj-Hilbert space H6nj and acts as the M -state |M1〉 for the first remodel,

|M1〉 =
2n⊗

∆=1

•
∆1

∆2 ∆3 ∈ H6nj. (5.1.11)

In Eq. 5.1.11 ∆ indexes the 2n trivalent nodes and ∆1, ∆2, and ∆3 are the three Hilbert
space labels for the three angular momenta coupled together at a given trivalent node. The
remaining 3n 2j-intertwiner states form the dual of the product state. Therefore the product
state in the first remodel is

|ab1〉 =
1′

1
· · ·

3n′

3n
∈ H6nj. (5.1.12)

The 6nj-model of the 3nj-symbol is then the inner product of the ab-state with the M -state,

“6nj-Model”: 〈ab1|M1〉. (5.1.13)

Note that this model is the product space model for both the first remodel and the “four-
valent remodel” referred to in Figure 5.1.3.

The a- and b-states for the first remodel are found by splitting the product state spin
network into two subnetworks. The a-state is an element of the target space H2kj of the first
remodel so its spin network is made of the subnetwork of Eq. 5.1.12 containing ket chevrons
for the set of primed and unprimed Schwinger spaces for the k irrep labels that appear in
the 2kj-model under consideration.

|a1〉 =
r′1

r
· · ·

r′k

rk
∈ H2kj. (5.1.14)

The dual of the b-state is then the remaining pieces of the spin network,

|b1〉 =
⊗

r 6=r1,··· ,rk

r′

r
∈ H4(n−1)j. (5.1.15)

Note that since k ≡ n+ 2, the source space in the first remodel contains 6n− 2k = 4(n− 1)
copies of the dual Schwinger Hilbert space.

The M -state in the first remodel acts as a map : H∗4(n−1)j → H6nj. In particular, the 2n
3j-networks in Eq. 5.1.11 can be broken up into two set of n 3j-networks and each of these
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sets acts as a map from a 2(n− 1)j-dual Schwinger Hilbert space to a kj-Hilbert space. The
b-state itself contains two pairs of (n − 1) 2j-intertwiners which are used to couple the two
sets of n trivalent nodes into a pair of kj-intertwiners and the 2j-intertwiners in the b-state
become the internal lines of these intertwiners. Thus the β-state of the first remodel is

|β1〉 = k

1

k

· ·
·
··

v1
k

1′

k′

· ·
·
··

v2
∈ H2kj, (5.1.16)

where v1 and v2 represent the coloring of the kj-nodes. The target space model is thus the
2kj-model of the 3nj-symbol,

“2kj-Model”: 〈a1|β1〉. (5.1.17)

Construction of the second remodeling algebra takes the dual of the 2kj-target space
model of the first remodel as the product space and thus is an inner product in the dual
space H∗2kj with |β1〉 now acting as the dual of the product state 〈ab2| of the second remodel
and 〈a1| acting as the M -state 〈M2| of the second remodel,

“Dual 2kj-Model”: 〈M2|ab12〉 = 〈a1|β1〉. (5.1.18)

The map state in the second remodel is thus the set of k 2j-intertwiner bras,

〈M2| =
r′1

r1

· · ·
r′k

rk

∈ H∗2kj, (5.1.19)

where the ‘2’ subscript in 〈M2| is used to highlight that this is the map state of the second
remodel. In particular, we treat 〈M2| as a map : Hkj′ → H∗kj, where Hkj and Hkj′ are
kj-Hilbert spaces for two different sets of k angular momenta. The product state is just the
dual of the β-state of the first remodel,

〈ab2| = k

1

k

··
·
· ·

v1
k

1′

k′

··
·
· ·

v2
∈ H∗2kj, (5.1.20)
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First Remodel Second Remodel

State
Hilbert
Space

Component
States

Hilbert
Space

Component
States

b-state H∗4(n−1)j 2(n− 1)× 2j Hkj′ 1× kj
ab-state H6nj 3n× 2j H∗kj′ 2× kj
M -state H6nj 2n× 3j H∗kj′ k × 2j

a-state H2kj k × 2j H∗kj′ 1× kj
β-state H2kj 2× kj H∗kj′ 1× kj

Table 5.1: States in the two remodeling algebras for the 3nj-symbols.

The a-state is a kj-intertwiner bra in the second remodel target space H∗kj while the
b-state is a kj-intertwiner ket in the second remodel source space Hkj′ ,

〈a2| = k

1

k

··
·
· ·

v1
∈ H∗kj, |b2〉 = k

1′

k′

· ·
·
··

v2
∈ Hkj′ . (5.1.21)

The β-state is formed by attaching the k 2j-intertwiners of the M -state to the b-state which,
following the rules for converting kets into bras established in Aquilanti et al [1], is another
kj-intertwiner bra in H∗kj,

〈β2| = k

1

k

····· v2
= k

1

k

··
·
· ·

v2
∈ H∗kj, (5.1.22)

The target space model for the second remodel is thus the dual of the kj-model of the
3nj-symbol,

“Dual kj-Model”: 〈β2|a2〉. (5.1.23)

The states of the two remodels connecting the 6nj-model to the kj-model of the 3nj-
symbol are summarized in Table 5.1.

Note that in the “four-valent remodel” shown in Figure 5.1.3 the product space and
M - and ab-states are the same since the 6nj-model is the product space model for both
the first remodel and the four-valent remodel. The difference in the case of the four-valent
remodel is that the M -state is now interpreted as a map : H∗2nj → H4nj. The a and b states
are again collections of 2j-intertwiners but now the b-state only consists of n 2j-intertwiner
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bras rather than 2(n − 1) as in the first remodel. The map M acts as n versions of a map
: H∗2j → H4j and the action is to map a 2j-intertwiner bra into a 4j-intertwiner ket as
described in Section 4.2.2.

5.1.3 Remodeling Geometries for the 3nj-Symbols

As in Sections 3.2.1 and 4.3.1, each of the Hilbert spaces S in the remodeling algebra corre-
sponds semiclassically to a copy of the Schwinger phase space Σ and thus the phase spaces
in the remodeling geometries for the 3nj-symbol are products of Schwinger phase spaces or
their duals. The product, source, and target phase spaces for the first remodel are labeled
Φ6nj, Φ∗2(n−1)j, and Φ2kj, respectively while the product, source, and target phase spaces
for the second remodel are labeled Φ∗2kj, Φkj′ , and Φ∗kj. The dual map Gkj : Φkj → Φ∗kj is
used to map the Lagrangian manifolds for the kj-model of the first remodel to the relevant
manifolds of the dual kj-model of the second remodel. Similarly, we introduce the kj-phase
space Φkj and the dual map G−1

kj : Φ∗kj → Φkj to map the manifolds from the dual kj-model
of the second remodel to the manifolds of the regular kj-model.

Each of the states in the remodeling algebras are tensor products of intertwiner states
and thus the Lagrangian manifolds that support the semiclassical approximations of these
states are simply Cartesian products of the diangle, triangle, and butterfly manifolds de-
scribed in Section 4.1 as well as k-edged polygon manifolds that support the semiclassical
approximations of the kj-intertwiner states. In general these manifolds are the level sets of
the k conditions on the k outer edge lengths of the polygon (Ir = jr+1/2 for r = 1, · · · k), the
closure condition JT ≡

∑k
1 Jr = 0, as well as n−1 other conditions specified by the coloring

of the intertwiner state, such as the edge length |J12| for the k = 4 (butterfly) manifolds,

Lkj ⊂
(
I1

J1
· · · Ik

Jk

JT
0

)
⊂ Φkj. (5.1.24)

Let Lkj,1 and Lkj,2 be the two Lagrangian manifolds supporting the semiclassical approxi-
mations of the two kj-intertwiner states in the kj-model. The stationary phase set in this
case is the intersection Lkj,1 ∩ Lkj,2. By Eq. 5.1.24 this intersection is the union of group
orbits for the group G = U(1)k × SU(3) generated by Ir, r = 1, · · · k and JT . This is a
(k + 3)-dimensional group. Symplectic reduction by this group yields a reduced kj-phase
space ΦR

kj. This phase space is where the amplitude determinant and Maslov index for the
kj-symbol are easiest to compute. This reduction yields the Kapovich-Millson shape space
[77, 78] for a k-sided non-planar polygon. This symplectic reduction eliminates a total of
(k + 3) degrees of freedom from the 2k-degree of freedom phase space Φkj. The reduced
phase space therefore contains k− 3 or n− 1 degrees of freedom and dim ΦR

kj = 2(n− 1). As
a result, the amplitude for the 3nj-symbol may be written in terms of the determinant of
an (n− 1)× (n− 1) matrix of Poisson brackets. For example, in Section 4.5.1 the amplitude
determinant of the 6j-symbol (n = 2) was a single Poisson bracket. Similarly, in Haggard
and Littlejohn [45] the amplitude of the 9j-symbol (n = 3) was expressed in terms of a 2× 2
matrix of Poisson brackets.
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Φkj Φ∗kj Φ∗2kj Φ2kj Φ6nj Φ4nj
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Figure 5.1.4: Phase spaces and the maps between them in the remodeling geometries for the
3nj-symbol.

Model Phase Space Dimension

6nj-model Φ6nj 24n

4nj-model Φ4nj 16n

2kj-model Φ2kj 8k

Dual 2kj-model Φ∗2kj 8k

Dual kj-model Φ∗kj 4k

kj-model Φkj 4k

Reduced kj-model ΦRkj 2(n− 1)

Table 5.2: Phase spaces for models in the remodeling geometries of the 3nj-symbols.

The phase space for the 6nj-model has the largest dimensionality (24n) but treats all
6n angular momenta on an equal footing. Therefore this is the most symmetric model and
construction of the path and evaluation of the action integral should be easiest in this space.

Figure 5.1.4 shows the phase spaces in the two remodeling geometries and the relevant
maps between these spaces. Subscripts on the dual maps and projection maps have been
omitted. Table 5.2 lists the phase spaces, their roles in the remodeling geometries, and their
dimensions.

As we demonstrated in Chapter 4, the amplitude and Maslov contributions to the semi-
classical analysis of the 3nj-symbol are easiest to compute in the reduced kj-phase space
and the action integral is easiest to compute in the symmetric 6nj-phase space. For exam-
ple, Haggard and Littlejohn [45] used a symplectic reduction of the 5j-model to derive the
amplitude of the 9j-symbol and reported a Ponzano-Regge-like term for the action integral
that resulted from an analysis of the 18j-model. The derivation of this action integral follows
very closely the derivation from Section 4.4.1 and the analyses of Roberts [2] and Hedeman
et al [51] for the Ponzano-Regge phase in the 6j-symbol.

5.2 g-Insertions

As stated in Chapter 1, a spin network basis state of loop quantum gravity consists of a
decorated spin networks along with a specification of the knot class of the embedding of the
network into a three-dimensional spacelike slice of spacetime [17, 5]. The basis states can
be identified with “wavefunctionals” of the connection, maps from the space of connections
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to C [18]. Acting a basis state on the connection amounts to inserting an SU(2) rotation
operator on each edge of the spin network to represent the holonomy along the embedding
of that edge. We call the addition of these SU(2) rotation operators to a spin network edge
a “g-insertion”.

The SU(2) group action Û(g) : S → S is a linear map on the Schwinger Hilbert space
that subjects the states in S to a rotation. Following Stedman [8], we express the spin
network for Û(g) as

Û(g) =

g

. (5.2.1)

The dashed line represents the g-insertion and is oriented so that it is counterclockwise of the
bra chevron and clockwise of the ket chevron. Note that inserting the identity element e ∈
SU(2) yields the identity map. Generalizing the rules for Hermitian conjugation established
in Aquilanti et al [1], the spin network for Û †(g) and thus, by unitarity, Û(g−1), may be
expressed as,

Û †(g) =

g

=

g−1

= Û(g−1). (5.2.2)

Note that the spin networks in Eqs. 5.2.1 and 5.2.2 may also represent maps : S∗ → S∗ in
which case the group action on S∗ is represented by Û †(g) rather than Û(g). By the group
representation property Û(g)Û(h) = Û(gh), two consecutive g-insertions can be combined
to a single g-insertion,

g h

ks =

gh

,

g h

ks =

hg

. (5.2.3)

The components of the SU(2) rotation matrices in the standard angular momentum basis
form the D-matrices (also called the Wigner rotation matrices). In Section 5.2.1 we construct
a remodeling algebra which connects two models of the D-matrix, one which takes place in a
2j-Schwinger Hilbert space and one which takes place in a 1j-Schwinger Hilbert space. Then
in Section 5.2.2 we introduce a third model, which treats the D-matrix as a wavefunction on
the group manifold SU(2). Thus the third model takes place in the Hilbert space L2SU(2).
We construct a remodeling algebra connecting this third model with the 2j-model of the
D-matrix and identify an isomorphism between L2SU(2) and a subspace of S ⊗S∗. We also
explore the phase space T ∗SU(2) which contains the Lagrangian manifolds that support the
semiclassical approximation of states in L2SU(2). In Section 5.2.3 we discuss intertwiners in
the context of g-insertions. Finally, in Section 5.2.4 we discuss how the remodeling algebras
for the 3nj-symbols are modified to accommodate general g-inserted spin networks. We
conclude that section by discussing how the amplitudes in loop quantum gravity may be
interpreted as g-inserted spin networks.



CHAPTER 5. OTHER APPLICATIONS 156

5.2.1 Models of the D-Matrix

The D-matrices (or the Wigner rotation matrices) are the components of Û(g) with respect
to the standard angular momentum basis of S,

Dj
mm′(g) = 〈jm|Û(g)|jm′〉 =

g

j
m′ks∗m ks . (5.2.4)

We may consider the D-matrix as a g-inserted version of the inner product 〈jm|jm′〉. The
asymptotic formula for theD-matrices has been known for a long time (Brussard and Tolhoek
[99], Ponzano and Regge [27], Braun et al [100], Sokolovski and Connor [101], Littlejohn and
Yu [76]) but it is useful to see how the remodeling algebra applies to this matrix element to
elucidate of the geometrical issues that arise in its asymptotics.

We set up the remodeling algebra for the D-matrix by considering the matrix element in
Eq. 5.2.4. The remodeling algebra is formed by first cutting the spin network in Eq. 5.2.4
on both of the legs,

m′
j

∗m
j

g

j
. (5.2.5)

We make the choice in this spin network to place an irrep label on all three segments. The
operator in the middle segment is thus the projection of the rotation operator Û(g) onto the
carrier space Cj. We write this restriction Ûj(g) to distinguish it from the rotation operator
acting on the full Schwinger Hilbert space. This map serves as the M -state of the remodeling
algebra,

M̂ = Ûj(g) =

g

j
∈ S ⊗ S ′∗ (5.2.6)

We can just as well set up the remodeling algebra with the full rotation operator Û(g)
acting as the M -state. However, the choice of Ûj(g) has the advantage that the states in the
remodeling algebra and the Lagrangian manifolds in the remodeling geometry now share a
larger common symmetry group. We take the source Hilbert space to be S ′ and the target
Hilbert space to be S, where the prime is used to distinguish between the two copies of the
Schwinger Hilbert space. The map Ûj(g) is an element of the product Hilbert space S ⊗S ′∗.
Note that the image of Ûj(g) is the carrier subspace Cj ⊂ S and the orthogonal compliment

of the kernel of Ûj(g) is the carrier subspace Cj ⊂ S ′.
The a- and b-states of this remodeling algebra are the standard basis kets |jm〉 ∈ S and

|jm′〉 ∈ S ′, respectively, and the product state is |jm〉〈jm′| ∈ S ⊗ S ′∗,

|a〉 =
j

m ∈ S; |b〉 =
j

m′ ∈ S ′. (5.2.7)

|a〉〈b| =
j

m
j

∗m′ ∈ S ⊗ S ′∗. (5.2.8)
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Note that |b〉 ∈ (ker Ûj(g))⊥.

Finally, the β-state is the map Ûj(g) acting on the b-state,

|β〉 = Ûj(g)|jm′〉 =

g

m′ks
j

∈ S. (5.2.9)

The β-state is a simultaneous eigenstate of Î and a component of Ĵ. We demonstrate thus
using the adjoint formula, which relates the action of the SU(2) rotation operators with the
adjoint representation generators Ĵ,

Û(g)Ĵ′Û †(g) = R−1(g)Ĵ : S → S, (5.2.10)

where R(g) is the 3 × 3 representation matrix of the group element g in the adjoint repre-
sentation on R3 and R(g)Ĵ = Rij(g)Ĵj. Since Û(g) : S ′ → S the conjugation of the source
space angular momentum operator is a rotated target space angular momentum operator.
Thus, by the invariance of the inner product under rotation and unitarity of the rotation
operators,

Û(g)(z · Ĵ′) = (R(g)z) · ĴÛ(g). (5.2.11)

Note that the operator Û(g) may be replaced by the restricted operator Ûj(g) in both
Eqs. 5.2.10 and 5.2.11 since the operator that defines the representation is a Casimir and
commutes with the rotation operators. Acting Ûj(g) on the eigenvalue equation z · Ĵ′|jm′〉 =
m′|jm′〉 for the b-state gives

(R(g)z) · ĴÛj(g)|jm′〉 = m′Ûj(g)|jm′〉. (5.2.12)

Define n ≡ R(g)z and let Ĵn ≡ n · Ĵ. Then we may write the β-state as the simultaneous
eigenstate

|β〉 = Ûj(g)|jm′〉 =

∣∣∣∣ Îj Ĵn
m′

〉
∈ S. (5.2.13)

This state Ûj(g) ∈ S ⊗ S ′ is the simultaneous eigenstate of operators Î and Ĵ− R(g)Ĵ′>

as we now show. First,
ÎÛj(g) = jÛj(g), (5.2.14)

as can be seen by acting both sides of the equation on an arbitrary bra from the right. Next,
recall that the operator Ĵ′> is the action of Ĵ′ on S ′∗ from the right. Consider Ĵ − R(g)Ĵ′>

acting on Ûj(g),

(Ĵ− R(g)Ĵ′>)(Ûj(g)) = ĴÛj(g)− R(g)Ûj(g)Ĵ′. (5.2.15)

By Eq. 5.2.10 Ûj(g)Ĵ′ = R(g−1)ĴÛj(g). Therefore

(Ĵ− R(g)Ĵ′>)(Ûj(g)) = 0. (5.2.16)
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The three components of Ĵ − R(g)Ĵ′> along with the operator Î form a complete set of
observables that defines Ûj(g), Note that Ûj(g) is also an eigenket of Î − Î ′> at eigenvalue

zero and an eigenket of Î ′> at eigenvalue j. These eigenvalue conditions are not independent
of the four in Eqs. 5.2.14 and 5.2.16, however.

The Lagrangian manifold LU that supports the semiclassical approximation to Ûj(g) is
the level set

LU =

(
I
J

J− R(g)J′

0

)
⊂ Σ × Σ ′∗. (5.2.17)

This manifold is also in the J level set of I ′ and the zero level set of I−I ′. In the remodeling
geometry connecting the 2j- and 1j-models of the D-matrix the manifold Lb is the level
set I ′ = J and J ′z = m′. The transport of this manifold through LU yields the level set
conditions I = J and n ·J = m′, precisely the manifold expected to support the semiclassical
approximation of the β-state Eq. 5.2.13.

5.2.2 L2SU(2) and T ∗SU(2)

This remodeling leads to two models of the D-matrix, a 2j-model in S ⊗ S ′ and a 1j-model
in S. We may however consider a third model which is related to “cutting” the spin network
in Eq. 5.2.4 along the dashed line of the g-insertion. That is, we may consider the D-
matrix Dj

mm′(g) for fixed values j, m, and m′ as a map : SU(2) → C in which case it is a
wavefunction on the group manifold SU(2). The inner product model then takes place in the
Hilbert spaceHSU(2) ≡ L2SU(2) of wavefunctions on SU(2). Just as a 1D-wavefunction ψ(x)
in the Hilbert space L2(R) is an inner product between the state |ψ〉 and the representation
ket |x〉 that specifies the value of x ∈ R we may express the “1g-model” of the D-matrix
as an inner product 〈g|Dj

mm′〉 where |g〉 is the representation ket that specifies the value of
g ∈ SU(2) and |Dj

mm′〉 is a ket in L2SU(2). This ket may be defined by its action on H∗SU(2),

|Dj
mm′〉 : H∗SU(2) → C : 〈g| 7→ Dj

mm′(g) = 〈jm|Ûj(g)|jm′〉. (5.2.18)

We may also write |Dj
mm′〉 as Dj

mm′(·) to emphasize that the D-matrix is the wavefunction
of |Dj

mm′〉 in HSU(2). We write this inner product model in the Dirac and spin network
notations as

Dj
mm′(g) = 〈g|Dj

mm′〉 =
j

m′ks∗m ks

g

j
, (5.2.19)

where the network for an HSU(2) ket contains a dashed line terminating in a ket chevron and
the network for a bra contains a dashed line terminating in a bra chevron.

In light of this “1g-model” we may construct a second remodeling algebra for the D-
matrix where the HSU(2) is the target space and hosts the 1g-model and S∗⊗S ′ is the source
space, which also hosts the dual of the 2j-model. The product space is thus HSU(2)⊗S⊗S ′∗
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Ûj(g)

vs.

|jm〉〈jm′|

“1g-Model”

|Dj
mm′〉
vs.

|g〉

“1g/2j-Model”

Ûj
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Figure 5.2.1: Schematic of the spaces and states in the remodeling algebras for the D-matrix.

and the M -state is the map Ûj : S∗ ⊗ S ′ → HSU(2) : |jm′〉〈jm| 7→ |Dj
mm′〉. Note that by

definition 〈g|Ûj = Ûj(g).
A schematic of the remodelings for the D-matrix is shown in Figure 5.2.1.
A similar remodeling algebra can be set up for the map Û † : HSU(2) → S ⊗ S ′∗ : |g〉 7→

Û(g). Note that we are no longer restricting to a given irrep label. The kernel of this map is
zero and thus orthogonal compliment of the kernel of this map is the full space HSU(2). The

image of this map is the zero eigenspace of Î − Î ′>. Thus the core isomorphism identifies
L2SU(2) with the zero eigenspace of Î − Î ′> in S ⊗ S∗.

The classical phase space associated with HSU(2) is the cotangent bundle T ∗SU(2). As
discussed in Hedeman et al [51], points on T ∗SU(2) may be written as pairs (J, g) or (g,J′),
where J and J′ are the momentum maps for the right- and left-translation actions of SU(2)
on itself, respectively (these are similar to the space and body coordinates of a rigid body).
The two choices of angular momenta J and J′ in the fiber over g are related by J = R(g)J′.

In Hedeman et al [51] we found that symplectic reduction of the 2j-phase space Σ×Σ ′∗ by
the U(1) group generated by I − I ′ yields a phase space that is isomorphic to the cotangent
bundle T 2SU(2) with the exception of the zero section, which is identified with a single
point. This same phase space arises in the theory of “symplectic implosion” [102]. A similar
reduction is performed in the analysis of “twisted geometries” by Freidel and Speziale [103]
in connection with the classical phase spaces associated with spin networks in loop quantum
gravity. As in Hedeman et al [51] we write this phase space minus the zero point as Q̇.
We may specify coordinates on Q̇ by the pair (J, g), which is the projection of the I − I ′
group orbit in Σ ×Σ ′ such that the projection of z onto angular momentum space is J and
z′ = g−1z. We may also use coordinates (g,J′), where the projection of z′ onto angular
momentum space is J′ and z = gz′. The core geometry associated with the map Û † thus
contains T ∗SU(2) as the source space and Σ × Σ ′∗//(I − I ′ = 0) as the reduced target
space. A point (J, g) in the source space is mapped by the core symplectomorphism to the
point (J, g) in Q̇. The symplectic structure of these spaces may be given by the symplectic
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potential, which we expressed in Hedeman et al [51] as

θ = iJ · tr(g†σdg) = −iJ′ · tr(gσdg†). (5.2.20)

5.2.3 g-Inserted Intertwiners

Recall that an intertwiner is a linear map between vector spaces that commutes with the
actions of SU(2) on the two spaces. Let Hkj =

⊗
Sr, r = 1, · · · k and let Zkj ⊂ Hkj be the

space of intertwiners : H∗kj → C. Since C is a carrier space for the j = 0 irrep of SU(2)
the intertwiner property implies that all elements of Zkj are SU(2) invariants. A rotation

by group element g ∈ SU(2) on Hkj is tensor product Û1(g) ⊗ · · · ⊗ Ûk(g), where Ûr(g) is
the SU(2) rotation operator acting only on Sr. We may therefore represent the intertwiner
property in spin network language by

k

1

k

··
·
··

v

BJ g

��

g

= k

1

k

· ·
·
··

v
∈ Zk. (5.2.21)

Applying this to the 2j-intertwiner yields

+3
j
ks

g

g

=
j

. (5.2.22)

Note that the orientations for both g-insertions are such that the dashed lines represent the
operator Û(g). Eq. 5.2.22 implies that we can “push” a g-insertion through a stub,

j
ks

g

= +3
j

g

= +3
j

g−1

, (5.2.23)

which can be seen by replacing the stub in Eq. 5.2.23 with the g-inserted stub network in
Eq. 5.2.22 (with group element g−1) and then using Eq. 5.2.2 and Eq. 5.2.3 to replace the
two g-insertions to the right of the stub with the identity. Note that in the first equality
of Eq. 5.2.23 pushing the g-insertion through the stub inverts the orientation of the dashed
line with respect to the external chevrons or internal arrows. Note that the g-insertions
in the first two spin networks of Eq. 5.2.23 are the representation matrices on S and S∗,
respectively. In fact, we may consider Eq. 5.2.23 to be the intertwiner property applied to
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the map K̂j : Cj → C∗j introduced in Section 3.1.4, K̂j ◦ Û(g) = Û †(g) ◦ K̂j, where Û(g)

and Û †(g) are the unitary representation operators for S and S∗, respectively. Eqs. 5.2.22
and 5.2.23 hold for the full intertwiner K̂ : S → S∗ as well as the intertwiner restricted to
the irrep carrier spaces.

Performing a g-insertion on a diangle state |Kab〉 ∈ Sa ⊗ Sb (as defined in Section 4.1.1)
yields a “bent diangle” state,

Ûa(g)|Kab〉 =

∣∣∣∣ Îaj Ĵa + R(g)Ĵb
0

〉
=

1√
2j + 1

b

a

g ∈ Sa⊗Sb, (5.2.24)

where the a subscript on the rotation operator indicates that it is only acting on the Sa piece
of Sa⊗Sb. Note that if we pushed the dashed line of the g-insertion to the other side of the
stub it would represent the conjugated operator Û †(g) rather than Û(g). Unless otherwise
noted all g-insertions in the remainder of this work will be oriented as in Eq. 5.2.1. We
have suppressed a downward-pointing arrow on the internal line between the stub and the
g-insertion since the orientation is clear from context. We will continue to suppress arrows
on internal lines when the orientation is clear by context. This state is a 0-eigenstate of
the operator Ĵa + R(g)Ĵb as can be seen from the considering |Kab〉 as a map : S∗b → S ′a
and Û(g) as a map : S ′a → Sa (so that Û(g) ∈ Sa ⊗ S ′∗a as before). Consider the map
(Ĵa + R(g)Ĵb)(Ûa(g)|Kab〉) acting on some arbitrary ψb ∈ Sb,[

(Ĵa + R(g)Ĵb)(Ûa(g)|Kab〉)
]

(〈ψb|) = 〈ψb|R(g)(Ĵ′a + Ĵb)|Kab〉, (5.2.25)

where we have used Ĵa(Û(g)) = R(g)Ĵ′>a (Û(g)). Since |Kab〉 is a 0-eigenstate of Ĵ′a + Ĵb
this expression is zero for all 〈ψb| and thus (Ĵa + R(g)Ĵb)(Ûa(g)|Kab〉) = 0. We write the
Hermitian conjugate of the bent diangle state as b

a

g


†

=
b

a

g
∈ S∗a⊗S∗b , (5.2.26)

where we have pushed the g-insertion through the stub so that the dashed line again has the
correct orientation to stand for the group action by g on S rather than S∗.

Applying Eq. 5.2.21 to the 3j-intertwiner yields

•
j1

j2

j3

g

g

g

= •
j1

j2

j3

, (5.2.27)
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where there is an implied arrow pointing away from the node on all three lines coming out of
the node. Eq. 5.2.27 implies that we can always “push” a g-insertion on one line connected
to a trivalent node onto the other two lines. In particular,

•
j1

j2

j3

g1

= •
j1

j2

j3

g−1

g−1

. (5.2.28)

If there is a g-insertion on all three legs of a 3j-intertwiner we may use Eq. 5.2.28 to eliminate
one of the group elements,

•
j1

j2

j3

g1

g2

g3

= •
j1

j2

j3
g2g
−1
1

g3g
−1
1

. (5.2.29)

Given a tree-level kj-intertwiner ket we may perform a g-insertion on each of the n − 1
internal lines. By Eq. 5.2.29 and the tree-structure of the spin network we may always
move the g-insertions on an internal line to the external lines. For example, consider the 4j-
intertwiner butterfly state in the ab-coupling scheme of Eq. 4.1.9 with a g-insertion performed
on the internal line,

• •
ab

a

b c

d
g

. (5.2.30)

We are again using the convention that all internal arrows are pointing away from trivalent
nodes and towards stubs and the placement and orientation of the g-insertion is chosen so
the g-insertion stands for the group action by g on S rather than S∗. The g-insertion may
be pushed through the trivalent node on the right which yields a g-insertion by g−1 on the
two external lines on the right. We may also push the g-insertion first through the stub by
using the second equality of Eq. 5.2.23 and then through the trivalent node on the left which
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yields a g-insertion by g on the two external lines on the left,

• •
ab

a

b c

d
g

= • •
ab

a

b
c

d
g−1

g−1

= • •
ab

a

b c

d

g

g

. (5.2.31)

A general g-inserted tree-level 4j-intertwiner may thus be written

• •
ab

a

b
c

d gd

gc

gb

ga

=⇒
(
Ir
Jr

|Jab|
jab

∑
r R(gr)Jr

0

)
⊂ Φ4j. (5.2.32)

where the level set conditions defining the Lagrangian manifold in the 4j phase space Φ4j

that supports the semiclassical approximation of the g-inserted 4j-intertwiner is given in the
expression on the right and r = a, b, c, d.

5.2.4 g-Inserted Spin Networks

We define a “g-inserted spin network” to be a closed spin network (of arbitrary valence)
where all stubs have been replaced by combinations of stubs and g-insertions. This is akin to
replacing all diangle states with “bent diangle” states. For example, consider the g-inserted
6j-symbol,

•

•

• •

1

1′

2

2′
3

3′

4 4′

5

5′6

6′

g1

g2

g3

g4

g5

g6 . (5.2.33)

This is a symmetric formulation since all six diangle bras are treated on an equal footing.
However we may also assign the g-insertions asymmetrically by pushing the g-insertion on
diangles ‘3’ and ‘6’ through the trivalent nodes. We make the replacements

g1 7→ g1; g2 7→ g2g
−1
6 ; g4 7→ g6g4g

−1
3 ; g5 7→ g3g5, (5.2.34)



CHAPTER 5. OTHER APPLICATIONS 164

“4j-Model”

4j-Intertwiner

vs.

g-inserted

4j-Intertwiner

“8j-Model”

4 Bent Diangles

vs.

2 4j-Intertwiners

“12j-Model”

4 Bent Diangles

and 2 Diangles

vs.

4 Triangle States

First

Remodel
ooSecond

Remodel
oo

Figure 5.2.2: Schematic of the spaces and states in the remodeling algebras for the g-inserted
6j-symbol.

in which case the spin network in Eq. 5.2.33 becomes

•

•

• •

1

1′

2

2′ 3

3′

4 4′

5

5′6

6′

g1

g2

g4

g5

. (5.2.35)

This is the most convenient form for construction of the remodeling algebras of the g-inserted
6j-symbol.

This spin network may be cut as in Eq. 4.2.7 to create a remodel of the 6j-symbol in
which case the M -state, b-state, and β-states are identical to the states Eqs. 4.2.8, 4.2.16,
and 4.2.17 in the first remodel of the 6j-symbol as discussed in Section 4.2.2. The difference
is that the a-state is now g-inserted version of the a-state Eq. 4.2.13 of the first remodel of
the 6j-symbol,

|a1〉 =
1′

1

g1
2′

2

g2
4′

4

g4
5′

5

g5 ∈ H8j, (5.2.36)

The first remodel now connects a g-inserted 12j-model with a g-inserted 8j-model. A second
remodel connects the 8j-model with a 4j-model. The a- and b-states of the second remodel
are identical to the states Eqs. 4.2.31 and 4.2.32 in the second remodel of the 6j-symbol as
discussed in Section 4.2.3. The M -state is now four bent diangle bras and the β-state is
proportional to a g-inserted 4j-intertwiner ket, with all g-insertions on the external legs as
in Eq. 5.2.32. A schematic of the two remodelings of the g-inserted 6j-symbol are given in
Figure 5.2.2.
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Now we can see how g-inserted spin networks represent the amplitudes in loop quantum
gravity. References for the geometry explored here include Baez and Muniain [104] and
Gambini and Pullin [22] and standard references and review articles for loop quantum gravity
include Rovelli [5], Ashtekar and Lewandowski [12], and Thiemann [13].

Let Σ be a spacelike hypersurface and Γ ∈ Σ a path. An SU(2) connection A on Σ is a
su(2)-valued one-form on Σ. The (open-path) holonomy HA is then a map from the space
of paths in Σ to the group SU(2) given by the path-ordered exponential,

HA(Γ) = P exp

(
i

∫
Γ

A

)
. (5.2.37)

Given two paths Γ1 and Γ2 such that the final point Γ1(1) of the first path is the initial point
Γ2(0) of the second path, the holonomy over the concatenated path Γ1 ◦ Γ2 is the group
product of the holonomies,

HA(Γ1 ◦ Γ2) = HA(Γ1)HA(Γ2). (5.2.38)

A gauge transformation by gauge function g : Σ → SU(2) changes the connection via
A(x) 7→ g(x)Ag−1(x)+g(x)dg−1(x). Under a gauge transformation the open-path holonomy
transforms as

HA(Γ) 7→ g(Γ(0))HA(Γ) g−1(Γ(1)), (5.2.39)

where Γ(0) and Γ(1) are the initial and final points of the path Γ. Given a closed path Γ in
Σ, the Wilson loop is the trace in SU(2) of the closed-path holonomy,

WA(Γ) = tr HA(Γ). (5.2.40)

The Wilson loops are all invariant under gauge transformations.
As stated in Chapter 1 a spin network basis state |S, k〉 is specified by a decorated spin

network S and a discrete label k that gives the knot class of the embedding of S into Σ.
This state may be considered a wavefunctional ΨS,k[A] on the space of connections, with
the ΨS,k[A] being the holonomy with respect to connection A around the loop defined by
the embedding of the spin network S into Σ [17, 5]. These wavefunctionals represent the
amplitudes of loop quantum gravity. The diffeomorphism invariance of the spin network
states is manifested in the freedom (up to a specification of the knot class) in choosing the
embedding of the spin network in Σ. Each edge of the spin network maps to an open oriented
path Γ ⊂ Σ under the embedding. In this work we choose to place stubs on all internal lines
so that all arrows on internal lines point away from nodes of valence three or higher and
point towards stubs. The orientation of the stub then determines the orientation of the path
in the embedding; the node counterclockwise of the stub is the initial point of the path and
the node clockwise of the stub is the final point, as shown in Figure 5.2.3. Thus a holonomy
may be assigned to each edge of the spin network. We may interpret these holonomies as
maps from the tangent space at the embedding of the initial node to the tangent space at
the embedding of the final node. The interpretation of the holonomy as a g-insertion is most
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Figure 5.2.3: The embedding of a spin network edge into a path Γ in Σ.

easily seen by considering a closed-path holonomy which is a map from the tangent space at
the embedding of a node to itself. The action of the holonomy group element acting on the
tangent vector Ji to Γ at the start of the path gives the vector Jf tangent to Γ at the end
of the path,

R(H−1
A (Γ))Ji = Jf . (5.2.41)

Note that the holonomy must be inverted in order to satisfy the homomorphism property
Eq. 5.2.38. Let Ja = Ji and Jb = −Jf so that Ja and Jb both point along the path Γ. Then
the holonomy implies

Ja + R(HA(Γ))Jb = 0. (5.2.42)

This is precisely the classical version of the statement that the bent diangle bra of Eq. 5.2.26
is a 0-eigenvalue of the operator Ĵa + R(g)Ĵb. Thus we may represent the action of a spin
network edge on a connection with a g-insertion,

(
• •

j

T\

�
 ��

BJ )
k

[A] = • •
j

HA(Γ)
T\

�
 ��

BJ

. (5.2.43)

The spin network in the expression on the left in Eq. 5.2.43 represents a segment of a spin
network in a spin network basis state and the subscript k indicates the knot class of the
embedding (both the spin network and the knot class labels are required to specify a spin
network basis state). The left-hand side of Eq. 5.2.43 thus is a spin network basis state
treated as a wavefunctional and acting on a connection A. The expression on the right is
a g-inserted spin network with HA(Γ) the holonomy along Γ, the embedding of the internal
edge into Σ.

The gauge invariance of the spin network states is manifested in the intertwiner property
of the nodes. For example, consider the following segment of a spin network state,

•

•

• •a

b

c d

. (5.2.44)
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Let this spin network be embedded in Σ such that node r is at point xr ∈ Σ with r = a, b, c, d
and the edge going from node r to node s follows the path Γrs ⊂ Σ. The three edges of this
spin network give three oriented paths Γba, Γca, and Γad, where the orientation of the stub
determines which node marks the beginning of the path and which node marks the end. Let
the space Σ carry the connection A and define hrs ≡ HA(Γrs) to be the holonomy along the
oriented edge connecting node r to node s. Following Eq. 5.2.43 the evaluation of this spin
network segment on the connection A is the g-inserted spin network,

 •

•

• •a

b

c d


k

[A] = •

•

• •
a

b

c d

hba

hca had. (5.2.45)

Now suppose A is subjected to a gauge transformation A 7→ A′. By Eq. 5.2.39 the
holonomies transform as hrs 7→ grhrsg

−1
s , where gr is the gauge function evaluated at xr.

The spin network state acting on the connection after the gauge transformation is thus

 •

•

• •a

b

c d


k

[A′] = •

•

• •
a

b

c d

gbhbag
−1
a

gchcag
−1
a gahadg

−1
d . (5.2.46)

By Eqs. 5.2.3 and 5.2.23 these g-insertions may be broken up,

 •

•

• •a

b

c d


k

[A′] = •

•

• •

a

b

c
d

g−1
a

hba

g−1
b

g−1
a

hca

g−1
c

g−1
a

had

g−1
d

. (5.2.47)

Note that there is a g-insertion by the same group element (g−1
a ) abutting node a on each of

the three edges that meet at node a. By the intertwiner property Eq. 5.2.27 we may make
the replacement

•

g−1
a

g−1
a

g−1
a

= • , (5.2.48)
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A similar manipulation happens at each node of the spin network if the spin network has
no external edges. Therefore the g-inserted spin network in Eq. 5.2.47 simplifies to the
g-inserted spin network in Eq. 5.2.45 and we conclude that the spin network amplitude is
invariant under gauge transformations, as expected.

Thus the fundamental amplitudes of loop quantum gravity can be expressed in terms
of g-inserted spin networks. Performing a semiclassical approximation therefore amounts
to semiclassically evaluating these g-inserted spin networks. We may construct the same
remodeling algebras as in Section 5.1 to form different inner product models or we may
perform a remodel as in Section 5.2.2 to interpret these states in some power of L2SU(2) as
is done in the twisted geometries approach [103].

5.3 Co-Isotropic Manifolds

The semiclassical interpretation of a linear map M̂ : H2 → H1 as a Lagrangian manifold
LM in the product phase space Φ1 × Φ∗2 is one example of Weinstein’s symplectic creed
[105], “everything is a Lagrangian manifold!” In this section we use the remodeling algebra
and geometry to explore another example, wherein we may relate certain classes of co-
isotropic manifolds to Lagrangian manifolds of a larger space. In particular, we may use the
remodeling geometry to associate a canonical Lagrangian manifold in a product phase space
with a co-isotropic manifold in a target phase space.

Consider a Hilbert space H and a symmetry group G on H generated by the dual Lie
algebra-valued operator Â : H → g∗ ×H. Let µ ∈ g∗ be a fixed point under the Ad∗-action
of G on g∗ and define Hµ as the simultaneous µ-eigenspace of the operator Â,

Hµ ≡
{
|ψ〉 ∈ H | Â|ψ〉 = µ|ψ〉

}
. (5.3.1)

Let Φ be the classical phase space corresponding to H and let A be the Ad∗-equivariant
momentum map for the symplectic action of G on Φ. As in Section 2.4.3 the eigenspace
Hµ may be represented semiclassically by two different manifolds. If Hµ is interpreted
as a subspace of H then the associated semiclassical object is the co-isotropic level set
A−1(µ) ⊂ Φ. If Hµ is interpreted as a Hilbert space then the associated semiclassical
object is the phase space Φµ obtained by the symplectic reduction Φ//(A = µ). Note that
by definition of the symplectic reduction there is an inclusion map ıµ : A−1(µ) → Φ and
projection map πµ : A−1(µ)→ Φµ such that ı∗µω = π∗µωµ, where ω and ωµ are the symplectic
forms on Φ and Φµ, respectively.

Consider Hµ as a Hilbert space in its own right and let Î : Hµ → H be the inclusion

map. That is, Î maps the Hilbert space Hµ to the subspace Hµ ⊂ H. We may set up a
remodeling algebra and geometry for such a map, with the Hilbert space Hµ and the reduced
phase space Φµ acting as the source spaces and the original Hilbert space H and phase space

Φ acting as the target spaces. Then Î is identified as a vector in the product Hilbert space
H⊗Hµ and the semiclassical approximation to Î is supported by a Lagrangian manifold LI
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Figure 5.3.1: Phase spaces and the maps between them for the symplectic reduction and
remodeling geometry associated with the inclusion map Î.

in the product phase space Φ × Φ∗µ. The phase spaces of the remodeling geometry and the
spaces involved in the symplectic reduction are shown in Figure 5.3.1.

We may determine the structure of LI by using the transport procedure of Section 2.2.2.
Let |ψ〉 ∈ Hµ be a vector of the subspace Hµ and thus an element of both Hilbert spaces
Hµ and H. Let L be the Lagrangian manifold in Φ corresponding to |ψ〉 ∈ H and let
LR ⊂ Φµ be the Lagrangian manifold in Φµ corresponding to |ψ〉 ∈ Hµ. By definition of Hµ,

Â|ψ〉 = µ|ψ〉 and thus L ⊂ A−1(µ). This manifold projects onto the Lagrangian manifold
LR in the reduced space, Alternatively we could have started with the manifold LR ⊂ Φµ

and formed by the manifold L by pulling back by forming the inverse image of LR under the
projection of the symplectic reduction and then pushing forward by the inclusion map,

LR = πµ(L), L = ıµ(π−1
µ (LR)). (5.3.2)

Since Îµ maps |ψ〉 ∈ Hµ to the same vector in H we expect the transport of LR through
Lµ to give L,

L = T (LR) = π1(LI ∩ π−1
2 (G2LR)). (5.3.3)

Let points on Φ and Φµ be written z1 and z2 so point on the product space are (z1, z2).
Eqs. 5.3.2 and 5.3.3 hold for any Lagrangian manifold LR ⊂ Φµ so we may assume that

ıµ(π−1
µ (z2)) ∼= π1(LI ∩ π−1

2 (G2(z2)), ∀z2 ∈ Φµ. (5.3.4)

The left-hand side of Eq. 5.3.4 is the set

ıµ(π−1
µ (z2)) =

{
z1 ∈ A−1(µ) | πµ(z1) = z2

}
⊂ Φ, (5.3.5)

while the right-hand side of Eq. 5.3.4 is the set

π1(LI ∩ π−1
2 (G2(z2)) = {z1 ∈ Φ | (z1, z2) ∈ LI} , (5.3.6)

where we have used π−1
2 (G2(z2)) = Φ× {z2}. Comparing Eqs. 5.3.5 and 5.3.6 yields

LI =
{

(z1, z2) ∈ Φ× Φ∗µ | A(z1) = µ, πµ(z1) = z2

}
. (5.3.7)

In terms of level sets Eq. 5.3.7 implies

LI =

(
A
µ

z2 − πµ(z1)
0

)
∈ Φ× Φ∗µ, (5.3.8)
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where A has been pulled back by π1 to a function on the product space and πµ is the
projection map of the symplectic reduction. This is the expected answer since the core
geometry of this setup has Φµ as both reduced target and source spaces and the reduced
manifold LRI is simply the graph of the identity map. We may construct a map : A−1(µ)→
LI : z1 7→ (z1, πµ(z1)). This map by construction is one-to-one and by Eq. 5.3.7 is onto.
Therefore,

A−1(µ) ∼= LI , (5.3.9)

where A−1(µ) is a co-isotropic manifold in Φ and LI is a Lagrangian manifold in Φ × Φ∗µ.
We have thus successfully reinterpreted a co-isotropic level set in one space as a Lagrangian
manifold in another space.

5.3.1 Quantization of I

For a Lagrangian manifold to properly support the semiclassical approximation to a quan-
tum state, the Lagrangian manifold must be “quantized” in the sense of Bohr-Sommerfeld
quantization [106, 58]. That is, the action integral with Maslov correction around any closed
path on the Lagrangian manifold must be an integer multiple of 2π. This requirement is
essentially a consistency requirement for the WKB wavefunction. If a Lagrangian manifold
is specified as the level set of a momentum map then the Bohr-Sommerfeld quantization
conditions lead to the discrete spectrum of classical contour values that the momentum map
components can take. For example, applying Bohr-Sommerfeld quantization to the 1jm-
torus of Eq. 3.2.1 constrains I to be a half-integer and I + Jz to be an integer, replicating
the usual conditions for quantum numbers j and m [44]. The restriction of possible contour
values J of I to half-integers does not just hold for the jm-tori, however. In general we
find that, given a Lagrangian manifold in an nj-classical phase space, partially specified by
the level set condition Ir = Jr, Bohr-Sommerfeld quantization implies that Jr must be a
half-integer. In this section we apply the Bohr-Sommerfeld quantization to a Lagrangian
manifold associated with the coisotropic manifold I−1(J) in the Schwinger Hilbert space to
reproduce the quantized contour values of I.

It will be more convenient in this section to set up the remodeling geometry for the
projection operator Π̂j : S → Cj, where S is a Schwinger Hilbert space and Cj is the j-

eigenspace of the operator Î on S. Considering Cj as a Hilbert space in its own right yields
a remodeling geometry similar to Figure 5.3.1, with the roles of the source and target space
reversed, as shown in Figure 5.3.2. As in Appendix A, Σ is the Schwinger phase space
(C2, idz†∧dz). As usual let J = j+ 1/2. The level set I−1(J) has the topology of a 3-sphere
of radius J and the projection onto the reduced phase space CJ is a 2-sphere of radius J ,
with the projection of the symplectic reduction being the Hopf map : S3 → S2.

The Lagrangian manifold in ΣJ × Σ ∗ that supports the semiclassical approximation to
Π̂j is the manifold

LI = {(J, z) ∈ ΣJ × Σ ∗ | I(z) = J, J = π(z)} ∼= S3. (5.3.10)
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Figure 5.3.2: Phase spaces and the maps between them for the symplectic reduction and
remodeling geometry associated with the projection map Π̂.

We may find the quantized contour values of I in many ways. The first, as mentioned
earlier, is to apply Bohr-Sommerfeld quantization directly to Lagrangian manifolds whose
description contains the level set condition I = J , such as the jm-tori. Another method
is inspired by geometric quantization [69, 70, 71], in which we require a compact phase
space to contain an integer number of Planck cells equal to the dimension of the Hilbert
space. The reduced space ΣJ carries the symplectic form JdΩ and thus has volume 4πJ .
Requiring 4πJ = 2πn for some integer n (the number of Planck cells) yields the quantized
contour values J = n/2. This phase space corresponds to the carrier space Cj of dimension
n = 2j + 1 which fixes J = j + 1/2.

In light of the connection between co-isotropic manifolds and Lagrangian manifolds,
however, we have a third method of finding the quantized contour values of I. In particular,
we require that the Lagrangian manifold LI be quantized in the sense of Bohr-Sommerfeld.
We will not directly apply Bohr-Sommerfeld quantization to the manifold S3 in ΣJ×Σ ∗ since
the product phase space is topologically non-trivial and we can not define a global symplectic
potential θ on it and thus we would need to modify the definition of the action integral and
Maslov index. Instead we use the fact that ΣJ is a symplectic reduction and lift the product
space into Σ × Σ ∗, which is flat and has a globally well-defined symplectic potential. We
say that LI is quantized if the lifted version of the Lagrangian manifold is quantized on
Σ × Σ ∗. This is how, for example, the Lagrangian manifolds on ΣJ corresponding to the
states |jm〉 ∈ Cj are quantized [44]. The lift of LI into Σ ×Σ ∗ is the manifold that supports

the semiclassical approximation to Π̂j : S → Cj with Cj now interpreted as a subspace of
S rather than an independent Hilbert space. In particular, both target and source phase
spaces are copies of the Schwinger phase space.

Let I be the momentum map on Σ and let I ′ be the momentum map on Σ ∗, in which
case ΣJ × Σ ∗ is a symplectic reduction by I at contour value J . The group orbits of I
are circles and thus the lift of LI is an S1 bundle over S3. We quantize this manifold by
considering contours that follow the Hamiltonian flow of I. The Hamiltonian I is conjugate
to the 4π-periodic angle ψ so by Eq. A.4.4 of Appendix A the action integral around such a
contour is 4πJ . As shown in Aquilanti et al [44] the Maslov index for this contour is µ = 4
and thus the Bohr-Sommerfeld quantization condition is

4πJ − 2π = 2πn, =⇒ J =
n+ 1

2
, (5.3.11)

which is the familiar restriction on the values of J .
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5.4 Conclusions

During the writing of this dissertation we have begun to turn our attention to q-deformed
spin networks. The methods of semiclassical analysis used extensively in this work are not
immediately applicable to such systems since the Lagrangian manifolds that support the
semiclassical approximations of states involved can not be interpreted as level sets of mo-
mentum maps of some groups or as group orbits. This is because there is no Lie group
underlying the q-deformed spin networks. Rather, these networks are built upon the Hopf
algebras SLq(2). The group theory used to construct the invariant densities on the La-
grangian manifolds is no longer applicable, for instance. In order to tackle such networks we
first need to modify the semiclassical methods used and then analyze how the modifications
affect the various aspects of the remodeling procedure.

The work presented in this dissertation is meant to provide a framework for simplifying
semiclassical calculations of the objects that occur in Loop Quantum Gravity and in spin-
foam models. Sections 5.1 and 5.2 outlined exactly how the inner product remodeling applies
to the 3nj-symbols and the g-inserted spin networks. The next natural step would be to
carry out the semiclassical approximations of physically relevant objects such as the 15j-
symbol using the structures set up in this chapter to simplify the calculations. It is the
hope of the author that the remodeling procedure will be a valuable tool in determining the
semiclassical and asymptotic behavior of spin network based approaches to quantum gravity.
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[91] L. Schläfli. “On the multiple integral...” In: Quarterly Journal of Mathematics 2
(1858), pp. 269–300.

[92] E. T. Whittaker. A treatise on the analytical dynamics of particles and rigid bodies:
with an introduction to the problem of three bodies. CUP Archive, 1970.

[93] E. R. Livine and S. Speziale. “Solving the simplicity constraints for spinfoam quantum
gravity”. In: Europhysics Letters 81.5 (2008), p. 50004.

[94] J. W. Barrett. “The classical evaluation of relativistic spin networks”. In: Advances
in Theoretical and Mathematical Physics 2 (1998), pp. 593–600.

[95] J. W. Barrett and R. M. Williams. “The asymptotics of an amplitude for the four
simplex”. In: Advances in Theoretical and Mathematical Physics 3 (1999), pp. 209–
215.

[96] J. C. Baez and J. D. Christensen. “Positivity of spin foam amplitudes”. In: Classical
and Quantum Gravity 19.8 (2002), p. 2291.

[97] J. D. Christensen and G. Egan. “An efficient algorithm for the Riemannian 10j sym-
bols”. In: Classical and Quantum Gravity 19.6 (2002), p. 1185.

[98] J. W. Barrett and C. M. Steele. “Asymptotics of relativistic spin networks”. In:
Classical and Quantum Gravity 20.7 (2003), p. 1341.

[99] P. J. Brussaard and H. A. Tolhoek. “Classical limits of clebsch-gordan coefficients,
racah coefficients and Dl

mn(ϕ, θ, ψ)-functions”. In: Physica 23.6 (1957), pp. 955–971.



BIBLIOGRAPHY 179

[100] P. A. Braun et al. “Semiclassics of rotation and torsion”. In: Zeitschrift für Physik B
Condensed Matter 100.1 (1996), pp. 115–127.

[101] D. Sokolovski and J. N. L. Connor. “Semiclassical nearside-farside theory for inelas-
tic and reactive atom-diatom collisions”. In: Chemical Physics Letters 305.3 (1999),
pp. 238–246.

[102] V. Guillemin, L. J. Jeffrey, and R. S. Sjamaar. “Symplectic implosion”. In: Transfor-
mation Groups 7.2 (2002), pp. 155–185.

[103] L. Freidel and S. Speziale. “Twisted geometries: a geometric parametrization of SU(2)
phase space”. In: Physical Review D 82.8 (2010), p. 084040.

[104] J. C. Baez and J. P. Muniain. Gauge fields, knots and gravity. Vol. 6. World Scientific
Singapore, 1994.

[105] A. Weinstein. “Symplectic geometry”. In: Bulletin of the American Mathematical
Society 5.1 (1981), pp. 1–13.

[106] M. V. Berry and K. E. Mount. “Semiclassical approximations in wave mechanics”.
In: Reports on Progress in Physics 35.1 (1972), p. 315.

[107] E. U. Condon and G. H. Shortley. The theory of atomic spectra. Cambridge University
Press, 1935.

[108] Y. Weissman. “Semiclassical approximation in the coherent states representation”.
In: The Journal of Chemical Physics 76.8 (1982), pp. 4067–4079.

[109] A. Voros. “Wentzel-Kramers-Brillouin method in the Bargmann representation”. In:
Physical Review A 40.12 (1989), p. 6814.

[110] M. Stone, K.-S. Park, and A. Garg. “The semiclassical propagator for spin coherent
states”. In: Journal of Mathematical Physics 41.12 (2000), pp. 8025–8049.

[111] M. Baranger et al. “Semiclassical approximations in phase space with coherent states”.
In: Journal of Physics A: Mathematical and General 34.36 (2001), p. 7227.

[112] R. G. Littlejohn. “The semiclassical evolution of wave packets”. In: Physics Reports
138.4 (1986), pp. 193–291.

[113] J. E. Marsden and T. S. Ratiu. Introduction to mechanics and symmetry: a basic
exposition of classical mechanical systems. Vol. 17. Springer, 1999.

[114] J.-P. Ortega and T. S. Ratiu. Momentum maps and Hamiltonian reduction. Vol. 222.
Springer, 2004.

[115] J. Butterfield. “On symplectic reduction in classical mechanics”. In: Philosophy of
Physics 2 (2006), p. 1.

[116] D. D. Holm et al. Geometric mechanics and symmetry: from finite to infinite dimen-
sions. 12. Oxford University Press London, 2009.

[117] C. T. C. Wall. “Non-additivity of the signature”. In: Inventiones Mathematicae 7.3
(1969), pp. 269–274.



BIBLIOGRAPHY 180
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Appendix A

Representations of Angular Momenta

A.1 The Schwinger Hilbert Space

We begin by outlining our notation for the Schwinger formalism for representing angular
momentum operators in terms of harmonic oscillators [62, 63]. The method begins with a
pair of harmonic oscillators Ĥµ = (1/2)(x̂2

µ + p̂2
µ), µ = 1, 2, which act on the (Schwinger)

Hilbert space S = L2(R2) containing wavefunctions ψ(x), x = (x1, x2) ∈ R2 (or ket vectors).
We denote the dual space by S∗ which we also think of as a space of wavefunctions (or bra
vectors). To distinguish quantum mechanical operators from their classical counterparts, we
put hats on operators. Let âµ = (x̂µ + ip̂µ)/

√
2 and â†µ = (x̂µ − ip̂µ)/

√
2 (µ = 1, 2) be the

usual creation and annihilation operators and define

Î =
1

2
â†â, Ĵ =

1

2
â†σâ, (A.1.1)

where σ is the vector of Pauli matrices and contractions are implied among the two com-
ponents of â, â† and the components of the Pauli matrices. The operator Î is half the
sum of the two harmonic oscillator Hamiltonians, with the zero point energy subtracted off,
Î = (1/2)(Ĥ1 + Ĥ2 − 1). These operators satisfy the commutation relations

[Î , Ĵa] = 0; [Ĵa, Ĵb] = iεabc Ĵc, (A.1.2)

as well as the operator identity
Ĵ2 = Î(Î + 1) (A.1.3)

The operator Ĵ thus forms an SU(2) algebra on S, with Î a Casimir operator. The spectrum
of Î is the set of all non-negative half-integers, j = 0, 1/2, 1, · · · and the eigenspaces of
Î are in a one-to-one correspondence with the carrier spaces of the SU(2) irreps. These
carrier spaces will be written as Cj wherever they arise. Since each irrep occurs precisely

once, S =
⊕

j Cj. Since Ĵ commutes with Î we may interpret the operator Ĵ as either an
operator on the full Schwinger Hilbert space S or on the irreducible subspaces Cj. We use
the standard physics phase conventions for the harmonic oscillator states and the Condon
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and Shortley [107] phase conventions for the standard angular momentum basis vectors |jm〉.
With these phase conventions the basis vectors |jm〉 in Cj are identical to harmonic oscillator
eigenvectors |n1n2〉, with n1 = j +m and n2 = j −m.

The dual Schwinger Hilbert space S∗ is the space of bra vectors, or equivalently the
space of linear maps : S → C. For each operator on the Schwinger Hilbert space, there is an
associated operator on the dual space. Let Â : H → H be a linear operator and define the
transpose Â> : H∗ → H∗ as the operator Â acting on bras from the right,

Â>(〈φ|) = 〈φ|Â. (A.1.4)

The map from operators to their dual is an anti-homomorphism with respect to the com-
mutation algebra. That is, if [Â, B̂] = Ĉ, then [Â>, B̂>] = −Ĉ>. Note that [−Ĵ>a ,−Ĵ>b ] =

iεabc(−Ĵ>c ) so the components of the operator −Ĵ> form an SU(2) algebra on S∗, with Î> a
Casimir operator.

The nj-Hilbert space for a collection of n angular momenta is the tensor product of n
copies of the Schwinger Hilbert spaces Si, Hnj = S1 ⊗ · · · ⊗ Sn, where the index is used
to distinguish copies of the Schwinger Hilbert space. Operators on the component spaces
can be lifted into operators on the full nj-Hilbert space. For example, an operator Â on S2

becomes an operator on the 2j-Hilbert space H2j = S1 ⊗ S2 defined by Îd1 ⊗ Ĵ2, where Îd1

is the identity on H1 and Ĵ2 is the angular momentum operator defined on H2. In a slight
abuse of notation, we will let Ĵ2 stand for both the map : S2 → S2 and the map : H2j → H2j.

A.2 The Schwinger Phase Space

The Schwinger phase space Σ is defined as the classical phase space for two harmonic oscil-
lators, Σ = (R4,

∑
µ dpµ ∧ dxµ), where µ = 1, 2 labels the oscillator. Complex coordinates

(zµ, z̄µ) on Σ are defined by

zµ =
1√
2

(xµ + ipµ), z̄µ =
1√
2

(xµ − ipµ). (A.2.1)

The coordinates z1 and z2 can be combined in a column vector to form a two-component
spinor z. In these coordinates, the Schwinger phase space is (C2, idz† ∧ dz), where dz† ∧
dz =

∑
µ dz̄µ ∧ dzµ. The connection between S and Σ is established in part by the Weyl

correspondence which maps operators that act on S into functions (or “symbols”) on Σ , as
discussed in more detail in Section C.3. In addition, the phase of a WKB wavefunction ψ(x)
in S is given in part by the integral of the symplectic potential θ = p dx along the Lagrangian
manifold in Σ that supports the semiclassical approximation, as discussed in Section C.1.
The WKB phase of coherent state wavefunctions is given by the integral of the symplectic
potential θ = =(dz†z) along complexified versions of these Lagrangian manifolds [108, 109,
110, 111]. The coherent states themselves live on C2 and provide another link between the
classical and quantum descriptions of the Schwinger oscillators [63].
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Interesting functions on Σ are

I =
1

2
z†z =

1

4
(x2

1 + p2
1 + x2

2 + p2
2); J =

1

2
z†σz, (A.2.2)

where we perform contractions as in Eq. A.1.1. The function I is the Weyl symbol of Î+1/2
(it is one half of the sum of the classical harmonic oscillator Hamiltonians), and J is the
Weyl symbol of Ĵ. These functions satisfy the identities

J2 = I2; z z† = I1 + J · σ. (A.2.3)

The definition of J defines a map π : C2 → R3 (where R3 ∼= su(2)∗ is “angular momentum
space”) which is the projection of the Hopf fibration, in which the Hamiltonian flow generated
by I defines the fibers (the Hopf circles) of the fibration. Thus, π is the projection map of
Poisson reduction under the U(1) symmetry generated by I. If πj is the projection map
whose domain is restricted to the level set I = j + 1/2 (a 3-sphere in C2), then it is the
projection map of symplectic reduction, and the reduced symplectic manifold (the symplectic
leaf in R3) is a 2-sphere with radius |J| = j + 1/2.

Consider a vector J ∈ R3 of length I. The inverse image of J under π is a Hopf circle of
spinors z ∈ C2 parametrized by 0 ≤ ψ < 4π. Let θ and φ be the polar and azimuthal angles
of J with respect to the z-axis. Then the vector J ∈ R3 and the spinor z ∈ C2 are

J = I

 sin θ cosφ
sin θ sinφ

cos θ

 , z =
√

2Ie−iψ/2
(

cos(θ/2)e−iφ/2

sin(θ/2)e+iφ/2

)
. (A.2.4)

Plugging this spinor into the symplectic form dz† ∧ dz on Σ yields

ω = dI ∧ dψ + dJz ∧ dφ. (A.2.5)

We associate the dual Schwinger Hilbert space S∗ with the dual Schwinger phase space
Σ ∗ = (R4,−dp ∧ dx), which differs from Σ in having the opposite symplectic form. Let Ĝ
be the metric on the Schwinger Hilbert space, an antiunitary map

Ĝ : S → S∗ : |ψ〉 7→ 〈ψ| : ψ(x) 7→ ψ(x)∗. (A.2.6)

It corresponds to the classical antisymplectic “dual” map

G : Σ → Σ ∗ : (x, p) 7→ (x, p) : (z, z̄) 7→ (z, z̄), (A.2.7)

which is not the identity map because the two copies of (x, p) belong to different spaces.
The map G is antisymplectic because the pullback of the symplectic form −dp ∧ dx on Σ ∗

is minus the symplectic form dp ∧ dx on Σ .
Operators that act on S∗ are mapped into functions on Σ ∗ by a “dual Weyl corre-

spondence,” which may be defined as follows. Let Â : H → H be a linear operator with
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corresponding Weyl symbol A(x, p) : Φ → C. Let Â> : H∗ → H∗ be the map defined in
Eq. A.1.4. The “dual Weyl symbol” A>(x, p) : Φ∗ → C is defined to be the composition
A>(x, p) ≡ A◦G−1(x, p). That is, the functional forms of A>(x, p) and A(x, p) are the same.
Note that with this definition the Weyl symbol of the non-Hermitian operator â on S is the
z-coordinate of Σ , while the dual Weyl symbol of â> on S∗ is the z-coordinate of Σ ∗. The
symplectic form on Σ ∗ in these complex coordinates is −idz† ∧ dz. The Weyl symbols of
operators Î> and Ĵ> on S∗ under the dual Weyl correspondence are given by Eq. A.2.2 (they
are the same functions in terms of the (x, p) or (z, z̄) coordinates, but defined on a different
space). The semiclassical approximations to WKB wavefunctions in S∗ are supported by
Lagrangian manifolds in Σ ∗, in which the phase is computed in part as the integral of the
symplectic potential −

∫
p dx along the Lagrangian manifold.

The classical nj-phase space for a collection of n angular momenta is the direct product
of the Schwinger phase spaces Σr, with r = 1, · · · , r, labeling the angular momenta,

Φnj = Σ1 × · · · × Σn. (A.2.8)

This phase space can alternatively be written (R4n, ωnj), where the symplectic form is the
sum of the symplectic forms on the component phase spaces,

ωnj =
n∑
r=1

2∑
µ=1

dpµr ∧ dxµr =
n∑
r=1

idz†r ∧ dzr. (A.2.9)

Functions on the component spaces can be lifted into operators on the full Nj-phase space.
For example, the operator for the 2nd angular momentum on Φ2j = Σ1×Σ2 maps (z1, z2) 7→
J2(z2). In a slight abuse of notation, we will let J2 stand for both the function : Σ2 → R3

and the map : Φ2j → R3.

A.3 Group Actions

Each Schwinger Hilbert space S carries a unitary representation Û(g) : S → S of SU(2)
generated by the operators Ĵ, defined in Eq. A.1.1. The matrix elements of Û(g) in the
jm-basis form the Wigner D-matrix,

Dj
mm′(g) = 〈jm|Û(g)|jm′〉. (A.3.1)

The dual Hilbert space S∗ also carries a unitary representation Û †>(g) : S∗ → S∗ : 〈ψ| 7→
〈ψ|Û †(g) of SU(2) generated by the operators −Ĵ>. This is a left action.

Just as the operators Ĵ generate a unitary SU(2) action on S, so also do the classi-
cal functions J defined in Eq. A.2.2 generate a symplectic SU(2) action on Σ under their
Hamiltonian flows. These flows are linear symplectic maps of Σ onto itself, providing a real
representation of SU(2) as a subgroup of Sp(4). See Appendix A of Littlejohn [112] for more
information about the relation between the quantum and classical action of SU(2). Let
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z ∈ C2 be the coordinates of a point in Σ . For an element g ∈ SU(2), the SU(2) action is
given by z 7→ gz. The classical angular momentum functions J transform as a vector under
the SU(2) action, J(g−1z) = R(g)J(z), where R(g) ∈ SO(3) is the representation matrix on
R3.

As a specific example, consider an SO(3) rotation about an axis n by angle φ, R(n, φ).
In SO(3), φ ranges from 0 to 2π. An arbitrary SU(2) rotation can also be expressed in
axis-angle form if we allow φ to range from 0 to 4π to compensate for the fact that SU(2)
is a double-cover of SO(3). This rotation is represented on S by the operator Û(n, φ) =
exp(−iφn · Ĵ). Classically, the rotation corresponds to a Hamiltonian flow by angle φ under
the U(1) subgroup of SU(2) generated by n · J which is the spinor transformation,

z 7→ e−iφn·σ/2z. (A.3.2)

The map J : Σ → R3 is a Poisson map [113], giving R3 the Poisson structure {Ja, Jb} =
εabc Jc. We denote R3 with this Poisson structure by Λ. The map J can also be interpreted
as the momentum map [56] of the SU(2) action on Σ , so that Λ or angular momentum space
is identified with su(2)∗.

Similarly, there is an SU(2) action on Σ ∗. It is generated by the Hamiltonian flows
of −J : Σ ∗ → R3, which are the Weyl symbols of −Ĵ>. The action generated by J on
coordinates (x, p) ∈ Σ is the same as the action generated by −J on coordinates (x, p) ∈ Σ ∗.
This is because the negative sign in the generators cancels the negative sign on the symplectic
form on Σ ∗.

The operator Î acting on S (defined in Equation A.1.1) serves as the generator for the
group U(1) and carries the representation Û = exp(−iψÎ). The Hamiltonian flow of I is a
symplectic U(1) action on Σ ,

z 7→ e−iψ/2z, (A.3.3)

where ψ is the variable conjugate to I. The orbit of the U(1) action generated by I passing
through any point z 6= 0 on Σ is a Hopf circle on which ψ is a coordinate, covered once when
0 ≤ ψ < 4π. The level set I−1(j + 1/2) is a 3-sphere of radius j + 1/2.

A.4 Representations in the Schwinger Phase Space

In the x-representation of the Schwinger phase space, the two harmonic oscillator coordinates
xµ are taken to be the configuration variables and the coordinates pµ are the conjugate
momenta. The states |x1x2〉 ∈ S correspond to Lagrangian planes in Σ defined by the
vanishing of the one-forms dxµ, µ = 1, 2. The planes are integral surfaces of the tangent
vectors Xxµ = ∂/∂pµ. Configuration space is the plane R2. In this representation the
symplectic potential is θ =

∑
µ pµdxµ.

Transforming this to complex coordinates yields

θ =
∑
µ

pµdxµ =
i

2

∑
µ

(z̄µdzµ − zµdz̄µ) + dF, (A.4.1)
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where F = −i
∑

µ(z2
µ − z̄2

µ)/4 =
∑

µ xµpµ/2.

Consider the x-representation action integral SΓ =
∫

Γ
θ over some path Γ ⊂ Σ . The

exact one-form dF will only contribute a boundary term to the action integral and will be
dropped for now. Ultimately we are only concerned with action integrals around closed loops
in which case these boundary terms cancel out. This is expected because the precise form
of the symplectic potential depends on the representation and the action integral around a
closed loop is a representation-independent quantity. First let Γ be a path starting at z0 and
generated by the Hamiltonian flow of I. Parametrize the flow by s so that z(s) = e−is/2z0

and let s range from 0 to ψ. The one-form dz restricted to this path is

dz|Γ =
dz(s)

ds
ds =

−i
2
z(s)ds, (A.4.2)

and thus the symplectic potential from Eq. A.4.1 restricted to Γ is

θ|Γ =
1

2
z̄(s)z(s)ds = I(s)ds, (A.4.3)

where z ∈ S is a two-component complex spinor, I(s) is the function I defined in Eq. A.2.2
evaluated at z(s), and the contribution from the exact one-form dF has been dropped. Under
the U(1) phase rotation the value of I remains constant and thus I(s) = I0, the value of I
at the starting point of the path. The action integral therefore evaluates to

SΓ =

∫ ψ

0

I(s)ds = I0ψ, (A.4.4)

up to a correction from the boundary term.
Next let Γ be the path based at z0 and formed by the Hamiltonian flow of n · J for some

fixed axis n. Parametrize the flow by s so that z(s) = U(n, s)z0 and let s range from 0 to φ.
The one-form dz restricted to this path is

dz|Γ =
dz(s)

ds
ds =

−i
2

n · σz(s)ds, (A.4.5)

and the canonical one-form restricted to Γ is

θ|Γ =
1

2
z̄(s)(n · σ)z(s)ds = n · J(s)ds, (A.4.6)

where J(s) is the function J defined in Eq. A.2.2 evaluated at z(s) and the contribution from
the exact one-form dF has been dropped. Under a rotation about n the component n · J
remains constant and thus n · J(s) = n · J0, the n-component of J at the starting point of
the path. The action integral therefore evaluates to

SΓ =

∫ φ

0

n · J(s)ds = (n · J0)φ, (A.4.7)

up to a correction from the boundary term.
The results in Eq. A.4.4 and Eq. A.4.7 are useful in computing action integrals for SU(2)

spin networks.
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Appendix B

Symplectic Geometry

B.1 Symplectic Manifolds

A symplectic vector space is a pair (V, ω) where V is a vector space and ω ∈ Ω2(V ) is a closed,
non-degenerate two-form. The non-degeneracy condition implies that the dimension of V
is even, so we set dim V = 2n. Consider a subspace W ⊂ V . The symplectic compliment
W ω ⊂ V is the set of all vectors v ∈ V such that the one-form ıvω annihilates W . That is,

W ω = {v ∈ V | ω(v, w) = 0,∀ w ∈ W} . (B.1.1)

Let ω|W be the symplectic form restricted to W . One interpretation of ω|W is as a map
: W → W ∗, where W ∗ is the set of linear maps : W → C, which allows definition of the
kernel ker ω|W ⊂ W . The maximal dimension of ker ω|W is n, half the dimension of V .
Physically relevant subspaces of V typically fall into one of the following categories based
on the relationship between the subspace and its symplectic compliment. A subspace W
is symplectic when W ω ∩ W = 0. That is, the symplectic form restricted to W is non-
degenerate. The pair (W,ω|W ) is thus a symplectic vector space and necessarily has an
even dimension, dim W = 2m, with m ≤ n. A subspace is co-isotropic when W ω ⊂ W .
The smallest dimension a co-isotropic subspace can have is half the dimension of V , so
n ≤ dim W ≤ 2n. A subspace is isotropic when W ω ⊃ W . Therefore the symplectic
form restricted to W vanishes on an isotropic subspace, ω|W = 0. The largest dimension
an isotropic subspace can have is half the dimension of V , so 0 ≤ dim W ≤ n. Finally,
a subspace is Lagrangian when W ω = W . Lagrangian subspaces are both isotropic and
co-isotropic and therefore a Lagrangian subspace must have exactly half the dimension of V ,
dim W = n. A maximally isotropic subspace (an isotropic subspace with dimension n) or
a minimally co-isotropic subspace (a co-isotropic subspace with dimension n) is necessarily
Lagrangian if V is finite-dimensional.

Consider a co-isotropic subspace W ⊂ V and let ω|W be the symplectic form restricted
to W . The kernel of ω|W is an isotropic submanifold of V . Let WR be the quotient vector
space W/ker ω|W and let πR : W → WR. Then by construction there exists a non-degenerate
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closed form ωR ∈ Ω2(WR) such that π∗RωR = ω|W . The pair (WR, ωR) defines a symplectic
vector space called a “reduced” vector space of W .

A phase space or symplectic manifold is a pair (M,ω) where M is a manifold of dimension
dim M = 2n and ω ∈ Ω2(M) is a closed, non-degenerate two-form on M . The tangent space
to any point on M is a symplectic vector space. Submanifolds of a symplectic manifold fall
into the same categories as subspaces of a symplectic vector space based on the categorization
of their tangent spaces. A typical example of a phase space is the co-tangent bundle T ∗Q
of some configuration space Q, although not all symplectic manifolds can be interpreted as
co-tangent bundles (the two-sphere, for example). Darboux’s theorem (Darboux 1882) says
that there always exists a set of local coordinates (qi, pi) around a point P ∈M (i = 1, · · · , n)
such that the symplectic form evaluated at P can be expressed in the form

ω =
n∑
i=1

dpi ∧ dqi. (B.1.2)

We usually write this symplectic form as simply dp ∧ dq with a sum over index i implied.
Since ω is closed it is locally exact. The symplectic potential θ (also called the symplectic,
tautological, Liouville, Poincaré, or canonical one-form) is locally defined such that ω = dθ.
In Darboux coordinates, θ = p dq, where a sum over i is implied. The symplectic potential
is not unique since we may add any closed one-form to it without affecting the symplectic
form.

A map F : M1 → M2 between two symplectic manifolds (M1, ω1) and (M2, ω2) is called
“symplectic” if it preserves the symplectic form, F ∗ω2 = ω1. A symplectomorphism is a
symplectic map that is also a diffeomorphism. What is traditionally called a canonical
transformation is a coordinate representation of a symplectomorphism. Under symplecto-
morphisms the canonical one-form may shifted by a closed one-form but the symplectic form
remains invariant.

An important result that inspired the development of the remodeling geometry is that
the “graph” of a canonical transformation is a Lagrangian manifold [56, 39]. In particular
let Φ1 = (Φ, ω) be a phase space, and let Φ∗2 be the dual phase space (Φ,−ω). Define the
product phase space Φ12 as the manifold Φ × Φ with symplectic form π∗1ω − π∗2ω2, where
π1 and π2 are the projections from Φ × Φ to the first and second copies of Φ, respectively.
Let F : Φ → Φ be a canonical transformation and define the graph of F to be the set of
points (z, z′) ∈ Φ×Φ∗ satisfying z = F (z′). A vector X ∈ T(F (z′),z′)Φ12 tangent to the graph
satisfies π1∗X = F∗ ◦ π2∗X. The product space symplectic form acting on any two tangent
vectors to the graph at a point (F (z′), z′) is thus

(π∗1ω − π∗2ω′)(X, Y ) = ω(π1∗X, π1∗Y )− ω(π2∗X, π2∗Y )

= F ∗ω(π2∗X, π2∗Y )− ω(π2∗X, π2∗Y ) = 0, (B.1.3)

where the last equality is due to the fact that F is a canonical transformation and thus
F ∗ω = ω. Therefore the graph of a canonical transformation is isotropic in the product phase
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space. Since this transformation is an isomorphism the graph itself has the same dimension
as Φ and thus half the dimension of the product phase space and we may conclude that the
graph is a Lagrangian manifold.

A smooth function H : M → R on a phase space is called a Hamiltonian. Given an
Hamiltonian H we may define a Hamiltonian vector field XH ∈ X(M), defined such that

XH ≡ ω−1(dH), ıXHω = dH, (B.1.4)

where ω−1 in the first expression is interpreted as a map from one-forms to vector fields on
Φ. The Poisson bracket of two Hamiltonians A,B is defined by

{A,B} = −ω(XA, XB) =
n∑
i=1

∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
, (B.1.5)

where the last expression is the Poisson bracket expressed in terms of local Darboux coordi-
nates.

A phase space representation is a foliation of a phase space Φ into a family of Lagrangian
manifolds. “Representation space” Q is the space formed under a quotient operation where
two points in Φ are considered equivalent if they lie on the same Lagrangian leaf. This is the
semiclassical setting for discussing representations in quantum mechanics. Let qi be local
coordinates on Q so that a particular Lagrangian leaf is uniquely specified by the set of qi.
The forms dqi all vanish when restricted to a particular Lagrangian leaf and the leaves are
the integral surfaces of the Hamiltonian vector fields Xqi . Consider a point z in phase space
and let pi be a locally-defined set of conjugate momenta to the qi so that the set (qi, pi) form
local Darboux coordinates (this involves an arbitrary choice of local Lagrangian section in the
leaf bundle over Q). In this case we may form a local symplectic potential θ = p dx. Given
one representation we may change to another representation via a canonical transformation.
This generically will cause the local symplectic potential to change by a closed one-form. The
action integrals and Maslov indices along an open path are both representation-dependent
quantities. However, physical quantities such as the semiclassical approximations to inner
products will ultimately wind up being independent of representation.

B.2 Momentum Maps

A symmetry on a Hamiltonian system (a phase space with a Hamiltonian) allows for many
useful structures to be added to the phase space, such as group actions and momentum maps
[56, 114]. The group actions represent the application of the symmetry to the phase space
and the momentum maps act as the “conserved quantities” associated with the symmetry
under Noether’s theorem.

Let Φ be a symplectic manifold and G a connected Lie group with a symplectic action
ϕg : Φ → Φ, Lie algebra g, and dual algebra g∗. Let {ξi} be a basis of g and let ckij be the
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structure constants of the algebra in this basis, so [ξi, ξj] = ckijξk. Let Xi ∈ X(Φ) be the
infinitesimal generators of the action ϕ corresponding to the basis vectors ξi,

Xi ≡
d

dt

∣∣∣∣
t=0

ϕexp tξi . (B.2.1)

Consider a map P : Φ → g∗. Let Pi ≡ 〈P, ξi〉 : Φ → R be the components of P with
respect to this basis and let XPi = ω−1(dPi) be the associated Hamiltonian vector fields. The
map P is called a “momentum map” if the flow vectors Xi are the same as the Hamiltonian
vector fields XPi for all i. The map : g → X(Φ) that takes a vector ξ to the infinitesimal
generator Xξ is a Lie Algebra antihomomorphism,

[Xξ1 , Xξ2 ] = −X[ξ1,ξ2]. (B.2.2)

The group G has a coadjoint action on the dual Lie algebra, Ad∗g : g∗ → g∗. A mo-
mentum map is called Ad∗-equivariant if P ◦ ϕg = Ad∗g−1 ◦ P for all g ∈ G. If P is an
Ad∗-equivariant momentum map then the component functions Pi close under the Poisson
bracket. In particular,

{Pi, Pj} = 〈P, [ξi, ξj]〉 = ckijPk. (B.2.3)

Given a semisimple group G the existence of a corresponding Ad∗-equivariant momentum
map is guaranteed [56].

On the Schwinger phase space the maps I : Σ → R and J : Σ → R3 defined in Section A.2
are the momentum maps for the U(1) and SU(2) actions on Σ . Note that u(1)∗ is identified
with R and su(2)∗ is identified with R3.

B.3 Level Sets, Orbits, and Lagrangian Manifolds

Let Φ be a phase space and G be a connected, semisimple Lie group with a symplectic group
action ϕ on Φ and an Ad∗-equivariant momentum map P : Φ→ g∗. The group orbit B ⊂ Φ
passing through z is the set {ϕg(z)} for all g ∈ G. The tangent space TzB to the group
orbit at z is spanned by the vectors Xi defined in Eq. B.2.1 evaluated at z. The rank of
the vectors is dim B ≡ m ≤ dim G. We call the dual Lie algebra element µ ≡ P(z) ∈ g∗

the “generalized momentum” at z. The level sets of the momentum map are the sets of
all phase space points with the same generalized momentum. Let L ≡ P−1(µ) be the level
set passing through z. The forms dPi all annihilate the tangent space TzL. Since ω by
definition is nonsingular, the rank of the dPi is identical to the rank of the Xi and thus L
has co-dimension m.

The isotropy subgroup Hµ ⊂ G is the group that leaves µ invariant under the coadjoint
action, Hµ ≡ {h ∈ G|Ad∗h µ = µ}. Let I ⊂ B be the orbit of the isotropy subgroup at z. By
Ad∗-equivariance, P(ϕh(z)) = P(z) and we can conclude that I ⊂ L. Therefore, I ⊂ L∩B.
Let z′ ∈ L∩B. Since z′ ∈ B, there exists a g ∈ G such that z′ = ϕgz. By Ad∗-equivariance,
P(z′) = Ad∗gP(z). Since z′ ∈ L, P(z′) = µ = P(z) and Ad∗gµ = µ. Therefore g ∈ H and z′
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is an element the isotropy subgroup orbit. Since z′ is an arbitrary element of L∩B we may
conclude that L ∩ B ⊂ I. Therefore the intersection of the level set and the group orbit is
the isotropy subgroup orbit, I = L ∩B.

An arbitrary vector Y ∈ TzB can be expressed as linear combinations of the flow vectors,
Y =

∑
aiXi. An arbitrary vector Z ∈ TzL is annihilated by the forms dPi for all i. From

these properties if follows that ω(Y, Z) = 0, so TzB and TzL are symplectic compliments
of one another. It also follows that the symplectic form acting on any two vectors in TzI
vanishes, so I is an isotropic manifold.

Now let µ ∈ g∗ be a fixed point of the coadjoint action, Ad∗g µ = µ for all g ∈ G. By
differentiation and contraction with an arbitrary element of g this implies 〈µ, [ξi, ξj]〉 = 0 for
all i, j. Therefore, ckijµk = 0 and {Pi, Pj} = ckijPk = 0 for all points z ∈ P−1(µ). In other
words, the momentum map components Pi, which in general form a nontrivial Lie algebra
on Φ, have vanishing Poisson brackets among themselves on L. This in turn implies that the
Pi’s are constant along each other’s flows on B, that is, Xi(Pj) = −{Pj, Ai} = 0, so B ⊂ L.
Alternatively, the isotropy subgroup for a fixed point is the full group G so I = B and
B ⊂ L. It follows that B is an isotropic submanifold of Φ and L is a coisotropic submanifold
of Φ whenever µ is a fixed point. In terms of dimensions, this implies that dim B = n ≤ N
and dim L = 2N−n ≥ N . In the case that L is compact and these inequalities are saturated
the group orbit and the level set coincide. In such a case L = B is a Lagrangian submanifold
of Φ.

In spin networks, we will be primarily dealing with groups that are direct products of
U(1) and SU(2) groups. Since U(1) is an abelian group, every element of u(1)∗ = R is a
fixed point. The coadjoint action of SU(2) on su(2)∗ = R3 takes the form of a rotation on
angular momentum space R3. The only fixed point of such an action is the zero vector 0.

B.4 Symplectic Reduction

Symplectic reduction [56, 115, 116] is a way of eliminating the symmetries of a Hamiltonian
system. Let Φ be a phase space and let G be a Lie group with a symplectic group action
on Φ and an Ad∗-equivariant momentum map P. We may define symplectic reduction for
any generalized momenta µ ∈ g∗ but we are only concerned in this work with the case where
µ is a fixed point of the coadjoint action and so we restrict our attention to such a case.
Let L = P−1(µ) be the level set of the momentum map at a fixed point. As discussed in
Section B.3 since µ is a fixed point the group orbit passing through any point z ∈ L is
completely contained within L. Define an equivalence relation such that two points on L are
equivalent if they lie on the same group orbit and let Φµ be the space of equivalence classes
L/G. Define the map π : L→ Φµ as the projection map under this quotient operation. The
conditions listed above ensure that Φµ is itself a manifold and ensures the existence of a
symplectic form ωµ on Φµ which satisfies π∗ωµ = ı∗ω. Thus the manifold Φµ with symplectic
form ωµ has the structure of a phase space. We call Φµ with this form the “symplectic
reduction of Φ by G”. This reduced space is sometimes written as Φ//G or Φ//(P=µ). Let
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dim Φ = 2n and let L have co-dimension m (note that m is not necessarily the dimension
of the group G). Then, as discussed in Section B.3, the group orbits are m-dimensional and
thus the reduced phase space has dimension dim Φµ = 2(n−m).

A Hamiltonian A on Φ may be projected down to a reduced Hamiltonian HR on Φµ

only if it is constant on the group orbits of G in L. Conversely, we may lift a Hamiltonian
HR from the reduced space into the level set L by demanding that the lifted function be
G-invariant (and thus constant along the G-group orbits). In terms of Poisson brackets this
means that {H,P} = 0 on L. Given two functions G-invariant Hamiltonian A and B on L
the Hamiltonian C = {A,B} is then also a G-invariant function as a result of the Jacobi
identity. These Hamiltonians may all be projected down to the reduced space Hamiltonians
AR, BR, and CR. As discussed in Abraham and Marsden [56], the projection of the Poisson
bracket is then the Poisson bracket of the projection, CR =

{
AR, BR

}
. Alternatively, the

Poisson bracket on Φµ of two Hamiltonians on the reduced space is the Poisson bracket on
Φ of the lifted Hamiltonians.

Let X, Y ∈ TzL be tangent vectors in the level set at some point z ∈ L. Pushing forward
by ı allows these vectors to be interpreted as vectors in TzΦ (this is equivalent to considering
TzL a vector subspace of TzΦ). We may also push these vectors forward by π to get the
reduced vectors XR = π∗X, Y R = π∗Y . By the definition of the reduced symplectic form,

ωµ(XR, Y R) = π∗ωµ(X, Y ) = ω(X, Y ). (B.4.1)

If X and Y are tangent to a manifold M ⊂ L then XR and Y R are tangent to the reduced
manifold formed by the push-forward of the manifold under the projection, MR = π(M).
If MR is isotropic then by definition ω(X, Y ) = 0 and thus ωµ(XR, Y R) = 0. Therefore
the projection of an isotropic manifold in L under symplectic reduction is itself an isotropic
manifold of the reduced space. Now consider a Lagrangian manifold L ⊂ L ⊂ Φ which
necessarily has dimension n since dim Φ = 2n. Since L is isotropic the reduced manifold
LR = π(L) is also isotropic and thus dim LR ≤ n−m since dim Φµ = 2(n−m). However,
the group orbits in L are m-dimensional and dim π(L) ≥ n − m. We conclude that the
reduced manifold must have dimension n−m and is thus an isotropic manifold of maximum
dimensionality. Therefore a Lagrangian manifold completely in the level set of a symplectic
reduction projects onto a Lagrangian manifold in the reduced space.

As an explicit example of symplectic reduction, consider the Schwinger phase space Σ
with the U(1) group action given in A.3.3. The momentum map for this action is the
function I, defined in Eq. A.2.2. Given a value J 6= 0, the level set I−1(J) is a three-sphere
S3 ∈ C2 of radius J . The symplectic form in Eq. A.2.5 restricted to S3 is ı∗ω = dJz ∧ dφ
since dI = 0 on this level set. The U(1) group orbits are all circles which are the Hopf
circles of the Hopf fibration. The projection map of symplectic reduction is the Hopf map
π : S3 → S2 and the reduced symplectic manifold is a 2-sphere of radius J . Moreover the
function J is invariant under this group action and so is a good function on the reduced
space. By choosing ωµ = dJz ∧ dφ we satisfy π∗ωµ = ı∗ω and thus the symplectic reduction
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of the Schwinger phase space by the momentum map I is

Σ//(I=J) = (S2, dJz ∧ dφ). (B.4.2)

B.5 The Lagrangian Signature

Consider the 2n-dimensional symplectic vector space (V, ω). The Lagrangian Grassmannian
Lag(V ) is defined as the space of all Lagrangian vector subspaces of V . Elements Λ ∈ Lag(V )
are isomorphic to Rn and are called Lagrangian planes. The Maslov indices that appear
in WKB theory can be interpreted as different manifestations of a signature defined on a
triplet of Lagrangian planes, σ : Lag(V )3 → Z [61]. We refer to this map as the Lagrangian
signature, though it is also known as the Wall-Kashiwara signature and the Maslov triple
index. It is closely related to the triple index defined by Kashiwara as described in Lions
and Vergne [60], the triple index defined by Wall [117], and the higher-index structures
defined by Hörmander [118]. The Lagrangian signature is completely antisymmetric in its
three arguments and invariant under symplectic transformations,

σ(Λ1,Λ2,Λ3) = σ(sΛ1, sΛ2, sΛ3) ∀ s ∈ Sp(2n). (B.5.1)

Furthermore, we require the property of symplectic additivity so that

σV×W (Λ1⊕Λ′1,Λ2⊕Λ′2,Λ3⊕Λ′3) = σV (Λ1,Λ2,Λ3) + σW (Λ′1,Λ
′
2,Λ

′
3), (B.5.2)

where Λi ∈ Lag(V ), Λ′i ∈ Lag(W ) and the subscripts on σ indicate the symplectic vector
space on which the signature is defined. Up to a normalization these properties uniquely
define the Lagrangian signature [59]. The Lagrangian signature can be explicitly defined
as follows. Consider a triplet of Lagrangian planes Λ1,Λ2,Λ3 ∈ Lag(V ) and construct the
quadratic form

Q123 : Λ1 × Λ2 × Λ3 → R
(~z1, ~z2, ~z3) 7→ ω(~z1, ~z2) + ω(~z2, ~z3) + ω(~z3, ~z1).

(B.5.3)

Let {er,i}, i = 1, · · · , n be a basis of Λr for r = 1, 2, 3 so that zr ∈ Λr =
∑

i z
i
rer,i. Let Q̂123

be the symmetric 3n× 3n-matrix representation of Q123 with respect to this basis,

Q̂123 =

 0 ω(e1,i, e2,j) −ω(e1,i, e3,j)
−ω(e2,i, e1,j) 0 ω(e2,i, e3,j)
ω(e3,i, e1,j) −ω(e3,i, e2,j) 0

 . (B.5.4)

Since Q̂123 is a real, symmetric matrix we may define the matrix signature sgn Q̂123, which
is the number of positive eigenvalues minus the number of negative eigenvalues that occur
in the spectrum of Q̂123.
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We define the Lagrangian signature as the matrix signature of the matrix Q̂123 associated
with Q123,

σ : Lag(V )3 → Z : (Λ1 × Λ2 × Λ3) 7→ sgn Q̂123. (B.5.5)

This map by construction satisfies the requirements detailed earlier as well as a cocycle
condition [60, 61]. Given a set of four Lagrangian planes in Lag(V ),

σ(Λ1,Λ2,Λ3)− σ(Λ2,Λ3,Λ4) + σ(Λ3,Λ4,Λ1)− σ(Λ4,Λ1,Λ2) = 0. (B.5.6)

The Lagrangian signature may also be associated with the matrix signature of a pair of
real, symmetric n×n-matrices. Let Λx ∈ Lag(V ) be a fixed reference Lagrangian plane and
let Λp ∈ Lag(V ) be a choice of transverse plane to Λx so that Λx ∩Λp = 0. The vector space
V can then expressed as the direct sum V = Λx⊕Λp and any vector ~z ∈ V projects uniquely

into a pair of n-component vectors ~x ∈ Λx and ~p ∈ Λp. Each real, symmetric matrix Â

generates a Lagrangian plane ΛA ∈ Lag(V ) such that, for all ~z ∈ ΛA, ~x = Â~p. The zero-
matrix in this scheme generates Λp itself. Note that only the set of planes transverse to Λx

can be generated this way. Let ΛA,ΛB ∈ Lag(V ) be a pair of Lagrangian planes generated
by a pair of real, symmetric matrices Â, B̂. The Lagrangian signature of the triplet of planes
Λx, ΛA, and ΛB is then

σ(Λx,ΛA,ΛB) = sgn(Â− B̂). (B.5.7)

Note that while the transverse plane Λp is needed to generate the planes, the resulting
signature is invariant under the particular choice of plane. A special case of Eq. B.5.7 is
when ΛB = Λp so B̂ is zero,

σ(Λx,ΛA,Λp) = sgn Â. (B.5.8)

Another special case that is essential to the proof in Section 2.5.5 is the case where the
three Lagrangian planes satisfy Λ1 ⊂ (Λ1∩Λ2)⊕(Λ1∩Λ3). Note that if Λ2∩Λ3 = 0 then this
subset relation is saturated. Then the characteristic polynomial for finding the eigenvalues
of Q̂123 is

det(Q̂123 − λ13n) = λmf(λ2) = 0, (B.5.9)

where 13n is the 3n× 3n identity matrix, m ≥ n is the rank of the kernel of Q̂123 and f is a
polynomial. Eigenvalues of Q̂123 are therefore either 0 or solutions of f(λ2) = 0. Thus the
non-zero eigenvalues must come in pairs ±λ and the number of positive eigenvalues n+ is
equal to the number of negative eigenvalues n− yielding

σ(Λ1,Λ2,Λ3) = sgn Q̂123 = n+ − n− = 0. (B.5.10)
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Appendix C

The Semiclassical Approximation

In this section we review the various aspects of the semiclassical approximation of an inner
product. We are primarily interested in integrable systems, the semiclassics of which are
have been studied for a long time (Einstein [119], Brillouin [120], Keller [121], Percival [122],
Berry and Tabor [123], Gutzwiller [124], Brack and Bhaduri [125], Cargo et al [126], and
Aquilanti et al [44], among others). The link between the classical objects in phase space and
the quantum objects in a Hilbert space is provided by WKB theory. For modern treatments
of WKB theory, see Martinez [52] or Mishchenko et al [53].

For simplicity in this section we work in a flat phase space Φ ≡ R2n which is considered
the co-tangent bundle over a Euclidean configuration space Q ≡ Rn. Coordinates on R2n

are (x, p) with x ∈ Q the configuration variables.

C.1 The WKB Wavefunction

The semiclassical approximation to the x-space wavefunction 〈x|ψ〉 is given in the allowed
region by the WKB wavefunction

ψ(x) = N
∑

branches k

|Ωk(x)|1/2 ei(Sk(x)−µkπ/2), (C.1.1)

where N is a normalization, k is a branch index, Ωk(x) is an amplitude, Sk(x) is an “action
integral” and µk is a Maslov index. We have set ~ = 1 as usual but it is worth noting
that when restored the action integral is Sk(x)/~ and thus in the limit of small ~ (or, more
physically, in the limit of large quantum numbers), the phase is rapidly oscillating. For the
WKB approximation to be valid we require that the amplitude be “slowly varying.” That
is, the amplitude does not change appreciably over the wavelength.

The action integral is a generating function for the momentum, pk ≡ ∂Sk(x)/∂x. The
pair (x, pk) then describes points in phase space belonging to a Lagrangian submanifold L.
The branches k of the WKB wavefunction are the same as the branches of the projection
π : L → Q from the Lagrangian manifold to configuration space, assumed to be locally
invertible.
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Consider a reference point z0 ∈ L and a point z on the k-th branch of L over x ∈ Q, so
π(z) = x. Let Γ be a path on L starting at z0 and ending at z. The action integral Sk(x) in
the WKB wavefunction Eq. C.1.1 may then be expressed as

Sk(x) ≡
∫

Γ

θ, (C.1.2)

where θ = p dx is the symplectic potential in the x-representation.
Caustic points on L are points where the Lagrangian manifold is “vertical” over config-

uration space. That is, the caustic points are points where the projection map π : L → Q
is less than full rank. The x-representation foliates phase space into Lagrangian leaves Lx.
Caustic points may also be considered points where the tangent space to L and the tangent
space to the Lagrangian leaf Lx have a non-trivial intersection (the intersection represents
the directions in which L is vertical over Q).

The idea underlying the Maslov method in WKB theory is that caustic points may be
avoided in stationary phase integrals by transforming from one representation to another
[127]. In particular, to get from a stationary phase point one branch of L to another requires
passing through a caustic point. The stationary phase integral suffers a singularity at this
point. To properly perform the integral a Fourier transform is used to change from the x-
representation to the p-representation in a neighborhood of the caustic. Then we transform
back to the x-representation after the caustic has been cleared. The cost of this procedure is
an additional phase of e−iµπ/2, where µ is the Maslov index, an integer. The Maslov index is
only accumulated at the caustic points. If T (p) is the momentum-representation generating
function for L at the caustic point then the Maslov index accumulated along a path that
passes through a caustic is the change in the matrix signature of the Hessian matrix,

µ = ∆sgn
∂2T (p)

∂pi∂pj
. (C.1.3)

The Maslov index may also be expressed in terms of the Lagrangian signature defined
in Section B.5. Since we are assuming a Euclidean phase space R2n the tangent spaces TzΦ
can all be trivially and uniquely identified which means that a single global Lagrangian
Grassmannian Lag(V ) can be used for the phase space. Consider a point z near a caustic in
L. The manifold is locally described by xi(p) = −∂T/∂pi. The tangent plane at z to L is a

Lagrangian plane TzL ∈ Lag(V ) and is spanned by the vectors ∂
∂pi

+
∂xj
∂pi

∂
∂xj

. The projections

onto the representation planes are then related by ~x = Â~p, where

Âij ≡
∂xj
∂pi

= −∂
2T (p)

∂pi∂pj
. (C.1.4)

Thus µ = −∆sgnAij. Thus by Eq. B.5.8 the Maslov index along a path passing through a
caustic may be expressed as the change in a Lagrangian signature,

µ = ∆σ(Λx,ΛA,Λp), (C.1.5)
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where Λx and Λp are Lagrangian planes defining the x- and p-representations and ΛA is the
tangent plane to the manifold L.

In Esterlis et al [55] we developed a method for computing the Maslov index that relies
only on Poisson brackets and simple linear algebra. We also developed a singular differential
form whose integral along a curve results in the Maslov index for the curve.

A Lagrangian manifold L is said to be quantized if, for all closed paths Γ on L, the action
integral (including Maslov correction) around the path is an integer multiple of 2π,∮

Γ

θ − µ(Γ)
π

2
= 0 mod 2π, ∀ Γ ⊂ L. (C.1.6)

This amounts to a consistency condition on the WKB wavefunction Eq. C.1.1. Littlejohn
and Robbins [128] showed that the closed-path Maslov indices of the type that occur here
may alternatively be expressed as winding numbers in the complex plane.

C.2 Densities

The function Ωk(x) in Eq. C.1.1 on a given branch of the WKB wavefunction satisfies a
set of n amplitude-transport equations on Q [129, 44]. Given a point z ∈ L on branch k
over representation-point x (with coordinates x1, · · ·xn), a volume form σ ∈ Ωn(L) can be
constructed on the Lagrangian manifold,

σ|z = Ωk(x)dx1 ∧ · · · ∧ dxn. (C.2.1)

Let L be the a group orbit for some group G with a symplectic action on phase space and
let P be the momentum map for this group action. The amplitude-transport equations for
Ω(x) imply that the density σ is invariant under the (left) action of the group.

If dim G = dim L then the left- and right-invariant forms and vector fields on the group
manifold G can be locally pushed-forward into vector fields and forms on L. In particular
the Hamiltonian vector field generated by a component of P is the push-forward of a right-
invariant vector field on G. Let L be described as the level set of a momentum map P for an
n-dimensional group G, L = P−1(µ), where µ is a fixed point of g∗. The set of Hamiltonian
vector fields {Xi} at any point z ∈ L span the tangent space TzLµ. Let {λi} be a set of
n 1-forms on L dual to the vectors Xi, that is, λi(Xj) = δij. These are locally the push-
forwards of right-invariant forms on G. The density σ may then be expressed in terms of
the right-invariant one-forms,

σL ≡ λ1 ∧ · · · ∧ λn ∈ Ωn(L). (C.2.2)

This volume form is uniquely determined once an ordered choice of basis vectors {ξi} is made.
The density defined this way is locally the pullback of the right-invariant Haar measure on
G. We will only be concerned with compact groups G in this work in which case the left- and
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right-invariant Haar measures on G are the identical. Note that σ is the unique left-invariant
volume form on L up to an overall normalization factor.

The amplitudes Ωk(x) may be determined by acting both volume forms on the n Hamil-
tonian flow vectors Xi. The σ acting on the flow vectors is

σ(X1, · · · , Xn) = det [λi(Xj)] = det [δij] = 1. (C.2.3)

Eq. C.2.1 acting on the vectors gives

Ωk(x)
(
dx1 ∧ · · · ∧ dxn

)
(X1, · · · , Xn) = Ωk(x) det

[
dxi(Xj)

]
. (C.2.4)

Each of the entries of the n× n matrix in the determinant is a Poisson bracket,

dxi(Xj) = ω−1(dxi, dPj) = {xi, Pj} . (C.2.5)

Therefore the amplitude Ωk(x) is expressed as the inverse of an n × n matrix of Poisson
brackets,

Ωk(x) =
1

det
[
{xi, Pj}

] , (C.2.6)

where the brackets are evaluated at the point z ∈ L on branch k over configuration point x.
Let VL =

∫
L σ be the volume of the Lagrangian manifold with respect to the left-invariant

density. When L is a single connected group orbit, as we assume in all applications, VL is
related to the volume VG of the group G with respect to the Haar measure µG. Let H ⊂ G
be the isotropy subgroup of G with respect to the group action on L. That is, H is the set
of elements h ∈ G such that ϕhz = z for all z ∈ L. If H only contains discrete elements
then the group orbit covers L exactly |H| times, where |H| is the cardinality of the isotropy
subgroup. Consider the map φ : G → L : g 7→ ϕgz0, where z0 is some arbitrary reference
point on L. Then the Haar measure is the pull-back of the density, µG = φ∗σ. Carrying out
the volume integral yields

VG =

∫
G

µG =

∫
G

φ∗σ =

∫
φ(G)

σ = |H|
∫
L
σ = |H|VL. (C.2.7)

Therefore the volume of a Lagrangian manifold is given by

VL =
VG
|H|

. (C.2.8)

As shown in Aquilanti et al [44] the overall normalization of the WKB wavefunction in
Eq. C.1.1 is

N =
1√
VL
. (C.2.9)

Changing the basis of g∗ or changing the momentum map description of L changes the
density form σ by a scale factor. This in turn causes the amplitude Ωk(x) and the volume
VL to change by the same scale factor. However, only the combination

√
Ωk(x)/VL appears

in the WKB wavefunction so this dependence on the choice of basis of g∗ cancels out.
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C.3 The Wigner-Weyl Transform

In this work we typically describe a quantum state as a non-degenerate eigenvector |A〉
in a Hilbert space H of a set of observables Âi on H. Note that these observables do
not necessarily to commute on the entire space H. The classical analog to |A〉 will be a
Lagrangian manifold La in the phase space Φ that corresponds to H as seen in the “semi-
classical dictionary” presented in Chapter 2 of Bates and Weinstein [58]. As discussed in
Littlejohn [54] and Aquilanti et al [44], this Lagrangian manifold will be the level set of the
classical observables Ai (without the hats) for appropriate contour values.

Classical observables on Φ are formed by taking the Wigner-Weyl transform of operators
on H (Weyl [130], Wigner [131], Berry [132], Balazs and Jennings [133], Littlejohn [112], de
Almeida [134]). The function A : Φ→ C corresponding to the operator Â : H → H is called
the “Weyl symbol” of the operator. For example, the complex coordinates (zµ, z̄µ) on Σ are

the Weyl symbols of the annihilation and creation operators (âµ, â
†
µ) on S. Let operator Â

be expressed in terms of the canonically conjugate configuration and momentum operators
q̂, p̂ on H, Â(q̂, p̂) (an ordering convention is needed to make this notation meaningful).
The principal symbol of Â, Apr(q, p) is formed by replacing operators q̂, p̂ with classical
coordinates q, p. The principal symbol is the lowest-order contribution to the Weyl symbol.
For operators that are linear or quadratic in q̂ and p̂ the principal symbol and Weyl symbol
agree.

Let Â and B̂ be operators on some Hilbert space H and with Weyl symbols A and B,
respectively, on the corresponding phase space Φ. The Moyal star product [135, 136] is
defined so that A ? B is the Weyl symbol of the operator ÂB̂. Let the coordinates on Φ
be zµ with µ = 1, · · · , 2n (these are real coordinates on an arbitrary phase space, not to be
confused with the complex coordinates on the Schwinger phase space) and let the Poisson
tensor in these coordinates be Jµν . The star product can then be expressed in terms of the

“Janus operator”
←→
L ≡

←−
∂ µJ

µν−→∂ ν where the arrows on the derivates indicate whether the

derivate acts to the left or to the right. In this notation A
←→
L B = A,µJ

µνB,ν = {A,B}. The
Moyal star product then is

A ? B = Ae
i~
2

←→
L B, (C.3.1)

where ~ has been temporarily restored as an expansion parameter [135]. To second order in
~,

A ? B = AB +
i~
2
{A,B} − ~2

8
A,µνJ

µρJνσB,ρσ + O(~3). (C.3.2)

If operator Âi has the Weyl symbol Ai then the eigenvalue condition Âi|A〉 = ai|A〉
translates into the level set condition Ai = ai to lowest order in ~. Note that we do not
adopt the convention that removing the hat gives the Weyl symbol in the case of the operator
Î defined in Eq. A.1.1. Instead, the Weyl symbol of Î is the function I − 1/2, where I is
defined as in Eq. A.2.2. Therefore the Lagrangian manifold corresponding to a state in the
j-eigenspace of S will lie in the I = j + 1/2 level set of Σ . For example, the Lagrangian
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manifold corresponding to the standard basis vector |jm〉 ∈ S is the simultaneous level set
of I = j + 1/2 and Jz = m in Σ .

The Weyl symbol for operators that are quartic in ẑ differ from their principal symbols
by a term of order ~2 (all higher-order terms will vanish however). The operator Ĵ2 for
a single angular momentum has the Weyl symbol J2 − 3~2/8, which is consistent with
the operator relation Ĵ2 = Î(Î + 1). The error term is of relative order ~2 which is the
error expected in lowest-order semiclassical approximations. However, the operator identity
allows the quartic-operator eigenvalue condition on Ĵ2 to be replaced by a quadratic-operator
eigenvalue condition on Î. The Weyl symbol of the coupled-angular momentum operator Ĵ2

12

is J2
12−3~2/4. There is no quadratic operator Î12 which could be used to replace the quartic

operator to obtain exact eigenvalues in this case.

C.4 WKB Approximation of Inner Products

Let H be a Hilbert space describing n classical degrees of freedom and let Φ be the associated
2n-dimensional phase space. Consider two vectors |a〉, |b〉 ∈ H with x-representation WKB
wavefunctions ψa(x), ψb(x) and let La,Lb ⊂ Φ be the two Lagrangian manifolds that support
the semiclassical approximations. The inner product 〈a|b〉 is approximated by

〈a|b〉 =

∫
dx
∑
k,k′

|Ωa,k(x)Ωb,k′(x)|1/2 ei(Sb,k′ (x)−Sa,k(x)−(µb,k′−µa,k)π/2), (C.4.1)

where k and k′ index the x-representation branches of La and Lb. The stationary phase
points occur when ∂Sb,k′/∂x − ∂Sa,k/∂x = 0 which is equivalent to pb,k′(x) = pa,k(x). Thus
the stationary phase set is geometrically interpreted in phase space as the intersection points
of La and Lb.

Let the states |a〉 and |b〉 be simultaneous non-degenerate eigenstates of sets of observ-
ables Âi and B̂i (i = 1, · · · , n) and let Âi and B̂i form Lie algebras for the groups GA and GB

under the commutator. The Lagrangian manifolds La and Lb that support the semiclassical
approximations to |a〉 and |b〉 may then be described as the simultaneous level sets of mo-
mentum map components Ai and Bi, respectively. These are both n-dimensional manifolds
in a 2n-dimensional phase space. As in Section C.2 the amplitude Ωa,k(x) is related to the
determinant of a matrix of Poisson brackets, as is Ωb,k′(x).

Let I be the intersection La ∩ Lb. When this intersection is a discrete set of points the
stationary phase approximation of Eq. C.4.1 evaluates to

〈a|b〉 ≈ (2πi)n/2√
VAVB

∑
z∈I

|Ωz|1/2 eiϕz , (C.4.2)

where VA and VB are the volumes of La and Lb with respect to the densities defined in
Section C.2. The phase ϕz is

ϕz = Sb,k′z(π(z))− Sa,kz(π(z))− (µb,k′z − µa,kz)
π

2
+ σz(b, a)

π

4
, (C.4.3)
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where π(z) is the projection of the intersection points onto Q and kz, k
′
z are the branches

of La and Lb that contain z, VA and VB and σz is the “signature index,” which will be
discussed in Section C.5. As shown by Littlejohn [54], the amplitudes in this expression may
be expressed as the inverse of an n× n matrix of Poisson brackets,

Ωz =
(
det {Ai, Bj}z

)−1
, (C.4.4)

where the Poisson brackets are to be evaluated at the intersection point z in phase space.
In this context Ωz is called the “amplitude determinant.”

The states in the inner product may feature a “common symmetry group” which manifests
itself as higher-dimensional intersections of the two Lagrangian manifolds that support the
WKB wavefunctions of the states. The intersection of La and Lb is then a set of disconnected
group orbits of this common symmetry group. Let H be the common symmetry group which
generates flows along the connected pieces of the intersection manifold I = La ∩ Lb and let
both H and the group orbits have dimension s. As shown in Aquilanti et al [1] the common
symmetry group may be made explicit by choosing a basis of the Lie algebras for GA and
GB such that the first s components of the momentum maps A and B are identical. Let I
in this case be divided up into a discrete set of H-group orbits indexed by κ. The stationary
phase approximation of Eq. C.4.1 in the presence of a common symmetry group evaluates
to

〈a|b〉 ≈ (2πi)(n−s)/2
√
VAVB

∑
κ∈I

VH,κ

∣∣∣Ω̃κ

∣∣∣1/2 eiϕz , (C.4.5)

where VH,k is the volume of the group orbit with respect to the Haar measure on H. The

phase is the same as in Eq. C.4.3, with z an arbitrary point on the group orbit, but Ω̃κ is a
“reduced” amplitude determinant involving an (n− s)× (n− s)-matrix of Poisson brackets
of the last (n − s) components of A and B (the components that are not common to both
momentum maps). This is interpreted as the amplitude determinant in the symplectic
reduction of the phase space by the common symmetry group. The choice of point z on the
common symmetry group orbit is irrelevant because the path connecting one point on the
group orbit to another is completely contained within both La and Lb by definition of the
common symmetry group as the generator of the intersection. Therefore the action integrals
and Maslov indices on both the a- and b-manifolds change by equal amounts and the total
relative phase in Eq. C.4.5 is unaffected.

Note that in some cases the intersection manifold may be generated by a group which is
not a subgroup of GA or GB. In this case the bases of the Lie algebras in which the first s
momentum map components are identical are not fixed and in fact depend on the location
in phase space. This is an area of ongoing research and has applications to the 2j-symbol
and its q-deformed version.
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C.5 Phases in the WKB Inner Product

Approximation

Suppose there is a unique intersection point z0 ∈ Φ and consider the phase ϕ defined in
Eq. C.4.3 at this intersection point. The expression σz0(b, a) is called the “signature in-
dex” and is a way of rewriting the imaginary units that result from the stationary phase
determinant. Let Hb,a(z0) be the Hessian matrix defined as

[Hb,a(z0)]ij ≡
∂2(Sbk′0 − Sak0)

∂xi∂xj

∣∣∣∣
π(z0)

, (C.5.1)

where k0 and k′0 are the branches of La and Lb where the intersection occurs. Then,

σz0(b, a) ≡ sgn Hb,a(z0), (C.5.2)

where the matrix signature sgn A of a real, symmetric matrix A is the number of positive
eigenvalues minus the number of negative eigenvalues that occur in the spectrum of A.

The signature index in Eq. C.5.2 may be expressed in terms of the Lagrangian signature
defined in Section B.5. Let Φ be a Euclidean phase space isomorphic to R2n. The tangent
spaces TzΦ can all be trivially and uniquely identified which means that a single global
Lagrangian Grassmannian Lag(V ) can be used for the phase space. Let L be a Lagrangian
submanifold of Φ and consider a point z ∈ L. In the x-representation, z is on some branch
of L which carries the action function Sk(x). Locally, the manifold is described by pi(x) =
∂Sk/∂xi. The tangent plane at z to L is a Lagrangian plane TzL ∈ Lag(V ) and is spanned

by the vectors ∂
∂xi

+
∂pj
∂xi

∂
∂pj

. The projections onto the representation planes are then related

by ~p = Â~x, where

Âij ≡
∂pj
∂xi

=
∂2Sk
∂xi∂xj

. (C.5.3)

Given an x-representation, the tangent plane to a point z on a Lagrangian manifold is the
plane generated by the Hessian of the local action in that representation. Now consider two
Lagrangian manifolds, La and Lb with intersection point z on branches k, k′, respectively.
Let (Â)ij ≡ ∂2Sak/∂xi∂xj and (B̂)ij ≡ ∂2Sbk′/∂xi∂xj. From equation C.5.2, the signature

index σ(b, a) is the matrix signature sgn(B̂− Â). Thus by Eq. B.5.7 the signature index can
be expressed as the Lagrangian signature of the triplet of Lagrangian planes

σ(b, a) = σ(Λx,ΛB,ΛA), (C.5.4)

where Λx is the representation plane and ΛA,ΛB are the tangent planes to the manifolds
La,Lb at the intersection point.

In general, there will be more than one intersection point. Label the intersection points
with the index i and define paths Γ

(a)
0i ⊂ La and Γ

(b)
0i ⊂ Lb be paths from the reference points
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za0 ∈ La and zb0 ∈ Lb to the i-th intersection point zi ∈ La∩Lb. The approximation of 〈a|b〉
will then be a sum of terms Aie

iϕi . The phases can be written

ϕi =

∫
Γ

(b)
0i

θ −
∫

Γ
(a)
0i

θ −
(
µ(Γ

(b)
0i )− µ(Γ

(a)
0i )
) π

2
+ σi(a, b)

π

4
. (C.5.5)

Typically, we will only be concerned with the relative phase between terms in the semi-
classical approximation, since the overall phase depends on the phase conventions of the
individual states and is not physically relevant. Let ∆ϕij ≡ ϕj − ϕi be the relative phase of
the term due to intersection point zj with respect to the term due to intersection point zi.

Define paths Γ
(a)
ij ≡ −Γ

(a)
0i + Γ

(a)
0j , Γ

(b)
ij ≡ −Γ

(b)
0i + Γ

(b)
0j , and Γij ≡ Γ

(b)
ij − Γ

(a)
ij . Note that path

Γij is a closed path that starts at point zi, goes to point zj along Lb, and comes back to zi
along La. Given an algebraic function F on paths,

F(Γ
(b)
0j )−F(Γ

(a)
0j ) = F(Γ

(b)
0i + Γ

(b)
ij )−F(Γ

(a)
0i + Γ

(a)
ij )

= F(Γ
(b)
0i )−F(Γ

(a)
0i ) + F(Γij). (C.5.6)

Since the integral
∫

Γ
θ and the Maslov index µ(Γ) are algebraic functions of paths, the above

result allows the phase difference ∆ϕij to be written in terms of the closed path Γij:

∆ϕij =

∮
Γij

θ − µ(Γij)
π

2
+ ∆σij(b, a)

π

4
. (C.5.7)

Note that the change in the signature index will generically be a multiple of 2 and so the
signature index is sometimes treated as another type of Maslov index. Also note that the
Bohr-Sommerfeld quantization condition on Lagrangian manifolds La and Lb imply that
choosing different paths will only change the relative phase by integer multiples of 2π.

The action integral part of the phase difference is independent of both reference point
and representation. Let the path Γij be the boundary of some surface S. Then,∮

Γij

θ =

∫
S

dθ =

∫
S

ω. (C.5.8)

The symplectic form ω is representation-independent. Changing the reference point on one
of the Lagrangian manifolds amounts to adding an additional piece of surface δS that lies
entirely in that Lagrangian manifold, which adds zero symplectic area.




