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THE WIDTH OF THE w AND GENERAL REMARKS ON
' EXPERIMENTS MEASURING PARTICLE WIDTHS
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D. G. Coyne, . W. R. Butlex G. Fang—Landau, and :J. MacNaughton

- LAWRENCE RADIATION LABORATORY
University of California
Berkeley, Ca11forn1a 94720

' December 1970 :
“ABSTRACT

The measurement of the w1dth of a resonant state and the assoc1—
ated error depend in a complex way on the number of events, the
resolution functlon and 1ts error,‘and the background. Because of
these dependences, the best result may not necessarily be from the
experlment with the best resolutlon.- Some simple approximations
for these dependences, av01d1ng the errors of Gau351an formulae,
are given. This enables the experlmenter to determine where a more
precise treatment is demanded and useful. Our appllcatlon 1s to
the problem of the width of, the w meson as seen in the reactlon
T p > T pw . The data are taken from 180 000 pictures in the LRL
72-inch hydrogen bubble chamber, incident momentum 3.7 GeV/c. The
simple formulae indicate that for this experlment a prec1s1on ‘in
the w width comparable ‘to  the world average value may be obtained.
A near- optlmal method of unfoldlng the true w signal is descrlbed
and justified. Appllcatlon to these data ylelds

m = 783.7i1.0:MeV,

T, = 9.5%f1.0 MeV.
i This researeh supported by the UQS.vAtomie Energy Commission. '
t Present addressi tPhysics Department, Princeton University,
~Princeton, N. J. 08540.
1t  Present address:,,Physics Department, David Lipscomb College,
| Nashville, Tenn. o '
t11 Present address. DESY, Notkestleg 1, 2 Hamburg 52, Germany.
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1. INTRODUCTION

hniidealvexperiment always'has.resolutionlmuchlfiner‘
than‘the effects it tries to detect. ln‘practice, high
energy phySics experiments often attempt to measure mass
spectra With resolution of the same order as the Wldth
of the peak or dlp being 1nvestigated, and the effects'
of measurement error cannot be neglected. »Thls paper.
describes a technique for proper‘calculation and use of
resoluticn"functicns inha general situaticn, the obﬁec—
tive being the actual analy51s (with new data) of the
Wldth and central mass of the w meson.-i5

Section 2 deals w1th recognizing when such calcu—
lations are‘in!order;'in particular, it develops simple
quantitatiue estimates for deriving.true widths and their
errorsifrcm Qbservedlones. ,Section 3 describes our mcre
.precise;mathematical treatment of data and tests thereof.
Section 4 discusses the motivation provided by the simple
formulaevfor.finding'a new value for the GVWidth from our
experiment on W+p > w+pw, the testing of our resoclution
functions, and the result for the w width.

2. ESTIMAT.II\lG THE NEE;D FOR CORRECTIONS

Beforevccmmitment to a large unfolding calculation,
one should answer the question: Are such corrections
necessary and (cr)'useful? In a.very—good—resolution
experiment,vthe corrections are unnecessary and thus not.

‘ . [ .
useful. In a very-poor-resolution experiment, the correc-
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tions are:quite necessary,"but the magnification of errors
"is so iarge'(as we shéll‘soon.see) thaﬁ}the :ésults arev.
‘not useful.measureménté. “How can we'anéwer this question
for experiments‘with moderately good fesolqtion? 'Usually
an eétimate of thé‘brdadeningv effect of‘resolution on

a peak’isimade‘by qqmpariné the full width at half maxi-
mum (FWHMS of the ébserved spectrum peak'(qi) with the

FWHM of the resolution function, T The"latter is calcu-

R.
lated from OR’ the standard deviation of a-sihgle measure-

ment, by the relation

FR = 20Rv2zn2 * 2.35 ¢

R ' .
which is exact if the error is Gaussian*disﬁributed. The
'~ comparison is then'dften made by extracting the true’

width (PT) as if all shapes were Gaussian, i.e.,

and seeing”if the ‘change from Q§? ﬁofFT'is'appﬁeciablé;.

- We sfres; ﬁhat this procedure bah be quite misieadihg if
thé shapes of the three distribugions'(true;;observed,
résolﬁtion) are not Gaussian, as willvbe'shown below. An-

other technique = used is to say that all shapes are simple

Breit-Wigners, which leads”*to a striétly additivé formula,



The samé words of caution apply to this linear'case.

Cohsider the following iealistic,example.. Suppose .
the true distributioﬁﬁin:mass’T(m) is of the simple
Breit—Wigner form.

T(m) = - =< 1 ’
o (m-m)* + T2 |
o 0 -

T
.whére:mo and FT are the center and FWHM respectively,
and C is a normalizing parameter; Let the resolution
function R(m',m) be defined as the experimental response
(in observed mass m')vto a Dirac §-function signal (in
true mass m). For simplicity, we restrict this resolution
rfunctibh_to'be a symmetrical function of m - m':
R(m',m) = R(|m - m'}|) .
We now_ask‘what the experimental distribution E(m') in
' observed mass m' will be, and this is the usual folding

integral

E(m') = < — R(|m - m'|)dm .

P z L 1
m (m ‘ mo), + 4PT3

Without,loss_of génerality; We take md ==Q, but neglect

"end effects"” by integrating from - to +« in m,

0



E(m') = J( —&  R(m' - m[)dm .

With reference to fig. 1, we can see'that Iy is
determihed by
5 S IR

or

[o A% =m0 - 5l

| : dm =0 . (1)
-0 m?Po+ TR/4 T

Altﬁdugﬁ.éq; (lf'aétermingsAfbf we haVefno‘expiicit result
unfii'ﬁﬁe shape of ﬁ’ié giVén;"Ifgthe eVenté'used‘ih-deter—
mihing the ekperiﬁental speCtrﬁm have‘erroré which are
individualiy‘éaussiah¥dist£ibuted,'but withﬂéach errofAfrbm

a différént'cﬁuséﬁﬁiwith different'o then often a near-

R’
tfiénguléf résolutidn functioh'is obtained (see fig. 2 and
sect?@l)LivIt is ehlightehing to usé this'ﬁddel for R to
comparéwWith the usuai»square-root—of—differenpe-squares
unfoldinq. [From Monte Carlo calculations we have evidence
. that theiapproximation‘éf.R'by eithér a‘triangle or a
GauSSiad is not crucial to'the formula (the triangle is

: Simply integrable), but'the use-of a Bréit-Wignér-ﬁriangle
combinétion ratherfthan tﬁo GauSsians (oxr two Breit-Wigﬁers)
is important.] Straighthrwérd-integration of ed. (l) |

. then yields the folléwing,implicit equétion for y =.TO/FT

in tg:ms of K = ZFR/ro:



R

grv (y? + 1)2(K?y? + 1) z

(y®[1 + K] + 1) (y*[1 - K12 + 1)
232 tan—} v + K tan™! Ky - (1 + K)tan'l(y[l + K])i
| ' - (1 - K)tan™! (y[1 - K])

y =

.A plot of the solutlon y(K) lS shown by the SOlld llne 1n ; y
flg. 3a, flanked by two dashed curves y1elded by (a) the
comblnatlon of . Gau551an dlstrlbutlons {in T, E, and R) and.
by (b) the strlctly additive relatlon HD = r + fR. " Some
lines of constant u = 2T /F ¢, din case FR and FT'are'given
but Ty is not, are aiso ‘shown. |
Now let us use thls result in a numerical example.
Suppose the resolution width PR-;S known to be 80% of the
observed Width Po. Then-K = 1.6 and a Gaussian unfolding

yieldsfyi 1. 65, and consequently F = 0.600 T .

T(Gauss)

The unfdldlng that - takes account of ‘a Bre;t—Wigner reso-
nance distorted by'a triangular resolution function gives

y = 3. 7 and consequently F (A - BW) = 0.270 Ig. Thus the

~

~ usual estlmate for I, errs by a factor ® 2.2! When

Ip = %Q};‘the error lncurred in T, by Gaussian unfolding

is down to ¥15%, although the error in Ig - Iy is still a
factoriof 2. In-summary, the unfolding curve (SOlld llne-
in graph 3a) behaves somewhat llke quadrature unfoldlng

for r 'éﬂo, but changes in character as a function of

13

FR/ro, becoming more like additive‘unfolding for FR > %QD. ¢

This effect has been shown to be mainly from the large

Breit-Wigner tails.
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~ From

“where
. and -

we eventually flnd (u51ng the 1ndependence of ng and F

to J.mply -'Ar"o'_A'r"R" = 0) ',_' o

:lS the standard dev1at10n in the quantlty F..‘

~Fromﬂthe-twofeﬁtreme‘caseSf:and‘our”apprOXimate model,

one can hope to see 1f the correctlon for resolutlon effects'

on w1dths is necessary (1n any glven experlment deallng'

w1th slmple resonances) The questlon of usefulness is

partlally answered by the development of an. error formula

for the uncertalnty 1n the extracted value of F ' 1f no.

preclse measurement of~F is obtalnable, then the data .

are'less“useful., We nowfdevelop;such a‘formula.,f

rT = ro/y(x)___ I‘O/Y(ZI‘R/I‘O) -

and

o (AT )i = Z AX AX P
T A s _3 SRR A

AXaAXb corre;ated error 1n X ’ b’

Where Y'vtl gK (from graph,‘as shown 1n flg

Lo
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Thé réiativé.efrors in each width and thé‘“unfolding_”
factor"'Kxéare_the‘oniy‘térms needed. ﬁote that the
_lattér'facﬁbr constitutes a "geometric penaltyﬁaéne must
pay if the width meaéufémehtnéomes froﬁ pdérfreSOIution
daﬁa.(as’K.§2, y' divergeé).'_. | | | | |

The problém is tﬁen'reduced'to finding éstimates for
'AFR/PR aﬁd_AQ}/Q>. vAithough the former number'is obtainable
oﬁly'by'SOme calibration.procéSS uSing a-peakvof known
width, the latter is a prdpéfty Qniy of the number of
céunté, their diStribution, andvbackgroﬁnd.'lAppendik-l
gi&es the reéultgxfor AFO/TO.fofvthrée cases#l(a) é |
Gaussiah—shapéd observed bump on a flat backgtbuhd, (b) a
Breit—WiQner—shaped observed bump on a flat background, -
: and (c) a semi—empirical<treatment_6f a Gaussian or.tri;>
vanguiar bﬁmp on a'flaﬁ background. The reéulté for (a)
aﬁd (b) are best given'in'éraphical form (figé. 4 and 5),

but in:theflimit of small background they approach

AT,

0 _ 1 }’-‘but see graphs for finite- .
(a) T, Y2 n | o "
: SRR background, n_oninﬁriite
fitting limits,
AT . '
(b) —Tg' = %— i
0 s ¢
AT . T AN_\2 " - B '
- 0 _ 1 1 S . ,
o) “/*“‘21« * 4<——N ) (0.66) .-
0 s s - . S

' ' ' ‘ : . AN
Ng is the number of events in the peak, andﬂNs is
e - . g .

-

o
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its undérﬁéintyldUe to-background. Thué (a) and (b) pro-
Vide faifly:extreme limits bétween which the feal error
is(almost sure‘£0'fall [i;ef; formula (c) seems.to:givé a
reasonab;e'interpolationvfor the experimentrtofbe discuésed].
Thesevfdrmulae'wdrk quité.well in practice, as will_’

behevident in sect. 4, where we compare them with results

of a more correct fitting program (fig.‘lG)Q

Theviﬁmediate general statement that can now be made
is that there will'be'useful information obtainable; if
and only if signal4to~noise ratio;and fesolution function
are weil enough.kﬁown. The fdrmula puts this condition on
a quantitétive bésis for judgment, but know}edgé of the
shapes.of:the pertinent distributions cah still be important.
This séétion has’giVep'ste Hints'about the eventual buﬁ?

come anGTWays to estimate it, but final details of how.a

spedtrum'is distorted must rest with a treatment such as

that given in the next section.
3. METHOD OF UNFOLDING

'Thevfdllowing procedure for unfoldiné'data~is only
one of many'possiblévsuch schemes, but has the following
advahtages:

1. Numericai calculations are séparéﬁed‘in such a way
as to keep the compute:'progfam small and to eliminate
repetitiVe calculations. . |

2. Folding integrals need be done only once pér-bin (per fitting
iteration) rather than once pér event (pér iteréti6n) as

for the maximum—-likelihood method.
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3. Expllc1t resolutlon functlons are calculated to pro—'mwb.'w

vide a checkable contact p01nt with phy51cal reallty (ratherfhﬁr

than a bulky max1mum—llkellhood technique which has no such
contact points from 1nput until final output).
4. A confidence-level test on the result is available.

We assume two sets of data: First, a histogram of'the.

experlmental spectrum, blnned so that

(a) any details of shape of ‘the spectrum are not obscured
by too large a bin size;
" (b) the number of eventS"in any bin is about lO<or dreater;
If (a) and (b) are- 31multaneously p0551ble then this method
should be effectively as good as the theoretlcally optlmal
maximum-likelihood method. We call this spectrum Ni,_the
number'cf events in the bin cehtered.at_ﬁ'i_(m' is the
abscisSa_of the histogram Of*measured values).

The second set‘of data is the distribution P(o) of
standard deviaticnsof m' for events on the histogram, sub-
ject to the requirements that N

(a) each o is assumedlto be»the standard.deviatioh of a
Gaussian error distribution; |

(b) there is assumed to be no large'correlatich between
¢ and m; over the region of interest on the histogram (if
there_is, the region can_be subdivided) .

We calculate a symmetrical, normalized resolution
functiouvby simply weighting individual Gaussians with

the distribution P(c) such that :
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. .
max P2, 2
| | Jr"v P(0) —— o~ (M M) /200 44

- R{(m' - m) = min v2m o ' ' ‘
' ST o

] MaXp (o) do

o,

min

where m is considered to be the abscissa of the histogram.
of true value and 6. . and o define what restrictions,
° vatte ah% “min S Tmax - T T T
if any, have been placed upon the errors of events used in’
the histogram.
The expected distribution in m', E(m'), is then given

the hSual folding, g

: Elm’)'; ’JF'R(mF -ﬂm)g(m,a)dm,,
where g(m,a) is thé‘theo:etical'model desired to be fitted
to thé7data, with parameters o = {al,'aé} ., aM}.'
" The relative number ofAevents'expected in the bin of
width A centered at m! is then
' , mi+A/2 o o
ry = _Jﬂ E(m')dm', .«
: mifA/z. :

and the similar normalized number is

o riNO . o o
- ny -E:' o O
o . r. S L

-all bins -

Where‘NO'is the total number of eventS'ih all bins under

considération. This number is to be'used in the formation
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of the usual X 2/2 function, which is to be mlnlmlzed w1th o

irespect to- all the set o:

It is clear:that nl.contains a triple iﬁtegratibn, and
the complex1ty and time requlrements of such a program
of calculatlon would usually be prohlbltlve.. For a given
spectrum, however, the R(m' - m) can be.calculated
first, independently of the integrations*onem-and m'.
Therrdefﬂpf integration of m and m' may then-bebinter—'

vchanged;'ahd evaluation of the integral
m. +A/2 S
.Jr ~ R(m' - m)dm'
mi—A/Z_» o

carried'out,vgiving us the "binned resolution function"

| , u +4/2
8y (u;) = jf R(u)du, -
T u.-A/2 S
. 1
where ui é‘mi ffm. The meaning of 5,(u.), a continuous

function:bf u,, is that it gives the numper of events
falling'inva bin centered at u; (with bin size ﬁniform
and equai to A), from a Diraceﬁ_function representing

‘one event centered at u, = 0. (See fig' 6.) We then
have only a 51ngle 1ntegral (per bin) left to be performed

in the fitting procedure, namely
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i~

' - L
r, = J(.»sA(gi)g(m}— u,; ,a)du

—~00 ' o
in.Whlchtthe infiniteflimirs oan be contracted to cover
just'the_region for,which‘SA(ui)-is appreciebly'differeht
~ from zero.' |

A Qeteil‘of the nuﬁerical calculations shoold be
mentioned here, srnce 1t can be quite unsettllng. Many
flttlng routlnes eventually requlre ar, /Ba,.whlch would
then appear as:a«dlfferent numerlcal_lntegral, leading to
numerical*disagreement betWeen the funcﬁion x%/2 and its
A &ﬂiwﬂuves.: This problem can be circumvented by obtalnlng
the serles used to approx1mate rl and then dlfferentlatlng
this serles term-by term as if it were the exact value of
ri.'

Before using the scheme outllned above for physical
appllcatlons we must ~assure ourselves that 1t would work
Vproperly,if the resolution were correctly known. This
requirement has been met by use ofla Monte Carlo célcu¥
lation:Which generates a histogram with the shagaof a
Breit-Wigner (cehter = 100, width = 1.0) that has been-

. spread- by Gau351an—dlstr1buted random measuremeht errors“
(OR = 1.0). 'The resultlng "data," shown in fig. 73 were

then subjected to . the flttlng procedure described in sec. 3,

(mm) 2/2

where R(m - m') was just (1//2m)e and g(m,a)

was simply
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a .
+ a ,
2 b
5

. . 1
(m - a )%+ %a
2
The starting values used were .such as,to.give»the.dashed

curve in fig. 7, clearly far from the expected value in

all parameters. = The final results were the numbers .

o

. = 100.019%0.006,

o .

; 0.9914+0.018,

and sighal~to-background ratio (at peak of
B-W) = 900/0.43 = 2095,

i.e., negligible background. Thus the unfolding works
o ' ‘ ' s . triangle- .
properly. {ﬁote that application of the K-B—W formulae

for‘FTiénd APT developed in sect. 2 with Fp = 1, Ty = 1.68,

o . ANg . ‘
ATp = 0! NS'=.98°0l and g = 3.90 gives @,

which is reasonably close even though the Gaussian reso-

1.044:0.017,

lution funétion has been appromimated by a triangle. Note
that the-error i0;017 agrees quite well with the programg

+0.018. A strictly Gaussién'unfolding.(in both resolution
and data)gives_ . |

‘a, = 1.35%0.015,

which is clearly wrong. The conclusion is that the ob-
_served distributions in cases such as these are signifi-

cantly non—GaussianJ‘
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4. THE WIDTH OF THE w

The'Width ofkthe ¢ as giﬁen'(Circa lQ?d)tby,the

: particle bata TableS' is 12.6x1.1 MeV, and the mass 1is

783. 410172)~ [Follow1ng the preparation of this paper,’
several changes occurred in the Partlcle Data Tables to

be published in Jan. 1971 (UCRL-8030,, Ang. 1970). Two

new eXperiments758} were included in the average, and

one old experiments) was'deleted because of our calcu-
lation inhAppendix II. The result of our paper was not

announced 1n time for this average.- The‘world average

we quote at the end of this paper includes all resultsgo
inc1udedfin UCRL-8030, Aug: 1970, plus oUr-version of

the result from the data of Barash et a;., plus our

new’indebendent result,dwhich dominates the World average.I

This result for the width. 1s based on three experlments -5)

of good to excellent resolutlon, but poor statistics and

moderate background, and one eXperimentG) of moderate
resolution, low background, and poor statistics. We pro-
pose here to measure the w width from data on the reaction.

R - 0 . ) . . . . -
n+p > ﬂ+pﬂ+ﬂ T at =3.7 GeV/c,g); where in factfwe have

moderate resolutlon and background but very good statlstlcs.j' k-:--

The susp1c1on that the best—resolutlon experlment
'may not always yleld the best w1dth measurement is 1mplanted
by the functlonal dependences of the approx1mate fornuia
(sect. 2) for AFT/FT, the flgure of merit for the w1dth

measurement. Let us apply this formula_to the o0ld experi-
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ments ana‘to our preSent'experiment to -see what itvimplies, '

Table 1 gives the.reaction and total number of events in

thé w peak for each ekperiment;'ﬁhe values of f0;4fé; ahd-
Signal~to—back§round.ratib, andfthe‘er£0rs'inlthéseAQuanti—
ties;A Wé.ébmpute frbm the approximate fofmuiae both T,
aﬁd'AFT/PT for each-experimént, and rééistér*theée in the
same table. It iS'c;ear that the figure of merit fér our

n*p experiment is comparable to the world‘aVerage result

if the resolution function is well known ¢ Fi' ~2%). If
: - AT '
it is not so well known( FR ~8%), then this uncertainty

begins to doﬁinate the figure of merit, but it is still a
quiteAusefu; measurement. .In a nutshell, one paysnfor

poor reéolution in that he ﬁust have more precise knowledge-
of the shépes of distributions ﬁo regain éAgood figure,

of mefitg One can do this by some cqmbinafidn of (a) re-
ducing AfR/fR by making cuts on the data, (b) increasing
the number of events, (é) deéreasing or better détermining
backgrouﬁd. | | .

We ﬁow summarize the experimental details of our ﬂ+p
exposuré.‘ Four—prong'evenfs detected in the 72—inch |
Lawrence Radiation Laboratory hydrogen bubble chamber were
measured by the LRL FSD system, witﬁ failing evénts
remeasured by this system for about one-half the film.
Anothé;’femeasure on the LRL COBWEB system was performed,
if neééésary, for this sample of the data. Reconstruction
and fittihg of the events was carried out in the TVGP-

SQUAW'series of programs, which have been modified to use
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a completeterror matrix"for Calculation-of‘physical
quantities such as 1nvariant masses (given error-related
parameters such as the setting error of the FSD) 5551gn—
ment of;thevevent to the reaction Ul p > pn+ﬂ+ﬂ-ﬁ

ﬂfp > prtntnTn®, or ﬂ+pb+ pﬁ+n+nf(MM)_was dOne on the
basis of x?’cutoffs_and -- for therfirst-half:ofrthe
datarl;fb&uéyphysicist;s'decision at;the scanning-table.‘
For the'second half‘offthe datayla program analyzing the
FSD ionization measurement (described elsewhere 0))
replaced the phySiCist. For the study of the w, only
unambiguous events of the type m p -+ pﬂ+n+n ﬂo were used.
A spurious or biased w s1gnal is unlikely to be generated
by the abOVe procedure, but the amount of background
could he a”function'of‘the technique used.

Before turning to the w spectra‘generated by these
data, we must dwell.on'the crucial,point’concerning knowledce
of the resolution function for the ﬂ+n+n° mass. As out-
lined in sect 3, we can calculate the resolution function
from the correlated error in m(n T m ) delivered by
SQUAW, but here we are trusting both-our input parameters
to TVGP- SQUAW and’ the operation of that program. How do
we confirm that the whole seqguence glVeS correct results’
Although we may check the shape of the X2 distribution
-for the lC events, or look at pull. quantities for different.
variables-(and»we have done so and’found good agreement
with prediéted distributions), we need a quantitative test

at the level of a few percent. A final arbiter of the
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precision with which the resolution functiOnfis-knownb
would be a gocdfstatistics comparison between the observed
mass spectrumdof a physical‘delta function (stable or

semistable particle) and the resolution function generated

[

scleiy'by'the calculated'errors for'each euent-in that
mass'spectrum. | |

The n meson is a nelghbor to the w. 1n the ﬂ+n n°
spectrum, and would be an adequate callbratlon peak except
for (a) lack of good statlstlcs, and (b) background. A;thouéh
we Wili_use this peak as'an_added'check, something better
is required. |

We have chosen to'generaté'lc events by ch0051ng a
large ( 5000 -event) random sample of unambiguous events
of the type T p > T pout“+"—’ then dropping,the constraintSbfummsured
poutuangles andlknoWn Pout mass; This'givesdus ic eventsv
with good‘Statistics and negligible backgrouhd. Although
the distribution of errors on the pout‘mass (fig. 8Lhdoes,
not s1mulate that for the n+n n° mass (fig. 9), we are.
testlng the 1nput parameters and operatlons of TVGP SQUAW.

This is not as dlrectly comparahle a test peak as
the n, butdSince the error on the proton mass is coupled
to all track heasurements (correlations for 1C are non-
negligibie), and since pn+ﬂ+n— dynamics spans about . the same
rangeas-pjf#ﬁfﬂo, we aré testing properties not of the
proton measurement alone, but of the whole configuration.

The:procedura outlined in sect. 3 is then followed,

starting with the error distribution in the proton mass



-19-
(o projectioh, fig.‘SiIto get a resolution functioh,
calculatlng the blnned resolutlon functlon for 2-Mev blns
[S (u.)i flg. 10], and maklng a x' comparison of thlS
functlon w1th the mass- spectrum for the proton.'

Fig. ll shows the flt of the calculated functlon to
the proton mass dlstrlbutlon. Although for known proton
mass and a glven number of events there are no free
parameters;.we.haVe permitted a yarlable.proton mass to
establish_ourimass calibration.h'lh'addition,.we'Haye'
inserted a variable scalebfactor on the mass scale (width)
of the resolution function to check the bias'and sensi—
tivity;inlits shape. The solid hlstogram shows the best

calculated.resolﬁtion functlon; the dots show the data.

The insert shoWij? contours in the two parameters, plus

a marker at the ideal value. Our result is that a good

fit (Canidence level = 18%) is obtained with

‘m_ =938.3:0.3 MeV (accepted 938.256),
out : ‘ :
arg - |
—— = —6%2% (ideal 0%).

oThusono detectable bias in the mass is observed and
a small resolutioﬁ#width biasv(known to 2%) is detected,
that iS}‘unCOrrected calculated resolution functions.would
be 6% too narrow.

We should p01nt out that lf this procedure was done

ag a function of proton error, i.e...done independently
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for subsamples of the data w1th a glven renge of o_ ;; a
detectable blas ln mass was notlced, Wthh apparentﬁy.
averages out in the total sample. This Wlll be dlscussed
in connection with a similar effect Seen:forvthe W Another'
unpleasantry is that when the callbratlon procedure was

vtrled with 3C events (drop P mass only) a bias of

out
-9+2% was observed with the same eventsllndlcatlng ‘a
possible dependence on constralnt class, and thus a slight
malfunctioning of the errox system.

Although this is our prime calibration, a check of
the n shape Would‘be reésSuringeifhit Vererto’agree-within
the statistics. The above procedureﬁyas also applied to -

o sy
the n(548) peak as seen in the ﬁ+ﬂ—ﬂ°As§ectrum for our
total sample’of n+p - ﬂ+pﬂ+ﬂ*n°_(fig. 12), with a small
backgrouhd correction. The result is‘shown'in fig. 13,
where'we‘see”a very good fit (confidence‘leVel 80%)
obtained with

548.0+0.4 MeV. (accepted 548.8:0.6),

m =
N 1
- ATp ‘ -
B caee 0+8% (expected -6+2%) .

These results are certainly consistent with no mass shift
and the'resolution width bias Seen before, but, as expected,

do not- contrlbute significantly to a better knowledge of
AT. o _
T (unless one seriously questions the extrapolation
_from the proton mass calibration technique).
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‘At this pbint.Qe can apply the formaliZed'uhfoldiné‘
procéduré worked out in séct..3 to.the w itself. ~The
ﬂfﬂ—# mass spectrumvfor the total'data'sample.hasbbeen

.shown ih>fig. 12, and subsamples.thereof:with different
cuts on,the error disﬁribution for mﬂ+ﬂ—ﬂb are shown iﬁ
fig. 14. This error, d,vis-divided-into regions as shown
‘in théitéble (wheré‘the'division'is'hiétdriCai and has |
no'significénce}.  | : o

Bin size of - 'No. of w's,

Region' -plot used for ” No. of even£s,: --.double w's
(MeV) fit (MeV) A total spectrum ' counted twice
0< o < ® 2 ‘ ’14491 - ' - 4268
0<o <6 2 © 1015 ;f'j' 674
6 <o <8 2 o 1966'.f'->: 7 930
8 < 0 < ;d 2 2519 705
0<o<16 2 5693 ' 1274
16 <o <32 5 ,' 2968 692

32 <0< 200 300 o 142

The_purPoSe of‘the division:was_to.providé another check
‘on the'uﬁfoldihg proéedure'(to seé'if‘the‘unfolded L width
is indepénaent_of the observed width) and to cheékithe
approxihateﬂformulae in different‘regions'of applicability.
The calculated resolution functiohs.for these regions are
shown as theﬁcurves~in fig..lSa-g,}where thg-cofrection

a

for the -6% bias has not yet'been made.
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‘sz
Background was dealt w1th 1n flttlng seventh degree

_polynomlals to the spectra of each of the error regions,

excludlng the n and m reglons.. The resultlng background

‘shapes (essentlally stralght llnes in the w v1c1n1ty)

were then-flxed-for the'flts to the w, but.a varlable

51gnal to-noise ratio was allowed. This philosophy auoided

‘the real pos51b111ty that the background polynomial would

try to accommodate-vagarles in the w shape. If the fit
were internally'consistent.the.signal—to—noise ratio WOuld
necessarily adjust the background to'natch absolutely'the
empirical‘walue found outside the region of the w. The
'background, being empirical, was'notlfolded with thevresolu—
tion funCtion. The-aboVe method also sawed'computer time
over a: 51multaneous flt to resonance plus the complete
background spectrum, but probably does not optimize the
uncertalnty in the slgnal to noise ratio:

' The model‘used for the true spectrum g(m,al(sect. 3)
was the‘same simple'Breit-Wigner used in the approximate
theory. We have calculated the distortions induced by
a BreitQWigner in m? or a.P-wave Breit-Wigner, and for
this narrow_a resonance .they are negligible. Other effects

demanding a different g are discussed later. Table 2

gives the results of application of the techniques of

sect. 3, via the fitting program EXTRACT!!). The high
confidence levels for each individual fit in regions of

limited o attest to the adequacy of the above model.

)
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Figt 16 summarlzes the results on the w w1dth from
these flts.f The regions of dlfferent o are represented
by'verticalvbars with a. height equal to the observed width
of the resonance above background._ The open circular
"data" points are the unfolded width and associated error
due totstatisticsland background (assuming:no error in
resdlution at this:point). The solid triangular."data"

p01nts are the results of the approx1mate formulas glven

T

in sect. 2, agaln w1th no resolotlon functlon uncertalnty.
The value and its error come from different formulae and.
should lndependentlg agree with the machlne—calculated
values;t'The open triangles show the reSults of a Gaussian
unfoldingQ. The leftmost column shows these results for

the combined datal It is clear that no detectable systematlc
dependen01es in the unfoldlng process occur. It is also'
clear that the approximate formulas are in embarassingly
good'agreement_with'the computer values>(ratio of the cost
of machine unfolding to the cost of physicist—slide rule
time for the simple formulae is about 35). The Gaussian
unfolding fails abjectly, as we have seen before in the_‘
Monte Carlo runs. The one disagreement of any significance
’is the mismatch between machine—generated error (10 MeV)
and formula error (3 Mevj for 16 <o < 32 It can be
understood by notlng that the fOrmula is for a percentage
error, and requires afcorrect P to get an absolute AT,

In this case the formula predicted: 100% error, which for
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TT X id‘MeV (a reasenable value) gives Affsb.lo; 'The.
fluctuatiqh giving Fi = 3 MeV is completely consistent
with AT, = 10, but theg gi?es the absolute error AFT,#.3’
The macﬁihevunfolding deee not suffer from this eoupling
effect, so although it gets-the same downward statistical
fluctuafien in Fi (same:data),-tﬁe_fluctuation'does not
propééate ihto AfT. - Thus we beiieve the machine value
in thisfceee.' | |

If we now combine ﬁhe reeuits ofvthe different o.
regiene (by the usual Gaussian weights for ihdepehdent
measurements) we get | >‘ v

- T '= 9.5:0.8 MeV.
The ﬁnfbldihg of the,£o£a1 samp1e; theVer, gives
r_ = 8.6:0.9 Mev, |

where the details of the fit and the ﬁnfblded signal are
shown in fig. 17. o |

?he’teason ferbthe diffefencevbetweeh theseefesults
is net’obvious,.but they need notlbe idenfical,zbecause
- the data of each individual region of ¢ is fitted with
a different value of m , whereas in the total data sample
a singie value of mw must suffice. Fig. 18 shows the

value ofhmf
+

it " mstandard as a functlon of the cut on o,

both for “-“o data and for the proton mass calibration
data. A clear systematic shift of mass with error is
observed. If the fit to the entire data sample is being

influenced by this effect (small in the sense that a small
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ftaction'of the events are so affected),tthen we would
eexpect.itlto be of lower eenfidence leveleeﬁd greater‘
width. bThe confidence level is low (x1%) but the width
'is narrower, so this may not be the sole cause. We also
redid the entire_precess, using plots in mass-square,

and resolution functions in maSs-Square. Then FG'éhifted '
to 10.0 MeV, but the fit had the same low confidence
lével.: Another reaeon for the lew confidence level may

be that at the statistical level of the total sample,

real physical dlstortlons of the w Brelt-ngner become
51gn1f1cant. For 1nstance,;the decay p -+ n+ﬂ-n°.isb
supposed to contribute up to 10 to 20% of the events in
the w peak, with.a distribution depending on details of
the btw?interference. We have not tried a fit with a |
simple p*w interference’model because the w should still
modﬁlete'elole vaIYing terms in the interference model.
That 1s, no first- order term varylng llke the real part

of the w amplltude shouﬂiappearlz). The dev1atlons from

a simplevw would then be hard to detectm-_Anothe; posslf-
bility'is the w +~ mwny modeffﬁhere_the.y would be_labeled
and fitted as a ﬂo.b We have used n ~» TTY and>n'74 Tth
(fltted as ﬂ+w i ) to callbrate the expected p031tlon of“'
w > TTY, and expect a small number of events dlsplaced
upward 20 to 30 MeV. No effect of real 51gn1flcan9€ is
observed,'thoughvthere-is a clﬁstering.of evehtsubetweeﬁ7
810 and 820 MeV that hay be due to thistmisidentification.;-

Our conclusion is that the width measurement is more
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reliably found ftom the combination OE individual cesults
because_(i) most of'its‘significance comes from rejions
of 6 Where the backgfound is lower than fof'the total
sample, since the reglons of good o (narrow T, ) haJe low N
background “and (11) the-mass parameter can compensate
for mass biases in the individual fits.

.It'femains only to add in the contribution to AT,
coming from the uncertainty in the resolution-funetion,
and we can do thlS either by (a) u51ng our .simple formula
of sect. 2 or by (b) re-unfolding with a sllght change
in the resolution functlon. We apply these technlques
to the total sample (the only sample for which a figure
for APR/FR‘ls available), andvmodify the result slightly
for the 1mproved sample.

(a) If we use S v
(from the computer

Al KY', _
N (1 + =5) = 0.9 Mev result for unfolded
o : width with perfect
resolution),
AFR' ‘
- = 0.02 (or 0.08 if very pessimistic),
and
. ,
I—(—§_'—= 3.39,. "
APT ' _
we find - = 12.6%, ATT = l.1 MeV, a 0.2-MeV increase
T _- S .

in the error cefresponding to an independent source of
error *0.6 MeV. h
(b) By narrening-the resolution function by 2%1 we

get a machine-unfolded width of
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I =9.0409,

w
or . |
‘J"ATT (due to APRAalone)~? 0.4 Mev[
in fairvagreemehtﬁwith’the 0.6 MeV found in (a). Thus

we assign to theiiﬁproVed,subsample an overall error of
1.0 to the w width coming from 0.8 MeV (statistics‘and
baokgrounQ) andjb.ﬁ Mev fresblutionAhhcerteinty) combined‘
.in quadrature. |

The final quotation is then

T, = 9.5:1.0 Mev,
which is significantly better‘thaneeny‘orevious'single
experiment,‘and is comparable in precision‘with the world 
average - | . " -

| | T, = 12.7:1.2 MeV._
The oonfiaenCe level fOr»rﬁe consistencyoOf our result
and the‘ola world average.is'4%.' |

Some'of this "disagreement" is removedvbeCause both

old eperiments contributing most signifiéantly to the |
world average used strict Gaussian unfoldlngs after proper
calculation of resolution functlonsl In one case“) the
resolutlon almost justlfled this procedure, but the other 6)
was a reglon where K = E;% = 1.25, just as for.our Monte
~Carlo case in sect. 3( where a GeusSian unfoldingvgreatly

overestimates the width (by =40%). A corrected plot of

rhe world results®=7) is shown in fig. 19, where we have
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\usea buf simple fofmulés‘to correct the width and insert
the uncertalnty caused by lack of knowledge of resolutlon
functlons.v For the experlment of Mlller et al. ~thlS 1s

- a small correctlon in width and no. apprec1ab1e correctlon
in AT. For the experlment of Barash gt g;.“ the correc-
tion was'so large'eee table 1) that we felt hesitant to
trust the approx1mate formulae and 1nstead with the help
of one qf'the‘authors (DM) , obtalned the original data
and used Qﬁr machine unfolding routine to obtain the
correction (Appehdix_Z)., The authore of this older resﬁlt
are in nd;way respensible for the new value guoted herein,
derived from thei: data. | | |

The>neWtWOrld_avefage T is foﬁﬁd to be (inelﬁding"
all expefimehté in'figo'lQ)
't‘:fw = 10.110;7 Mev,’
and a egnfidenee level for the agreement of all data is
20%. | | |
Wezare-heSitent'tb elaiml with the same senseQOf

security}_that we know the mass of the w to be the value
m = 784.1:0.3 MeV,

" as gien by the fits, because of the mass biés énd uﬁcertainty
of backgrt;undféystematic_s° The absolutevcalibratiOn of
;mass can be checked by observing the resulting spectra
" of klnematlc flts ln whlch P, N, no, n, and K masses are

free. Table 3 .gives our result for the fitted or welghted
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mass and the resulting bias and its.significance. It is
'meaningless tc determine an average bias, but all biases
except'the‘neutron-are 1ess than 1 MeV. :Because of this
uncertainty, we choose to quote only m = 783.7#1.0, using
the region of errors‘Where=ncvupward mass. shifting of m
was evident (o < 16 MeV).

Have the data been exp101ted to the fullest by the
above technique to determlne the width? The background
calibration is probably not optimal but in v1ew of the
.lack of_a‘priori knowledge of its shapeﬂis'probably the"h
most ccnservative.approach. What about other cuts on the
data, such"as using n+p > At r*r™r®, which is known tc
have much lower background? could this not lead to a
better value because of the»reduction of (Agg)background ?

We used the approximate formulae to predict that this
gain would be wiped out by the loss in statistics'in the
signal, to say nothing of an increase in the precision -
required in AFR/fR; Actual fits confirmed this reSult,'
The same result held forrsubtracted plots, which give
cleaner W Signals. Other cuts, such as momentum—transfer
cuts, or requirements for slow protons,_seem roughly

equivalent to the o cuts we have already performed. Thus

‘we feel we have optimized the result.
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5.. CONCLUSION

.WéuhéQe oﬁtlined a scheme for obtaining near-maximal
information'ébOUt.theﬁreal structure of'séectfa when thefe
is_khoWleage of the ertors of méasurement. Simple formulae
fdf estimating the pertinencevaﬁa merit of such corrections
have beeﬁ derived. 7Finélly, by chooéiﬁg an extreme example
(a resonaht state appreciably narrower than the reéqlution)
we have ‘demonstrated with a new value of T = 9.5¢1.0 MeV
thatvtheﬁe ideas are essentially correct and useful even
in such extremes. We'Certainly urge the application of
these or»Similar techhiqués-to the leSs‘extreme'situations
now éommonly occurring és measurements of fine structure
in.mass,(and other) spectra are attempted, namely, the
: widtﬁ of_the,K*(880), the szstruCture'problem, the p°-w
intefféréhce possibilities, and the predicted sharp minima

in momentum-transfer distributions.



RS

-31-

ACKNOWLEDGMENTS

We thénk.Profeééor‘G; Goldhaber and Professor G.

' Tfiliihg_fbr their interestAin and support of this project,

as well as the members Of their>research group for meticu-
lous ekémination of the>ideas_inbthislpapér. Thé data were
derived d£iginally>from the'éxhaustivevefforts_6fiDr. J;
Kadyk, the LRL 72—inchiBubblé1Chamber crew undei

R. Watt’ ~ - . . and the Bevatron crew
(circa 1967). . The Fsb staff and our oanscannin§ staff
Were’invaiuable in reducing this large data sample."DrQl
O.'Dahl?and E. Burns contributéd significantly to the
error calculations. Professor David Millér‘genérously
suppliéd'détails of é_prior.éxperiment,tfor which We'éré
gratefgl; This project was éuppofted by AEC Contract

No. W-7405-eng-48.



- _32-

Appendix 1

Suppose we have N eventé which are distributed in x
according to the distribution P (x,a),. where o is a parameter.
Solmitz!®) gives a formula for the lower limit on the

error in the determination of a as

. o . ,
r -N;/;(x;q) 8 ANP 4y,
(Aa) 2 da? '

This limit is usually ;eached by the maximum—likelihood
method'of fitting for o, but can be closely approached
by a x? method if a feasonable number of events exist and
care is-given to the binning. |

We'apply this formpla’to find the expected error in the
observed width(Ib) of a resonant-like bump (either Gaussian
or Bréit—Wigner) sitting on top of a flat background, in
which thé data are taken over n full widths of the bump,
and b = background density/sigﬁal dénsity (at the peak of
the bump). | |

For a Gaussian, we have

202
P(m,T) = L e +

/2T  Erf(n) + 2bn

/T

/

;

whereas for a Breit-Wigner we have

{
I
N

i
1
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o , M >
" P(m,T) = ‘ .
' (. [tan*ln + nb]_

The results were achleved by numerlcal 1ntegrat10n

and were shown in figs. 4 and 5, respectlvely It should
be’ remembered that N is the actual total number (51gnal
plus background) of events used in the region that is n
full‘widths ih extent;. These formulae correspond to cases
Wthh may or may not arise in a glven experlment A real
Breit- ngner presumably gets dlstorted by resolutlon before
we observe 1t If the dlstortlon is small or 1f the
resolutlon functlon has a Breit- ngner—llke shape, then
the observed dlstrlbutlon follows the Brelt Wigner formulae.
"If the resolution.widthsis eppreciable, but the function
has tails which cut off sharply, then.the.Gaussian.shape
for the.observed distribution.may be more pertinent.
These two cases eppear to be useful extremes.

A less rigorous argument prov1des another way of

AT : N
evaluating ——j%r- . _ -Rather than the general limit

o _ ‘ v
thexem above, we use the explicit maximum-likelihood
solution for the standard deviation. (and its error) of a
Gaussian distributed variable m,

Z m;-m)

1

Q
—~
I
a
(=4
I_I A
b
2
0
I+
)
2
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where N’ is the number of events in the 51gnal and m is

the average of the 1nd1v1dual measurements ml C is a
— L
2vV21n2

The error here is purely due. to the statlstlcs connected

constant-relatlng standard dev1atlon and FWHM(C =

with the number of events in the peak N_. If backgronnd _

is present, we might expect another source ofderrér'in

that events contributing to‘the.width determinatién may -

be hackground events, i.e., Ns‘has{an'uneertainty ANS;

A non rigorous derivation of this additional ﬁncertaintyn

in ré when a flat background is present is given below.
If'weithink of the N‘ events above haVing an uncertainty

_ANS (events which may belong to background), this can

1nduce an uncertalnty

Ns
Cerpay T L mgmm
A(e?T?) _ =0 AN
s
/'

N +ANS_ : 2 AN '

f LRy

[ 1=N +1 . s

which gives
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[ NN
2 - Z‘ (m, —m) _
AT, = 1 Aﬂro) L Q”ANs -} i=Ng+l i - ANg
* /background r s crreang [aNg |
L.
R
S

As a check, if the "uncertain" events distribute exactly

like the "real" events,

- N_+AN_ _ :
) (m-m)? = J_A_IiL z (m, —m) = |aN_|Tr2c?
i_=N_S+l 1 A_ T :S ., 0

and F = 0. Thus 1f the background is identical to the
signal, it leads to no error, as would be expected Thus -
we needeto estimate how."uncertain" events distribute.

If we-define

Ng+AN_ o
)  (m,-m) 2
1=Ns+l

| AN|

then

The uncertaln"events are presumably in the v1c1n1ty of

the peak, or would not be confused with it. If the model
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for the signal‘and background_ié a triangulai bump on a
flat ba¢kground (so that the uncertain events are flatly

'distributed,over -Fé <m < Fo), we have

T
o 1 2
ol Zj(o 2T m*dm
v.—2= I-, =2r
-9 ['g i m, 2
0
2 | T (1 - T ) dm
J 0 0 0
so F = 1.

If the model is a Breit-Wigner on .a flat background
(more physical), then 0u2/0 2 depends on a cutoff in
: ner o =nas. :

2 is » for unrestrained m). If we neverthe-

m (because 9,
less take -the same region —fd < m < Pb as for the above

case, we get

= — 13 = 1.656 ;

thus F,= 0.656.

¥
I i
i

TC
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vIn checkingvthese two results Against-émpirical fits,
it is fbund‘thét the case F = 1 always gives too large an.
error; whereaé.the cése-F‘= 0.656,prédicts errors.correctly
almost without fail. Welthus empirically'choose the. more
physicél_éase, without implication that a rigorous derivafibn
has been_made.' »

The,cbmbination in quadrature of the statistical and

~background uncertainties then leads to

2 .

AT ? 5 o
0 - 1 ) l. S } _ 2 .

0 S S

- and the user must provide an estimate (usually by.eye) of
how many eVénté lie-in the uncertain category. In practice,
this result for JS;% lies somewheré betweén the limit
‘cases given at the first of this appendix, but fends’to

favor the Gaussian limit because:l//7ﬁ; was used for the

statistical error in thé‘width.~
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APPENDIX 2 .

We have fltted ‘the orlglnal data of Barash et al.é), provided to

us in 5-MeV bins as shown_ln flg. 20. The model used was‘.

+ 11,

g(m,m ,T, ,£) = p(m) £
e e ) ® 4 TR/
where'p(m) is the'ﬁhase—Space curve'generaﬁed-in'the;ofiginal
thesis*) and f is a'signal—to;noise parameter. The resolu-
tion.function~was'taken from the paper, and since therein
it had been ideogrammed,'was narrowed by a factor v2 to
remeve the brdadeﬁing effects ef ideogramming (thus
Tn - 7.77 MeV, down from the 11+l shown). . The bbserved
width of the histogram appears to be about 12.5 MeV (this
does not come frbm_and is not used in the flttlng program).

The unfoldederesult alSO'appears'on fig. 20, and gives

T, = 5.8:1.3,

m, = 780.2%0.8,
with x2 = 2.3 for 7 degrees of freedom, giﬁiﬁg a_confi&ence
level = 97%., The errors are both statistical and from back- .

ground, but do not include resolution'uncertainty, which

is important in this case. Now, although the authors

qguote a PR * 10%, no quantitative calibration scheme
R ’ :

is shown and '10% is the best one could do from the statistics

[

alone. To be conservatlve, and u51ng the momentum ‘distri-

AT
bution (by,wh;ch the authors estimated —TE ) as a guide,
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we ‘assign é;% = 20%, including sjstematics, Our simple
formulae then predict the APQ increases to‘2{9 MeV,
thus the“reéﬁitingFWidth'is Fm‘=‘5.8i2.9. 'No'iﬁformation was
available.ﬂbustddeternine mass ¢alibratioﬁisystematics.

It thus appears that the unfolding is'closerito the .
additive fdfmula | o

| , P@ = Fo - :R = 12.5 - 7.8 = 4.7 MeV

than to the quadrature formula

r = ,/12.5% - 7.82 = /95 = 9.8 Mev .
w ‘

(The?aﬁfhors'used quadrature on the ideogrammed widths:

r, = v/16.5% - 11? = /151 = 12.3 Mev).

This is completely expected from the location on the un-
folding curve for the simple triangle-Breit-Wigner model

shown in fig. 3a, which'gives T, = 7+3.5, as in table 1.
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Appendix 3

For a.collidihg—beam experihent,qut simple formulae
(deriVed in Appendix lj‘for the érror in T arehnot appropti-
ate, beCausé the colliding—beam data- are collected at
'discrete'values of total center—of-mass-energy.and are not
distributed over the‘mass spect:ﬁm in a manner proportional
to the theoretiéal'intensity.

We can, however, start from the same theorem as in

Appendix I,

0 2 )
L < -N[ p(m ) MMP 40
. (AT) 2 J_ o M arz

Where P(mp) is the probabilityﬂqffnuﬁqga.count at m, . and
is |

o :
P(n_‘u) = ﬁ—()-F(rrjp)o(mu) '

where o is the.absolgté total crosé section at mu (a Brei£~.
Wigner) and F(mu) is,the‘time-integratéd luminosity per
unit m (this is a sum of § functions at the disérete points
taken). : _ |
: _ 2mu (running‘time "efficienCy)u

If we let v. = —— and r = -
H I V) 5 .(running time . efficien‘cy)fu

then the solution is
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2 ) . v .
'AFO _ 1 _ . e
o A
- o Ta 222 ]
o u~2¢(§§-+ 1) .
where
o __2_.__._1._;_._ Zruf5 (m - m'u)
P(m) = B+ T7/4y .

A va2,+ r2/4

Note that since the résolution'wi£h FR'is‘effectively

as well as

zerg, this will be the error in PTrué

1 ) ‘ o N 5)
FObservedf' Using values from the.Orsay experlment v
for which 'y = 16.2 MeV, we get

AT, = 3.1 MeV,

in_striking agreement with the 3.2 MeV error quoted.



-42_

REFERENCES

W. R Frazer, J. R. Fulco and F. R. Halpern, Phys.

Rev..l36, B1207 (1964) |

Particle Data Group, Rev. Mod. Phys. 42, 87 (1970).
R. Arménteros, D. N. Edwards; T;VJaCObsen, A. Shapira,
J.-Vénderﬁeulen,‘Ch.:d'Andiaﬁ, A. Astier, P. Baillon,

H: Briand, J. Cohéanahouna, C. Defoix, J. Siaud, C.

Ghésquiére and P. Rivet, Sienna Conference Report; 1963 .

: D C Mlller, The51s from Columbia Unlv. (Nevis Lab.

Report #131 (1965); prellm. version publlshed Phys.

‘Rev. Letters 11, 436 (1963).

'J.>E;:Augustin, D. BenakSas, J. Buon, V. Gracco, J.

HaiSsinski, D. Lalanne, F. Laplanche(~J. Lefrangois,

p. Léhmann, P. Marin, F. Rumpf ‘and E. Silva, Phys.

Letters 28B, 513 (1969).

N. Barash, L. Kirséh, D. Mille: and T. H. Tan, Phys.
Rev. 156, 1399 (1966). ‘

H;,Blumenfeld, F. Bruyant, V. Chaloupka, J. Diaz, L.

Montanet, J. Rubio, M. Abramowitch, A. Lévéque and

C. Louedec, Proceedings of the Lund Int. Conf. on

'Elementary Particles, 1969 , paper #125, Properties

+__
of the B Meson Produced in Reaction T p >pr T 7©

at 3 9 GeV/c.

;H. W. Atherton, W. M. R. Blair, L. M. Celnikier, V.

Domingo, B. R. French, J. B. Kinson, K. Myklebost,
B. Nellen, E. Quercigh, R. Schafer, J. Bartke, J. A.

banysz, J. Debray, J. L. Frolow, G. Pichon, M. Rumpf,




10.

lla

12.

13.

-43.

REFERENCES, con't.

C. De La Vaissidre and T. P. Yiou, Nucl. Phys. B,

18, 221 (1970).

Firét publication of these data in connection with

another problem was in G. Goldhaber, W. R. Butler,

_'D G. Coyne, B. H Hall J. N.MacNaughton and G. H.

Trilling,’Phys. Rev. Letters 23, 1351 (1969).

J. N. MacNaughton, Trilling-Goldhaber Group Tech.

“Reporf.#TG-l74,:l97O )4LaWrence Rédiétion Lab.,

- Berkeley, Calif.

EXTRACT{ General Purpose Fitting‘Program, Trilling-
Goidhgber Group;Tech.’Report $TG-175, 1969 , Lawrence
Radiation Lab., Berkeley, Calif. '
Private communicaﬁion withvc. Quigg.

F. Solmitz, Ann. = Rev. Nucl. Sci. 14, 374'(1964)}



44

oenwIoy ardwrs ayy CH

‘OTjel punoIgydeq/[eulrs uo 1o Z\ NV uo Afuo spuadap
rH\ IV :10115 0U SBY SNY} ‘S3IF INO JO Idjdweded © JOU ST YIPIM PaAIasqO (9

USUYIPIM pawuwuRIZOIPI 9jonb sxoyiny (e

ﬁ.ﬂ@&
jo 9and1 g

0°1F6'6  21FH'8
2°SF29T  1°€F2°97

FECL GUEFL

T v0F28T (q ¥'92  09z#0Lzy o uded u
AL - 0=F0 = 2°EFL9T  €1F002 . o < 9.3 (g)
! . . ’ . . ’

_ 6 L0F8°L L'TFG°27 €IFILT «VH«M ‘AIMH.Q (9)

(FFI) (o (L71F9T)

‘Te 3° ocNoU

‘Te 32 urisnidny

*ie 319 yseaeg

Tavetg

2FY'EY  2eF8ZY 2T £0Fh'T FYIEY, LIFBTE o M M < dd  (p) TR 39 I9IIN
€6 £F1°8 2z - £°079°2. ¢TF6 GFIe o < dd  (¢)  °Te 30 oxdjueWIY
- pajony enwiIoyg pidyg (APIN) A>o§v mZ.4 - mZ “uo13OoeaYy ‘194 aoanog
+500)3 _ : .
(RW)  ('590)81s ¥ ;o ¥y 0.0 20,

,.,,,mqucﬁhomxw jsed pue jussasid 103 uﬂwoe.mo 2in3t g

7 °19eL



*pPopPNIOuUl AJUrejIadUN UOTIOUN] Qoﬂ.pAOwo.w oN (e

_45-

— 0% <€ 6°2
92 s€. &1 g1
T 96 82 91
079 Sy 9L LL
RACE 19 9. 2L
A ¥9 ‘9L 172
817 €€ 9. 28

9 T 9L 0%
| (%  wop X
reed wcs.onmx.omﬁ 1o HMMMM |

oK

TeUSts paplog

- €°0FL¢8L

9¥808

b 1¥9°L8L
L*0FL %81
9°0Fb°c8L
$0F€°'€8L
FOFL 8L

 £T0FTF8L

™ M
Ly F o ow

91 > 0> ( sadeione vmanwﬂog |
€VFGPT  TPT € <
0FFELF 269 2€-9%

€°TFCIT ¥LZT 91-0F

028 S0L 07-8

v 1F6°07 0¢6  8-9

2IFE'8 . $L9 9-0

6°0%9°8 892% TIV
(W) . (W)

.H.rHQ HH.H uordar-o -

80756

€86¢

_S,mJ0 ‘ON

YIPIM m uo s3nsax 19nduwron

rAICLEAS



€0+

-46 -~
m.
“
+

. (*a@‘s) seiq jo

" 9DURDTITUBIS -

2170+ .

8°0-

vz

(ASW)

. serq

91°0F9L"L6Y

9°0%8°87S

0°SET

9°6€6 |

£°8¢€6

ssew
pa3daooy

N 4
SR AT
62°0788° L6V ot . _ :
o 0
. A|=+:vm+m <« Q+;
S OT OT
7°0¥0° 89S : S
T Lou ud b o« J 1
0 -+ + +
, . o1 00 -
P TIF0°SET .
: v L oo ud 1 o« d u
0 -+  + +
_ o1 20
L°0F0°CF6 . .
v . L UL U i o« d o
. =T+ +
: o oy o)
£°0F¥€£°8€6 :
: L oud 1L « d u
-+ T+ +
, Ammvooum@ (UOT3RUTWIS}SP
(uotjoaTes x0J4) ssewW JXO0J)
_wwmz - . sse[d 3juTRIFISUOD

. 9ToT3IRd

ejep UOTIBIqITED SSEIN

€ d719VYL



-47-~
FIGURE CAPTIONS

Fig. 1. Relations between width and amplitude for simply

peaked curve.
Fig. 2. Sdﬁe'énalyticélly'simple'resolution functions
with width 14 Mev. "B-W" stands for Breit-Wigngr.
 "Trué“ is a typical théical resoluiion functiona
from the'experiment réfefred to in.the~text.

fR, FT.for foldlng:and

Fig. 3a, Relationships among Tyr
unfolding. ‘ .

Fig. 3b. The derivative of the Breit-Wigner-triangle
ﬁnfolding fdnétion. o | |

Fig. 4. Ebrbsggséiana¥with a constant background: Pre-
qisibn of widtﬁ'measuremeht as affunctibnvof
'the'regioh,df data used. The parameter b = béck—
gfound dénsitY/signal density at peak of"Gaussian;
'N_is‘the number of events in signal and back-
éround{inéludedrin'the fit to detefminévFo.

| N = NR Erf

1is the number

Caution: N is not constant.

Ern(n/In2) + 2bn//1%z-,- where N
. ‘of resonance events from -« fo +w.
Fig. 5. As for ﬁg; 4, except for éreithigners on
conStént background. Again,'N is not ¢onstént:
' N'=‘%NR(tan"1ﬁ + bn). ‘: . 7 | |
Fig. 6. The meaning of the functiongsA(ui).
| ’f.‘,Cése 1: A grid of bin width A may be supefposed

A
'

\ ? » upoﬁ SA(ui) arbitrarily placédvihvu},and{the
: . _ Voo
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FIGURE CAPTIONS con't.

_au&sshe value of SA(u ) at the center of each

bln will be the number of events in that bln
(shown as a hlstogram) coming from the resolution—
widened § function at u, = 0. | |

Case 2: 'The limit of the above where the reso-
lution’is-perfect. |

Monte Carlof"data" used in check of unfolding

‘scheme. ' Dashed line is the starting "solution"

for the flttlng program.'

‘Scatter plot of the fitted final- state proton

mass vs. the error on that mass for events of

the type T p > pﬂ m . (1C fit).

As in Fig. 8, except the invariant mass is that

+ - . . . .
of mmw no (two combinations) in the reaction

W+p > ﬂ+pﬂ+ﬂ—ﬁo (1Cc fit). \

The binned resolution functionlsz(ui) for the

-~ mass of the final-state proton in

_ ﬂ+p + ﬂ+pﬁ+n—(lc fit). A 6% broadening deduced

11.

from this calibration has been included.

Calibration of resolution functions via proton

‘mass. The inset shows the x?° contours in the

parameters mp and AFR/FR

. . + ~ 0
The n and w signals as seen in the = 1 7

invariant mass (two combinations) in the reac-

+ - 0

. + + ,
tion mp > W pPpT MW .
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FIGURE CAPTIONS con't.

'Fig. 131 éalibratidn of resdlutioh functioﬁé via eta
mass. Tﬁe inset shows x2>c6ntours in the
. ?p5rameters mﬁ aﬁd AfR/FR.
Fig..14..Aé in, fig. 12, except that subsamples'of the'
| ﬂ+ﬁ”n0'mass are.used with the mass error (o)
- limited as shown."Eéch combination, (of ﬁwo)v
appears in the plotvappfopriate_tovits o{
Fig.'15.;RésolﬁtibnffunétionS'(n@t binne55 fo£7£hefdata:
| ' sﬁown in figs. 12 and 14. The 6% biasjﬁas not
Sbeeh'correéted héré. The'regién'bfzma55es'uéed;
:ﬁ+ﬂ—n% was 720 <ﬁﬂ+ﬂ_ﬂo<880 MeV. a) Total data
sample; b) 0<0<6 MeV; c) 6<0<8 MeV; d) 8<0<10
I MeV; e) 10<0<16 MeV; f) 16<0<32 MeV; g) 0<32 MeV.
. ’The FWHM in MeV is'éiven Oﬁ each figure.
Fig.’l6; Results on the w width. Solid triangles“are
prediction of sim?le formulas for uhfolding.
:Oﬁen triangles are prediction of Gauésian unfold-
| ing1 Opgn circles are theaﬁachine—computed,
‘"‘fesult. Errér bars include statistical and back-
'--ground contributions only, and are from the
- - same source as the associated data point. Data
4§re sh0wn both combinedvand in intervals of
 rdifférent o, where the vertical bar graph repre-
Y sentéxobserved widths-fér thérdata in that _‘
interval. Uppervand lower hbrizontai shadedv

areas are the old and new 1-S.D. bounds for the

 w width, respectively.



Fig. 17.
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FIGURE CAPTIONS con't.

bbserVed and unfoided w sigﬁal in the cohbined
.aata sample; .botsrare’daté (hiéﬁégramméd), solid
.histogrém is the folded binned prédictioh defived
f:om the unfolded signal (sdlid5¢ﬁrﬁej'énd the

reédlutidn-funqtion (shaded) . jDashedvline‘iS

-fbackground level of the solufibn.

Fig. 18.

Mass bias vs. mass error ¢ for fitted proton

and w masses. The reference level is arbitrarily

taken as the Particle Data Table Values (1970).

"iThe curve isaa hand-drawn fit.

Fig. 19..

Summary of world data on the Q:width. The.résult

"from the data of Barash et al. is due to. the

reanalysis by us. Right-hand and left-hand

shaded regions correspond to the old and-new 1-.

. 8.D. limits on the w width.

Fig. 2Q;

The original Barash et al. data and resolution

function, our fit thereto, andgthe unfolded

3 mvsignal.
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XBL709-3849

Fig. 1
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.Sltfic?y additive :' I'r from triangular
~combination i . - and '
o | I from Breit-Wigner
/p=0.0 o II '
| | l
4 /
\ | | (.Both )
S \J |~ 1\Goussians/
. A | | Combination
| I\ | in quadrature
?33 ! / |
= \ | \ | |
N ’ ' ’ =
>~ ‘/'A | ' = FWHM
e ANEE | ~_ O =observed
I\ [\ .._“'5‘ T =true |
. / o o R = resolution
2 — | =4 2T
/ - Tt
D O, .
A -\ p=3
7\ _ ,
s ~ 2
#=l
p=0.5
- _p=0.0
0§ — Pdaiihtns



-54-

20

4 Yoy

>Ix
oo
12

o

IO._ )

60

20

B . Wy.op,p, 20 30

XBL 711-78

Fig. 3b



| n (no of wud'rhs I‘O 2 2Iin 2' o mcld mfn*)

vFlg.v_4_»' XBL709 3852



6.

o 2 4 "6 8
~ n (no. of widths I incl'd in fit)

Fig. 5 . XBL709 -3853



. -— . . . . . - . )

_‘No._ of vev-enfsl ‘in-“A atu; -

-57-

IJL‘__/S.f_un-cti_o'n -

| Cose 1 I‘R¢O

l,__,_.si funchon | |

Case 2 I"R

Fig. 6 xauos 3854_ B



15001

‘Number of events /0.2 Mev

1200+

-58- -

MdSs (arbitrary units)

- Fig. 7

: XBL 709 -3855



-59-

(1C)

rtp—wtprtw

50

30

b . K . R R -.- -t -. Tt .. r—r qL
. Ol ¢ ¢ . 4
b . LN . - . R
. ) . . . Q- . -
L L P . * L. . * LN . . . . -
.. “ . . . * M L
p . . 0 . J
O‘ . . . . . . * . D..- ¢ 4
L . . b
. L
b .. 4
29 .
o
X 4
L .
. b L
b
. <
b
* 4
. J
. <
4 .
- “ .
p Y l. -
° 3
{ ) .
S ]
- .
oS p
.
.
et . o Wt et ) ] o 4
1 ’ -~ a..alu. RS ¢-.o..”-.l”. AR M et e s md
b S e ad, .. M3 e, e O lo. " .o PR
[ . Ces s we v ot P .u-h '. J...» ALK TUIC TN I . 9
. I X WP R I 35 I RO TR SN SR b
] R T R PR N L s TR SR SR 4
b PPN 3 St T nl\ S 3 .« o .
. S . '~ ) * e o e o.n:.’-v Wy e -
. I P L AR 2300 I A
. ot . $oerd BNt [ T © 1 1
b L, ° D ol g #T At NN et . . 4
. . . RN X “ '» b Jl.oﬂ. v . L.
s LRI SIRA "¢ 3 LR AR L
p . . e . : — p
{ . o, o . ;
<
. .. y
b . M . o
- ¢ .
P -
P -
L .
d -
b L
4 -
p <4
p <
b o . . o . -
aassesaaateaaasaaaasbassasarabotiiat s a Al

20 - 40
MeV

6 .
o of m (proton)

'XBL709-3845

8

ig.

v




MeV

m(rter—7e)

2000,

1600

-60-"

7r+ p.'v':"“"_"'»fﬂ'% p o e (1c)

1200

800

400

L B B B B S S A N N B S B B B B M A S MR N 0 M B S S BN R BN B A B B B BN S B Lt S0 S B S e mm a2 a

MR e i wy ot " [ AR I BRSBTSV St ~n4 .

o, e

A bos s o o

O
O

T Ve W W WS VAU W VAN U0 U T YT VA W S VOO VU W JOC ST VT U WD ST ST T YU VN A WP W ST S U W U WP W N S U W S U O U Y

10 20 30 40 50
o ,Oi: m{zt7 7°) MeV

Fig. 9 XBL?09‘3844



———

D <] L BN (RN SRS ENUIE) I po: R
S rtpeatprtes (IC) ]

(0))
|
l

| 6% widening

correction applied

—

Binned - resolution function
|
1

T Mein ) Mrue |

EORIES STot SIS U



"Events / 2 MeV

-62-

N Calculated
resolution function

-

%'Duto :

300 T

240 —

180}

‘| 2(')—

x2 for 57° of freedom
71

] |

| ] L
-10 -8 -6-4-2 0O

JANE:
T R - %bias in I'r
R

mp - 938.3£ 0.3MeV

AR 100

CL.=18%

,,,,,,

900 940

Fig. 11

980
Mass of outgoing proton

XBL709- 3859

)

%2



- ‘_63_:

IOOO — L -

|

400 600 800 1000 1200
R 3 T moss | (MeV) o

o F’ig; 2 XBL709 3857



T
4
L

264 -

.~ Colculated =~ X2 for 18° of freedom
- ;'res_o,luhon.f,unc_hon —— g
»Ddfo S 549
> 548+
[<}]
2
& -
= 547

Events / 2 MeV
| Ol
@)

0|

»
O

54611 | | |
o --20-10-0 10 20

BT _ o pigs in Tk

My = 5480 0.4 MeV
| ot

T 21

520 528 536 544 552 560 568 576

Mass (7r*7~ w°) MeV

Fig. 13  XBL709-3860




~ . 00210001 008 009 O

ﬂl§5_:”'

. 0021 000 008 009 oow‘._..doN_,.,,ooo_..H_oow, 009 OOt 002l 000I 008 009 OOk

| 9vBg-60L78X -

Lot enezer- vuats

0
o1

log
ov
0G

" tov-8 ) 9IS -

L toor

p1 "81a

ok

Ot 002! 000! 008 009 -O

..\i&#\

- loos

1ZE-9T) BUIIS

0

foo o0l

| : .‘@‘M f ,JwﬁM“UNW

. hvnumw

§

Lo sB Lw ) BU9IS

9

o ___,__.._oo..N_.

002! 000!

‘W._a.

008 009 007

- looz

(9T-0T) YuIIS

O:

d syuan3

o

,..;Wﬂ‘ .M.?

{9 -0.1 vu3IS

(o]}

'/\,-9W~, Ol " 1o

00¢

1008




-66-

298¢-6027189X .

1 ‘Brg .

_A>m§v SSDW P3JNSDIW - SSDW 3N4J

00l- 0%

\s

0 . - G
o0 5 0 _Omo 0s
200 |
,Omv . .om@ ; om@ 00l 0%
100 ] i 1
29l=1 1 T ;
: - 1200 1 ;
(2) . 180°0 4

Sv0°0

P9Z1|DUIION

‘Uo1injosal




00

=

-

100

3 ”_6_ 8 10 16 32
All events  Standard deviation of M(7*#~7°) (MeV)

 (A®W) UYIpIM paAIasqo 1o papjojun

O<0'<CD



700

“Number of evenfS/ 2 MeV

400
300

200

100

-68-
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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