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Development and Validation of a Machine 
Learning Prediction Model for Textbook Outcome 
in Liver Surgery: Results From a Multicenter, 
International Cohort
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Yukiyasu Okamura, MD, PhD,§ Yuta Abe, MD, PhD,║ Shogo Tanaka, MD, PhD,¶ Minoru Tanabe, MD, PhD,# 
Zeniche Morise, MD, PhD,** Horacio Asbun, MD, PhD,‡ David Geller, MD,†† Mohammed Abu Hilal, MD, PhD,‡‡ 
Mohamed Adam, MD,* Adnan Alseidi, MD, EdM,* and International Hepatectomy Study Group

Objective:  This study aimed to (1) develop a machine learning (ML) model that predicts the textbook outcome in liver surgery (TOLS) 
using preoperative variables and (2) validate the TOLS criteria by determining whether TOLS is associated with long-term survival 
after hepatectomy.
Background:  Textbook outcome is a composite measure that combines several favorable outcomes into a single metric and rep-
resents the optimal postoperative course. Recently, an expert panel of surgeons proposed a Delphi consensus-based definition of 
TOLS.
Methods:  Adult patients who underwent hepatectomies were identified from a multicenter, international cohort (2010–2022). After 
data preprocessing and train-test splitting (80:20), 4 models for predicting TOLS were trained and tested. Following model optimiza-
tion, the performance of the models was evaluated using receiver operating characteristic curves, and a web-based calculator was 
developed. In addition, a multivariable Cox proportional hazards analysis was conducted to determine the association between TOLS 
and overall survival (OS).
Results:  A total of 2059 patients were included, with 62.8% meeting the criteria for TOLS. The XGBoost model, which had the best 
performance with an area under the curve of 0.73, was chosen for the web-based calculator. The most predictive variables for having 
TOLS were a minimally invasive approach, fewer lesions, lower Charlson Comorbidity Index, lower preoperative creatinine levels, and 
smaller lesions. In the multivariable analysis, having TOLS was associated with improved OS (hazard ratio = 0.82, P = 0.015).
Conclusions:  Our ML model can predict TOLS with acceptable discrimination. We validated the TOLS criteria by demonstrating a 
significant association with improved OS, thus supporting their use in informing patient care.

Keywords: hepatectomy, liver surgery, machine learning, prediction model, textbook outcome

INTRODUCTION
Textbook outcome is a novel composite measure that incor-
porates multiple favorable outcomes into a single metric and 
reflects the ideal postoperative course.1 It has a few advantages 
over the more traditional, individual outcome measures such as 
morbidity, mortality, and hospital length of stay. For one, text-
book outcome can better capture the multidimensionality of a 

patient’s perioperative course and may be a better marker of the 
quality of surgical care.2–5 Thus, it can be useful for assessing 
and comparing outcomes across various hospitals for a particu-
lar procedure.2 In addition, single outcome measures may have 
a low event rate, limiting their ability to serve as a quality met-
ric.6 Furthermore, patients may find textbook outcome to be a 
more digestible summary measure than needing to synthesize 
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the relevance of multiple, individual outcomes.7 Notably, text-
book outcome has been described for multiple general surgery 
procedures, including colorectal, hepatobiliary, and esophageal 
surgeries.1,2,6,8,9

Recently, an international, Delphi consensus-based defi-
nition of textbook outcome in liver surgery (TOLS) was 
proposed by an expert panel of 44 liver surgeons across 22 
countries.7 TOLS was defined by the following 7 criteria: the 
absence of intraoperative complications, postoperative bile 
leakage, postoperative liver failure, 90-day major complica-
tions, 90-day readmission, 90-day mortality, and the presence 
of a negative (R0) resection margin. TOLS was defined as 
meeting all 7 criteria. While the Delphi consensus technique 
is well described and widely utilized in the surgical litera-
ture,10–14 it is ultimately based on expert opinion. If the devel-
oped criteria are to be used to inform patient care or quality 
improvement initiatives, it is important to validate them using 
real-world patient data.

In this setting, our study group wanted to explore the pro-
posed TOLS criteria using an international cohort of hepa-
tectomy patients. Specifically, our study aims are as follows: 
(1) develop a machine learning model to predict TOLS using 
only preoperative variables; (2) identify which variables are 
most predictive of TOLS; and (3) validate the TOLS criteria by 
determining whether TOLS impacts long-term survival after 
hepatectomy.

METHODS

Cohort Selection and Data Collection

Patients were identified from a multicenter, international cohort 
that included 6 centers in Japan and 3 in the United States. 
The list of all participating centers is available in Supplemental 
Table 1, see http://links.lww.com/AOSO/A447. Each institution 
collected the variables of interest from their own prospectively 
maintained database. Each center gathered additional variables 
via manual chart review of the electronic medical record of their 
respective institutions. This study received Institutional Review 
Board approval (# 22-38059).

We included adult patients age 18 and older who under-
went liver surgery at a participating institution from 2010 to 
2022. All indications (eg, both benign and malignant), surgical 
approaches (eg, open, pure laparoscopic, robotic, and hand- 
assisted), and types of resections (eg, anatomic and nonana-
tomic; major and minor) were included.

Demographic and Clinical Variables

Demographic variables such as patient age, sex, and body 
mass index (BMI) were extracted. Clinical variables includ-
ing American Society of Anesthesiologists (ASA) classification, 
Charlson Comorbidity Index (CCI), parameters reflecting base-
line liver function (portal hypertension, esophageal varices, liver 
impairment, clinical cirrhosis, and ascites), model for end-stage 
liver disease (MELD) score, prior history of abdominal surgery, 
prior history of liver resection, indication for surgery (benign, 
hepatocellular carcinoma [HCC], colorectal liver metastases 
[CRLM], cholangiocarcinoma, and other malignancy), number 
of lesions, maximum lesion size, preoperative lab values (hemo-
globin, platelet count, international normalized ratio, creati-
nine, and total bilirubin), and intended operative approach were 
extracted. Intraoperative and postoperative variables were also 
collected and included type of resection, number of segments 
resected, estimated blood loss, transfusion of blood products, 
Pringle maneuver, concurrent surgery, synchronous ablation, 
vascular reconstruction, intraoperative incidents, margin status 
(for malignant indications), and postoperative complications, 
readmission, and mortality.

Definition of Textbook Outcome in Liver Surgery

TOLS was defined7 as not experiencing intraoperative inci-
dents (grade 2 or higher as defined by the Oslo Classification15), 
postoperative bile leakage (grade B or C as defined by the 
International Study Group of Liver Surgery criteria16), postop-
erative liver failure (grade B or C as defined by the International 
Study Group of Liver Surgery criteria17), 90-day major postoper-
ative complications (Clavien–Dindo grade 3 or higher), 90-day 
readmission due to surgery-related major complications, 90-day 
or inhospital mortality, and having an R0 resection margin (for 
malignant indications).

Statistical Analysis

Demographic and clinical characteristics were analyzed using 
the chi-square test for categorical variables and the Wilcoxon 
rank sum test for continuous variables. The Kaplan–Meier 
method was used to evaluate overall survival (OS) for patients 
with and without TOLS, with differences assessed using the log-
rank test. The reference group for these analyses was the non-
TOLS cohort. To evaluate survival trends over time, we included 
survival data up to 80 months, which reflects the 90th percentile 
of the cohort’s follow-up data. A multivariable Cox propor-
tional hazards model, which adjusted for age, sex, indication 
for surgery, CCI, MELD score, number of lesions, and type of 
resection, was performed to determine the association between 
TOLS and OS. All analyses were 2-sided, and a P-value of 0.05 
was considered statistically significant.

Machine Learning Pipeline

Preoperative variables including age, sex, BMI, ASA class, 
CCI, portal hypertension, esophageal varices, liver impair-
ment, clinical cirrhosis, ascites, MELD score, prior history of 
abdominal surgery, prior history of liver resection, indication 
for surgery, number of lesions, maximum lesion size, lab val-
ues, and operative approach were included as potential pre-
dictors of TOLS. Categorical variables with more than 1 level 
underwent one-hot encoding. Median imputation was used 
for the following variables, which had 1% to 13% missing 
data: BMI, number of lesions, maximum lesion size, hemoglo-
bin, platelet count, international normalized ratio, creatinine, 
and total bilirubin.

After preprocessing, the data were randomly divided into 
training and test sets using the ‘train_test_split’ function from the 
scikit-learn library. This function was employed with an 80:20 
ratio to split the data, and a random state was set to ensure the 
replicability of the results. Four prediction models were then 
trained and tested: logistic regression, neural network, random 
forest, and Extreme Gradient Boosting (XGBoost). The Grid 
Search algorithm from the scikit-learn library was employed to 
fine-tune the machine learning models. This algorithm system-
atically worked through multiple combinations of hyperparam-
eters to determine which combination led to the most accurate 
predictive model. Key hyperparameters adjusted during the 
fine-tuning included the learning rate and the number of esti-
mators. Recursive feature elimination, coupled with fivefold 
cross-validation, was also used to assess the performance of the 
models on the training set using varying numbers of input vari-
ables. Each model’s ability to predict TOLS was then evaluated 
using the area under the receiver operating characteristic curve 
(AUC), and calibration was assessed using calibration plots. The 
performance of each model was evaluated on the test set and 
the best-performing model was identified. SHapley Additive 
exPlanations (SHAP) were then analyzed to gain insight into 
the most important variables for predicting TOLS. Finally, the 
best-performing model was used to develop a web-based calcu-
lator. A detailed description of the machine-learning pipeline is 
presented in Figure 1.

http://links.lww.com/AOSO/A447
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Data extraction and descriptive analyses were conducted 
using R v4.3.0 (the R Foundation for Statistical Computing, 
Vienna, Austria). The machine learning pipeline was cre-
ated using Python v3.11 (Python Software Foundation, 
Wilmington, DE).

RESULTS

Characteristics of the Cohort

A total of 2059 patients who underwent liver surgery between 
2010 and 2022 were included. The median age was 63 years 
(interquartile range: 53–71), and the majority of patients were 
male (60%). The median CCI was 5 (interquartile range: 3–7) 
and 88% of patients had an ASA class of at least 2. The majority 
of patients (70.2%) did not have baseline liver impairment, and 
the primary indication for surgery was HCC (33%) followed by 
CRLM (25%). Complete demographic and preoperative clinical 
characteristics are detailed in Table 1.

A total of 1293 (62.8%) patients met criteria for TOLS. These 
patients were younger (median, 62 vs 65 years), had lower CCI 
(median, 4 vs 5), and less frequently had baseline liver impair-
ment (27% vs 32.6%) compared with those without TOLS 
(Table 1). Furthermore, patients who did not meet the criteria 
for TOLS experienced higher estimated blood loss (median, 400 
vs 200 mL) and were more likely to undergo conversion to open 
(14.7% vs 5.4%) if the initial approach was minimally invasive 
surgery (MIS). Further data on intraoperative characteristics are 
presented in Supplemental Table 2, see http://links.lww.com/
AOSO/A447. Notably, the most common reasons for not hav-
ing TOLS were the presence of a positive surgical margin (20%) 
and the presence of 90-day major postoperative complications 
(16%) (Table 2).

Predicting TOLS

Recursive feature elimination showed that the performance of 
the logistic regression model improved as the number of fea-
tures increased. Specifically, the maximum AUC was achieved 
with 32 variables. In contrast, the machine learning models 
reached their highest AUC with fewer features (random for-
est: 17 variables; XGBoost: 15 variables) (Supplemental Fig. 
1, see http://links.lww.com/AOSO/A447). After fine-tuning, 
the random forest and XGBoost algorithms had the best 

performances on the testing set, with each achieving an AUC 
of 0.73 (95% confidence interval: 0.68–0.78). In contrast, the 
logistic regression and neural network models had the lowest 
performances with an AUC of 0.71 (logistic regression, 95% 
confidence interval: 0.66–0.75; neural network, 0.66–0.76) 
(Fig. 2). Furthermore, the models exhibited good calibration in 
the testing set (Supplemental Fig. 2, see http://links.lww.com/
AOSO/A447).

Given its superior performance, the XGBoost model was 
used to evaluate the significance of the input variables. The 
model identified the operative approach as the most import-
ant preoperative variable in predicting TOLS, followed by the 
number of lesions, CCI, creatinine, and lesion size (Fig. 3). The 
SHAP values analysis indicated that the MIS approach (SHAP 
values: 0.16–0.46), a lower number of lesions (SHAP values: 
0.01–0.22), lower CCI scores (SHAP values: 0.01–0.72), lower 
creatinine levels (SHAP values: 0.01–0.33), and smaller lesion 
sizes (SHAP values: 0.01–0.38) were associated with a higher 
likelihood of TOLS. Finally, the XGBoost model was used as 
the algorithm for the web-based calculator, which estimates the 
probability of TOLS (https://tolsprediction.streamlit.app).

Long-Term Impact of TOLS

Patients who met the criteria for TOLS had an increased median 
OS compared with those who did not (90 vs 54 months, respec-
tively, P < 0.001). This association remained significant even 
after excluding patients who died within 90 days after surgery 
(90 vs 58 months, P < 0.001) (Fig. 4A). On multivariable anal-
ysis, the factors that were independently associated with OS 
included TOLS (hazard ratio [HR] = 0.82, P = 0.015), lower 
age (HR = 1.02, P < 0.001), indication for surgery (benign:  
HR = 0.06, P < 0.001; CRLM: HR = 0.59, P < 0.001; other 
malignancies: HR = 0.62, P = 0.003; reference: HCC), lower 
MELD score (HR = 1.04, P = 0.026), fewer number of lesions 
(HR = 1.06, P < 0.001), and type of resection (extended right 
hepatectomy: HR = 1.64, P = 0.011; reference: left hepatec-
tomy) (Table 3). Subset analyses using the HCC and CRLM 
cohorts also showed that patients with TOLS had an increased 
median OS compared with those without TOLS (Figs. 4B, C). 
This association remained significant in the multivariable Cox 
regression analysis (HR for HCC cohort: 0.8, P = 0.046; HR 
for CRLM cohort: 0.66, P = 0.017) (Supplemental Table 3, see 
http://links.lww.com/AOSO/A447).

FIGURE 1.  Diagram visualizing the machine learning pipeline for predicting textbook outcome in liver surgery.

http://links.lww.com/AOSO/A447
http://links.lww.com/AOSO/A447
http://links.lww.com/AOSO/A447
http://links.lww.com/AOSO/A447
http://links.lww.com/AOSO/A447
https://tolsprediction.streamlit.app
http://links.lww.com/AOSO/A447
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DISCUSSION
Using a large, international cohort of hepatectomy patients, we 
developed a machine learning model to predict TOLS with accept-
able discrimination (AUC: 0.73).18 Our model identified operative 

approach, number of liver lesions, CCI, creatinine, and lesion size 
as the most important preoperative variables for predicting TOLS. 
Importantly, we also demonstrated that TOLS was independently 
associated with improved OS on multivariable analysis.

Textbook outcome is an increasingly popular composite mea-
sure that reflects the ideal postoperative course and has been 
described in multiple general surgery procedures.1,2,6,8,9 Görgec 
et al7 recently defined TOLS based on the expert opinions of 
44 surgeons from 22 countries and 3 international societies. 
The authors noted several potential advantages of using their 
proposed TOLS criteria over individual outcome metrics. For 
example, TOLS may be a more digestible summary measure for 
patients than needing to understand the significance of multiple, 
separate variables. In addition, TOLS can be used for quality 
improvement initiatives, as hospitals can compare their rate of 
TOLS to that of other centers for various procedures. In this 
setting, the next logical step was to create a tool that could pro-
vide individualized predictions for TOLS and also validate these 
Delphi consensus-based criteria using real-world patient data.

TABLE 1.

Demographic and Preoperative Clinical Characteristics

Characteristic

Overall TOLS

PN = 2059 No, N = 766 Yes, N = 1293

Age (years), median (IQR) 63 (53–71) 65 (56–73) 62 (51–70) <0.001
Sex (male), n (%) 1228 (60.0) 499 (65.0) 729 (56.0) <0.001
BMI (kg/m2), median (IQR) 24.5 (21.9–28.1) 24.7 (21.9–28.4) 24.5 (21.9–28.0) 0.7
ASA class, n (%)
 � 1 253 (12.0) 46 (6.0) 207 (16.0) <0.001
 � 2 999 (49.0) 403 (53.0) 596 (46.0)
 � 3 758 (37.0) 291 (38.0) 467 (36.0)
 � 4 48 (2.0) 25 (3.0) 23 (2.0)
CCI, median (IQR) 5 (3–7) 5 (3–8) 4 (2–7) <0.001
MELD, median (IQR) 7 (6–8) 7 (6–8) 7 (6–7) <0.001
Preoperative portal HTN, n (%) 94 (4.6) 43 (5.6) 51 (3.9) 0.079
Preoperative varices, n (%) 88 (4.3) 46 (6.0) 42 (3.2) 0.003
Liver impairment, n (%)
 � No 1455 (70.7) 516 (67.4) 939 (72.6) 0.02
 � Chemotherapy 37 (1.8) 15 (2.0) 22 (1.7)
 � Alcohol 97 (4.7) 39 (5.1) 58 (4.5)
 � Hepatitis B 128 (6.2) 53 (6.9) 75 (5.8)
 � Hepatitis C 251 (12.2) 107 (13.9) 144 (11.1)
 � NAFLD 91 (4.4) 36 (4.7) 55 (4.3)
Cirrhosis, n (%)
 � No 1250 (61.0) 402 (52.5) 848 (65.6) <0.001
 � Child A 788 (38.0) 348 (45.4) 440 (34.0)
 � Child B 21 (1.0) 16 (2.1) 5 (0.4)
Ascites, n (%) 23 (1.1) 11 (1.4) 12 (0.9) 0.3
Previous abdominal surgery, n (%) 869 (42.0) 335 (44.0) 534 (41.0) 0.3
Previous liver resection, n (%) 185 (9.0) 75 (9.8) 110 (8.5) 0.3
Indication for surgery, n (%)
 � Benign 406 (19.7) 56 (7.3) 350 (27.0) <0.001
 � HCC 671 (32.6) 292 (38.1) 79 (29.3)
 � CCC 192 (9.3) 106 (13.8) 86 (6.7)
 � CRLM 514 (25.0) 186 (24.3) 328 (25.4)
 � Other malignancies 276 (13.4) 126 (16.5) 150 (11.6)
Number of lesions, median (IQR) 1 (1–2) 1 (1–2) 1 (1–2) <0.001
Lesion size (mm), median (IQR) 31 (18–56) 35 (21–70) 28 (15–50) <0.001
Preoperative hemoglobin (g/dL), median (IQR) 13.3 (12.1–14.4) 13.10 (11.7–14.3) 13.40 (12.3–14.4) <0.001
Preoperative platelets (×109/L), median (IQR) 208 (160–261) 207 (154–254) 209 (163–264) 0.06
Preoperative INR, median (IQR) 1.0 (1.0–1.1) 1.0 (1.0–1.1) 1.0 (1.0–1.1) <0.001
Preoperative creatinine (mg/dL), median (IQR) 0.8 (0.7–1.0) 0.8 (0.7–1.0) 0.8 (0.7–0.9) 0.007
Preoperative t-bili (mg/dL), median (IQR) 0.6 (0.5–0.8) 0.7 (0.5–0.9) 0.6 (0.5–0.8) 0.003
Operative approach, n (%)
 � Open 1274 (61.9) 549 (71.7) 725 (56.1) <0.001
 � Hand-assisted 136 (6.6) 38 (5.0) 98 (7.6)
 � Laparoscopic 581 (28.2) 169 (22.0) 412 (31.8)
 � Robotic 68 (3.3) 10 (1.3) 58 (4.5)

P-values less than 0.05 are considered statistically significant and are presented in boldface.
HTN indicates hypertension; INR, international normalized ratio; IQR, interquartile range; NAFLD, nonalcoholic fatty liver disease; t-bili, total bilirubin.

TABLE 2.

Percentage of Patients Who Did Not Meet the TOLS Criteria

Criteria

N = 2059

n (%)

Intraoperative incidents 149 (7.2)
Postoperative bile leakage 155 (7.5)
Postoperative liver failure 71 (3.4)
90-day major complications 321 (16.0)
90-day readmission 131 (6.4)
90-day or inhospital mortality 23 (1.1)
Positive resection margin 418 (20.0)
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While models that incorporate intraoperative variables may 
have improved performance, they have limited clinical use as 
they cannot reliably inform care in the preoperative setting. 

Importantly, our machine learning model predicted TOLS 
with acceptable discrimination using only preoperative vari-
ables. Using the resulting web-based calculator, surgeons can 

FIGURE 2.  Receiver operating characteristic (ROC) curves for the logistic regression, neural network, random forest, and XGBoost models. ROC curves were 
plotted for the logistic regression, neural network, random forest, and XGBoost models, with AUC of 0.71, 0.71, 0.73, and 0.73, respectively.

FIGURE 3.  SHAP values of the XGBoost model. As seen on the x-axis, positive SHAP values suggest that a variable predicts a higher likelihood of TOLS, 
whereas negative SHAP values indicate that a variable predicts a lower likelihood of TOLS. In the SHAP plot, red represents a high value of the variable (eg, an 
open approach or a higher number of lesions), while blue represents a low value of the variable (eg, a nonopen (MIS) approach or a lower number of lesions). 
The y-axis reflects the overall importance of each variable in predicting TOLS in descending order. For example, if one examines the variable “number of lesions,” 
the blue (lower number of lesions) has a positive SHAP value, indicating a higher likelihood of TOLS. Based on its location on the y-axis, the number of lesions 
is the second most important variable in predicting TOLS.
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counsel patients on their individualized chances of TOLS during 
informed consent. In addition, while patients who need surgery 
for malignant indications may have less flexibility, those who 
are considering surgery for benign indications may reconsider 

operative treatment if their chances of having TOLS are very 
slim. By using machine learning methods, we were able to 
achieve a slightly better model performance than the more 
traditional logistic regression-based model. More importantly, 

FIGURE 4.  Impact of TOLS on overall survival. (A) This Kaplan–Meier survival plot compares the probability of overall survival between patients with and without 
TOLS. The TOLS group had a significantly higher survival probability over time (P < 0.0001 derived from the log-rank test). (B) HCC patients with TOLS have 
better overall survival than those without TOLS (P = 0.015). (C) CRLM patients with TOLS have better overall survival than those without TOLS (P = 0.0045).
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the machine learning models also required significantly fewer 
features. For example, the XGBoost model, which was ulti-
mately selected to develop the calculator, needed 15 variables to 
achieve optimal model performance (AUC: 0.73), as compared 
with 32 variables for the logistic regression model (AUC: 0.71). 
This improves the usability of the web-based calculator without 
compromising performance.

Notably, using an MIS approach was found to be the most 
significant predictor of TOLS. This is certainly not surprising, 
as MIS hepato-pancreato-biliary surgery has been shown to 
yield superior perioperative outcomes compared with open sur-
gery. For example, 1 study reported that patients undergoing 
MIS hepato-pancreato-biliary surgery had lower rates of post-
operative morbidity and mortality compared with those who 
underwent open surgery.19 Furthermore, using an MIS approach 
has even been shown to yield equivalent or improved oncologic 
outcomes.20,21 Having fewer and smaller liver lesions was found 
to be the second and fifth most important factors in predicting 
TOLS, respectively. This makes intuitive sense, as patients with 
more and/or larger lesions may need more extensive resections 
to remove the underlying pathology, which would predispose 
them to such complications as posthepatectomy liver failure, an 
important determinant of mortality after major hepatectomy.17 
Furthermore, larger and bulkier tumors may be more challeng-
ing to resect, increasing the chances of having an R1 resection 
margin or an intraoperative complication. Finally, having a 
lower CCI score and a lower preoperative creatinine level were 
found to be the third and fourth most important factors in pre-
dicting TOLS, respectively. These variables reflect the underlying 
comorbidities of a patient, and thus it makes sense that patients 
who are healthier before surgery have better outcomes.

Naturally, one may conclude that clinicians should attempt 
to optimize these variables to increase the chances of having 
TOLS. For example, a surgeon may consider switching their 
approach from open to MIS if the initial TOLS prediction 
is poor. However, this raises a particularly important point 

regarding risk prediction models in general. Specifically, while 
risk calculators may serve as clinical adjuncts, their predictions 
reflect learned associations from the data and do not necessar-
ily represent causal relationships between a specific variable 
and the outcome of interest. Thus, surgeons should not rely 
on such tools in isolation to inform clinical decision-making. 
Furthermore, while optimizing such variables as BMI may be 
reasonable in the appropriate clinical context, surgeons should 
not significantly alter their perioperative planning to “appease” 
the calculator. Rather, understanding the most important fea-
tures for predicting TOLS may provide some insight into how 
the model’s prediction was derived.

Perhaps the most noteworthy finding of this study was that 
TOLS was independently associated with increased OS on mul-
tivariable analysis. There are a few possible explanations for 
this observation. For one, patients who have significant post-
operative complications – particularly those who undergo sur-
gery for malignant indications – have previously been shown to 
experience worse long-term outcomes.22,23 This may be due to 
further immunosuppression caused by the severe physiological 
stress associated with major complications or from a delay in 
return to intended oncologic therapy. In addition, patients with 
positive margins ultimately failed to undergo an oncologically 
complete resection and thus likely experience decreased survival 
as well.24 Importantly, this finding has 2 significant implications. 
First, it highlights the clinical relevance of the proposed TOLS 
criteria. Similar studies that use Delphi consensus methodolo-
gies to define textbook outcome should consider validating their 
proposed criteria using real-world patient data when possible. 
This ensures that these expert-based definitions are supported 
by evidence, which is essential if they are to be used to coun-
sel patients, aid in clinical decision-making, and guide quality 
improvement initiatives. Second, although we validated only 1 
study’s textbook outcome criteria, our findings suggest that the 
collective experience and expertise of a diverse group of sur-
geons can serve as a powerful tool. Future studies should sim-
ilarly represent a wide range of countries and societies in their 
expert panels.

Some limitations of this study must be acknowledged. First, 
selection bias is likely present given the retrospective nature of 
this study. In addition, the cohort had significant heterogene-
ity in regard to patient and disease characteristics; however, not 
only does this increase the generalizability of our study findings, 
but this was intentionally done to reflect the broadness of the 
original TOLS criteria, which was not specific to any particular 
patient population, indication for surgery, operative approach, 
or type of resection. Furthermore, one may argue that operative 
approach is a technically an intraoperative variable; however, 
this is determined in the preoperative setting, and the rate of 
conversion in our cohort was relatively low. Finally, all 9 centers 
included in this study were either academic centers or had their 
own affiliated research institution; thus, the findings may not 
be applicable to all centers as other practice models were not 
represented in the cohort.

CONCLUSIONS
Our machine learning model can predict TOLS with acceptable 
discrimination. We also demonstrated that patients with TOLS 
had improved OS compared with those without TOLS; this held 
true on subset analysis. The next steps will include both external 
validation of the model as well as validation of other definitions 
of textbook outcome, particularly those that were also derived 
via expert consensus.
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TABLE 3.

Multivariable Cox Proportional Hazards Model of Overall 
Survival

Characteristic HR (95% CI) P

TOLS 0.82 (0.70–0.96) 0.014
Age 1.02 (1.01–1.03) <0.001
Sex
 � Female — —
 � Male 0.94 (0.80–1.11) 0.5
Indication for surgery
 � HCC — —
 � Benign 0.11 (0.05–0.25) <0.001
 � CCC 0.77 (0.58–1.02) 0.07
 � CRLM 0.61 (0.46–0.82) <0.001
 � Other malignancies 0.7 (0.51–0.95) 0.024
CCI 1.03 (0.98–1.09) 0.2
MELD 1.05 (1.02–1.08) 0.002
Number of lesions 1.06 (1.03–1.09) <0.001
Type of resection
 � Left — —
 � Left lateral 1.3 (0.94–1.78) 0.11
 � Bisegmentectomy 0.98 (0.67–1.45) >0.9
 � Central 1.16 (0.56–2.40) 0.7
 � Extended left 0.79 (0.54–1.15) 0.2
 � Extended right 1.74 (1.21–2.51) 0.003
 � Left medial 1.5 (0.88–2.56) 0.14
 � Right 1.22 (0.93–1.61) 0.2
 � Right anterior 1.21 (0.80–1.83) 0.4
 � Right posterior 1.12 (0.78–1.62) 0.5
 � Other 0.99 (0.76–1.30) >0.9

P-values less than 0.05 are considered statistically significant and are presented in boldface.
CI indicates confidence interval; CCC, cholangiocarcinoma.
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