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Topological Phases of Matter:

A mathematical approach

by

Arman Babakhani

Abstract

In this work, I provide a literature review of earlier works on classification of

topological phases. In doing so, we motivate the idea of topological order and

phases of matter that are dependent on global geometric features of systems in

consideration.

I review an algebraic formalism to categorize phases of matter containing

non-abelian anyons, known as Braided Tensor Categories (BTC). With the mo-

tivation to study the relationship between non-abelian anyonic and symmetry

defects, I also introduce the an algebraic formalism describing the interplay

of global symmetries with the anyonic degrees of freedom. This formalism is

known as G-crossed BTC. These algebraic formalism provide observable topo-

logical quantities, such as the topological S-matrix, that can be probed by

interference measurements [1]. When the topological S-matrix of the BTC is

unitary, it is said that the fusion theory is said to be modular. Hence, one calls

the algebraic formalism a Modular Tensor Category (MTC).

I present the results of our work showing that one can construct projective

representations of the mapping class group of the punctured torus from the

topological formalism given by G-crossed BTC. This is pivotal in constructing

a G-crossed BTC for surfaces of higher genus, as one can build surfaces of

arbitrary genus by gluing many punctured tori. Throughout my mathematical

v



analysis, I also show that modularity of BTCs are not destroyed by the presence

of symmetry defects.
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F 2. S(g,h)S(h,h̄ ḡ) = C(g,h) . . . . . . . . . . . . . . . . . . . . 79

X. Concluding Remarks 81

A (ST )3 = Θ0S
2: Detailed diagrammatic steps 82

B S = CS†: detailed diagrammatic steps 84

C CS = CS: detailed diagrammatic steps 85

* Indicates sections containing original work by the author.

ix



I. INTRODUCTION AND OUTLINE

I. INTRODUCTION AND OUTLINE

Quantum mechanics has been very successful in explaining the behavior of systems in

atomic scale, a scale that was not well-understood by classical theories of mechanics

and electromagnetism. It has also helped explain various phenomena on larger length

scales. Electronic transport properties through a process called quantum tunneling

is an example of such phenomena. Quantum mechanics has also revolutionized the

fields of technology and engineering, through the invention of transistors, and the

most valuable of its applications might yet to be realized in quantum computers.

Even though some features of quantum mechanics, such as quantum entangle-

ment, might seem unintuitive and complicated, the mathematical formalism describ-

ing quantum mechanics is quite straightforward: there is a single equation, namely

the Schrödinger Equation (SE), that explains how a quantum system evolves as a

function of time [2]. How the system evolves, depends on the types of interactions

and microscopic mechanisms inherent to the system, described by a Hamiltonian.

That is all it takes to do quantum mechanics. All the complicated and eerie features

arise as a result of solving the SE, using a given Hamiltonian. Though, one must

admit that solving the SE can be incredibly daunting.

As a result of solving the SE, one finds all the possible states (eigenstates) in which

one can find the system upon measurement at a particular time1. Each eigenstate has

a well-defined energy, and sometimes multiple states have the same energy eigenvalue.

These states are called energy degenerate states. In order to distinguish eigenstates,

especially degenerate states, one must specify how the states project or overlap onto
1Eigenstates are the equilibrium states of a Hamiltonian. A general quantum system can be

described by a superposition of such states.
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I. INTRODUCTION AND OUTLINE

one another. In this sence, it is possible to think of eigenstates as vectors, and define

an inner-product operation to specify how two states align with respect to each other.

In order to consider all possible quantum states, one must then specify the space

spanned by all the solutions to the SE, known as the Hilbert space.

Due to the difficulty of solving the SE, physicists and chemists, for the most part,

have relied on approximation methods [3]. If the eigenstates of a particular Hamilto-

nian H1 is very difficult to solve for, a possible approach is to find another Hamiltonian

H2 for which one can solve the eigenstates with ease, and relate the eigenstates of H2

to H1 with an approximation method, such as perturbation theory. There are vari-

ous limitations to using perturbation theory, namely that the difference of energies

induced by the two Hamiltonians ∆H = H1 −H2 must be much smaller than the en-

ergy scales of the Hamiltonian H2. In other words, the bigger the difference between

the two Hamiltonians, the poorer our estimation for the eigenstates of H1. Therefore,

generally, most of the qualitative features of H1 will be removed if ∆H is significantly

large. This is called the breakdown of perturbation theory. One might naturally

come to ask the following questions. Given two different Hamiltonians H1 and H2,

are there any common features between the two systems, even when ∆H falls outside

of the domain of perturbation theory? What set of quantities remain unchanged upon

perturbations? Are there a set of Hamiltonians that share universal characteristics,

independent of the detailed description of the microscopic interactions?

These types of questions have motivated the search for the types of systems that

have intrinsic features which cannot be removed upon perturbations. These features

are often called topological features. This implicitly defines what most physicists

2



I. INTRODUCTION AND OUTLINE

mean by a “topological” feature: a quantity that is robust under smooth deformations

of the Hilbert space. To highlight why this definition is suitable, one can draw an

analogy between deformation of the Hilbert space to deformation of surfaces in real

space. Consider the surface of a torus: irrespective of how one smoothly2 deforms the

surface of this torus, the hole surrounded by the torus can never be removed. The

number of holes of a surface is thus a topological quantity, known as the genus of

the surface. Of course, the Hilbert space is not the real space, so I will provide more

specific examples and emphasize what is meant by smooth deformations in quantum

mechanical setting.

The existence of topological features was not obvious in the early days of quan-

tum mechanics [4]. It took clever thought experiments and masterful use of physical

intuition in order to hypothesize the existence of such features. One of the first

such thought experiments was due to Aharonov and Bohm [5]. Contrary to classical

electromagnetism, they argued that electromagnetic potentials produced physically

observable effects on a quantum system. The classically held belief was that as long

as there are no electric or magnetic fields in the region of a charged particle’s presence,

no physical effects due to the electromagnetic gauges will be observable. However, in

a set up shown in Figure 1, Aharonov and Bohm argued that the wavefuction of an

electron traveling around a solenoid in a region of zero magnetic field, will pick up a

phase, which can be detected upon interference measurements.

The topological feature in the Aharnov-Bohm (AB) experiment is due to the

path-independence of the phase picked up by going around the solenoid. Since the

phase eiγ(ϕ) only depends on the angle traversed (as shown in the RIGHT figure of
2Smooth deformation refers to a deformation that does not rip or cut the surface.
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I. INTRODUCTION AND OUTLINE

Figure 1: Aharonov and Bohm experiment showing the path of a quantum system in a
region of zero magnetic field. LEFT: figure of a solenoid showing the traversed path of
the particle. RIGHT: Top View of the setup. The phase picked up by the wavefunction is
dependent on the angle traversed around the solenoid.

Figure 1), moving all the way around the solenoid will result in a fixed phase eiγ(2π),

regardless of the specific path taken. In other words, this phase is robust under smooth

deformations of the path chosen around the solenoid, and so one can think of it as a

topological feature.

A similar path-independent phase is gained by the electronic wavefunction in

chemical systems of polyatomic nature. Herzberg et al. in 1979, showed that given

the presence of a certain type of degeneracy in polyatomic systems, known as a conical

intersection(CI), the electronic wavefunction gains a minus sign upon going around

the conical intersection, regardless of the specific path taken around it [6]. Figure 2

illustrates the intersection of two potential energy surfaces in a polyatomic system.

CIs have been an important topic of research in molecular dynamics in the last few

decades. Subtle treatments that account for effects due to the phases gained by the

electronic wavefunctions must be accounted for when computing the scattering of

electronic orbitals [7, 8]. These effects are typically categorized as non-adiabatic (dia-

batic) effects. I will explain how the presence of CIs in a molecular system introduces

4



I. INTRODUCTION AND OUTLINE

Figure 2: Conical intersection of two potential energy surfaces. The electronic wavefunction
gains a minus sign upon going around the center of the intersection. The figure is taken
from [7].

complications in later subsections. I mention this example to highlight the types of

observation that have motivated theoretical chemists and physicists to study systems

with topological features.

The systems which possess such features have gained popularity not for purely

mathematical reasons, but also for their application in explaining superconductivity

and other exotic phenomena such as quantum Hall effect (QHE). In this work, I will

review some quantitative metrics used to capture topological features in materials.

I will discuss some models containing topological features and highlight signatures

of topological effects in physical systems, namely a class of material known as topo-

logical insulators. I will also emphasize topological aspects governing the QHE, and

highlight the existence of excitations that are neither bosonic nor fermionic. These

excitations are known as anyons, the existence of which has been experimentally veri-

fied in fractional quantum hall states [9]. Anyonic systems are attractive test grounds

for studying many-body phases that are topological. This is because the path of every

particle around any other particle in the system produces observable effects on the

5



I. INTRODUCTION AND OUTLINE

state of the system. Therefore, to characterize the topological properties of a system,

it is important to analyze the way the paths of the particles ‘thread’ around all the

other ones. ‘Threading’ of particles around one another is called braiding.

It is important to emphasize that most of the discussion in this work will be

limited to two spatial dimensions, (2+1)D3. This is because studying the braiding of

particles around one another requires specifying path of one or many particles that

enclose other particles. In three spatial dimensions, one can reduce closed loops into

single points, rendering the effect of enclosed particles on the closed paths trivial [10].

In sections I-IV, I will provide some background on topological character of various

systems, including quantum hall states. I will provide a motivation to consider phases

of matter that are known to have ’topological order’. In doing so, I will motivate an

algebraic approach that takes a fundamental step in characterizing topological phases

of matter that is consistent with Quantum Field theory.

Quantum field theory (QFT) provides an alternative, but similar, approach to

studying quantum systems. Instead of a Hamiltonian description and Schrödinger’s

Equation, one often uses path integral formalism, describing the quantum system

via Lagrangian dynamics [11, 12]. An intricate approach to studying topological

aspects of quantum theory is through Topological Quantum Field Theory (TQFT)

[13]. TQFT is the study of properties of quantum fields that do not depend on

the details of the spacetime on which the fields live, i.e. properties that are metric

independent. Prominent work has been done by Edward Witten in this field to relate

the structure of certain quantum field theories to those of knots and closed links

[14]. TQFTs are a general framework in which physical observables and topological
3two space and one time dimension.
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I. INTRODUCTION AND OUTLINE

quantities can be computed from a microscopic description of interaction of various

types of quantum fields. Even though TQFTs provide a detailed picture of the types

of interaction in a system, computation of observables and topological features of a

physical system involves challenges such as evaluating Wilson loops [13].

In section V, I will delve into a simpler mathematical formalism than TQFTs,

which allows one to describe excitations and the resulting topological features upon

their braiding in many-body systems. This mathematical structure, known braided

tensor categories (BTC), are equivalent to TQFTs for two-dimensional systems with

low-energy excitations such as those of QHE [15, 16]. However, BTCs are a more

pragmatic algebraic method of describing topological features of anyonic states in

low-energy two-dimensional systems. Provided the types of excitations and how they

interact with each other, BTCs allow for the categorization of possible anyonic phases

due to the transport of excitations around one another.

The effects of global symmetries on systems with anyonic excitations is an inter-

esting ongoing topic of research. One can use BTCs to study the topological phases

arising in systems with anyonic excitations. However, applying BTCs on systems with

global symmetries requires a richer structure. Violations of the global symmetries,

called symmetry defects, require one to not only study the interaction of quasiparticle4

excitations but those of the symmetry defects themselves. In section VI, I will briefly

review the mathematical structure created by the interplay of symmetry defects with

electronic excitations, known as G-crossed BTC. In a recent work, Barkeshli et al.

have shown that G-crossed BTCs provide a consistent mathematical structure that
4Quasi-particles are localized excitations that are not destroyed by small perturbations. They

are called quasi-particles because they are emergent excitations and do not constitute an individual
particle by themselves.

7



II. ADIABATIC THEOREM AND GEOMETRIC PHASES

allows one to study defects and quasi-particles on a torus, a surface of genus one [17].

Finally, in sections VII and XI, I will introduce and present the results of our recent

project, showing the relationship between BTCs and topological representation of a

torus and surfaces with higher genus. As a result of the our mathematical analysis,

we come to the conclusion that if BTCs preserve unitarity of quasi-particle processes5

(especifically a quantity known as the S-matrix), the G-crossed BTCs also preserve

this property.

II. ADIABATIC THEOREM AND GEOMETRIC PHASES

In order to study smooth deformations and be able to characterize features that are

independent of such deformations, one needs to define what is meant by smoothness.

A precise approach requires one to consider adiabatic processes. In thermodynamics,

an adiabatic process is one that occurs slow enough that no energy is entered or exited

a closed system. In order to highlight the precise definition of adiabaticity in quantum

systems, I will begin by introducing adiabatic transport using Schrödinger’s Equation

(SE).

For a general treatment of the problem, one could define a Hilbert space, specified

by a set of parameters {λi}, H({λi}). Let us denote the Hamiltonian of the system

by H(λ⃗(t)), where λ⃗(t) is a vector in the space of parameters given by λi, and for

generality, let us assume that this vector is time dependent. Given the initial state of

the system, |ψ(0)⟩, in order to describe the state |ψ(t)⟩, one could use SE to write

H
(
λ⃗(t)

)
|ψ(t)⟩ = iℏ∂t |ψ(t)⟩ . (1)

5This feature is called modularity of the fusion category.

8



II. ADIABATIC THEOREM AND GEOMETRIC PHASES

If one assumes that the λi(t) is a smooth function of t for all i, then the eigenstates

of H,
{∣∣∣n(λ⃗(t))

〉}
satisfy

H
(
λ⃗(t)

) ∣∣∣n(λ⃗(t)
〉

= En

(
λ⃗(t)

) ∣∣∣n(λ⃗(t))
〉
. (2)

Working in the Schrödinger’s picture, and writing |ψ(t)⟩ = ∑
n cn(t)

∣∣∣n(λ⃗(t))
〉
, one

can write a differential equation for the coefficients cn(t) by using SE (having set

ℏ = 1)

∂t |ψ(t)⟩ =
∑

n

(
ċn(t)

∣∣∣n(λ⃗(t))
〉

+ cn(t)∂t

∣∣∣n(λ⃗(t))
〉)

= −iH
(
λ⃗(t)

)
|ψ(t)⟩ = −i

∑
n

cn(t)En(t)
∣∣∣n(λ⃗(t))

〉
. (3)

Note that the dot over a variable represents a time derivative. Now, taking the

inner product of the equation above with
〈
m(λ⃗(t))

∣∣∣ results in the following differential

equation for the coefficients cm(t)

ċm(t) + icm(t)Em(t) + cm(t)
〈
m(λ⃗(t))

∣∣∣ ∂t

∣∣∣m(λ⃗(t))
〉

=
∑

n ̸=m

cn(t)
⟨m(λ⃗(t))|Ḣ(λ⃗(t))

∣∣∣n(λ⃗(t))
〉

Em(t) − En(t)
. (4)

To obtain the right hand side of the equation above, I have used the fact that

⟨m| ∂t |n⟩ = ⟨m|Ḣ|n⟩
En−Em

for n ̸= m. To see this, one can time differentiate Eq. (2), and

take the inner product of the resulting equation with ⟨m|.

When the minimal energy differences between eigenstates are significantly larger

than the rate of change of the Hamiltonian, one can simply neglect the right hand

side of Eq. (4). This condition can be stated as follows

|
〈
m(λ⃗(t))

∣∣∣ Ḣ(λ⃗(t))
∣∣∣n(λ⃗(t))

〉
| ≪ |Em(t) − En(t)|. (5)

9



II. ADIABATIC THEOREM AND GEOMETRIC PHASES

This is the precise adiabatic condition in quantum systems. This condition obvi-

ously fails if there are degeneracies or band-crossings along the path of transport.

Under adiabatic conditions, Michael Berry offered a solution to Eq. (4) by con-

sidering the adiabatic limit (setting the right hand side of the equation to zero) [18].

The solution, thus, is written by the following

cm(t) = exp
[
i
(
γm(t) −

´ t

0 Em(t′)dt′
)]

(6)

γm(t) =
´

Am

(
λ⃗(t)

)
· dλ (7)

Am

(
λ⃗(t)

)
= −i

〈
m(λ⃗(t))

∣∣∣∇λ

∣∣∣m(λ⃗(t))
〉
. (8)

This solution entails the usual phase corresponding to the energy of the system

at any particular time, with an additional term, γn(t), which has been popularized

as the Berry’s phase, due to major contributions from Michael Berry. The term

Am(λ⃗) is known as Berry’s connection, and is a vector quantity, quantifying the

smooth deformations of the eigenstates. The Berry’s phase is an entirely geometric

contribution, as it depends on the traversed path in the parameter space. Berry’s

phase and connection vector will be used to account for topological effects upon

smooth deformations of solid crystals upon smooth deformations in k-space, in later

sections.

We must note that our analysis above is restricted to Hamiltonians that com-

mute with themselves in the entire parameter space given by {λi}. In other words,

[H(λ⃗(t)), H(λ⃗(t′))] = 0 for all λ⃗(t) and λ⃗(t′). These types of systems are known as

Abelian systems. In non-Abelian systems, the components of the Berry-connection

vector are matrices. Thus one must also account for the order in which Berry-

10



A. Avoided crossings II. ADIABATIC THEOREM AND GEOMETRIC PHASES

connections act on the evolution of the system. Without getting into the details

of such systems, we state that the non-Abelian nature of Berry’s phase is captured

by the following quantity (also known as ‘Wilson line/loop’ in topological quantum

field theory context)

γ = P exp
(ˆ

A(λ⃗) · dλ
)
. (9)

P exp() denotes a path-ordered exponential, and the integral is along the path taken

in the parameter space. References [19, 20] provide a detailed discussion of Berry-

connections in non-Abelian systems.

As mentioned earlier, transport in systems with band crossings and degeneracies

fails to satisfy the adiabatic condition, regardless of the speed of transport. In these

instances one must also account for non-adiabatic transitions, i.e. transitions to dif-

ferent energy levels implied by the right hand side of Eq. (4). In most polyatomic

materials, due to large number of degrees of freedom (DOF), crossing of energy levels

near the valence bands are a rarity. In fact, Herzberg and Longuet-Higgins extended

the eigenvalue crossings observation by von-Neumann and Wigner, and analyzed sys-

tems with eigenvalue crossings. I will review the importance of these analyses in the

next few subsections and emphasize the importance of adiabatic theorem in quantum

chemistry and materials.

A. Avoided crossings

One of the first works highlighting the relationship between symmetry and level statis-

tics and energy level crossings was done by Wigner and von-Neumann [21]. Wigner

and von-Neumann showed that in order for a system with no symmetries to have

11



A. Avoided crossings II. ADIABATIC THEOREM AND GEOMETRIC PHASES

energy level crossings, one must tune at least two parameters. This is easily demon-

strated by a simple model. One can demonstrate this fact by considering a Hamil-

tonian specified by a parameter vector λ⃗ = (λ0, λ1, λ2, λ3), and Pauli matrices {σi},

represented in vector form σ⃗, H(λ⃗) = λ⃗ · σ⃗. Note that with this notation σ0 = 1 is

the identity matrix. The Hamiltonian can be written in the following matrix form

H(λ0, λ1, λ2, λ3) =

λ0 + λ3 λ1 − iλ2

λ1 + iλ2 λ0 − λ3

 (10)

Since the Hamiltonian does not have any symmetries, λi s are arbitrary complex

parameters. The eigenvalues of the Hamiltonian is thus given by

E± = λ0 ±
√
λ2

1 + λ2
2 + λ2

3 . (11)

Thus, in order for the two eigenvalues to coincide, one must require λ2
1+λ2

2+λ2
3 = 0.

This implies that at least two of the three parameters must be specifically chosen in

order to achieve this. The general argument holds for any Hamiltonian with N DOFs.

Without any symmetries, one must tuneN−2 DOFs in order to achieve level crossings.

This argument can be extended to molecules. In diatomic molecules without any

symmetries, the only DOF is the bond length between the two molecules. Thus,

from arguments above, one might infer that no level crossings occur. Thus, systems

with insufficient DOFs cannot host degeneracies or level crossings. This phenomena

is referred to as avoided crossings.

12
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A 1. Degeneracies due to symmetries

It is worth emphasizing that symmetries can often create degeneracies in a system.

For instance, if one requires that the Hamiltonian in Eq. (10) be symmetric under

σz conjugation, i.e. [H, σz] = 0, we must have that λ1 = λ2 = 0. This suggests that,

by tuning a single parameter λ3, one can obtain level crossings. In general, a system

H with a set of symmetries Ji could host degeneracies, when the symmetries do not

commute. This can be observed by picking two non-commuting operators J1 and J2,

such that [H, J1] = [H, J2] = 0. Assuming that {|n⟩} are a complete set of eigenstates

of H. One should observe that J1,2 |n⟩ is also an eigenstate of H by the following

0 = [H, J1,2] |n⟩ = H (J1,2 |n⟩) − En (J1,2 |n⟩) (12)

From the relation above, we see that both states J1 |n⟩ and J2 |n⟩ have the same energy,

however, they are not necessarily the same state. Now, repeating this argument with

the states J1,2 |n⟩

0 = [H, J2,1] (J1,2 |n⟩) = H (J2,1J1,2 |n⟩) − En (J2,1J1,2 |n⟩) (13)

This shows that the state J1J2 |n⟩ has the same energy J2J1 |n⟩. However, since

[J1, J2] ̸= 0, these two states are not necessarily identical. So, non-commuting sym-

metries could enforce degeneracies and level crossings in a quantum system.

B. Conical intersections

From the discussion of symmetries, one can note that in diatomic molecular systems,

level crossings due to existence of different types of non-commuting symmetries are a

13



B. Conical intersections II. ADIABATIC THEOREM AND GEOMETRIC PHASES

possibility. In complex structures, such as polyatomic molecules, due to large num-

ber of DOFs, level crossings are not contingent upon the existence of symmetries.

Herzberg and Higgins went beyond diatomic molecules and analyzed triatomic struc-

tures, and highlighted the nature of the level crossings near the center of the molecular

structure [6]. They observed the existence of a conical intersection of potential energy

surfaces and noted that the electronic wavefunction attains a non-trivial minus sign

upon transporting the system around the center of the conical intersection.

Upon the observation that the electronic wavefunction acquires a negative sign

upon being transported around the center of the conical intersection, one must be

vary of the implications of this observation on the single-valuedness of the total wave-

function of the system. It is clear that in order to preserve the single-valuedness of the

total wavefunction of the conically intersecting systems, then the nuclear wavefunc-

tion must also acquire some phase in order to compensate for the sign gained by the

electronic wavefunction upon transporting around the loop of the intersection. This

indicates that our usual assumptions about the separation of the total wavefunction

into electronic and nuclear parts, given by the Born-Oppenheimer approximation is

invalid. Namely, one can no longer split the nuclear and electronic DOFs and write

|Ψ⟩ ≈ |ψelec⟩ ⊗ |ψnuc⟩ (14)

Ψ ({ri}, {Rj}) ≈ ψelec({ri}|{Rj})ψnuc({Rj}). (15)

Before the work of Herzberg et al., quantum chemistry calculations relied on Eq.

(15), with the justification that in non-relativistic systems, the nuclear dynamics are

orders of magnitude smaller that those of electronic, and so one could neglect any

14
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correlation between the nuclear and electronic wavefunctions. However, in the pres-

ence of entanglement between nuclear and electronic DOFs, one cannot apply the

Born-Oppenheimer approximation. Therefore, adiabatic quantum chemistry calcu-

lations might be inappropriate for systems exhibiting long-range entanglement and

topological order at molecular level.

In light of the signatures of breakdown of Born-Oppenheimer approximation in

presence of conical intersections, Mead et al. introduced a mathematical formalism to

account for non-adiabatic corrections by unitary transformations on nuclear wavefunc-

tions [22]. Since 1980s, great progress has been made on incorporating geometric phase

effects from non-adiabatic dynamics due to conical intersections. Intricate methods

to go beyond Born-Oppenheimer approximation and account for non-adiabatic effects

upon doing molecular dynamics simulations have been explored in the recent years

[23, 24, 7, 8]. Molecular systems with CIs remain an ongoing topic of research in

theoretical chemistry.

III. TOPOLOGY AND TRANSPORT

A. Topological invariants in solids

Insulators are a class of materials about which topology has helped expand our un-

derstanding. Conventionally, one thinks of insulators as systems with a band gap.

This gap between the occupied and unoccupied states is large enough that no sig-

nificant thermal excitations from the valence band maximum (VBM) to conduction

band minimum (CBM) can occur. Thus, using band-theory one can predict insulat-
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ing behavior on systems with large gaps between VBMs and CBMs. However, not

all insulators are alike. In fact, there are classes of insulators exhibiting topological

character. I will emphasize the importance of topological insulators after introducing

Chern numbers and their role in transport properties of material.

In order to describe the topological character, we need to consider smooth de-

formations of the bands, keeping in mind the symmetries possessed in the system.

For instance, a solid with crystal structure has translational symmetry, and one by

smoothly deforming the bands, by either varying the chemical potential of each con-

stituent or by changing the cell dimensions, still retains the translational symmetry.

Therefore, when applying topological methods to studying material, one assumes that

periodicity is not broken upon deformations (change of parameters).

B. Chern Numbers

In this subsection, I introduce Chern numbers and their relation to the topology of

quantum systems. In order to define the mathematical form of the Chern number,

let us limit ourselves to 2 spatial dimensional systems (2+1)D. The reason for this

is not only to simplify some of the mathematical expressions, but to also merge our

discussion with anyonic systems, which are (2+1)D phenomena. Let us start from

the definition of Berry’s phase, given in Eq. (7), defined in the momentum space, i.e.

λ⃗ = k⃗.

γm(k → k′) =
´ k′

k
Am(k⃗) · dk (16)

γm(k → k) =
¸

S

[
∇ × Am(k⃗)

]
· d2k ≡

¸
S Ωm(k⃗) · d2k (17)

Cm = 1
2π

¸
S Ωm(k⃗) · d2k (18)
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Eq. (18) defines Chern number Cm of a band m in a solid. It is worth noting that,

in the second step of Eq. (17), we have used Stoke’s theorem and Ωm(k⃗) is called the

Berry-curvature of band m. However, one must be careful to keep in mind that the

integrals in Eq. (17) are contour integrals in the 2d complex plane. This means, that

closed loop line integrals are not always vanishing. They vanish only if the integrand

of the line integral does not contain any singularities. The number of singularities in

the Berry-connection vector is a topological quantity that cannot be altered by small

perturbations.

There are rigorous arguments using complex analysis that one can employ to show

the quantization of the Chern number. A simple observation, however, is to require

single-valuedness of the wavefunctions (bands) upon traversing along the entire Bril-

louin zone. This suggests that the Berry’s phase, γm(k → k) gained upon traversing

through the entire Brillouin zone (a closed loop in k-space) should have a trivial phase,

i.e.

γm(k → k) = 2πn, n ∈ Z. (19)

Using this argument, and the definition of the Chern number for band m from Eq.

(18), we see that the Chern number of a band m could only take on integer values,

namely Cm = n. We end this subsection by emphasizing that the Chern number,

like the winding number6 or the genus of a surface, is quantized, and it relates many

important ideas in quantum mechanics to the study of geometry and topology.
6In simple terms, the winding number is the number of full circular turns that a closed curve

makes.
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C. Anomalous velocity

To observe the geometric effects due to Berry-curvature, N. Qian and S. Ganesh ana-

lyzed the equations of motion of a semi-classical system, described by wave-packets, in

presence of external electric and magnetic fields [25]. By calculating the expectation

values of momentum and position operators, they obtained dynamics that closely re-

sembles those described by classical equations of Lorentz forces in electromagnetism.

These resulted in the so called semi-classical transport equations, given as follows

ẋ = ∇kEm(k) − k̇ × Ωm(k) (20)

k̇ = −eE − eẋ × B. (21)

We observe that there in addition to the usual group velocity of band m, vg
m(k) =

∇kEm(k), we have an extra term in Eq. (20), k̇ × Ωm(k), known as the anomalous

velocity. This term is a topological contribution to the velocity, and is the only

term that is due to quantum mechanical effects in the equations above. One way

to rationalize the appearance of the Berry-curvature is to consider the action of the

position operator on a wave-packet described in the quasi-momentum space, with

{|k,m⟩} as the complete set of quasi-momentum states with band labels m as follows

ψm(k) ≡ ⟨k,m| ψ⟩ = 1
V

ˆ
ddx ⟨k,m|x⟩ ⟨x|ψ⟩ = 1

V

ˆ
ddxe−ik·x ⟨bn,k|x⟩

= 1
V

ˆ
ddxe−ik·xfn,k(x)ψ̃m(x).

In the last step we defined the functions fm,k(x)ψ̃m(x) = ⟨bm,k| x⟩. Now, consid-
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ering x̂ψm(k), we have

x̂ψm(k) = 1
V

ˆ
ddxe−ik·xfm,k(x)xψm(x) = 1

V

ˆ
ddxi∇k

(
e−ik·x

)
fm,k(x)ψm(x)

= i∇kψm(k) − 1
V

ˆ
ddxe−ik·x (i∇kfm,k(x))ψm(x)

= i∇kψ(k) − 1
V

ˆ
ddxe−ik·x (i∇kfm,k(x))

ˆ
ddk′

(2π)d
f ∗

m,k′(x)eik′·xψm(k′) (22)

The second term in the last line of the equation above simplifies to the following

ˆ
ddk′

(2π)d
ψm(k′)

ˆ
ddx

V
e−i(k−k′)·x (i∇kfm,k(x)) f ∗

m,k′(x)

= i

ˆ
ddk′

(2π)d
ψm(k′)

ˆ
ddx

V
e−i(k−k′)·x ⟨∇kbm,k| x⟩ ⟨x| bm,k′⟩

= i

ˆ
ddk′

(2π)d
ψm(k′) ⟨∇kbm,k| bm,k′⟩δ(k − k′) = iψm(k) ⟨∇kbm,k| bm,k⟩

= −ψm(k)Am(k). (23)

Therefore, we see that x̂ψm(k) = (i∇k + Am(k))ψm(k). This is where the Berry

connections enter into the equations of motion.

C 1. Hall conductivity from linear response

In order to see the observable effects of Berry connections in material conductivity,

it is common to use the Boltzmann equation with relaxation time approximation to

write a continuity equation for the electronic distribution function gm(x,k) for band

label m as follows [26]

(
∂t + ẋ · ∇x + k̇ · ∇k

)
gm(x,k, t) ≈ − 1

τm,k

(
gm(x,k, t) − g(eq)

m (x,k)
)

(24)

where g(eq)
m (x,k) is the equilibrium electronic distribution function and τm,k is the

average collision time between electrons of band m and momentum k.
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Using the equations of motion in Eqs. (20) and (21), one can find the response

of the distribution functions gm(x,k, t) to external electric field E, in the absence of

magnetic fields, by writing

gm(x,k, t) = g(eq)
m (x,k, t) + δgm(x,k, t) + ... (25)

where δgm(x,k, t) is O(E): a perturbative response due to the external electric field.

By making simplifying assumptions about gm(x,k, t), namely that it is a uniform

distribution function in real space and time, i.e. ∇xgm(x,k, t) = ∂tgm(x,k, t) =

0. If we further assume that the equilibrium distribution is nothing but a Fermi-

distribution nF (Em(k)), we find that Eqs. (24),(25), and (21) imply that

eE · ∇kg
(eq)(k) = eE · ∇knF (Em(k)) = 1

τm,k

δgm(k). (26)

This implies that the first order response of the electronic distribution function is

δgm(k) = eτm,k∇knF (E(k)) · E = eτm,kn
′
F (E)vg

m(k) · E.

Now, in order to find the conductivity tensor σµν , we must find the electronic

current due to the external electric field. Electronic current j(x, t) is nothing but the

expectation value of the electronic velocity, i.e.

j(x, t) = −2e
∑
m

ˆ
ddk

(2π)d
vm(x,k)gm(x,k, t). (27)

The factor of 2 in the equation above, comes from contribution of spin. Using the

results of Eq. (26) in Eq. (27), with the the equation for band velocity from Eq. (20),
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we obtain

j(x, t)

= −2e
∑
m

ˆ
ddk

(2π)d
(vg

m(k) + eE × Ωm(k)) (nF (Em(k)) + eτm,kn
′
F (k)vg

m(k) · E)

= j0(x)

+2e2∑
m

ˆ
ddk

(2π)d

(
−vg

m(k)(vg
m(k) ·E)τm,kn

′
F (k)+nF (Em(k))Ωm(k)×E

)
+O(E2).

(28)

We have defined j0(x) to be the equilibrium zero-field current. From the expression

above, we see that there are two types of first order contribution to the current due to

applied electric field. The first simply gives a contribution to the current if the applied

field E is in the direction of the group velocity. However, we note that the second

term in the integrand above implies that there is current generated in perpendicular

direction to the applied field E. This is the contribution to Hall current. Thus, in

order to predict the Hall conductivity, we must only account for the contributions

from the second integral.

Note that the conductivity tensor is defined as jµ = σµνEν . The contribution from

the second term in the last equality of Eq. (28) can be written as the Hall current

jHall
µ = 2e2∑

m

ˆ
ddk

(2π)d
nF (Em(k))ϵµνλ[Ωm(k)]ν [E]λ. (29)

We see that the Hall conductivity σH can be written as

[σH ]µλ = 2e2∑
m

ˆ
ddk

(2π)d
nF (Em(k))ϵµνλ[Ωm(k)]ν . (30)

In order to predict the Hall conductivity for a planar 2d (two real-space dimensions)
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system (on the x-y plane), we can assume that E is along say x-direction and note

that from the definition of Berry’s curvature in Eq. (17), Ωm(k) = Ωm(k)ẑ is purely in

z-direction. Noting that the Hall conductivity tensor is asymmetric, i.e. σH
µλ = −σH

λµ,

we write the Hall conductivity

σH = σxy − σyx

2
= −e2∑

m

ˆ
d2k

(2π)2nF (Em(k))Ωm(k). (31)

In the zero temperature limit, since nF (Em(k)) → 1 − Θ(Em(k)), in presence of a

band-gap (for insulating material), the sum over all bands turns into only a sum over

the occupied bands. We, thus, arrive at the following result

σH(T = 0) = σxy − σyx

2
= e2

(2π)2

∑
m(occ.)

ˆ
d2k Ωm(k) = e2

2π
∑

m(occ.)
Cm = e2

2π
n. (32)

In the last equality, we used the fact that the Chern number is quantized, as implied

by Eq. (19). We observe that Eq. (32) implies that the the hall conductivity is

quantized, without presence of any magnetic field. In fact, ferromagnetic systems

also exhibit this effect, known as the Anomalous Quantum Hall (AQH) effect.

D. Topological Insulators (TI)

Eq. (32) implies that certain insulating systems exhibit Hall conductivity. These

insulators are classified by the sum over the Chern numbers of all of the occupied

bands. For systems with time-reversal symmetry, the sum of all Chern numbers is zero.

This can be seen by noting that the Berry-curvature is antisymmetric under time-

reversal. Insulators with a sum of Chern numbers ∑m Cm = n = 0 are called trivial

insulators, and ones with n ̸= 0 are referred to as topological, or more specifically as

Chern insulators. The sum of the Chern numbers of the occupied bands, denoted by
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the integer n, classifies integer quantum hall (IQH) insulators.

It is important to emphasize that Eq. (32) implies that non-trivial insulators

conduct electricity. Since, we are dealing with insulators, no current can be conducted

through the bulk of the material. However, one way in which Chern insulators can

conduct electricity is through the edges (surfaces) of the material. The reason for

this is as follows. Two Chern insulators with different sum of occupied band Chern

numbers are topologically distinct. This means that one cannot smoothly deform a

system of class n TI into a class n′ ̸= n TI without introducing gapless states (band-

crossings) [27]. Thus, at the boundary of the Chern insulator and the vacuum or a

trivial topological state, we must have band-crossings. Due to these band-crossings,

there are states at the boundary that are gapless. These are often referred to as

gapless edge modes. These ‘modes’ are excitation channels that cannot be destroyed

by small perturbations or disorder. Hence, they are also referred to as topologically

protected surface states. In Figure 3, we show the edge states on the boundary of

an IQH insulator, produced on the boundary by ‘unclosed’ qunatized landau levels.

Even though, Quantum Hall effect will be discussed further in the next section, I

emphasize the classification of Chern insulators and the existence of edge modes due

of their topological nature.

23



D. Topological Insulators (TI) III. TOPOLOGY AND TRANSPORT

Figure 3: This figure shows a system of IQH landau levels represented by the loops with
arrows. In an IQH system, the edges of the material produce unclosed landau levels that
connect neighboring localized wavefunctions. This allows for conduction of current along
the edges of the material. These states, shown in blue and red lines in the figure flow in the
opposite directions and are topologically protected.

In the recent years, it has been shown that such topologically protected surface

states can be realized in not only 2d Chern insulators but a more general class of 2d

and 3d topological insulators, even in presence of time-reversal symmetry [28]. As

mentioned above, the sum of the Chern numbers of the occupied bands is a metric

that classifies insulators with broken time-reversal symmetry. However, there are

various other classifications metrics for a more general class of topological insulators

with time-reversal symmetry [29].

Topological insulators are classes of material whose topological character mani-

fests under breaking of time-reversal symmetry, as discussed earlier. These classes of

material are known as symmetry-protected topological (SPT) phases, due to the fact

that they are topologically trivial in presence of certain global symmetries. There are

other classes of topological phases of matter that do not lose their topological charac-

ter in presence of global symmetries. These are called symmetry-enriched topological

(SET) phases. Thus in order to distinguish between systems with SPT and SET, it is

important to study the influence of global symmetries on topological degrees of free-
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dom of a system. The discussion of global symmetries and their effects on topological

quantities will be taken up mostly in section VI, where we introduce a formalism

called G-crossed modular tensor categories. One of the motivations for considering

such mathematical formalism is to precisely explore the relationship between global

symmetries of a system and its topological character.

IV. TOPOLOGICAL ORDER

Before the discovery of the quantum Hall effect, a typical approach to the study of

phase transitions and novel phases of matter was to find a symmetry breaking mecha-

nism for the degenerate subspace of a model that was described by Landau-Ginzburg

theory. This model has been very successful in describing various symmetry-broken

phases of matter, namely that of liquid-crystals and superfluids [11, 30]. However,

quantum Hall effect, as shall be explained in the next sections, is not the simply a

result of a symmetry-breaking mechanism. Even though breaking of time-reversal

symmetry, through application of strong magnetic fields, produces the observable ef-

fects of landau levels of Integer Quantum Hall (IQH) effect, there are more intricate

relationships between fluxes and electronic occupation. Furthermore, given the fact

that IQH and fractional Quantum Hall states are robust against disorder, more sub-

tle explanations that symmetry-breaking was required to explain the electronic order.

Inspired by the topological nature of IQH and many other mentioned effects such as

Berry’s phase, the term topological order was introduced to capture a phase of matter

due to topological phenomena, robust under perturbations that did not destroy bulk

properties of a system [31]. Characterizing topological order is still a topic of ongoing
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research. In subsection B., we introduced Chern numbers, Cm, that characterized

some topological information about the band m. In fact, Cm tells us whether there

are any singularities in the Berry-connections Am(k), upon traversing the Brillouin

zone of a crystal across band m. Chern numbers are one example of a topological

quantity that characterize nontrivial geometric effects. Another important character-

istic describing the topology of a system is ground state degeneracy. In the following

sections, we will show how the topology of a system could be characterized by the

degeneracy of the ground states of a system.

A. The 2d Toric code

A toy model describing the intimate relationship between topology and degeneracy

of the ground states of a system is the 2d toric code [32]. We will show that the

boundary conditions7 of the following lattice model determines the number of ground

state degeneracy. We provide a brief highlight of the model by describing the Toric

code Hamiltonian describing an N × N lattice (with N2 placquettes and junctions)

as follows

HT oric = −s
∑

i

Ai − p
∑

j

Bj. (33)

Here, the operators Ai = ∏
k∈ ithjunc. Zk and Bj = ∏

l∈ jthplac. Xl are operators defined

on a 2d lattice containing spin-1
2 in between the junctions of the lattice. Z and X

are pauli spin operators. Figure 4 demonstrates the spins on which Ai and Bj act on

the 2d lattice. We must note that to build the entire lattice, one can define a unit
7The boundary conditions is a way of specifying the topology of the space. Open boundary

conditions imply that the two ends of the lattice are not connected, describing the topology of a flat
space. Periodic boundary conditions imply that the two ends of the rectangular lattice are connected,
exhibiting the topology of a torus.
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cell with 2 spins for each placquette. This suggests that there are 2N2 total spins in

this model. It should be emphasized that first I will show briefly describe the ground

state properties of the Hamiltonian in Eq. (33)

In order to solve for the ground state of this model, we shall first note that

[Ai, Bj] = 0, for all i and j. This is because a placquette and a junction opera-

tor only act on even number of common spins. Either they are too far apart, in

which case they do not share any common spins, or they are in immediate proximity,

in which case they act on 2 common spins. Even though pauli spin generators X

and Z on a specific spin anticommute, since even number of spins are shared by the

placquette and junction operators, the anticommutations cancel out.

Figure 4: 2d lattice of spin-1
2 . Aj is an operator acting on the spins surrounding a placquette,

and Bj is an operator acting on the neighboring spins of a junction.

Since, the placquette and junction operators commute, we can simply find the

ground state of the entire system by finding states that minimize placquettes and

junctions terms individually. Let us work in the Z-basis, and denote |−⟩ for the

ground state of Z with energy −1, and |+⟩ for the excited state with energy +1. One

can note that the following state

|AP ⟩ = |+⟩1 ⊗ |+⟩2 ⊗ ...⊗ |+⟩2N2
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minimizes the junction terms in HT oric, i.e. −∑
j Bj. We used the notation |AP ⟩ to

denote the state with ‘All Plus’. Since, the operation of Aj term on the state |AP ⟩ has

the effect of flipping all the spins on the ith placquette from |+⟩ to |−⟩, we can note

that such a state has the same energy as |AP ⟩, since any junction will be surrounded

by even number of |−⟩ states. In Figure 5, we have shown the state Ai |AP ⟩ which

has the same energy as |AP ⟩, i.e.
∑

j

Bj

 (Ai |AP ⟩) = (Ai |AP ⟩) |AP ⟩ = −N2 |AP ⟩ . (34)

In fact, any string of Ais will not change the energy of the state |AP ⟩.

Figure 5: The state Ai |AM⟩ denoted by a red loop. One can see that any of the junction
terms Bj surrounding the ith placquette will have even number of spin downs.

Any state that produces even number of |−⟩ will have the same energy as |AP ⟩.

Figure 6 shows some states satisfying this condition, and in fact, one can observe that

any state with closed loops of |−⟩ s will fall in this category.
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Figure 6: A few degenerate configurations with the same energy as |AP ⟩. In the diagram,
the red lines represent and the black lines represent |−⟩ and |+⟩ state for a single spin
respectively.

From these analysis, one can conclude that the ground state of the 2d Toric code

is nothing but an equal-weight superposition of all the possible configurations with

the same energy as |AP ⟩, i.e.

.

(35)

We observe that the ground state is a highly entangled state. We further emphasize

that our analysis, so far, pertained to the toric code with open boundary conditions.

We shall extend the analysis to periodic boundary condition, by noting that one can

count the expected number of degeneracy in the ground state, n, by considering the

difference between the dimension of the Hilbert space and the number of DOF, i.e.

n = 22(N2−DOF ) = 4N2−DOF . (36)

This is because each spin has 2 configurations, |−⟩ and |+⟩, and for every unit cell there

are 2 spins. So, the dimension of the Hilbert space for a unit cell is 4, and since there

are N2 unit cells, the dimension of the full Hilbert space is 4N2 . However, the number

of DOFs, i.e. independent action of string of Ai, should determine how many ways one

can construct a ground state. Since, there are N2 placquette operators, Ai, for the
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toric code with open boundary conditions, one expects that DOF = N2, and so n =

1. However, when we require periodic boundary conditions, the situation is slightly

different. The reason is that a string of Ais along the entire horizontal and vertical

dimension would act trivially, due to the periodicity of the lattice. Mathematically,

this suggest the following constraint

N2∏
i=1

Ai = 1. (37)

This suggests that the number of DOFs have been reduced by one due to the constraint

imposed on the possible outcomes of the strings of Ai due to periodicity of the lattice.

This makes the ground state degeneracy n = 4N2−(N2−1) = 4.

The connection between the ground state degeneracy and the topology is the

following. The 2d lattice wiht open boundary condition has the same topology as

a flat space. Simply put, the ends of the space along either direction never meet.

However, periodic boundary conditions suggest that the two ends of each direction

loops around. This is exactly the topology of a torus: a 2d space with genus g = 1.

As discussed above, for every additional genus, we will have to require a constraint

equation on the periodic strings of Ai, so the DOF of the system is given by N2 − g.

This gives us the degeneracy of the toric code for a lattice on a surface of genus g

n = 4g. (38)

It is important to exclamate the nature of ground state degeneracy of the Toric

code Hamiltonian. It is not an artifact of a symmetry: it is simply due to the topology

of the 2d lattice of the model. This system provides an example of the type of order

that is subject to change due to global geometric properties of the system. This is an
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example of topological order that we have previously mentioned.

B. Quantum Hall Effect

B 1. IQH

The theory behind IQH is well understood, and in fact, one can write a Hamiltonian

and solve for the eigenstates and show that the Hall conductivity for such a system

is integer quantized. The Hamiltonian given for an electron in a magnetic field given

by the vector potential A is as follows

H = ẋ · p − L = 1
2m

(p + eA)2. (39)

We will assume that we have a 2d system, with 2 component of momentum vector

px and py, and introduce a magnetic field along the perpendicular direction, i.e. B⃗ =

∇ × A = Bẑ. We can pick a gauge, A, satisfying this condition, namely A = xBŷ.

Now, one can write a functional form of SE as follows

HΨ(x, y) = 1
2m

(
p2

x + (py + eBx)2
)

Ψ(x, y), (40)

keeping in mind that px and py are derivative operators on the spatial wavefunction

Ψ(x, y). Since, there is translational invariance in the y-direction, we can substitute

the plane wave ansatz ψk(x, y) = eikyfk(x) into Eq. (40), and obtain

Hψk(x, y) = 1
2m

(p2
x + (ℏk + eBx)2)ψk(x, y) ≡ h(k)ψk(x, y). (41)

Restoring our ℏ, we note that h(k) = 1
2m
p2

x + mω2

2 (x + kl2B)2, with ω = eB/m and

lB =
√
ℏ/(eB), a length scale known as the magnetic length. We can note that the
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Hamiltonian, with the given wavefunction ansatz, is that of a quantum harmonic

oscillator, shifted along x-axis by an amount −kl2B. Similar to Harmonic oscillator,

the energy eigenvalues are

En = ℏω(n+ 1
2

), (42)

with the given eigenstates:

ψn,l(x, y) ∝ eikyHn(x+ kl2B)e−(x+kl2B)2/2l2B . (43)

Note that in writing ψn,k, we have restored our units of ℏ, manifested in the magnetic

length units.

The quantum number n defines the energy of the state, and we shall consider the

degeneracies in such a state, given some finite length along y-direction (specified by

Ly) and x-directtion (specified by Lx). To count the degeneracies, we shall integrate

over the phase space

N =
ˆ
ρ(k)dk

2π
≈ Ly

2π

ˆ 0

−Lx/l2B

dk = LxLy

2πl2B
= eBA

h
= Φ

Φ0
. (44)

Due to the localization of the wavefunction around x = −kl2B, we can estimated the

integral over the phase space for k given by x = 0 and x = Lx, from which we

determine the bounds using k = −x/l2B. In the last equality, we have denoted the flux

quantum by Φ0 ≡ h/e. The discussion of degeneracies highlights the fact that for a

single electron, there is a single magnetic flux of Φ, which gives rise to the IQH states.

This is summarized by defining the following quantity, known as the filling fraction

ν ≡ N

N
= N

Φ/Φ0
, (45)

and observing that ν = 1 for IQH.
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To highlight the similarity between the landau levels and the wavefunctions de-

scribing FQH states, is more convenient to work in the symmetric gauge, A =

−yB
2 x̂+ xB

2 ŷ. The Hamiltonian becomes

H(x, y; px, py) = 1
2m

((
px − eyB

2

)2
+
(
py + exB

2

)2)
. (46)

By introducing the complex variable s = x+ iy and its complex conjugate s̄ = x− iy,

we can write Eq. (46) as follows

H(s, s̄; ∂s, ∂s̄) = 1
2m

[
−
(
∂s − eBs̄

4

)(
∂s̄ + eBs

4

)
+ eB

2

]
. (47)

The eigenstates of the equaiton above is given by Laguerre polynomials Ll
n(s, s̄) as

follows

ψn,l ∝ slLl
n(s, s̄)e

− |s|2

4l2
B . (48)

We note that we have restored units of ℏ in the equation above. These states give us

an idea of lowest landau levels, which is useful for the discussion of FQH. We note

that, the lowest landau level (LLL) (n = 0), is

ψl
LLL(s, s̄) ∝ sle

− |s|2

4l2
B . (49)

Recall that we briefly introduced IQH states in section III.-B., through discussion

of the Hall conductivity. The landau levels described in Eq. (43) share the same

properties on Hall conductivity.

B 2. FQH

Soon after the discovery of the IQH in the early 1980s, various experiments observed

a fractional Hall conductivity [33, 34]. Experimentalists observed plateaux not only
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near Hall conductivities with integer proportion to the universal constant e2/h, but

fractional proportions, p
q
, mostly with an odd denominator. Figure 7 shows Hall

resistance RH ∝ 1/σH , in units of h/e2.

Figure 7: Observation of FQH. Plateaux observed at fractional conductivities. Observe that
almost all of the fractions have an odd denominator. This figure is used taken from [34]

.

Many successful attempts have been made in describing most classes of FQH

states, especially states with odd denominators. Since FQH states host fractional

electronic charges, the fundamental attempts were to guess an antisymmetric wave-

function that allowed for fractional occupation of electrons and quasiparticle excita-

tions. Laughlin proposed the following wavefunction ansatz for the ground states with

fractional electronic occupations of 1/m, with odd m

ψm =
∏
i>j

(si − sj)m
∏
k

e−|sk|2/4l2B . (50)

Note that since Quantum Hall effect is observable in high magnetic fields, the system

is spin-polarized. Thus, the spinor part of the electronic wavefunction is symmetric

by the nature of the setup. Therefore the spatial ansatz wavefunctions must be
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antisymmetric in exchange of electronic exchange. Thus, for odd m, we see that

Eq. (50) is antisymmetric upon exchange any two sis. We must also note that the

laughlin wavefunction in Eq. (50) is very similar to the single electronic LLL given by

Eq. (49). We can estimate the fractional occupation of electrons per flux quantum

by a similar analysis to Eq. (44). In Eq. (44), we had a state with zero angular

momentum, since our wavefuction was purely a gaussian. However, any additional

power of spatial component s in the wavefunction adds to the angular momentum of

the state. A single electronic wavefunction with canonical angular momentum m will

enclose an area of 2πl2B(m + 1) [35]. Since, the highest power of a single electronic

coordinate zi in the Laughlin wavefuntion in Eq. (50) is m(N − 1), so the occupation

of electron per flux is

ν = N

Φ/Φ0
= N

m(N − 1) + 1
→ 1

m
, (51)

where the last arrow indicates the thermodynamic limit. Thus, we see that, per

flux, there is a fractional electronic occupation, explaining the plateaux in the Hall

conductivity with 1/m fractional proportion.

It is important to emphasize, again, that the wavefunction proposed in Eq. (50)

is for ground state of 1/m FQH states. In order to consider excited states, we need to

create quasi-particles, or quasi-holes. One does so by adding moments of ∂s or s into

the laughlin wavefunction ψm, with a given coordinate for the position of the localized

quasi-particle/hole η. As an example, consider the following wavefunction specifying

the 1/m wavefunction with excitations, given by their coordinates {ηµ} [36]

Ψhole
m = ψm ×

N∏
i=1

n∏
µ=1

(si − ηµ)
∏
µ<ν

(ηµ − ην)1/me− 1
4m

∑
µ

|ηµ|2 . (52)
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This trial wavefunction not only predicts the fractional occupation of electrons cor-

rectly, but it captures the fractional charge excitations that are observed in FQH

systems. To see this, one can compute the Berry connection and observe that

Aηµ = −i
〈
Ψhole

m

∣∣∣ ∂ηµ

∣∣∣Ψhole
m

〉
= −i η̄µ

4m
(53)

Aη̄µ = i ηµ

4m
. (54)

Upon integrating this around a loop, one finds out that the Berry’s phase is nothing

but an Aharonov-Bohm contribution that is due to the flux enclosed by the area of

the path of taking a quasi-hole around another [36]. However, exchanging two quasi-

holes, namely ηµ with ην in the trial wavefunction in Eq. (52) will introduce a complex

phase

(−1)1/m = eiπ/m. (55)

This phase is −1 if m = 1, which is nothing but a fermionic exchange contribution.

However, when m > 1, we get a phase that is called an anyonic phase. Anyons are a

class of 2d particles that have exchange statistics different than bosonic and fermionic

systems[37]. In fact, one of the early motivations to study anyonic phases of matter

came from understanding FQH states. So far, we have introduced the emergence

of anyonic quasiparticle states by considering laughlin trial wavefunctions for ν =

1/m FQH states. There are other classes of FQH states, with odd denominators.

Various approaches to classifying such states have been presented over the years. One

approach by Jain, known as the composite fermion, in which the physical intuition

of the treatment for FQH states comes from binding electrons to even number of

flux quantas [38]. However, there are a few FQH states with even denominators such
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as ν = 1/2 and ν = 5/2, which are explained by more mathematically intricate

methods [39]. Due to theoretical predictions, FQH states are also an exciting topic of

research for non-Abelian statistics [37]. This means that the exchange of two quasi-

particles/holes is not simply accounted for by a phase (as given by Eq. (55)) but a

matrix operation. To study the statistics in systems with non-Abelian anyons, one

needs to consider the entire degenerate subspace and analyze the action of braiding

(exchanging) two or more quasi-particles in the entire degenerate subspace. This is

one of the motivations to consider Braided Tensor Categories (BTC). BTCs provide

mathematical toolkit to predict phases and quasiparticle statistics. We shall further

motivate the use of BTCs through the discussion of highly degenerate excited many-

body states that exhibit anyonic statistics.

V. FUSION AND BRAIDED TENSOR CATEGORIES (BTC)

A. Motivation

FQH-like systems have highly degenerate ground states that are preserved under

breaking of time-reversal and many other common symmetries [34]. These are states

that have low-energy excitations (quasi-particles and quasi-holes) that exhibit anyonic

statistics, as discussed in the previous section. FQH quasi-particle and quasi-hole

states discussed above for ν = 1/m are Abelian, i.e. the braiding of two quasi-

particles/holes around one another introduces a simple phase given by Eq. (55).

However, in a more general setting, due to presence of degenerate configurations, the

action of braiding two quasi-particles introduces a more complicated action. In other
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words, due to existence of degenerate ground states of quasi-particle configurations,

systems of quasi-particles could exhibit non-Abelian statistics. One by considering

all the possible ways in which a system of quasi-particles can map back onto itself,

could capture the entire action of a braiding operation. As briefly mentioned in the

last section, there are theoretical predictions for more exotic systems like ν = 5/2

that are expected to have non-Abelian quasi-particles [40, 39]. However, existence of

non-Abelian FQH states are still in need of experimental verification.

We begin our introduction to Braided Tensor Categories (BTC) with the motiva-

tion to find a suitable way to describe the ways in which the paths of quasi-particles

around one another can produce physical effects on the many-body system. A quan-

tum system of N quasi-particles is described by a wavefunction ΨN ({ηi}) that is a

function of the quasi-particle coordinates. The interpretation of this wavefunction as

a probability density, enforces a normalization condition on ΨN . The evolution of the

quantum system must also preserve the normalization condition in closed systems, so

that no particles/information is ”leaking out” or ”flowing into” our system. Of course

one could consider a more general setting in which a system of N quasi-particles are

allowed to interact with a thermal bath or a particle reservoir, in which case effec-

tive non-unitary dynamics could introduce significant perturbation so that the system

wavefunction no longer carries the information about the N quasi-particle state. We

will avoid the discussion of such topics which consider effects of open-system dynam-

ics. A justification for the avoidance of open-system dynamics is that quasi-particle

states discussed in fractional and Integer Quantum Hall systems are quite robust to

perturbations and disorder. After all, this was partly why such states are thought of
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as having a topological character.

B. Quasiparticle Fusion and Braiding

The underlying mathematical structure of quasiparticle excitations in two-dimensional

systems is provided by Braided Tensory Categories. Since we apply this mathemat-

ical formalism on closed quantum systems, the mathematical representations used

to describe actions such as braiding must be Unitary. For this reason, the specific

representations of BTCs on quantum systems are called Unitary Braided Tensor Cat-

egories (UBTC) [16, 15]. This formalism requires one to specify the types of possible

quasiparticles, the ways in which these excitations fuse, and the action they produce

upon braiding.

B 1. Fusion

The starting point of descibing a system of quasiparticles is to define fusion rules, i.e.

rules about the resulting quasiparticles upon fusing two quasiparticles

a× b =
∑

c

N c
abc. (56)

The indices N c
ab are integers that specify the number of resulting c quasiparticles

upon fusion of quasiparticles a and b. The topological charges a, b, c, ... ∈ C are

elements of the UBTC C. It is natural to require that the fusion is finite, i.e. ∑c N
c
ab

is finite for any a and b in the system. N c
ab specifies the number of distinguishable

ways that quasiparticle c arises as a result of fusing a and b. The states resulting from

the fusion can be considered as the orthonormal basis states of a Hilbert space V c
ab,

more specifically referred to as the fusion space of a and b. By definition, this implies
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that the dimension of the fusion space dim(V c
ab) = N c

ab. Similarly one can consider

the ways in which quasiparticle c splits into quasipartticles a and b, specifed by the

splitting space V ab
c .

For logical and physical consistency UBTC C must satisfy a few conditions. One

such condition is associativity. Fusing a with b or b with a should result in the same

quasiparticles, thus
∑

e

N e
abN

d
ec =

∑
f

Nd
afN

f
bc. (57)

One can adopt a diagrammatic way to represent the quasiparticles states indicating

the topological events such as fusion and splitting. The following define our fusion

and splitting states

(dc/dadb)1/4
c

ba

µ = ⟨a, b; c, µ| ∈ V c
ab, (58)

(dc/dadb)1/4

c

ba
µ = |a, b; c, µ⟩ ∈ V ab

c , (59)

where µ = 1, . . . , N c
ab. (Many anyon models of interest have no fusion multiplicities,

i.e. N c
ab = 0 or 1 only, in which case the trivial vertex labels µ will usually be left

implicit.) The bra/ket basis vectors are orthonormal. da, db, and dc are quantum

dimensions of the corresponding quasiparticles. We shall explain what is meant by

quantum dimension shortly. The normalization factors (dc/dadb)1/4 are included so

that diagrams will be in the isotopy invariant convention, as will be explained in

the following. Isotopy invariance means that the value of a (labeled) diagram is not

changed by continuous deformations, so long as open endpoints are held fixed and

lines are not passed through each other or around open endpoints.

Diagrammatically, inner products are formed by stacking vertices so the fus-
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ing/splitting lines connect

a b

c

c′

µ

µ′
= δcc′δµµ′

√
dadb

dc

c

. (60)

Note that the orthonormality of states imply conservation of charge.

Given the inner product defined above, one can think of an identity operation

through the following diagrammatic expression

1ab =
ba

=
∑
c,µ

√
dc

dadb

c

ba

ba

µ

µ . (61)

It is also worth emphasizing that the conjugate of a topological charge a is denoted

by ā and diagrammatically it is represented as follows

a = ā . (62)

Before we end the discussion of fusion, it is important to remark that fusion

associativity, coupled with consistency of fusion and splitting results in the following

equalities for the dimension of the fusion spaces

N c
ab = N c

ba = N b
āc = Na

bc̄ = N b̄
c̄a = N c̄

b̄c̄. (63)

B 2. Associativity and F-moves

In the previous subsection we briefly mentioned associativity. I will briefly clarify

what is meant by this, and introduce what are called F -moves on anyonic charge

lines. In the case of fusion of three topological charges, we obtain more complicated

diagrams such as
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a b c

e

d

α

β
.

This diagram is obtained by considering the fusion of the resulting charge e, from

fusing a with b, with c. In other words, (a × b) × c. However, we could have instead

considered a× (b× c), i.e. the fusion of the resulting charge of b and c with a, which

corresponds to a diagram of the following form

a b c

f

d

µ

ν
.

The two diagrams above are related through F -moves, given by the following equation
a b c

e

d

α

β
=
∑

f,µ,ν

[
F abc

d

]
(e,α,β)(f,µ,ν)

a b c

f

d

µ

ν
. (64)

The F -moves are isomorphisms8 relating different fusion spaces given by (a×b)×c

and a× (b× c)

V abc
d

∼=
⊕

e

V ab
e ⊗ V ec

d
∼=
⊕

f

V bc
f ⊗ V af

d . (65)

B 3. Quantum dimensions

We should first note that our normalization conventions for the orthonormal states

(Eq. (59) and (58)) imply that the inner product of the bra and the ket states result
8One-to-one mappings between fusion spaces space that preserve the fusion structure.
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in the following

δγcδνµ = ⟨a, b; γ, ν| a, b; c, µ⟩ = δγcδνµ
1
dc

trc

[
c
]

= δγcδνµ
1
dc

c . (66)

This implies that we have implicitly defined the diagrammatic notation

c ≡ dc. (67)

However, this definition is nothing but a diagrammatic convention. The physical

significance of the quantum dimension can be interpretted by the following. Let us

examine what happens when there are two pair-creation and pair-annihilation events.

Then there are two ways in which one can recombine the opposite conjugate charges

(a, ā) and (a, ā). One is that each pair is annihilated by their corresponding pairs,

the other is that the conjugates of opposite pair annihilate each other. The ratio of

the probabilities of these two events is what is defined as the quantum dimension of

quasiparticle a. Diagrammatically, it is the following relation

. (68)

B 4. Braiding

The counterclockwise braiding exchange operator of two anyons is represented dia-

grammatically by

Rab =
a b

=
∑
c,µ,ν

√
dc

dadb

[
Rab

c

]
µν

c

ba

ab

ν

µ , (69)
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where the R-symbols are the maps Rab
c : V ba

c → V ab
c that result from exchanging two

anyons of charges b and a, respectively, which are in the charge c fusion channel. This

can be written as

c

ba
µ =

∑
ν

[
Rab

c

]
µν

c

ba
ν . (70)

Similarly, the clockwise braiding exchange operator is

(
Rab

)−1
=

b a
. (71)

In order for braiding to be compatible with fusion, we require that the two opera-

tions commute. Diagrammatically, this means we can freely slide lines over or under

fusion/splitting vertices

x

c

ba
µ =

x

c

ba

µ

(72)

x

c

ba
µ =

x

c

ba

µ

. (73)

C. Topological quantities

In this subsection, I will emphasize a few important quantities that characterize the

types of anyonic phases present in the system. Most of these quantities express the

action of braiding two pairs of either the same or different types of topological charges

on the entire system.

According to Eq. (64), the associativity of the vacuum charge 0 (F abc
d = when a, b,

or c = 0) is trivial. Consistency of F -moves with braiding implies that Ra0
a = R0a

a =

(Ra0
a )−1 = (R0a

a )−1 = 1. If we further require unitarity of the fusion theory, then(
Rab

)−1
=
(
Rab

)†
, which can be expressed in terms of R-symbols as

[(
Rab

c

)−1
]

µν
=
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[
Rab

c

]∗
νµ

(which are simply phases when N c
ab = 1).

An important quantity derived from braiding is the topological twist (or topolog-

ical spin) of charge a

θa = θā =
∑
c,µ

dc

da

[Raa
c ]µµ = 1

da a
, (74)

which is a root of unity [41]. This quantity expressed the probability amplitude of

creating to pairs of topological charges (a, ā), braiding the conjugate charge ā of the

first pair with the charge a of the second and annihilating the pair. Eq. (74) can be

used to show that the R-symbols satisfy the “ribbon property”

∑
λ

[
Rab

c

]
µλ

[
Rba

c

]
λν

= θc

θaθb

δµν . (75)

Another important quantity is the topological S-matrix

Sab = D−1∑
c

N c
āb

θc

θaθb

dc = 1
D a b . (76)

We emphasize the importance of the quantities described above in describing the

anyonic nature of the system, as these quantities specify the way in which various

topological charges braid around one another. The S-matrix, for instance, specifies

the amplitude of a quasiparticle process in which two pair-annihilation and pair-

creation events are intermediated by a braiding of the opposite pairs twice. More

precisely, one can think of the Sab as representing the amplitude of creating conjugate

pair (a, ā) and (b, b̄), braid ā and b twice and annihilate the pairs.
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VI. SYMMETRIES AND TOPOLOGICAL DEFECTS

We start with a brief review of the algebraic theory describing the interplay of global

symmetries of a system with topological degrees of freedom (DOF), e.g. braiding and

fusion.

Let us consider a system with a global symmetry group G. In short, this means

that any group element of G commutes with the total Hamiltonian H of the system.

Here, we do not specify any Hamiltonians, but we highlight the definition of what

is meant by a global symmetry group. The local violations of this global symmetry

group are thought of as defects. In real materials, defects could simply be any im-

purities which break the time-reversal symmetry locally. When the physical system

has a symmetry G, one can consider the possibility of point-like defects associated

with group elements g ∈ G, which may be thought of as fluxes. In many ways, a

defect behaves like a quasiparticle. However, an important distinction is that when

a quasiparticle is transported around a g-defect, it is acted upon by the correspond-

ing symmetry action on the topological DOF, denoted by ρg, possibly permuting the

quasiparticle’s topological charge value. These defects are externally imposed on the

system by modifying the original Hamiltonian of the system, and can be thought of

as confined excitations [17].

A. Topological Defects

As explained above, considering the action of extrinsic defects, thought of as symmetry

fluxes, can alter the topological phases of a system. The algebraic theory describing

the action of fluxes on topological phases is built by separating the original unitary
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braided tensor category (UBTC) C into regions with topological fluxes, represented by

the group elements of G. The extended algebraic theory, CG, now takes into account

various sectors of the space which contain the symmetry flux g ∈ G, and are said to

represent a G-graded fusion theory

CG =
⊕
g∈G

Cg. (77)

The fusion and other topological relations of quasiparticles in different defect sec-

tors of CG respect the group multiplication of G. In particular, a quasiparticle in g

sector and another in h, fuse into a quasiparticles in gh sector. It is important to

emphasize that in the absence of any defects, the topological phases correspond to a

0-defect sector, C0 = C. The fusion algebra of the action of defect lines on the fusion

channels and braiding of topological charges is thus called G-crossed extension of the

UBTC C, denoted by C×G.

B. G-crossed BTC

We start the brief review of the G-crossed fusion theory by emphasizing the utility

of topological data on defining the S-matrix and other topological properties of the

system.

B 1. G-Graded Fusion

Fusing topological charges of a g-defect with that of an h-defect, resulting in charge(s)

of a gh-defect can be described by the following
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ag × bh =
∑

c∈Cgh

N c
abcgh (78)

Each topological charge ag is accompanied by its unique conjugate ag ∈ Cg−1 .

Since the conjugate charge is unique, we can see that N0
agbh

= δagbh .

The quantum dimensions for each topological charge dag obeys the relation

dagdbh =
∑

c

N c
abdcgh (79)

We also define the total quantum dimension of Cg to be

Dg =
√∑

a∈Cg

d2
ag (80)

We also see that, given this definition, the following relation holds

D2
0 =

∑
a∈C0

d2
a0 =

∑
a∈C0
c∈Cg

da0d
−1
bg N

c
abdcg =

∑
a∈C0
c∈Cg

dcgN
a
cb̄da0d

−1
bg =

∑
c∈Cg

d2
cg = D2

g (81)

In the second line of the equation above, we have used equation (79) and the fact

that N c
ab = Na

cb̄
. The above relation on the total quantum dimensions hold for any

g ∈ G with nonempty Cg ̸= ∅.

B 2. G-crossed Topological Eigenstates

In order to proceed with characterizing the topological properties and phases of a

system, we need to begin with defining G-crossed topological eigenstates (bras) and

their duals (kets) that label the fusion states

(
dc

dadb

)1/4 cgh

bhag
µ = ⟨ag, bh; cgh, µ| ∈ V c

ab, (82)
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(
dc

dadb

)1/4

cgh

bhag

µ = |ag, bh; cgh, µ⟩ ∈ V ab
c , (83)

As a result, we could specify an inner product on the topological states, by first

considering the stacking of two fusion vertices on top of each other

√
dc

dadb

ag bh

γgh

cgh

ν

µ

= δγcδνµ

cgh

= |ag, bh; cgh, µ⟩ ⟨ag, bh; γgh, ν| (84)

Taking the trace over the labels c of the category Cgh and dividing by the dimension

dc, results in orthonormality condition of the topological states

⟨ag, bh; γgh, ν| ag, bh; cgh, µ⟩

= δγcδνµ
1
dc

trc

[ cgh]
= δγcδνµ

1
dc

cgh = δγcδνµ (85)

With this inner product, the identity operator in the on a pair of anyons with

charges ag and bh is written (diagrammatically) as the partition of unity

1(g,h)ab =
bhag

=
∑
c,µ

√
dc

dadb

cgh

bhag

bhag

µ

µ (86)

It is worth noting that we may see this idenity operator acting on the sector (g,h)

of G-crossed fusion category and is thus a mapping from the sector (g,h) to itself.

B 3. G-Crossed Braiding

Braiding of defects is a group action on the system that is compatible with G-Graded

fusion and is associated with the action of exchanging the positions of two defects. It

must be noted that the usual notion of braiding in fusion categories is quite differ-

ent than G-Crossed braiding as when the group G is non-Abelian, G-graded fusion
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category is not commutative. This prevents any meaningful way of defining braiding

in the usual sense of exchange of two topological charges. Thus, there must be a

group action when the positions of defects, carrying non-trivial group elements, are

exchanged.

We begin by defining the G-crossed braiding by the following

Ragbh =

ag bh

bh
h̄ag

=
∑
c,µ,ν

√
dc

dadb

[
Ragbh

cgh

]
µν

cgh

bhag

h̄agbh

ν

µ (87)

where the R-symbols for a G-crossed theory are the maps Rab
c : V bh

h̄ag
cgh

→ V agbh
cgh

that

result from exchanging (in a counterclockwise manner) two objects of charges bh and

h̄ag, respectively, which are in the charge cgh fusion channel.

The G-crossed R-symbols can equivalently be written in terms of the relation

cgh

bhag

µ =
∑

ν

[
Ragbh

cgh

]
µν

cgh

bhag

ν . (88)

Similarly, the clockwise G-crossed braiding exchange operator is

(
Ragbh

)−1
=

bh
h̄ag

ag bh

=
∑
c,µ,ν

√
dc

dadb

[(
Ragbh

cgh

)−1
]

µν

cgh

h̄agbh

bhag

ν

µ (89)

In order for G-crossed braiding to be compatible with fusion, we wish to have the

ability to slide lines over or under fusion vertices. However, unlike anyonic fusion

category, we may not assume that such operations are completely trivial, since one

must at least account for the group action on a vertex. The appropriate relations are
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given by the unitary transformations

xk k̄b

k̄cgh

bhag

µ

=
∑

ν

[Uk (a, b; c)]µν xk

k̄cgh

cgh

bhag

ν (90)

xk

ḡx

h̄ḡxk

cgh

bhag

µ

= ηx (g,h)
xk

h̄ḡxk

cgh

bhag

µ

(91)

Here, we have used the notation [Uk (a, b; c)]µν to signify the global symmetry action

upon moving defect line with element k over a fusion vertex, and the phase ηx (g,h)

introduced upon moving the fusion vertex with elements g and h on top of the defect

branch with topological charge x. The group actions U and the phases η can be

thought of as gauge transformations on the topological states.

Sliding a line over a vertex, as in Eq. (90) is a unitary transformation between

V
k̄a k̄b

k̄c
and V ab

c , as specified by the unitary operators Uk (a, b; c). This requires the

dimensionality of the fusion spaces to be preserved under the corresponding symmetry

action, giving

N
kcgh
kag kbh

= N
cgh
agbh

(92)

for any k acting on a vertex. It follows that the quantum dimensions are also invariant

dag = d kag . (93)

Clearly, if the sliding line has vacuum charge xk = 0, the sliding transformations

should be trivial, so

[U0 (a, b; c)]µν = δµν (94)

η0 (g,h) = 1. (95)
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We require that the sliding rules are compatible with the property that vacuum

lines can be freely added or removed from a diagram, i.e. sliding over/under a vertex

|a, b; c⟩ with a = 0 or b = 0 should be trivial, since it is equivalent to simply sliding

over a line. This imposes the conditions

Uk (0, 0; 0) = Uk (a, 0; a) = Uk (0, b; b) = 1 (96)

ηx (0,0) = ηx (g,0) = ηx (0,h) = 1. (97)

Combining Eqs. (90) and (91) with trivial braidings, such as

ba

=
a b

, (98)

we see that sliding lines over or under vertices with the opposite braiding are given

by

xk

kcgh

c

bhag

µ

=
∑

ν

[
Uk
(

ka, kb; kc
)]

µν xk

kcgh

bhag

ka
kbν

(99)

xk

h̄ḡxk

cgh

bhag

µ

= ηx (g,h)

xk

h̄ḡxk

ḡx

cgh

bhag

µ

. (100)

Compatibility of the sliding moves with the inner product Eq. (84)) is obtained

by sliding a line over a bubble diagram, as in Eq. (84)). In this way, we obtain the
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corresponding relations for sliding over fusion (rather than splitting) vertices

xk

cgh

a
b

k̄bh
k̄ag

µ

=
∑

ν

[Uk (a, b; c)]νµ xk

cgh

k̄c

k̄bh
k̄ag

ν

(101)

xk

cgh

kc

kbh
kag

µ

=
∑

ν

[
Uk
(

ka, kb; kc
)]

νµ xk

cgh

a
b

kbh
kag

ν

. (102)

A similar calculation gives the relations for sliding lines under fusion vertices
h̄ḡxk

xk ḡxk

cgh

bhag

µ

= ηx (g,h)

h̄ḡxk

xk

cgh

bhag

µ

(103)

xk

h̄ḡxk

cgh

bhag

µ

= ηx (g,h)
ḡxk

xk

h̄ḡxk

cgh

bhag

µ

. (104)

We have the following consistency conditions arising from the compatibility of F -

moves in G-crossed theory with sliding lines over and under fusion vertices

∑
α′,β′,µ′ν′

[
Uk( ka, kb; ke)

]
αα′

[
Uk( ke, kc; kd)

]
ββ′

[
F

ka kb kc
kd

]
(ke,α′,β′)(kf,µ′,ν′)

×
[
Uk( kb, kc; kf)−1

]
µ′µ

[
Uk( ka, kf ; kd)−1

]
ν′ν

=
[
F abc

d

]
(e,α,β)(f,µ,ν)

. (105)

ηḡx (h,k) ηx (g,hk) = ηx (g,h) ηx (gh,k) . (106)

This is a central statement used throughout the paper, mainly for the proof of

the modularity of the projective operators. The consistency condition above is also a

statement of the fact that symmetry fractionalization is consistent in the G-crossed

theory framework. A detailed discussion of this is done in [17].

We also have the G-crossed Yang-Baxter equation
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bh h̄agxk

kag
kbh xk

= η ka(khk̄,k)
η ka(k,h)

bh h̄agxk

kag
kbh xk

. (107)

Furthermore, the compatibility of G-crossed braiding with sliding lines over and under

fusion vertices implies

η ka(khk̄, k)
η ka(k, h)

∑
µ′,ν′

[
Uk( kb, kh̄a; kc)

]
µµ′

[
R

ka kb
kc

]
µ′ν′

[
Uk( ka, kb; kc)−1

]
ν′ν

=
[
Rab

c

]
µν

(108)

This is the G-crossed generalization of the statement that the R-symbols are in-

variant under the symmetry action.

Finally, we have the G-crossed ribbon identity

∑
λ

[
Rbh

h̄ag
cgh

]
µλ

[
Ragbh

cgh

]
λν

= θc

θaθb

[Ugh(a, b; c)]µν

ηa(g,h)ηb(h, h̄g)
. (109)

B 4. G-crossed Invariants and the S-matrix

As seen in Eq. (105) and (108), R and F matrices are invariant under the symmetry

actions and so these quantities are the same in both BTC and G-crossed BTCs. We

will discuss the invariance of various topological quantities and discuss the implica-

tions on the S-matrix.

Eq. (105) with e = f = 0 yields the relation

κ ka

κa

=

[
F

ka kā ka
ka

]
00

[F aāa
a ]00

= Uk( kā, ka; 0)
Uk( ka, kā; 0)

. (110)

The topological twists are defined the same way as before by taking the quantum
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trace of a counterclockwise braid of a topological charge with itself

θa = 1
da a

=
∑
c,µ

dc

da

[Raa
c ]µµ . (111)

Using Eq. (107) with the definition of the twist, we find the general relation

between θa and θ ka is

θag =
η kag(kgk̄,k)
η kag(k,g)

θ kag =
ηag(k̄,kgk̄)
ηag(g, k̄)

θ kag . (112)

When ka = a, it follows that

ηag(g,k) = ηag(k,g). (113)

We also note that Eq. (106) gives ηkx(k, k̄) = ηx(k̄,k) for any x and k, so we also

have

ηag(k, k̄) = ηag(k̄,k) (114)

when ka = a.

The definition of topological twists can also be written in the form
ag

ag

= θa

ag

ag

=

ag

ag

, (115)

as is the case with BTCs. It is clear that the inverse topological twists are similarly

obtained from clockwise braidings
ag

ag

= θ−1
a

ag

ag

=

ag

ag

. (116)

Unlike a BTC, it is not necessarily the case that θag and θāg are equal in a G-crossed
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BTC. In particular, we have

θag = Ug(āg, ag; 0)ηāg(ḡ,g)θāg . (117)

and

θag = Ug(ag, āg; 0)κag

(
R

āgag
0

)−1
(118)

= ηag(g, ḡ)−1κ−1
ag

(
R

agāg
0

)−1
(119)

Consistency of sliding over and under fusion channels also gives us the following

relations

[Uk̄(k̄a,k̄ b;k̄ c)]µν = ηc(k, k̄)
ηa(k, k̄)ηb(k, k̄)

[Uk(a, b; c)−1]µν (120)

ηa(k, l)ηā(k, l) = Ukl(a, ā; 0)
Uk(a, ā; 0)Ul(k̄a,k̄ ā; 0)

. (121)

Previously in [17], the topological S-matrix was defined as follows

Sagbh = 1
D0

a b

= 1
D0

∑
c,µ,ν

dc

[
Rbā

c

]
µν

[
Rāb

c

]
νµ

= 1
D0

∑
c,µ

dc
θc

θāθb

[Uḡh(ā, b; c)]µµ

ηā(ḡ,h)ηb(h, ḡ)
. (122)

One should note that the quanitity above is only well-defined if gh = hg, otherwise

the loops will not be able to close back upon themselves, as the topological charge

values would change upon braiding.

Following from the definition of the topological S-matrix above, the following

property follows

S kag kbh = η kā(k,h)η kb(k, ḡ)
η kā(khk̄,k)η kb(kḡk̄,k)

Sagbh (123)
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From these definitions, it also follows that when hag = ag and gbh = bh (and hence

gh = hg), so that the corresponding S-matrix element is well-defined, we have the

loop-removal relation

ag

bh

= Sab

S0b

bh

, (124)

which can be verified by closing the b line upon itself in this expression. In fact, if

either hag ̸= ag or gbh ̸= bh, then left hand side of the equation evaluates to zero, so,

for these purposes, we can consider Sab = 0 when it is not well-defined. Thus, in order

for the G-crossed theory to be consistent on a surface of arbitrary genus, we need to

generalize the topological S-matrix defined above in Eq. (122) to be compatible with

arbitrary defect lines enclosing the puncture on a punctured torus.

VII. MODULARITY OF C×G ON TORUS *

When the S-matrix of theG-crossed theory is unitary, the theory is said to be modular,

and described by a G-crossed Modular Tensor Category (MTC). Modularity is an

important property of the theory, as it allows us to define information preserving

operators to map the topological state between various sectors of the G-crossed theory.

Let us establish a few important properties when the original anyonic theory with only

trivial defects, namely C0, is an MTC. From this, one obtains the following relation

δaga′
g

=
∑

x0∈Cg
0

Sagx0S
∗
a′

gx0
=

∑
x0∈Cg

0

Sx0agS
∗
x0a′

g
. (125)

Furthermore, we can write this relation in terms of defect lines enclosed by loops,
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by defining the ωa-loop enclosing a single defect line for a G-crossed theory

ωag

bg

=
∑

x0∈Cg
0

S0agS
∗
x0ag

x0

bg

= δagbg

bg

, (126)

An MTC can be used to describe the topological phases of a theory. This descrip-

tion, however, depends heavily on the topology of the surface on which the theory is

defined. The genus g and the number of boundary components n, define the impor-

tant topological properties of the (2+1)-D surface. Topology determines important

properties of the topological phases of the system, namely the ground state degener-

acy. In the 2d toric code, for example, the ground state degeneracy is equal to 22g.

Thus,it is important to define the (2+1)-D surface as a compact, orientable surface

Σg,n, labeled by the genus and number of boundary components.

The ground state subspace of the system is finite and independent of the system

size, as the dimension of the Hilbert space HΣ is determined by the topological aspects

outlined above. In order to describe the topological phases hosted in the system, it is

important to consider the homeomorphisms of the surface Σg,n onto itself, and study

their action on the ground states of the system. In particular, it is important to study

the set of orientation preserving automorphisms of the surface Σ, modulo the contin-

uous deformations (mappings that preserve the topology). These automorphisms are

called “Mapping Class Groups” of Σ and are denoted by MCG(Σ). We outline how

the action of MCG(Σ) on the ground state subspace forms a projective representation,

and we show the specific form of these representations using the data describing the

MTC.

The simplest nontrivial surface in consideration is a torus, and we shall denote
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the surface with Σ1,0 (genus-1 surface, with no boundaries). The mapping class group

of a torus is also referred to as the ‘modular group’ and the action of its elements

on the torus is called ‘modular transformations’. The modular group is isomorphic to

SL(2, Z) group, i.e.

MCG(Σ1,0) ∼= {s, t|(st)3 = s2, s4 = 1} (127)

A torus can be described by a generating pair of oriented cycles, having algebraic

intersection number +1. We will label the two generating cycles as l and m. As shown

in the Fig. 8, l and m can represent the longitudinal and meridian cycles of the torus.

The action of the mapping class group on the pair of generating cycles (l,m)

produces a new pair of generating cycles that provide an equivalent description of the

torus. The generators of the modular group can be chosen to be the following

s ∼=

0 −1

1 0

 (128)

t ∼=

1 1

0 1

 (129)

It is quite straightforward to notice that the matrices s and t defined above satisfy

the properies of the modular group outlined in Eq.(127). We can also write the action

of these matrices on the pair of generating cycles (l,m) as follows l

m

 =

0 −1

1 0


m

−l

 (130)

 l

m

 =

1 1

0 1


l − m

m

 (131)
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From the equations above, we can see that the choices of the generating cycles (m,−l)

and (l − m,m) are related to (l,m) through the modular transformations presented

in Eq.(127).

To describe the topological state on a torus, we shall label a set of basis states

using the charges a ∈ Cg and b ∈ Ch, along with the pair of generating cycles (l,m) of

the torus. We can, thus, use the notation
∣∣∣a(g,h)

g

〉
(l,m)

to describe the topological state

living on (g,h)-sector of the torus. One can equivalently describe the topological

state using the flux-line h in the (g,h)-sector, i.e.
∣∣∣b(h,ḡ)

h

〉
(m,−l)

.

Figure 8: Longitudinal(l) and meridian (m) generating cycles of a torus in a particular
embedding in 3D

In Fig. 9, two different basis
∣∣∣a(g,h)

g

〉
(l,m)

and
∣∣∣b(h,ḡ)

h

〉
(m,−l)

are drawn. They are re-

lated by a modular transformation S(g,h)
agbh

. In FIG. 9, it can be seen that the topological

states can be thought of as flux lines threading the torus across their corresponding

cycle. Upon measurement of topological charge through the flux threading the torus

(orthogonal to the direction of the cycle), one obtains the corresponding topologi-

cal charges labeling the topological states. Note that, in FIG. 9, the torus is not

punctured and so the only well-defined way one could relate (through the topological

S-matrix) the two topological states, drawn in the figure, is if the two defect lines g

and h commute.

60



VII. MODULARITY OF C×G ON TORUS *

Figure 9: 3d and the corresponding 2d figure showing the two basis related by a modular
S(g,h)

agbh
transformations. The generating cycle l corresponds to the defect line g and m

corresponds to h. Measurement of topological charge along m on the left will result in a
measurement charge value of a. Correspondingly, measurement across l on the right figure
will result in a topological charge value of b.

(a) (b) (c)

Figure 10: 2d diagrams showing the transformation S(g,h)
agbg

and T (g,h)
agbg

on the state∣∣∣a(g,h)
g

〉
(l,m)

. (a): 2d representation of the (g, h)-sector. (b): 2d representation of the

(h,h̄ ḡ)-sector given by S transformation of the state
∣∣∣a(g,h)

g
〉

(l,m)
. (c): (g, gh)-sector given

by T transformation of the state
∣∣∣a(g,h)

g
〉

(l,m)
.

Similar to Eq.(127), we can write the following transformations relating the basis

states describing the topological state

∣∣∣a(g,h)
g

〉
(l,m)

=
∑
b∈Ch

S(g,h)
agbh

∣∣∣b(h,ḡ)
h

〉
(m,−l)

(132)
∣∣∣a(g,h)

g

〉
(l,m)

=
∑
b∈Cg

T (g,h)
agbg

∣∣∣b(g,gh)
g

〉
(l−m,m)

(133)
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VIII. G-CROSSED MTC ON SURFACES OF ARBITRARY

GENUS *

In order to construct a G-crossed MTC on higher genus surfaces, one can first con-

struct the theory on a torus with a boundary (a punctured torus). This will provide

the building block for higher geni as any surface of arbitrary genus can be constructed

by gluing multiple punctured tori along their boundaries. We shall start by defining

the topological states occupying the punctured torus with a given choice of generating

cycles (l,m), defined on a particular (g,h)-sector. We further specify how the defect

line with label z connects the hole of the punctured torus to the two possible defect

lines around the torus.

(134)

Similarly, on the (h,h̄ ḡ)-sector, the topological state is defined as

(135)
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and finally, on the (g,gh)-sector, we have the state

. (136)

The torus with the defect lines drawn in FIG. 11 are a 2d graphical representation

of the defects on the punctured torus. The generalization of the Eq. (132) and (133)

on the punctured torus can thus be written as

∣∣∣ag,
h̄ āg; z, µ

〉
(l,m;w)

=
∑
b∈Ch

S(z)
(ag,µ)(bh,ν)

∣∣∣bh,
h̄g b̄h; z, ν

〉
(m,−l;w+ 1

4 )

=
∑
b∈Cg

T (z)
(ag ,µ)(bg ,ν)

∣∣∣bg,
h b̄g; z, ν

〉
(l−m,m;w−1)

(137)

It is worth emphasizing that S(z)
(ag,µ)(bh,ν) and T (z)

(ag ,µ)(bg ,ν) are mappings that trans-

form (g,h)-sector to (h,h̄ ḡ)-sector and to (g,gh), respectively.

In order to consider the inner product between such states, one should cut along

the corresponding generating cycles, make sure that the direction of the generating

cycles l and m align, and then glue them. Taking the inner product of the states
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defining Eq. (134) and (135) results in the following diagrammatic definition

(138)

We have included the extra factors of dimensions of da and db for consistency with

choices of normalization made in defining the topological states in Eqs. (82) and

(83). The factor of D is contained in the definition of the topological S-matrix for

convenience.

Further, by taking the inner product between the states defined and note that this

state and the original state defined in Eq. (134) and (136), gives us a diagrammatic

definition of the modular transformation T (z)
(ag ,µ)(bg ,ν)

(139)

The inner products defined in Eq.(138) and Eq.(139) motivates the definitions of

a more general set of operators S, T , and C which will be defined in the following

section. In our paper, we show that these operators provide projective representation
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of the mapping class group of the punctured torus, namely that

(ST )3 = Θ0S2 (140)

S = CS† (141)

C2 = Q−1 (142)

CS = SC (143)

CT = T C (144)

S2 = C. (145)

Note that these relations are quite similar to modular group properties in Eq. (127).

The relations above, however, these relations are more appropriately described by the

mapping class group of the torus with a boundary (puncture), i.e. MCG(Σ1,1) ∼=

{s, t|(st)3 = s2}. This mapping class group has an equivalent representation, us-

ing operators called ‘Dehn Twists’. The main distinction between MCG(Σ1,0) and

MCG(Σ1,1) is that in MCG(Σ1,1), unlike MCG(Σ1,0), the relation s4 = 1 is not satis-

fied. Instead, s4 is equal to a Dehn Twist operator, which has infinite order. Given

these properties of MCG(Σ1,1), we can see how the relations given in Eqs. (140-144)

provide a projective representation for MCG(Σ1,1). Eqs. (143) and (144) show that

the operators defined commute. Eqs. (145) and (142) indicate that S4 = Q−1, which

as discussed above, is a relationship that is expected from operators representing

MCG(Σ1,1).

Another important observation is the following. Eqs. (141) and (145) indicate

that S−1 = S†. This implies the unitarity of the S operator, which means that the

G-crossed theory on the punctured torus is modular. We need to reiterate that the

only assumption made in showing the modularity of G-crossed theory, i.e. proving

Eqs. (145), was that the underlying BTC theory C0 is modular. Thus, by proving
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Eqs.(140 - 144), we prove that modularity of C0 implies the modularity of C×
G .

(a) (b) (c)

Figure 11: 2d figures representing the defect sectors on the punctured torus. The colored
zig-zag lines represent specific symmetry line defects. (a): diagram of the (g, h)-sector on
a punctured torus. The boundary of the puncture carries a charge that is equal to the
charge of the defect line g closing on itself after being conjugated by the loop h (around
the meridian). (b): diagram of (h,h̄ ḡ)-sector on the punctured torus, given by a modular
S transformation. (c): diagram of (g, gh)-sector on the punctured torus, given by the T
transformation.

A. Modular transformations

Let us define the operators S, T , Q, and C explicitly.

(146)

(147)
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(148)

(149)

In the previous section we tried to provide a motivation for these definitions.

In our paper, we show that the operators defined above satisfy the mapping class

group relations for the punctured torus in Eqs. (140-145). We further emphasize

that Eqs. 145 and 141 imply that the S-matrix is unitary, and thus the G-crossed

theory is modular. However, in our analysis, we show that Eq. (145) is valid only

if the underlying fusion theory without defects (C0) is modular. This proves that

modularity of C0 implies the modularity of C×G, i.e. symmetry action on topological

DOF does not destroy the modularity of the fusion theory.
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IX. PROOF OF MODULAR GROUP RELATIONS *

A. (ST )3 = Θ0S
2

In order to prove this identity, we will prove an equivalent relation, namely that

T ST ST = Θ0S. Starting with the definition of T ST ST

(150)

Using our defined actions upon crossing lines over and under vertices, as shown in

FIG. 12 of Appendix-A, we obtain

(151)

Then by fusing the lines wrapped around by the loop h̄cgh, and summing over all

the topological labels c, we get

(152)

Using the inverse of G-crossed ribbon identity Eq.(109) (by summing over x, µ,
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and ν) and noting that

[Uh̄h̄ḡ(h̄ag, bh;h̄ xgh)]µν =
ηh̄x(h̄gh,h̄ h̄ḡ)

ηh̄gha(h̄gh,h̄ h̄ḡ)ηh̄gb(h̄gh,h̄ h̄ḡ)
[Uh̄gh(h̄ghag,h̄g bh;h̄ xgh)−1]µν ,

our expression simplifies to

(153)

(154)

To follow the details of the last step, refer to the appendix. This proves our first

relation.

B. S = CS†

Starting from the definition of S(g,h)

(155)
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For details of steps, refer to the appendix. By noting that ηa(h,h̄)ηh̄a
(h̄ḡ,h̄gh̄)

ηh̄a
(h̄,h̄ḡ)

=

ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄), we can rewrite this as

Noting that the last equality follows from the definition of S†(h,h̄ ḡ)

(156)

and that of C(g,h) introduced in Eq. (148). This concludes the proof.

C. C2 = Q−1

By using the inverse of Eq. (149), we have the following
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(157)

The last equality follows from the following relation

. (158)

Using Eq. (148), we note that C2 is given by the following expression

(159)

Using the relations between G-crossed braids R and the twist angles given by

equations (117) and (119), together with the G-crossed ribbon identity, we note the

following

R
h̄ghāh̄gha
0 =

Uh̄ghg(h̄gha,h̄gh ā; 0)
θh̄gha

(160)

R
h̄ah̄ā
0 = 1

θh̄āηh̄ā(h̄ḡ,h̄ g)ηh̄a(h̄ḡ,h̄ g)
. (161)
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Using these relations, we can now rewrite the algebraic expression in Eq. (159) as

R
h̄ah̄ā
0 R

h̄ghā h̄gha
0 ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄)ηh̄ā

(h̄gh̄,h̄gh g)

× ηh̄ā
(h̄ggh̄,h̄ghḡ h)Uh̄gh̄(h̄ā,h̄ a; 0)Uh̄ghḡh(h̄gha,h̄gh ā; 0)

=
Uh̄ghg(h̄gha,h̄gh ā; 0)

θh̄gha
θh̄ā

ηh̄ā
(h̄ḡ,h̄ g)ηh̄a

(h̄ḡ,h̄ g)
ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄)ηh̄ā

(h̄gh̄,h̄gh g)

× ηh̄ā
(h̄ggh̄,h̄ghḡ h)Uh̄gh̄(h̄ā,h̄ a; 0)Uh̄ghḡh(h̄gha,h̄gh ā; 0)

=
1

θh̄gha
θh̄ā

ηā(h,h̄g h̄)ηā(gh̄ḡ,h̄gh g)ηā(ggh̄ḡ,h̄ghḡ h)
ηā(h,h̄ ḡ)ηā(ḡh,h̄ g)ηā(h,h̄gh g)

×
ηa(ḡh,h̄g h̄)
ηa(ḡh,h̄ g)

Uh̄ghg(h̄gha,h̄gh ā; 0)Uh̄gh̄(h̄ā,h̄ a; 0)Uh̄ghḡh(h̄gha,h̄gh ā; 0) (162)

The last equality follows from the following relations

ηh̄a(h̄ḡ,h̄ g) = ηa(h,h̄ ḡ)ηa(ḡh,h̄ g)

ηh̄ā(h̄ḡ,h̄ g) = ηā(h,h̄ ḡ)ηā(ḡh,h̄ g)

ηh̄ā(h̄gh̄,h̄gh g) = ηā(h,h̄g h̄)ηā(gh̄ḡ,h̄gh g)
ηā(h,h̄g gh̄)

ηh̄ā(h̄ggh̄,h̄ghḡ h) = ηā(h,h̄g gh̄)ηā(ggh̄ḡ,h̄ghḡ h)
ηā(h,h̄gh g)

.

Noting the following identities

ηā(ggh̄ḡ,h̄ghḡ h) = ηā(ḡ,ggh̄ḡ)ηā(gh̄ḡ,h̄ghḡ h)
ηā(ḡ,ghgh̄ḡ)

ηā(gh̄ḡ,h̄gh g) = ηā(ḡ,gh̄ḡ)ηā(h̄ḡ,h̄gh g)
ηā(ḡ,ggh̄ḡ)

ηā(h,h̄g h̄) = ηā(ḡ,h)ηā(ḡh,h̄g h̄)
ηā(ḡ,gh̄ḡ)

ηā(h,h̄gh g) = ηā(ḡ,h)ηā(ḡh,h̄gh g)
ηā(ḡ,ghgh̄ḡ)

we can simplify the terms with ηā in the outermost right terms in Eq. (162), as
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follows

ηā(h,h̄g h̄)ηā(gh̄ḡ,h̄gh g)ηā(ggh̄ḡ,h̄ghḡ h)
ηā(h,h̄ ḡ)ηā(ḡh,h̄ g)ηā(h,h̄gh g)

=
ηā(ḡh,h̄g h̄)
ηā(ḡh,h̄ g)

ηā(h̄ḡ,h̄gh g)
ηā(h,h̄ ḡ)

ηā(ḡ, gh̄ḡ)ηā(h̄ḡ,h̄ghḡ h)
ηā(ḡh,h̄gh g)ηā(ḡ, hgh̄ḡ)

. (163)

Finally, by noting that θh̄ā = ηā(ḡ,h)ηā(hgh̄ḡ,h̄ghḡh̄ḡ)
ηā(h,h̄ḡ)ηā(ḡ,hgh̄ḡ) θh̄ghḡh̄ā, ηā(ḡh,h̄g h̄)ηa(ḡh,h̄g h̄) =

Uh̄ḡ
(ā,a;0)

Uḡh(ā,a;0)Uh̄gh̄
(h̄ā,h̄a;0) , and ηā(ḡh,h̄ g)ηa(ḡh,h̄ g) = Uh(ā,a;0)

Uḡh(ā,a;0)Uh̄g
(h̄ā,h̄a;0) , we rewrite C2 as

. (164)

proving that C2 = Q−1.

D. CS = SC

We first start by noting that

Now, we can start from the definition of CS = C(g,h)S(h̄ḡ,h̄g h̄) and show that

after sliding some appropriate lines over and under vertices, we get an expression that
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is equivalent to SC.

(165)

We can manipulate the diagram in Eq.(165), as laid out in the FIG. 14 of Appendix-

C , and note that

(166)

Substituting the diagram obtained in Eq.(166) into Eq.(165), we get

. (167)

Using Eq.(106), we see that ηh̄gha(h̄gh,h̄g h̄) = ηa(ḡh,h̄g h̄)ηa(h̄ḡ,h̄ g) and ηh̄gb
(h̄gh̄,h̄ghg)

ηh̄gb
(h̄g,h̄gh̄) =

ηb(h̄ḡ,h̄g h̄)ηb(h̄h̄ḡ,h̄gh g). Using these relations, it follows that
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This concludes the proof of commutativity of C with S.

E. CT = T C

From the definition of given in Eqs. (147) and (148), we first note that

(168)

We begin the proof by simplifying CT , and showing that it equals T C.

(169)

We first note that θh̄ā = ηa(g,h)θa

Uh̄g
(h̄ā,h̄a;0)ηa(h,h̄g)ηh̄ā

(h̄ḡ,h̄g) . Furthermore, using Eq. (112),

the algebraic expression inside the sum can be simplified as follows (ignoring Rh̄ah̄ā
0 ,
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as it is the same in both expressions SC and CS)

ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄)Uh̄gh̄(h̄āg,h̄ ag; 0)ηh̄ā(h̄ḡ,h̄g h̄)θh̄āg

= ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄)Uh̄gh̄(h̄āg,h̄ ag; 0)ηh̄ā(h̄ḡ,h̄g h̄) ηa(g, h)θa

Uh̄g(h̄ā,h̄ a; 0)ηh̄ā(h̄ḡ,h̄ g)
. (170)

We also acknowledge that Eqs. (120) and (121) imply the following relations

Uh̄gh̄(h̄ā,h̄ a; 0) = Uh̄gh(h̄ghā,h̄gh a; 0)−1

ηh̄ghā(h̄gh,h̄g h̄)ηh̄gha(h̄gh,h̄g h̄)
Uh̄ḡ(h̄ā,h̄ a; 0)

Uh̄h̄ḡ(h̄ā,h̄ a; 0)Uh̄gh(h̄ghā,h̄gh a; 0)
= ηh̄ā(h̄h̄ḡ,h̄g h)ηh̄a(h̄h̄ḡ,h̄g h).

Using the two equations, we see that

Uh̄gh̄(h̄ā,h̄ a; 0) = ηh̄ā(h̄h̄ḡ,h̄g h)ηh̄a(h̄h̄ḡ,h̄g h)
ηh̄ghā(h̄gh,h̄g h̄)ηh̄gha(h̄gh,h̄g h̄)

Uh̄h̄ḡ(h̄ā,h̄ a; 0)
Uh̄ḡ(h̄ā,h̄ a; 0)

. (171)

Substituting Eq. (171) in the right hand side of Eq. (170), we see that the original

algebraic expression in Eq. (169) reduces to

ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄)Uh̄gh̄(h̄āg,h̄ ag; 0)ηh̄ā(h̄ḡ,h̄g h̄)θh̄āg

= ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄)ηh̄a(h̄g,h̄ ḡ)
ηa(g, h)ηh̄a(h̄h̄ḡ,h̄g h)

ηa(h,h̄ g)ηh̄gha(h̄gh,h̄g h̄)

×
ηh̄ā(h̄h̄ḡ,h̄g h)

ηh̄ghā(h̄gh,h̄g h̄)
ηh̄ā(h̄ḡ,h̄g h̄)Uh̄h̄ḡ(h̄ā,h̄ a; 0)θa (172)

Now that we rewrote θh̄āg
in terms of θa, we can simplify many of the η terms in

the expression above, using Eq. (106). First, we simplify η-terms containing the label

ā

ηh̄ā(h̄h̄ḡ,h̄g h)ηh̄ā(h̄ḡ,h̄g h̄)
ηh̄ghā(h̄gh,h̄g h̄)

=

(
ηā(h,h̄ḡ)ηā(ḡh,h̄gh̄)

ηā(h,h̄h̄ḡ)

)(
ηā(h,h̄h̄ḡ)ηā(h̄ḡ,h̄gh)

ηā(h,h̄ḡ)

)
(
ηā(h̄ḡ,h̄g h)ηā(ḡh,h̄g h̄)

) = 1.
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Then, we can simplify the η-terms with the label a

ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄)ηh̄a(h̄h̄ḡ,h̄g h)ηh̄a(h̄g,h̄ ḡ)ηa(g,h)
ηa(h,h̄ g)ηh̄gha(h̄gh,h̄g h̄)

=
ηa(h,h̄ ḡ)ηa(ḡh,h̄g h̄)

(
ηa(h,h̄h̄ḡ)ηa(h̄ḡ,h̄gh̄)

ηa(h,h̄ḡ)

) (
ηa(h,h̄ g)ηa(gh,h̄ ḡ)

)
ηa(g,h)

ηa(h,h̄ g)
(
ηa(h̄ḡ,h̄g h)ηa(ḡh,h̄g h̄)

)
= ηa(g,h)ηa(h,h̄ h̄ḡ)ηa(gh,h̄ ḡ) (173)

We see that the U -term obtained in Eq. (172) is the same as the U -term in Eq. (168).

Using the results of Eq. (173), we have our desired relation

(174)

F. S2 = C

We emphasize that S2 = C implies that S† = S−1, given that we have already shown

that S = CS† in subsection B.. This implies that S is unitary and so C×G is modular

on higher genus surfaces. However, as we will demonstrate shortly, in order to show

that S2 = C, we must require that C0 is modular. Therefore, our analysis implies

that modularity of the underlying UMTC C0, implies G-crossed modularity of C×G.

In the earlier derivations, we manipulated the diagram to be able to sum over the

middle loop and use the Ribbon property due to presence of twist terms θ in the sum.

However, we do not have any twist terms in the expression S2, so we must employ a

different strategy. We restate relevant identities that will be used for the proof. From
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the MTC Verlinde formula, Eqs. (125) and (126), we have

.

We start the proof by assuming the modularity of S(0,0), and showing that

S(g,0)S(0, ḡ) = C(g,0). Then, using the fact that S = CS†, we see that this

implies the modularity of S(g,0), i.e. S−1(g,0) = S†(g,0). We can then use a

similar identity for the sum of the ωa-loop on the (g,0) sector, i.e.

.

To show that, in general, S2 = C.

F 1. S(g,0)S(0, ḡ) = C(g,0)

(175)
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Using the modularity properties above, the sum over c results in a kronecker delta

δx0, and so the expression simplifies to

(176)

Note that the last equality follows from straightening the bends on the diagram

above. This results in a trivial ratio of Frobenius coefficients. The reason this factor

is trivial is because we have to bend two conjugate defect lines, each of which have

Frobenius factors that are conjugates (inverses) of each other.

This proves our first result.

F 2. S(g,h)S(h,h̄ ḡ) = C(g,h)

Starting with

(177)

We can reduce the diagram to the following, similar to the method explained in

FIG. 12 in Appendix.
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(178)

Noting that ηh̄gc̄(h̄g,h̄ ḡ) = ηc̄(ḡh,h̄ g)ηc̄(h,h̄ ḡ) = ηc̄(h̄ḡ,h̄ g), we see that the ηc̄

terms cancel, and we can simply sum over c using the ωc loop relation mentioned

above, as we showed that S(h,0) is modular, i.e.

∑
c∈Ch

Schx0

S0x0

dc

D
=
∑

c∈Ch

Schx0

S0x0

Sc0S
∗
00 = δ0x (179)

Using these relations, and noting that ηh̄gha(h̄gh,h̄g h̄) = ηa(h̄ḡ,h̄g h)ηa(ḡh,h̄g h̄),

the expression for S2 reduces to

(180)

Note that to get the last equality, we used the fact that
χh̄ag

χh̄ghag
=

χh̄gh̄ḡh(h̄ghag)
χh̄ghag

=

Uh̄gh̄
(h̄ā,h̄a;0)

Uh̄gh̄
(h̄a,h̄ā;0) . Thus, we see that our expression reduces to C(g,h) defined earlier. This

concludes the proof.
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X. CONCLUDING REMARKS

We shall emphasize that the most important results of our work was to show that uni-

tary of the topological S-matrix is not destroyed by the action of the symmetry group

on the topological degrees of freedom. Further research will be done to investigate

whether similar relationships hold in a context where the underlying theory is purely

fermionic. This is especially interesting as systems such as fractional quantum hall

(FQH) effect are built by an underlying fermionic structure (electrons), however, the

additional structure imposed by magnetic fluxes and fractional occupation induces a

topological anyonic phases on top of the underlying fermionic system. Even though

there have been attempts in understanding the algebraic structure of FQH systems

and the role of symmetries in enriching the topological phases using G-crossed MTCs

[42], further research is required to understand the exotic FQH phases such as ν = 5/2.
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A (ST )3 = Θ0S
2: DETAILED DIAGRAMMATIC STEPS

Figure 12: Diagrammatic steps in deriving equation (152) from (151)

By collecting all the terms in c in equation (152), we have
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(181)

By noting that

Sh̄ch̄x

S0h̄x

= ηh̄c̄(h̄,gh)
ηh̄c̄(h̄gh, h̄)

ηh̄x(h̄, h̄ḡ)
ηh̄x(h̄h̄ḡ, h̄)

Scx

S0x

= 1
θcθxdx

ηh̄c̄(h̄,gh)ηh̄x(h̄, h̄ḡ)
ηh̄c̄(h̄gh, h̄)ηh̄x(h̄h̄ḡ, h̄)ηx(gh, h̄ḡ)

Ugh(c̄, c; 0)
∑

m∈C0

Nm
c̄xdmθm,

and applying the inverse of G-crossed ribbon identity Eq.(109), which reads

∑
λ

[(
R

h̄ghag
h̄gbh

h̄xgh

)−1
]

µλ

[(
R

bh h̄ag
h̄xgh

)−1
]

λν

=

(
θh̄x

θh̄ghaθh̄gb

)−1 [
Uh̄gh(h̄ghag,h̄g bh;h̄ xgh)−1

]
µν

ηh̄gha(h̄ghg,h̄g h)ηh̄gb(h̄gh,h̄ g)

we get Eq.(153). After attaining Eq. (153) from (152), we manipulate the diagram

of Eq. (153) to get Eq. (154) through the steps shown in Fig. 13.
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Figure 13: Diagrammatic steps in deriving equation (153) from (154)

B S = CS†: DETAILED DIAGRAMMATIC STEPS

Figure 14: Diagrammatic steps in deriving equation (155)
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C CS = CS: DETAILED DIAGRAMMATIC STEPS

Figure 15: Diagrammatic steps in deriving equation (166) from (165).
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