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This dissertation examines the role of artificial intelligence in music composition, focusing

on AI-generated music for modern media. It traces the evolution of AI in music, from

early computational experiments to contemporary models like Google’s Magenta, OpenAI’s

Jukebox, and Meta’s MusicGen. Central to the research is the fine-tuning and evaluation of

MusicGen to align with specific stylistic and creative goals.

The study explores the potential of AI to augment artistic processes while addressing

ethical concerns such as copyright and authorship. By combining technical analysis with

philosophical inquiry, this work positions AI as a tool to enhance creativity, contributing to

the ongoing discourse on the intersection of technology and the arts.
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CHAPTER 1

Introduction

The intersection of artificial intelligence (AI) and music composition has ushered in an era of

unprecedented creative possibilities, but it has also raised potential concerns for composers

and other creative professionals. As generative artificial intelligence 1 tools become more

advanced and accessible, they are being leveraged to generate music, often without the

consent or input of the original creators whose works are used to train these models. This

practice, commonly referred to as "scraping," poses a serious threat to intellectual property

rights, creative autonomy, and the livelihoods of composers. For example, Spotify with

its infamous "fake" artist scandal in the early 2020s (10). Generative AI is rapidly being

adopted across a wide range of industries, including those that employ creative workers,

posing a potential for AI to displace jobs (11). In this landscape, it is crucial to empower

individual creative workers with tools that enhance their artistry and safeguard their agency

and intellectual ownership. This technology is still in its early stages, with ongoing efforts to

establish ethical and legal frameworks. As these aspects continue to take shape, it remains

to be seen which challenges will emerge and how they will be addressed over time.

Central to this study is the premise that AI technologies, if designed and implemented

thoughtfully, could democratize access to high-quality compositional resources, empowering

independent creators who may lack the extensive infrastructure and funding available to

1A branch of artificial intelligence that creates new content, such as text, images, music, or code, by
learning patterns and structures from existing data and generating outputs that mimic those patterns
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larger organizations. However, this optimism is tempered by the reality of systemic barriers.

Big Tech companies and established composer collectives often dominate the technological

and creative landscapes, restricting access to advanced tools and high-profile opportunities.

This dissertation is driven by the goal of finding an open-source AI music generation

model that can be run locally and fine-tuned to emulate the stylistic nuances of specific

composers. Such a model would not only democratize access to AI tools but also allow

composers to retain control over their creative processes and outputs. By allowing individual

composers to customize and adapt these technologies to their unique artistic visions, we can

reclaim the creative agency that is increasingly ceded to large technology corporations.

The focus on local implementation is intentional and strategic. Local models eliminate

reliance on cloud-based systems, often proprietary and opaque about their training data

and processes. This lack of transparency from some of the commercialized models has

fueled concerns about unethical scraping practices and the exploitation of creative works.

On the other hand, a locally run, fine-tuned model ensures that composers can work in

a self-contained environment where their data and intellectual properties remain protected.

Through this lens, the dissertation addresses both the promises and limitations of current AI

technologies, acknowledging their reliance on training data and the absence of the intuitive

creativity that defines human artistry.

Furthermore, such a model would be accessible to everyday composers, not just those

with extensive technical expertise or substantial resources. This accessibility is critical in

leveling the playing field, enabling independent creators to leverage the same technological

advancements reshaping the music industry. This work also examines how AI can serve as a

collaborative partner, capable of augmenting creative processes rather than replacing them.

For instance, AI systems can handle repetitive or labor-intensive tasks, enabling composers to

focus on higher-level artistic decisions. By integrating such tools into workflows, independent
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composers may gain access to resources traditionally reserved for large-scale productions,

creating opportunities for experimentation and innovation. By fostering a more equitable

landscape, composers can adapt to the challenges of the AI age without losing their distinct

voices or being overshadowed by corporate interests.

The creative industries are at a pivotal juncture where the rapid evolution of AI demands

a collective response to preserve artistic integrity. This dissertation represents one step in

that direction: exploring, testing, and refining an AI model that prioritizes accessibility,

adaptability, and ethical considerations. It is an attempt to not only embrace the potential

of AI as a collaborator in the compositional process but also to protect and empower the

human creators who drive the art form forward. In doing so, we ensure that technology tools

serve the artist, not the other way around.

This work is intended as the first part of a larger project. In the future, this research

will aim to develop an AI model capable of generating real-time musical responses tailored

to what the experiencer sees on screen in an immersive environment. Such a model would

push the boundaries of interactivity and adaptability in music, enhancing the depth and

personalization of immersive experiences in virtual and augmented realities. By laying this

groundwork, this dissertation sets the stage for future advancements in AI-driven music

composition.
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CHAPTER 2

The start of (almost) everything

2.1 The pursuit of total immersion

Since the advent of the technology that enabled its feasibility, the human aspiration to tran-

scend the mundanity of daily existence has manifested in a constant pursuit of immersion

within fantastical realms. This desire for escapism is apparent not just in the building of

physical spaces such as amusement parks, intended to give a temporary reprieve from the

quotidian through meticulously crafted, immersive experiences, but also in the engagement

with virtual spaces, such as those produced by Virtual Reality (VR)1games. It might be

posited that the action of conjuring narratives in one’s imagination represents the primor-

dial iteration of virtual world-building, showcasing an intrinsic human propensity towards

creative escapism.

Dreams represent a complicated form of world-building that is autonomously executed

by our brains, a method that unfolds without conscious effort. Psychological theories, such

as those suggested by Freud, claim that dreams enable people to fulfill unmet desires and

symbolically process unresolved conflicts. This unconscious processing can offer emotional

relief and add to psychological well-being, providing an escape from everyday stresses and

emotional burdens. It is thought that dreams function as a mirror, reflecting the complex

1An immersive technology that simulates a three-dimensional, interactive environment, allowing users to
engage with a computer-generated world through specialized hardware like headsets and controllers
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tapestry of our psychological states and as a window, revealing probably the most profound

aspirations harbored within us (12). Moreover, dreams are a critical element of the day’s

processing of information(13) Cognitive theories of dreaming propose that dreams provide

an adaptive function by allowing the rehearsal of threat perception and problem-solving

strategies, effectively allowing the person to learn coping mechanisms and check out solutions

with no real-world consequences.

As an alternative to dreams, or perhaps even an attempt to dream "on demand", many

people use recreational drugs as a way to temporarily get away from the pressures and also

monotony of their daily lives. Recreational drug use usually enhances sensory perceptions,

resulting in novel experiences that starkly contrast with reality. The pharmacological ef-

fects of psychedelics (e.g., LSD, psilocybin) are identified to alter perception, thought, and

emotion, which could make the usual appear extraordinary. This pursuit of novelty may be

known as an endeavor to enjoy realms of experience beyond the access of typical cognitive

functions. In specific cultural contexts, the usage of particular drugs for leisure purposes is

embedded in interpersonal rituals offering a communal kind of escapism. The application of

medications for leisure uses by people dates to ancient times, with evidence suggesting that

such methods have been a component of human activities thousands of years ago. Archae-

ological findings and historical records indicate that early civilizations, like those in China,

India, Egypt, and Mesopotamia, used different organic materials, such as opium, cannabis,

and coca leaves for religious, medicinal, and recreational purposes. For instance, evidence

of coca leaf chewing, which includes psychoactive alkaloids, grounds for cocaine, goes back

more than 5000 years in South America (14). Similarly, cannabis continued to be used in

rituals and also for leisure for a considerable number of years, with proof of its use dating

to, at a minimum, 2500 BC inside the Eurasian Steppe. Opium, derived from poppy seeds,

has likewise been utilized since ancient times, with Sumerian texts from around 4000 BC
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describing it as the "joy plant."

The overarching goal of these endeavors is consistently targeted at facilitating short-term

transportation of the person into alternative dimensions, therefore offering a respite from

their ordinary lives. This pursuit reflects a deep-seated yearning inside the human psyche

for encounters that transcend the limits of the concrete world, underscoring the benefits of

virtual and imaginative constructs in enriching human knowledge.

In discussions of virtual world-building, there is a primary focus on the visible features

of building electronic environments, often at the cost of the aural dimension. This oversight

is essential despite the historic acknowledgment of the benefits of combining several sensory

experiences in art technique, as exemplified by Richard Wagner’s idea of Gesamtkunstwerk,

released in 1849. Wagner’s idea advocated for a "total work of art" that synthesizes visual

elements, theater, and music, underscoring the prospective depth and richness that aural

elements can contribute to an immersive experience.

With the arrival and development of technical innovations, "immersive media" has fre-

quently become associated with visual-centric products, such as VR headsets. These devices,

emblematic of the electronic era, provide users instant access to virtual realms without join-

ing physical venues such as theaters. This shift towards readily accessible, visually immersive

experiences reflects a broader pattern in media usage, in which convenience and immediacy

usually take precedence.

The genesis of such immersive media extends further back in history than is frequently

recognized, with its precursors identifiable within the visionary narratives of early 20th-

century science fiction literature. For instance, Laurence Manning’s seminal 1933 narrative,

"The Men Who Awoke," envisages a unit replicating human sensory experiences through

electric stimulation, foreshadowing contemporary VR experiences.

This literary foresight is the forerunner for the following empirical developments in im-
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Figure 2.1: The Sword of Damocles (7)

mersive media. A pivotal milestone was accomplished with Morton Heilig’s development of

the Sensorama in the 1950s, an early attempt at multi-sensory integration in media. Ad-

ditionally, Ivan Sutherland’s conceptualization of the "Ultimate Display" – The Sword of

Damocles in the 1960s (15) marked a significant leap towards interactive and immersive

digital environments, setting the stage for future innovations in VR.

The video game sector has additionally played an essential part in the evolution of immer-

sive technologies. Notable examples are the conception of Sega VR Powered Shades and the

release of Nintendo Virtual Boy during the 1980s and 1990s. Although the former was never

released and the latter was not a commercial success, they symbolize people’s pursuit of

total immersion, regardless of how ineffective the end products may be. These developments

underscore the video game industry’s contribution to the broader trajectory of immersive

media, illustrating a continuum of features that bridges early speculative fiction and contem-

porary electronic realities. This historical arc highlights the symbiotic relationship between

imaginative literature and technological advancement, underscoring the profound effect of
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visionary narratives on the materialization of virtual environments.

Nevertheless, this particular emphasis on visual technology potentially neglects the mul-

tifaceted design of immersive experiences, where sound plays a crucial part in engendering a

fully realized, immersive setting. Sound not only enhances the realism and depth of virtual

worlds but also evokes emotional responses and aids in narrative storytelling within these

digital landscapes. The integration of high fidelity, spatial audio with visual pieces in virtual

spaces could appreciably boost the general feeling of presence and immersion, a principle

which harks to Wagner’s holistic approach to art with music being an additional dimension

in this attempt to totally immerse the audience in the art.

In the domain of visual, or more accurately described, multi-sensory media, music often

remains an underestimated component. Music not only plays a pivotal role in narrative

storytelling but also possesses the capacity to subtly influence the audience’s emotional

state, directing their feelings at precise moments. Appropriately utilized, music transcends

its ancillary status, acting as a potent enhancer of the media experience. Some advocates

contend that music introduces an additional dimension to a creative work, whether in cinema

or video gaming. Applications and services such as SonicMaps have begun to leverage

"background music" to enrich users’ daily routines. This apprehension towards music’s

potent influence is precisely why some filmmakers approach its incorporation with caution,

always mindful of its potential to overshadow or unduly sway the narrative. This cautiousness

underscores the broader discourse on music’s place in immersive media environments. When

contemplating fully immersive media experiences, the prospect of crafting real-time, custom

scores that adapt to each user’s decisions within a virtual environment presents an intriguing

avenue for creating uniquely personalized experiences. Achieving such a feat necessitates

leveraging artificial intelligence to generate a copious repertoire of music, circumventing

the constraints posed by the slow pace at which humans compose – essential for real-time
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musical adaptation—and endurance, given the exhaustive nature of continuously creating

new compositions for identical scenes. Fortuitously, the intersection of composition and

science has witnessed a burgeoning interest in the exploration of AI-generated music, and the

exploration of AI assisted musical composition has been underway for some time, heralding

a new frontier in dynamic and adaptive musical scoring.

2.2 Meanwhile in AI music

Since the 1950s, composers and computer researchers have begun exploring the production of

music using computer programs. Among the seminal moments within the confluence of tech-

nology and music, came the composition by a computer – The Illiac Suite for string quartet

in 1957. This pioneering work was facilitated by the ILLIAC I computer at the Faculty

of Illinois, marking a significant event in using computational assets in music. As the con-

sequence of an interdisciplinary collaboration between Lejaren Hiller (a composer/chemist)

and Leonard Isaacson (a mathematician,) this project stands as a landmark in the history

of digital music, frequently cited as the inaugural instance of a computer being utilized to

compose music in a substantive manner.

The piece has four movements, each one the result of an experiment. To start their ex-

periments, Hiller and Isaacson tasked the computer to write basic melodies. They employed

a method that allowed the machine to produce random numbers, utilizing a strategy inspired

by the "Monte Carlo" method - an approach originally developed by physicists to address

complex problems characterized by numerous probabilities. Random integers ranging from 0

to 14 were assigned to correspond with the pitches2 across a two-octave span of the C-major

scale, focusing solely on the white notes. They then "selected the rules from the elaborate

2Excluding sharps and flats
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injunctions for "strict first-species counterpoint" (8). In the preliminary stage of the algo-

rithmic composition process, integers that effectively met the critical elements established by

the note screening protocol had been initially retained within the computer’s mind. This re-

tention policy dictated that such integers have been withheld from external output until the

computational apparatus had concluded a coherent melody characterized by its initiation

and conclusion on C. Regularly, the personal computer experienced issues in determining

a note that conformed to the established permissive criteria. Upon encountering 50 such

problems, the method was programmed to expunge the nascent melody from its memory,

resetting the compositional process. It could produce many simple melodies ranging from

three to twelve notes within an hour. More instructions have been added to enable the

laptop to create two voice counterpoints while screening out the dissonances between notes,

and therefore, the very first movement came to be.

In the second movement, Hiller and Isaacson enhanced the algorithmic framework by

incorporating an augmented suite of screening protocols that encapsulated fourteen rules

derived from the first species counterpoint in four voices. In this evolved computational

experiment, the mechanism continued to generate random pitches, specifically limiting its

selection to the diatonic tones analogous to the white notes employed in the initial study.

However, in this iteration, the inherent randomness was algorithmically constrained to engen-

der a degree of redundancy. Consequently, the emergent melodies, despite being constrained

to whole notes only, in the style of Palestrina.

In the third movement (and also the third experiment,) Hiller and Isaacson increased

the rhythmic and dynamic complexity. A straightforward approach yielded a significant di-

versity in rhythm for them. By adopting 4/8 time as the meter and designating the eighth

note as the smallest rhythmic unit, they encoded all possible rhythmic patterns within these

constraints using binary digits. For instance, the sequence 1111 signified four eighth notes;
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1110 indicated two eighth notes followed by a quarter-note; 1010 denoted two quarter-notes,

among other permutations. These permutations generated a series of binary numbers cor-

responding to decimal numbers ranging from 0 to 15. Given that rhythmic changes do not

typically occur at every measure in music, they introduced rhythmic redundancy through a

secondary series of random numbers, programming the computer to repeat a specific rhythm

for up to 12 iterations. Alongside this "horizontal" redundancy3within the melodic lines

of individual voices, an additional binary code 4 implemented "vertical" (homophony5) re-

dundancy across the four voices, whereas the code 0000 meant that all four voices would

operate rhythmically independent of one another, while 1111 mandated homo-rhythm across

all voices, among other variations. They also applied similar methodologies to incorporate

patterns of dynamics and variations in playing instructions(8). The resulting work sounds

drastically different from the first two movements, especially when the computer was permit-

ted to generate random chromatic notes,6 it was producing music that was highly dissonant7.

The resulting composition sounds unpleasant due to the lack of artistic logic behind note

selections.

In the last movement, they sought to write a movement that was purely based on mathe-

matical rules. As Hiller describes, "... the computer was programmed to select the intervals

between successive notes according to a table of probabilities instead of at random . More-

over, the probabilities themselves were made to shift in accordance with so called Markov

probability chains."(8) In this context, a Markov chain is a mathematical system that un-

dergoes transitions from one state to another on a state space. It is "memoryless," meaning

3Repetition, Hiller preferred the term "redundancy"

4Limited the rhythm to homophonic, chords style, hymn style, or homo-rhythmic

5A musical texture where multiple voices or parts move together rhythmically

6Pitches that lie outside the diatonic scale of a given key

7When a combination of notes or chords create a sense of tension, instability, or harshness
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the next state depends only on the current state and not on the sequence of events that

preceded it. Here, each "state" represents a specific musical interval between notes. For

example, in the initial phase of the composition, the unison interval (where two successive

notes are the same, creating a "zero" interval) is assigned a weight of one, indicating it has a

probability of occurring. In contrast, all other intervals start with a weight of zero, meaning

they initially have no chance of being selected. As a result, all voices in the composition stay

on the same note. After two bars, the composition’s rules change to increase the unison’s

weight to two and introduce the octave interval with a weight of one. This adjustment makes

the unison interval twice as likely to occur as the octave. As the composition progresses,

additional intervals are introduced with their weights adjusted to change their probabilities

of occurring. For instance, the fifth interval is added next, and the weights of the unison,

octave, and fifth are adjusted to three, two, and one, respectively, reflecting their likelihood

of occurrence. The process continues with the introduction of new intervals every two bars,

and the weights are reassigned to reflect the changing probabilities of each interval being

chosen. This method allows for a structured yet probabilistic approach to musical com-

position, where the sequence of intervals evolves in a controlled manner, influenced by the

predetermined weights and adjustments over time.

After the Illiac Suite’s "premiere" on Aug. 9th, 1956, Hiller became famous overnight.

Some people did not like the beat, and some performers thought the piece (especially the

4th movement) could be unnatural at times, and "had a quirkiness that throws you off."(16)

The performance was met with polarized reactions, centering around the controversies of

the broader implications of computer-generated music. The idea that a computer could

compose music challenged traditional notions of creativity, authorship, and the role of the

human composer. Critics questioned whether music generated by algorithms could possess

the emotional depth and artistic value of music composed by humans. There was skepti-
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Figure 2.2: Markov Probability table for Intervals(8)

cism about the authenticity and artistic value of computer-generated music. Some argued

that music, as an expression of human emotion and experience, could not be authentically

replicated by machines. For some musicians and composers, the advent of computer-assisted

composition raised fears about the obsolescence of human composers. There was concern

that machines might replace humans in the creative process, a theme that has recurred with

advances in AI and automation across various fields. The "Illiac Suite" and subsequent

computer-generated compositions often sparked debate over the balance between technical

innovation and artistic merit. While the technical achievements were acknowledged, some

critics were not convinced that the resulting compositions met the standards of high qual-

ity art music. To me, this piece, though it may be mathematically sound, resembles many
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compositions by human composers from an era when many people approached music theory

as if it were a STEM subject. It does not sound musical to me and feels as though it lacks

the depth and soul of human expression.

Despite these controversies, the "Illiac Suite," as well as the work of Isaacson and Hiller,

have demonstrated the possibility of computer systems in creative processes. They opened up

new avenues for exploration in algorithmic composition, resulting in additional advancements

in computer music and the broader area of electronic arts. Over time, as technology advanced

and society’s connection with computer systems deepened, the acceptance of computer-

generated music and its potential for creative works has continued to grow, though discussions

about the role of imagination and technology in the arts persist.

2.3 Fast forward a few decades

The development of AI in music composition evolved through various phases, incorporating

different technologies and methodologies. In the 1970s and 80s, researchers experimented

with rule-based systems and early forms of machine learning to create compositions and to

assist in music production. These systems often relied on predefined rules or algorithms to

generate music based on specific styles or parameters.

AI differs from traditional algorithmic composition primarily in its approach to generating

music. Algorithmic composition relies on predefined rules, parameters, or mathematical for-

mulas explicitly programmed by the creator. These systems can produce music that follows

specific styles or structures but are limited by the rigidity of their design. AI, particularly

machine learning models, goes beyond this by analyzing large datasets of music to learn pat-

terns and structures autonomously. This ability allows AI to generate outputs that reflect a

deeper understanding of style and context, often with results that can appear more organic
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or innovative. For example, while a rule-based system might generate a melody by following

a fixed set of harmonic rules, an AI model could synthesize new material by drawing on

patterns it learned across thousands of compositions, adapting its output to nuances it has

inferred but not explicitly been taught.

The advent of Musical Instrument Digital Interface (MIDI8) in the early 1980s was a

significant milestone, as it facilitated easier communication between electronic musical in-

struments and computers, enabling more sophisticated compositions and experiments with

AI-generated music.9

"Artificial Intelligence and Music" by Curtis Roads, published in 1980, marks a critical

moment in exploring the intersection between AI and music (17). It presents AI as a new

paradigm capable of transforming various aspects of music, including composition, analysis,

performance, and even the cognitive processes involved in musical tasks. Roads discusses

how AI introduces methodologies that offer new strategies for addressing musical problems

and provide deeper insights into cognitive processes without necessarily trying to replicate

human mental activity.

The paper outlines the history of automated music-making, beginning with early me-

chanical instruments, such as carillons and automata (18) and moves through more recent

innovations like algorithmic composition and early computer music experiments. Roads

emphasizes that AI in music is not an entirely new concept; centuries-old examples of rule-

8A standardized protocol that allows electronic musical instruments, computers, and other devices to
communicate, control, and exchange musical information such as notes, dynamics, and tempo

9The generation of sound files and symbolic compositions serves different purposes in the creative process,
and each has unique implications. Symbolic compositions, such as MIDI files or sheet music, represent the
underlying structure of music: the notes, rhythms, and dynamics, detached from specific timbral qualities or
production choices. These are akin to blueprints that can be interpreted by performers or further processed
by software to render the final audio. Generating sound files, on the other hand, involves producing fully
rendered audio, complete with instrument timbres, spatial qualities, and effects. This is a more immediate
output, often bypassing the need for interpretation or additional production.
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based generative music, such as Guido d’Arezzo’s pitch generation method10 and Mozart’s

dice game, 11demonstrate a long-standing interest in formalizing and automating musical

processes, and can be considered as forerunners of generative music(17).

Roads divides his discussion into two main strands: efforts toward musical intelligence

and applications of AI methodology. He reviews several early projects that combined AI

with music, such as Lejaren Hiller’s algorithmic compositions, which treated music as an

algorithmic process and initiated the use of computers for composition. Early AI applications

in music included the development of systems for music analysis, such as Simon and Sumner’s

1968 work on pattern recognition in music and Winograd’s harmony analysis program, which

applied systemic grammar to analyze tonal harmony (19).

The paper also explores how generative modeling, a branch of AI that seeks to model

existing musical structures rather than create new compositions, became essential for under-

standing the rules governing music. These AI models helped theorists test hypotheses about

the underlying structures of specific musical traditions, such as tonal music and provided a

new way to compare different musical styles.

Throughout the paper, Roads examines the limitations of early music analysis programs,

which often only focused on surface-level features of compositions. He suggests that AI could

address these limitations by incorporating a more profound knowledge of the music being

analyzed, potentially leading to a more comprehensive and insightful analysis. The paper

also introduces more sophisticated AI-driven systems that aim to recognize, understand, and

generate music, drawing from cognitive theories and AI concepts like rule-based systems and

grammar models.

10Guido d’Arezzo created a table-lookup method for producing pitches from spoken words, which is an
early illustration of a generative procedure for composition(17)

11Mozart’s Musikalisches Würfelspiel, which is a system for generating music using dice, is one example
of an early generative technique for composition(17)
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In terms of future directions, Roads envisions that AI will play a role in developing

intelligent music systems capable of analyzing, composing, and performing music in ways

that transcend the capabilities of human musicians. These systems, he argues, could handle

tasks such as intelligent sound analysis, the creation of dynamic musical performances, and

the development of new musical machines. He also touches on the societal implications of

AI in music, questioning whether such technologies will enrich musical creativity or merely

substitute mechanical performances for human artistry.

2.4 Fast forward a few more decades

In the 1990s and 2000s, more advanced AI techniques were introduced, including neural

networks12 and evolutionary computing,13 allowing for more complex and expressive mu-

sical creations. David Cope’s "Experiments in Musical Intelligence" (EMI, also known as

"Emmy") is a significant and pioneering project in the field of AI-generated music (20).

Developed by Cope, a composer and professor at the University of California, Santa Cruz,

EMI was designed to analyze the music of various classical composers and then generate

new compositions in the style of those composers. Cope began working on EMI in the 1980s

during a personal creative block while writing an opera. His initial goal was to create a

tool that could assist him in analyzing his style in hopes of finding his undiscovered music.

However, the project quickly evolved into an exploration of the possibilities of algorithmic

composition. EMI was built using various techniques, including pattern matching, rule-based

systems, and, later, more sophisticated AI methodologies.

12Computational models inspired by the structure and function of the human brain, consisting of intercon-
nected layers of nodes (neurons) that process and learn from data to recognize patterns, make predictions,
or perform tasks

13A branch of artificial intelligence that uses algorithms inspired by biological evolution, such as natural
selection and genetic variation, to solve optimization and complex computational problems
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Pattern matching in AI involves algorithms identifying and using recurring patterns

within data to make decisions, predictions, or generate new data. It is fundamental in various

AI applications, from natural language processing, where it helps understand and generate

text, to AI-generated music, and central to many systems that analyze, compose, or impro-

vise music. It involves the algorithm identifying, analyzing, and utilizing patterns within

musical compositions to generate new pieces of music that maintain stylistic consistency

with the source material. This process is pivotal in various applications, from generating

new compositions in the style of specific composers to improvising jazz solos.

In music, a "pattern" can refer to a wide range of musical elements, such as a sequence

of notes (melody,) rhythms, harmonies, or even the structural aspects of compositions (like

the form of a piece.) Pattern matching involves the algorithm recognizing these elements in

existing music and understanding their relationships and contexts.

The first step involves analyzing a corpus of music to identify recurring patterns. This

can be a database of compositions by a specific composer or within a particular genre. The

AI system breaks down the music into manageable components, such as phrases, chords, or

motifs, and looks for recurring structures or sequences. Once patterns are identified, the

system classifies them based on various musical features. This might involve categorizing

motifs by their rhythmic qualities, harmonic functions, or melodic contours. The recognized

patterns are stored in a database, with metadata describing their musical characteristics and

contexts. This database is the foundation for the system’s musical "vocabulary." The system

uses the stored patterns as building blocks when generating new music. The recombining,

modifying, or extending these patterns can create new musical pieces that are stylistically

coherent with the source material. Many systems incorporate a feedback loop where gen-

erated music is evaluated against certain criteria (like stylistic consistency, coherence, and

novelty) and adjusted accordingly. This might involve refining pattern selection or the way
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patterns are combined.

Machine Learning Algorithms like Hidden Markov Models (HMMs) offer a robust frame-

work for generating music by learning the underlying statistical structure of musical compo-

sitions, such as musical motifs, phrases, or chord progressions, and the model understands

how the transitions between states capture the musical flow or changes in motifs14/phrases.

Given a trained HMM, generating new music involves starting from an initial state and then

moving through states based on the transition probabilities, emitting notes or chords based

on the emission probabilities. This can create music that follows learned patterns and struc-

tures. By training an HMM on a specific collection of music, the model can learn to generate

music that mimics that style. The model captures the underlying statistical properties of

the music, such as typical note sequences, rhythm patterns, and harmonies. One of the lim-

itations of HMMs is the assumption of the Markov property that the future state depends

only on the current state and not on the sequence of events that preceded it. This can

be overly simplistic for some musical structures that need to depend on more prior states.

Neural networks and decision trees15 can be used to identify and classify patterns. Some

systems rely on predefined rules grounded in music theory to identify and recreate patterns.

Genetic Algorithms: these can evolve musical patterns over successive generations, selecting

and recombining "most likely" patterns to create new compositions.

While pattern matching is a powerful tool in AI music generation, it also presents chal-

lenges, such as ensuring that generated music is a mere imitation of recognizable patterns

and contains originality and creativity. Balancing coherence with novelty and managing the

vast diversity of musical expression are ongoing areas of research and development in the

14A short, recurring melodic, rhythmic, or harmonic idea that serves as a foundational element in a
composition

15A type of machine learning model that use a tree-like structure of decisions and their possible outcomes
to classify data, make predictions, or solve problems by breaking them down into smaller, simpler decisions
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field.

Genetic algorithms provide a biologically inspired approach to algorithmic music com-

position, utilizing principles like selection, crossover, and mutation to generate and refine

musical material. In this method, musical elements such as notes, rhythms, and harmonies

are encoded into data structures that act as musical "chromosomes" or "genomes." An initial

population of these chromosomes, often created randomly, represents a variety of potential

musical ideas. Each chromosome is evaluated using a predefined fitness function, which as-

sesses how well it meets specific musical criteria or stylistic goals, such as adherence to a

particular scale or rhythm. Chromosomes with higher fitness scores are more likely to be se-

lected for reproduction, contributing their traits to the next generation. Through crossover,

these selected chromosomes combine their musical data to produce offspring that inherit

traits from both parents, while random mutations introduce additional variation, ensuring

diversity within the population and avoiding stagnation. This process of selection, crossover,

and mutation is repeated over multiple generations, gradually evolving a population of mu-

sical ideas that better meet the desired criteria. The algorithm ultimately outputs the

best-performing chromosome or a selection of high-fitness chromosomes as the final musical

composition or a set of promising ideas. EMI begins by analyzing the input compositions,

breaking them into smaller components to identify recurring patterns and structures. It then

recombines these elements in new ways, ensuring the newly generated music adheres to the

stylistic rules and constraints extracted during the analysis. Finally, the generated compo-

sitions are evaluated based on how well they follow the style and maintain coherence. The

system may iterate this process several times, refining the output until it meets predefined

criteria(21). While genetic algorithms are a powerful and flexible tool for generating diverse

musical outputs, they require careful design of fitness functions and algorithm parameters,

necessitating both musical insight and computational expertise .
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EMI generated considerable interest and debate within both the music and AI commu-

nities. Some of Cope’s compositions created by EMI were performed in concert halls and

even recorded, with audiences often unable to distinguish between the AI-generated pieces

and genuine compositions of historical composers. However, EMI also sparked controversy

and philosophical debates about creativity, originality, and the role of AI in art. Critics

questioned whether music generated by an algorithm could possess the emotional depth and

expressiveness of human-composed music. Others saw EMI’s achievements as a demonstra-

tion of the potential for AI to extend and enhance human creativity.
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CHAPTER 3

Modern attempts

The 2010s and 2020s witnessed a surge in the capabilities and applications of AI in mu-

sic, driven by advancements in machine learning, particularly deep learning.1 Projects like

Google’s Magenta, OpenAI’s Jukebox, MuseGAN, and IBM’s Watson Beat showcased the

potential of neural networks to generate music that could capture the nuances of human

composition and even mimic specific genres and artists’ styles. This chapter serves as the

traditional "literature review" section, providing an overview of the technologies and models

discussed in existing research. It is important to note that the models and methodologies

presented here are based on secondary sources and have not been personally tested or im-

plemented as part of this study.

3.1 Neural networks and decision trees

One paper explores the different possibilities when it comes to generating music using neural

networks. "Experiments in Modular Design for the Creative Composition of Live Algo-

rithms" by Oliver Bown explains the concept of live algorithms (LAMs) in music composi-

tion, particularly focusing on their modular design to enable real-time interaction between

musicians and algorithmic systems (22). The idea behind live algorithms is to create compu-

1A subset of machine learning that uses artificial neural networks with multiple layers to automatically
learn and extract complex patterns and representations from large amounts of data
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tational systems that exhibit a degree of autonomy in music performance, either alongside

human musicians or on their own. These systems are not meant to mimic human musi-

cianship but rather introduce novel, interactive, and autonomous behaviors into musical

performance.

The paper discusses a modular design framework proposed by Blackwell and Young,

where live algorithm systems are broken down into three key components: analysis (P),

synthesis (Q), and patterning processes (I). These components allow for the possibility of

substituting one module for another, creating flexible and interchangeable parts within the

system. The goal is to facilitate a creative, dynamic, and collaborative approach to algorith-

mic music composition.

Two case studies are presented in the paper, each focusing on the use of different algo-

rithms for driving real-time musical improvisation systems. The first study uses Continuous-

Time Recurrent Neural Networks (CTRNNs) while the second employs Decision Trees (DTs.)

Both systems aim to create a level of creative autonomy by producing generative musical

behaviors that respond dynamically to incoming musical data. CTRNN is a neural network

model, a form of Recurrent Neural Network (RNN,) which is a type of artificial intelligence

model designed to handle data that comes in sequences, like a sentence, a song, or a time

series. In simple terms, an RNN is like a smart memory system that processes sequences

one step at a time, using what it has already learned to make better predictions about the

future. What makes RNNs special is that they can remember information about what hap-

pened earlier in the sequence and use that memory to help make decisions about what comes

next.2 Imagine you’re reading a sentence, and each word helps you understand the next one.

RNNs work similarly—they process one piece of data at a time, and each step builds on what

2As opposed to with HMMs, where the next state depends only on the current state and not what proceeds
it
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the network has already seen. So, if you’re trying to predict the next word in a sentence,

the RNN looks at the previous words and uses that info to guess what’s coming next.

The "recurrent" part means the network loops back on itself. This looping lets the

network remember past information for a while. However, one limitation of basic RNNs is

that they can struggle to remember things from far back in a long sequence. That’s why

more advanced versions, like Long Short-Term Memory (LSTM,3 ) or Gated Recurrent Units

(GRUs,) were created to improve how they handle longer-term memory.

In generative AI, GRUs are widely used due to their ability to efficiently model tempo-

ral dependencies, which are crucial in the sequential nature of music. A GRU is a variant

of a RNN architecture designed to manage long-term dependencies in sequence data while

avoiding the vanishing gradient problem,4 which typically hampers the performance of tra-

ditional RNNs. Unlike standard RNNs, GRUs use gating mechanisms to regulate the flow

of information, allowing the model to selectively retain important musical patterns and dis-

card irrelevant data. This functionality makes GRUs particularly useful in music generation

tasks, where understanding the temporal structure and maintaining coherence over time is

essential.

In AI music generation, various models harness the power of GRUs for creating mu-

sical sequences. While Generative Adversarial Networks (GANs,5) as seen in models like

MuseGAN, focus on generating polyphonic music across multiple tracks, GRUs have been

employed in the generation of monophonic melodies and chord progressions due to their effi-

ciency and simplicity. For instance, models such as DeepBach, which is designed to generate

3Which we’ll get to when we talk about

4A problem in deep learning where the updates to the earlier layers of a neural network become too small,
making it hard for the network to learn properly

5Two networks: a generator and a discriminator, which compete with each other in a game-like setting
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harmonization in the style of Johann Sebastian Bach, or Google’s MusicVAE, which works

with latent variable modeling for music sequences, can benefit from the temporal handling

of GRUs, even if GRUs are not the primary architecture in these systems.

A GRU consists of two primary gates: an update gate and a reset gate. These gates

help the model decide when to update the hidden state with new information and when to

reset it, allowing the GRU to maintain relevant musical context over long sequences. This is

particularly valuable in tasks like melody continuation, where the model needs to predict the

next note in a sequence based on the preceding notes, preserving the overall structure of the

music while generating something that sounds musically coherent and pleasing. GRUs are

thus an essential tool in music generation models that require a balance between learning

long-term dependencies and computational efficiency. This is crucial for generating high-

quality, coherent music that maintains both rhythmic and harmonic consistency over time.

Back to CTRNN (page 23,) the CTRNN which in Bown’s paper is designed to gen-

erate complex, reactive behaviors through a network of interconnected artificial neurons.

Each neuron in a CTRNN processes and transmits floating-point values through weighted

synapses, which connect it to other neurons. These neurons continuously update their states

by summing the weighted inputs they receive and producing an output that is then passed

along to other neurons. This process happens quickly and synchronously, creating a smooth,

continuous flow of activation throughout the network.

The outputs of CTRNN neurons are typically constrained to values between -1 and 1

by applying a sigmoid function to the output of each neuron. This results in what can be

seen as a "black box" system: a CTRNN takes a set of real-valued inputs, processes them,

and produces a set of real-valued outputs, all within the defined range. CTRNNs have been

used successfully in musical contexts to create dynamic, compelling patterns, especially for

tasks that involve continuous modification of sound parameters, such as altering playback
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position in granular synthesis or controlling parameters in FM synthesis. However, due to

their complexity and continuous behavior, CTRNNs are not well-suited for music tasks that

require precise solutions, like harmonization or structured melodic patterning. They are

more appropriate for creative tasks that benefit from fluid, evolving behavior.

The first study with CTRNNs focuses on the ability of these networks to generate con-

tinuous,6 reactive behaviors in response to external stimuli. By evolving CTRNNs through a

genetic algorithm,7 the study seeks to create networks that can activate and rest dynamically,

responding to changes in the musical environment. This behavior is akin to a "dynamical

reservoir," where the system remains active while external stimuli are present and eventually

returns to rest in the absence of stimuli (22).

The second study explores the use of DTs (page 23,) which are more discrete and inter-

pretable than CTRNNs. DTs are often used for classification tasks and are well-suited for

generating distinct musical events based on real-time audio analysis. Unlike CTRNNs, which

produce continuous outputs, DTs operate by making decisions at each time step, flipping

between discrete states8. This allows for more predictable and stable rhythmic patterning,

making them more efficient and easier to analyze than CTRNNs. Additionally, the modular

structure of DTs allows for more straightforward growth and evolution, making them highly

adaptable in live performance contexts.

DTs, like CTRNNs, process real-time audio features, updating every 10 milliseconds. To

mimic the continuous behavior of CTRNNs, the DTs include an internal state represented

by floating-point values that are analyzed and modified based on decisions made by the tree.

6In simple terms, not whole numbers

7A problem-solving method that mimics natural selection, where possible solutions evolve over time by
combining and mutating the best ones until an optimal result is found

8Whole numbers
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DTs offer several advantages over CTRNNs. First, they produce discrete outputs at

each time step, making them ideal for controlling musical events like notes, while CTRNNs

require discretization of their continuous outputs. Additionally, DTs are easier to analyze and

manipulate, making their decision-making process more transparent than the opaque nature

of CTRNNs 9. DTs are also more computationally efficient, executing fewer conditional

operations, and their structure allows them to evolve more easily. They can start simple

and grow by adding nodes, and they can adapt in real time by adjusting thresholds for

decision-making.

The second study used genetic algorithms to evolve DTs with specific dynamic properties,

like maximizing the number of leaf nodes10 visited, to create an active and responsive system.

Although the DTs were evolved in an abstract environment, they showed responsiveness to

real audio input during testing.

In a generative music system, the DTs controlled both discrete and continuous parame-

ters. Discrete outputs could select specific sound samples, while the internal state modulated

playback parameters. The system also featured an interactive grid that allowed DT deci-

sions to trigger combinations of sound events, creating a flexible mapping between the DT’s

behavior and the musical output (22).

Bown, who used both the DT and CTRNN systems found the DT-based system more

responsive and easier to collaborate with when designing interactive compositions. The

study also noted a "shadowing" effect with DTs, where sudden changes in audio input would

reliably trigger changes in the DT’s output, enhancing the system’s interactivity.

Both studies in Bown’s paper explore the potential of live algorithms to drive generative

9Or any Neural Networks if given enough neurons in this case

10The endpoints of a decision tree where no further splits occur, and they represent the final outcome or
decision
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music systems in a modular and creative manner. While CTRNNs offer rich, continuous

musical behaviors, they are more challenging to control and understand compared to the more

predictable and discrete outputs of DTs. Bown’s paper concludes that a modular approach

to live algorithm design, with different algorithms suited to different musical tasks, is a

productive direction for future research and creative exploration in live musical performance

(22).

3.2 Google’s Magenta(1)

Google’s Magenta is an open-source research project designed to explore the role of machine

learning and artificial intelligence in creative tasks, particularly in generating art and music.

It was trained on a mix of public domain music and music that was licensed for training, in

other words, therefore, it is all under fair use. Magenta builds on the capabilities of deep

learning models, employing neural networks to assist in creating new and original musical

compositions, artwork, and other creative outputs. The project aims to push the boundaries

of creativity by developing tools that allow both professionals and amateurs to engage with

AI in the creative process. Magenta’s music generation relies on deep neural networks,

including RNN (with LSTMs, page 24) and Variational Autoencoders (VAEs)

(1), to understand musical structures and generate coherent and stylistically consistent music.

Magenta’s core function in music generation revolves around modeling sequences, which

are key to music’s temporal nature. Music, by its essence, is a time-based art form where each

note or rhythm depends on what came before. To capture this sequential structure, Magenta

employs RNNs, which are particularly well-suited for handling sequence data like melodies

or rhythms. RNNs have a memory mechanism that allows them to retain information from

previous time steps, enabling the model to generate music that not only progresses naturally
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but also maintains coherence over longer compositions. These networks are trained on vast

datasets of existing music to learn patterns, progressions, and relationships between notes

and chords. After training, the RNNs can generate music by predicting the next note in a

sequence based on the previous ones, making the process somewhat similar to how human

musicians compose by recalling musical patterns and themes.

A significant challenge in generating music is creating long sequences that remain coherent

and musically satisfying over time. Magenta addresses this by using an advanced variation of

RNNs known as LSTM networks (page 24.) LSTMs are designed to overcome the limitations

of traditional RNNs by better capturing long-term dependencies, allowing the model to

generate compositions that make sense across longer time spans. For instance, LSTMs help

ensure that a melody introduced early in a piece is revisited or resolved later, creating

a more musically cohesive structure. This memory component is essential for producing

compositions that are not just random sequences of notes but rather structured pieces with

a beginning, middle, and end.

In addition to RNNs, Magenta also uses VAEs (page 28,) which play a different role

in the music generation process. VAEs are a type of generative model that can learn a

compressed, abstract representation of input data and then generate new data from this

learned representation(9). The process starts with the encoder, which takes the input data

and compresses it into a latent representation. Unlike a traditional autoencoder, where

this latent representation is a fixed point, in a VAE it is described by a probability distri-

bution—typically a Gaussian.11 The encoder outputs two parameters: the mean and the

variance 12. These parameters define a Gaussian distribution in the latent space.

11A bell-shaped probability distribution used to represent the latent space, helping the model learn smooth
and continuous representations of the input data

12Or more commonly, the logarithm of the variance
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Once the latent distribution is defined, the VAE introduces a sampling step, where it

draws a sample from this distribution. This is where the model adds randomness, allowing

for the generation of new data points later on. To make this step differentiable 13, VAEs

employ a technique called the reparameterization trick. Instead of sampling directly from the

distribution defined by the mean and variance, the model samples from a standard Gaussian

distribution and then shifts and scales this sample using the mean and variance parameters.

After the sample is drawn from the latent space, the decoder takes this sample and tries to

reconstruct the original data. The decoder is trained to learn a mapping from the latent

space back to the original data distribution. The training objective of a VAE involves two

parts. The first part is the reconstruction loss, which measures how well the decoded output

matches the original input data. The second part is a regularization term, often called the

KL 14 divergence, which ensures that the learned latent distribution15 is close to a standard

normal distribution. This regularization helps the VAE avoid overfitting and encourages it

to learn a smooth, continuous latent space where nearby points generate similar outputs.

VAEs allow Magenta to explore variations on existing musical ideas by capturing high-

level features such as melody, harmony, or rhythm and then generating new compositions

based on these features. For example, VAEs can take a musical theme and create multiple

variations of it, each unique yet sharing the same underlying structure. This capability is

particularly useful in creative tasks where variation and experimentation are key.(9)

One of Magenta’s standout features is its ability to generate music that aligns with specific

user inputs or constraints. Users can input a short musical idea or melody, and the model will

generate a continuation or accompaniment based on that input. This interaction between

13So that back propagation can be used for training

14Kullback-Leibler

15A simplified representation of the data, where the model captures important features in a lower-
dimensional space, typically following a Gaussian (normal) distribution
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Figure 3.1: An illustration on the encoding and decoding of music with MusicVAE(9)

human and machine allows users to guide the AI’s output while still benefiting from the

generative power of the model. This aspect of Magenta makes it not just a tool for generating

random music, but hypothetically a collaborative system that enhances human creativity.

When used properly and trained ethically, it could provide musicians and composers with

a means of exploring musical ideas that they might not have conceived of independently,

expanding their creative possibilities.

Magenta’s user interface and tool sets are designed to be accessible to a wide range of

users, from professional musicians to hobbyists and researchers. The project offers several

pre-trained models that can be used out of the box, along with a flexible framework for

training custom models on specific datasets. This flexibility makes Magenta a versatile tool

for anyone interested in experimenting with AI-generated music. By providing both ready-
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to-use tools and the ability to customize models, Magenta bridges the gap between machine

learning research and practical creative applications.

However, despite its impressive capabilities, Magenta does face certain limitations. One

of the main challenges is generating music that captures the emotional depth and nuance

typically found in human-composed music. While Magenta can generate compositions that

are stylistically consistent and musically coherent, the subtleties of human emotion, intention,

and creative intuition remain difficult for AI models to replicate. Additionally, because

Magenta relies on existing musical data to train its models, the system is constrained by

the limitations of its training data. This means that while Magenta can interpolate between

different styles of music, its ability to create entirely novel styles or transcend existing musical

conventions is still limited.

Magenta also requires significant computational resources to train and generate music,

particularly for more complex tasks involving large datasets or high-resolution audio. This

can pose a barrier to entry for users without access to advanced hardware. However, Google

has worked to make Magenta more accessible by providing cloud-based tools and frameworks,

allowing users to leverage its capabilities without needing to invest in expensive infrastruc-

ture.

3.3 Open AI’s Jukebox(2)

OpenAI’s Jukebox is an advanced deep learning model designed to generate music, com-

plete with vocals, instrumental tracks, and lyrics, in a wide variety of genres and styles.

Like Magenta, Jukebox is a non-commercial research project designed to advance scientific

understanding of music generation. It is open-source. The code and model weights are avail-

able online, allowing researchers and developers to explore and utilize the model for music
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generation tasks. Jukebox builds on the success of neural network models in tasks such as

image generation and text processing, adapting these approaches to the unique challenges

of music generation. In essence, Jukebox employs a combination of hierarchical generation

and conditioning on metadata to produce music that is coherent, stylistically accurate, and

highly detailed, overcoming some of the limitations that earlier music generation models

faced. (2)

Jukebox functions through a hierarchical approach to music generation, which operates

at multiple levels of temporal resolution(2). This hierarchical process is central to Jukebox’s

ability to generate coherent music over extended durations. At the highest level of the

hierarchy, Jukebox outlines the broader structure of the piece, such as the chord progression,

melody, and general style across several bars of music. This level provides a global framework,

defining the direction of the music in terms of key musical elements like harmony and form.

Once this larger structure is established, the model then fills in finer details at lower levels,

such as individual notes, rhythms, and timbres, ensuring that the piece remains consistent

and musically logical. This multilevel approach enables Jukebox to generate music that

does not simply loop or repeat but evolves dynamically over time, maintaining coherence

throughout the piece(2).

A distinguishing feature of Jukebox is its ability to be conditioned on metadata. Metadata

refers to contextual information such as the genre, the artist style, and even specific lyrics.

By conditioning the model on these variables, Jukebox can generate music that adheres to

a specified genre or imitates the style of a particular artist, making the generated music feel

authentic and faithful to the user’s input. Moreover, the conditioning on lyrics allows the

system to generate vocal tracks that match the lyrics, ensuring that the vocal melody aligns

rhythmically and thematically with the lyrics provided. This capacity to condition the model

on diverse forms of metadata makes Jukebox a versatile and powerful tool for generating a
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Figure 3.2: Jukebox’s hierarchical architecture (2)

wide range of musical styles and pieces that not only sound stylistically accurate but also

exhibit thematic coherence.

Jukebox’s technical backbone consists of a complex deep learning model architecture,

with particular reliance on autoregressive models and VAEs(page 28.) An autoregressive

model predicts the next element in a sequence based on prior elements, which is a critical

feature for generating sequences like music. Music is inherently sequential, with each note

and rhythm depending on what came before, and autoregressive models are well-suited to

capturing this structure. In Jukebox, this model is applied hierarchically to generate music

progressively, first defining the broader aspects of the piece and then refining the details.

One of the primary challenges in generating music, particularly with vocals, is the align-

ment of different musical components, such as the melody, harmony, and rhythm, with the

lyrics. Jukebox addresses this challenge by employing a method called upsampling, which

refers to generating higher-resolution versions of a low-resolution input. In the context of

Jukebox, the model first generates a low-resolution version of the music, including the vo-

cals, and then iteratively refines this version, adding more details and increasing the fidelity

of the music with each step. This process ensures that all elements of the music—vocals,
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Figure 3.3: Jukebox’s sampling method(2)

instrumentals, and rhythms—are aligned properly and sound natural together.

Despite its sophistication, Jukebox still faces certain limitations. One of the most no-

table is that while the model is capable of generating impressive musical pieces, it requires

substantial computational resources, and the quality of the generated music, while high, may

not yet reach the level of professional human composers in terms of complexity and emotional

depth.16 Additionally, like Magenta, the model’s reliance on large datasets of pre-existing

music means that it can only generate music within the styles it has been trained on, and

while it can interpolate between these styles, it is less adept at producing entirely novel

forms of music that fall outside of its training data. Hypothetically, there is a chance that

the model might occasionally produce music in novel forms by combining/evolving from the

styles on which it has been trained.

Moreover, while Jukebox’s hierarchical model can generate coherent music over long peri-

16The ability to evoke complex feelings and connect with listeners on a profound, personal level through
its melody, harmony, dynamics, and other expressive qualities, e.g. intentional chromatism

35



Figure 3.4: Jukebox’s upsampling at inference(2)

ods (about five minutes,) its ability to maintain structure over pieces longer than five minutes

remains a challenge. Music often relies on subtle variations and long-term development, and

although Jukebox can handle short-term coherence, it struggles with creating music that

evolves organically over longer durations, like a symphony or extended composition.

One potential problem if one desires to use Jukebox for music generation, even if it is not

for commercial use, is that the specific details regarding the training data used for Jukebox

have not been publicly disclosed. Given the nature of the project and its non-commercial

intent, the training data likely included a mix of public domain works and other music,

though explicit information about licensing and authorizations has not been provided.
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3.4 MuseGAN(3)

MuseGAN is a novel approach for generating multi-track symbolic music17 using GANs (page

24.) It is an open-source project. The code and resources are publicly available online, al-

lowing researchers and developers to access and contribute to the project. Unlike traditional

methods that often focus on generating single-track monophonic music, MuseGAN targets

polyphonic, multi-track music generation, where different instruments play simultaneously.

This requires models that can handle the complexity of multiple musical parts working to-

gether, with each part unfolding in time yet being interdependent on others. It also focuses

on generating music in a symbolic form, such as MIDI-like piano-roll representations, where

the temporal progression and interaction of notes across multiple instruments or tracks are

critical.

At its core, MuseGAN employs GANs, which consist of two networks: a generator and a

discriminator, which compete with each other in a game-like setting. The generator creates

fake data18 by sampling from a random noise distribution. Its goal is to produce data that

is as realistic as possible. The discriminator receives both real data19 and fake data20, and

its job is to distinguish between the two. It assigns a probability indicating how likely the

input data is real or fake.

During training, the generator learns to create better fakes to fool the discriminator,

while the discriminator improves at telling the difference between real and fake data. This

adversarial process continues until the generator becomes so good that the discriminator can

no longer distinguish between real and fake data reliably. This makes GANs powerful for

17MIDI files or sheet music

18Like images, text, or music

19From a training dataset

20From the generator
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Figure 3.5: MuseGAN’s multi-track GANs architecture(3)

generating realistic data, such as images, text, and music.

In this case, the generator learns to produce music, while the discriminator evaluates how

realistic the generated music is by comparing it to real music. The generator’s goal is to fool

the discriminator into thinking that the music it generates is real, and the discriminator’s

goal is to correctly distinguish between real and generated music. Through this adversar-

ial process, both networks improve over time, with the generator producing increasingly

convincing music.

MuseGAN introduces several variations of its model to handle the complexity of multi-

track music. One version, called the jamming model, features multiple independent gener-

ators, each responsible for creating a specific track, such as drums, bass, guitar, and piano.

Each generator operates independently, and each track is evaluated by a separate discrim-

inator. This approach allows for a high degree of autonomy between the tracks but can

sometimes result in disjointed or uncoordinated music, as each track is generated separately.

In contrast, the composer model uses a single generator to create all tracks simultaneously.

This generator is guided by a single random input, which can be viewed as representing the

composer’s overall intention. The resulting multi-track music is evaluated collectively by a

single discriminator. This approach ensures greater coherence between tracks, as they are
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generated together with an understanding of how each part relates to the others.

MuseGAN also introduces a hybrid model that blends elements of both the jamming and

composer models. In this setup, each track is generated by a separate generator, but these

generators share some inputs, allowing them to coordinate and produce more harmonious

music. A single discriminator evaluates the overall quality of the generated music. This

approach allows for flexibility in the generation process, enabling individual tracks to have

some independence while still maintaining inter-track coherence.

To capture the temporal structure of music, MuseGAN extends beyond the bar-level

generation used in simpler models. In its "generation from scratch" method, it generates

multiple bars of music by using two sub-networks: one that learns the overall temporal

structure and another that generates the individual bars of music. This approach ensures

that the music has continuity and progression, as the generator can learn how musical ideas

evolve over time.

For interactive applications where a human composer might want to provide one or more

tracks, MuseGAN also supports "track-conditional generation." In this setup, the generator

is conditioned on one or more existing tracks, such as a melody or a chord progression,

and it learns to generate the remaining tracks to complement the given input. This can

be particularly useful for generating musical accompaniments or for collaborative music

composition with AI.

The model represents music in a multi-track piano-roll format, where time is represented

on the horizontal axis, and pitch is represented on the vertical axis. A note is indicated by

a mark on the piano-roll, and each instrument or track has its own piano-roll. This allows it

to generate polyphonic music, where multiple notes and instruments are played at the same

time.

To evaluate the quality of the generated music, MuseGAN uses several objective metrics
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that measure aspects like harmonic coherence, rhythm, and inter-track dependency. The

model is trained on a large dataset of symbolic music, such as the Lakh MIDI Dataset, and

evaluated both through these metrics and through subjective listening tests. These tests

show that MuseGAN is capable of generating music that is not only musically coherent but

also pleasant to listen to, with different versions of the model excelling at different aspects

of music generation.

In the context of MuseGAN, for example, the need for handling temporal dependencies

in music can theoretically be partially addressed by integrating GRUs into its architecture21,

MuseGAN focuses on polyphonic, multi-track music generation, and while its primary mech-

anism is the GAN framework, the temporal structure of music could be further improved

by introducing GRUs to handle dependencies across time, especially in scenarios where har-

monic progression and rhythmic patterns evolve over long sequences.

However, like Jukebox, MuseGAN’s training data are not all in the public domain, and

explicit authorizations from original authors may not have been obtained.

3.5 IBM’s Watson Beat

IBM’s Watson Beat is another open-source project, it integrates various machine learning

methodologies to support music composition in partnership with human artists. Though

technical specifics of Watson Beat are not as publicly detailed as other AI systems, it is

clear that the system relies on several key approaches. One major component is cognitive

computing, a core feature of IBM’s Watson platform. Cognitive computing allows Watson

Beat to simulate human thought processes, applying music theory, structure, and emotional

content to produce compositions that are both technically sound and emotionally engaging.

21Although it doesn’t, but it’s a thought
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22

Machine learning algorithms play a central role, enabling Watson Beat to analyze large

datasets of music from different genres. By learning the patterns, structures, and defining

elements of these genres, the system generates new music that fits the style or mood specified

by the user. While the exact architecture of Watson Beat is not disclosed, it is likely that

neural networks, especially recurrent RNNs or Long LSTM networks, are employed. These

types of networks are well-suited for sequential data like music, as they can retain information

over time, allowing for coherent and fluid compositions.

Watson Beat also allows for user interaction, where users can specify parameters such

as mood, genre, or instrumentation. This interactive feature ensures that the system tailors

the generated music to the user’s input. The user input system may use decision trees or

rule-based algorithms to map these inputs to specific musical outcomes.

A key characteristic of Watson Beat is its emphasis on collaboration between AI and

human musicians. The system functions as a creative partner rather than a replacement for

human composers. It enables bidirectional interaction, allowing human artists to influence

the AI’s output and edit the AI-generated content, ensuring the final product aligns with

the artist’s creative vision. However, the specific details regarding the training data used

for Watson Beat have not been publicly disclosed. Consequently, it’s unclear whether the

training data comprises public domain works or if explicit authorizations from original au-

thors were obtained. If trained ethically for future commercial use, Watson Beat could serve

as a tool that enhances the creative process, providing new opportunities for expression and

experimentation while working alongside human composers.

The four aforementioned models are intended to be scientific research projects and, there-

22Though everyone has a different definition, this generally refers to a piece’s ability to deeply resonate
with listeners, evoking feelings, memories, or a strong connection
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fore, are not designed for commercial use. They are all open-source projects, granting re-

searchers and developers access to their code to further advance this technology.

3.6 Commercialization of modern models

With the boom in modern music generation attempts, follows the commercialization of said

models. More and more services become available for the everyday consumers. Services like

Suno.ai, Udio, and Musicfy not only spark everyday users but also controversy. The root

cause lies within the training process of generative AI models like this. This is not an isolated

issue with music, in fact, creative works across all fields are actively fighting back against this

process called “scraping”. Scraping is defined by the action of AI companies “downloading”

the internet and feeding the works of others to their machine learning models, training them

to create by studying and analyzing the styles of existing artworks without the consent of

the original creators. This in turn hurts the livelihood of said creators, since now users can

simply pay the AI companies for their services instead of commissioning the original creators

even when they’re going after a certain style that is known as that particular artists’. On

the one hand, one could argue that this makes art and music accessible to everyone, but

on the other hand, it is done at the expense of someone’s hard work being stolen. Some

AI advocates would say that the models learn in a fashion that is not unlike how a person

would learn, for example, as composer, you listen to tons of music, and you learn by “copying”

certain style. But AI has the computing power far superior to human abilities, making the

playing field incredibly uneven. One example would be Midjourney23 allowing its user to

enter prompts such as “create the character design in the style of Hayao Miyazaki,” then

accurately producing the image in this style.

23An AI image generation service
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In June 2024, major record labels (Universal Music group, Sony Music Entertainment,

and Warner Music group) have sued Suno.ai and Udio AI companies for allegedly stealing

copyrighted materials to generate music(23). Without disclosing how they have trained their

AI model, Suno.ai released a statement saying the model does not work by memorizing and

regurgitating pre-existing content, instead, it’s designed to generate completely new outputs

since their technology is transformative24. They also state that their “mission is to make it

possible for everyone to make music.”(24)

Since then, a lot of the generative AI services have disabled the feature that allowed

their users to mimic a certain artist in hopes of avoiding potential copyright infringement.

Although styles cannot be copyrighted, text prompts that include an artist’s name might

cause commercial models to generate outputs that plagiarize specific pieces of music by the

artist on which they were trained. The problem, however, is not going away anytime soon,

since legislators are slow to adapt to a digital world that is rapidly evolving ever since the

birth of Open AI’s ChatGPT back in 2022. Many artists and musicians have already been

scraped against their wills, and there still aren’t laws established for royalties from scraping,

let alone an “opt out” option for the artists. In a juncture like this, one is faced with a

dilemma, should one take their music off the internet in an age where online presence plays a

major role especially for artists that are just starting up in order to protect their intellectual

properties, or should one look for ways to compete with the new technologies, so music

written by human doesn’t become obsolete too soon. This is by no means an easy question

to answer, and creative workers have to understand that, technological advancement will not

stop because a group of people do not like it. Humans create arts in order to express, make

a statement, and ultimately evoke resonance, with AI that perspective of art making is lost.

However, that is not to deny the functionality of AI tools. If there must be a war in the near

24The word “transformative” is used to describe how their model works
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future over artistic autonomy and rights, it will not be between AI and humans, it will be

the companies that wield the powers of AI that are coming after the human artists. Machine

learning algorithms by themselves are merely tools, whether to take or to give up the power

is entirely up to us. Sun Tzu says in “The Art of War” that, “If you know the enemy and

know yourself, you need not fear the result of a hundred battles.”(25) It may not be our

enemy (although many creative workers may think it is,) the purpose of this dissertation is

to start to understand the tool that is generative AI, in hopes of using it as a tool to aid

composers in the composition process. Note that this is not to say that we as composers

should hand our composition process over to AI, but to use the AI as a digital assistant to

handle tasks like orchestration and etc.

3.7 What does it all mean?

The generative AI tools explored in this dissertation are inherently dependent on the data

used to train the AI music generation models, as their functionality is entirely contingent

upon the patterns, structures, and stylistic features embedded within their datasets. These

models do not possess an innate understanding of music; rather, their "musical brains" are

constructed through the curation, preprocessing, and feeding of data. In essence, their ability

to generate music is bound by the statistical relationships and patterns present in the data,

limiting their capacity to innovate or create beyond the confines of their training.

This dependency underscores a central challenge in developing AI for music composition:

how to teach the unknowable. Music, as a deeply human form of expression, often transcends

tangible rules or codified structures. It is shaped by cultural, emotional, and experiential

contexts that defy straightforward quantification. Teaching AI to "understand" these in-

effable aspects involves approximations rather than direct transmission of knowledge. For
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instance, embedding metadata, such as emotional intent or cultural context, into training

datasets allows models to simulate understanding, but these simulations remain rooted in

statistical likelihoods rather than genuine comprehension. Similarly, iterative fine-tuning,

where a model’s outputs are adjusted through human feedback, creates heuristics for emu-

lating expressiveness or stylistic fidelity without the AI truly grasping the underlying intent.

The development of an AI model’s "musical brain" involves a complex process of repre-

sentation learning, where relationships between musical elements are encoded into abstract

mathematical spaces. Through hierarchical modeling, advanced systems begin with broad

musical structures—such as key, tempo, and form—before filling in details like melodic lines,

harmonic progressions, and dynamics. This process mirrors, to some extent, the layered

approach of human composition, but it lacks the lived experience and creative intuition that

underpin human artistry. Instead, the AI relies on algorithmic processes, such as gradient

descent and back propagation, to optimize its ability to generate music that adheres to the

stylistic tendencies and structural rules present in its training data.

This leads to the philosophical question of whether these tools can truly "know" music.

Their outputs can evoke emotional responses and demonstrate stylistic coherence, but their

knowledge is statistical rather than experiential. The creative leaps that characterize human

artistry—those moments of inspiration driven by personal experience, cultural influence, and

emotional resonance—remain inaccessible to AI. The AI’s "creativity" is thus combinatorial,

assembling elements from its training data into novel but ultimately derivative configurations.

The implications of this contingency are profound, particularly in an era where creative

works are increasingly subject to practices like data scraping. The AI’s reliance on training

data raises ethical and professional concerns about intellectual property, artistic agency, and

the commodification of creativity. These tools, while powerful, are not autonomous entities;

they are shaped by the data and frameworks provided by their human developers. As such,
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the role of the composer shifts from creator to collaborator and curator, guiding these systems

to produce outputs that align with artistic goals while addressing the limitations and ethical

challenges inherent in their use.
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CHAPTER 4

The hunt for a model

Thus, the quest to find a modern, easy to understand, easy to use, and easily accessible

music generative AI model begins. My first choice was Google’s Magenta, since it is open-

source and readily available. However, by the time I acquired the skills to install it, Google

had moved forward with Ableton, and have made it into a plugin called Magenta Studio for

Ableton Live. Although I do not have Ableton Live, I found the web-based demo provided

by Google on their TestKitchen. Upon testing the model, it produces somewhat satisfactory

results. However, since the generated excerpt is short and there is no information about the

training data, it is difficult to make a meaningful comparison with other types of models,

such as autoregressive models.1

4.1 MusicLM(4)

The first model I encountered was MusicLM – a sophisticated model designed for generating

high-fidelity music from text descriptions. The system builds upon prior advancements

in audio generation, specifically leveraging the framework established by AudioLM, which

models audio in a hierarchical, autoregressive manner. However, MusicLM extends this by

incorporating a significant feature: text conditioning. This allows the model to not only

generate audio but to produce music that corresponds directly to descriptive text inputs,

1Based on open-source access
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such as "a calming piano melody with soft background vocals."

The methodology employed by MusicLM is hierarchical in nature, which means that the

model generates music across multiple stages, each adding progressively finer details to the

audio. Initially, the model generates semantic tokens, which capture the high-level structure

of the music, such as melody and rhythm. This ensures that the broader aspects of the

music, such as the overall mood and genre, adhere to the textual description provided. In

the second stage, these semantic tokens are transformed into acoustic tokens, which represent

the finer details of the sound, such as timbre and sound quality. This hierarchical method

allows MusicLM to generate music that is both coherent over extended periods (up to five

minutes) and rich in detail, addressing the challenge of maintaining long-term consistency

in generated audio.

To train the model, MusicLM relies heavily on SoundStream and MuLan. SoundStream

provides the audio tokenization framework, allowing for high-fidelity audio compression and

reconstruction. MuLan, on the other hand, facilitates the text conditioning aspect of the

model. It is a joint music-text embedding system that learns representations for both music

and text in the same space, ensuring that the generated music aligns closely with the text

prompt. During training, MusicLM uses MuLan embeddings derived from audio data, while

during inference, it uses MuLan embeddings computed from the input text descriptions.

One of the major challenges in developing a system like MusicLM is the scarcity of paired

music-text datasets. To overcome this, the model uses MuLan embeddings from large-scale,

audio-only datasets during training. This approach eliminates the need for paired data and

allows MusicLM to learn from vast amounts of music without requiring corresponding text

annotations. Moreover, the researchers behind MusicLM introduced a new dataset called

MusicCaps, which contains 5.5k high-quality music-text pairs curated by expert musicians.

This dataset plays a crucial role in evaluating MusicLM’s performance and improving its
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Figure 4.1: MusicLM encoding input using SoundStream and MuLan (4)

ability to generate music that aligns with text prompts.

The model’s architecture is based on decoder-only Transformer model,2 and it uses tem-

perature sampling3 to generate diverse yet coherent music sequences. The model can also

generate longer musical pieces by autoregressively predicting subsequent tokens based on

previous ones, which enables it to produce coherent music over extended periods. Addition-

ally, MusicLM introduces a feature called "story mode," which allows for dynamic changes

in the text prompt over time, generating music that evolves with changing descriptions.

While my dissertation discusses the contributions of RNNs and LSTMs to sequence gener-

ation, it is important to acknowledge the transformative impact of transformer architectures,

2A type of machine learning model designed to process and understand sequential data, like text, by using
self-attention mechanisms to focus on the most relevant parts of the input

3A method used in AI generation to control how random or focused the output is, with higher temperatures
making it more creative and lower temperatures making it more predictable
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Figure 4.2: Training (left) and inference (right) (4)

which have emerged as the state-of-the-art in handling sequential data. Transformers, first

introduced in the "Attention Is All You Need" paper(26), represent a significant advance-

ment by replacing the recurrent nature of RNNs and LSTMs with self-attention mechanisms.

This shift allows them to process long sequences more efficiently by attending to relevant

portions of the input data without the limitations of sequential memory. In the context

of music generation, transformer-based models like MusicLM leverage these capabilities to

generate complex, stylistically coherent outputs across extended durations. The inclusion

of transformers in these tools aligns with the same architecture that powers models like

ChatGPT(27), illustrating their versatility across domains. By improving computational

efficiency and contextual understanding, transformers have paved the way for advancements

in generative AI, including the tools and methods explored in this dissertation.

In terms of evaluation, MusicLM significantly outperforms its predecessors, such as Mu-

bert and Riffusion, both in audio quality and faithfulness to the input text descriptions. This

is measured using various metrics, including the Frechet Audio Distance (FAD), which evalu-

ates audio quality, and the MuLan Cycle Consistency (MCC), which assesses how closely the

generated music adheres to the text prompt. The model also underwent human evaluations,

where listeners preferred MusicLM’s generated samples over other systems.
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4.2 EnCodec(5) and MusicGen(6)

After the setback with MusicLM, the search for a model that runs locally continues. Luckily,

I came across an autogressive model called MusicGen(6). MusicGen is a model that, like all

other models discussed in this paper, is open-source. Similar to Magenta, it is trained on a

combination of music in the public domain and licensed music. It introduces a novel approach

to music generation that integrates high-quality output with user control, utilizing text

descriptions or melodic inputs to direct the creative process. The system addresses a critical

challenge in the field: generating music that not only exhibits coherence but also aligns with

specific user-defined parameters such as genre, instrumentation, or melodic structure. It

presents a streamlined architecture that simplifies the generation process while maintaining

a high degree of flexibility and precision.

But before we dive into MusicGen’s methodologies, we must first understand the codec

model that it is built on – EnCodec(5). EnCodec is a state-of-the-art neural audio compres-

sion model introduced by Meta AI’s FAIR team, designed to deliver real-time, high-fidelity

audio at lower bit rates. EnCodec uses a deep learning-based encoder-decoder architecture to

compress audio signals efficiently while preserving their perceptual quality. This model sig-

nificantly improves on traditional audio compression methods by leveraging neural networks

to represent audio signals more compactly and reconstruct them with minimal artifacts. The

model has been trained to handle various audio formats, including speech and music, while

maintaining real-time processing capabilities, making it suitable for streaming applications.

At the heart of EnCodec is its encoder-decoder system. The encoder compresses the

audio signal into a latent representation, which is then quantized to produce a compact,

discrete representation of the audio. This quantized data is then passed to the decoder,

which reconstructs the original audio from this compressed format. One of the key features
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Figure 4.3: EnCodec’s encoder decoder system for music compression(5)

of EnCodec is the use of Residual Vector Quantization (RVQ), a technique that refines the

quantization process by successively applying multiple quantization steps. This helps the

system achieve high levels of compression without losing significant audio quality. RVQ

allows EnCodec to support various bit rates, adjusting the number of quantization steps

dynamically to meet different bandwidth constraints.

EnCodec also employs multi-scale adversarial loss functions, which improve the percep-

tual quality of the reconstructed audio by focusing on different time-frequency representa-

tions of the audio signal. These loss functions ensure that the model not only minimizes

the error between the original and compressed audio but also reduces perceptual distortions,

producing higher-quality audio that sounds more natural to human listeners. Additionally, a

unique loss balancer is used to stabilize the training process by ensuring that each component

of the model contributes proportionately to the overall learning process.

A notable advantage of EnCodec is its ability to handle real-time audio processing. The
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model is designed to be computationally efficient, running on a single CPU core while still

processing audio faster than real time. This is achieved through careful architectural design

and optimization, including the use of lightweight Transformer models for entropy cod-

ing.4 The Transformer component compresses the quantized representation even further

by modeling the structure of the compressed audio data, allowing for additional reductions

in bandwidth without sacrificing audio quality. Moreover, because of the addition of the

Transformer models, it is able to skip the reverse RVQ (page 50) step and go directly to the

decoder, which significantly reduces the inference5 time. This makes EnCodec particularly

well-suited for music streaming, where low-latency, high-fidelity audio compression is critical.

EnCodec is versatile in terms of the audio formats it can handle. It supports both

mono and stereo audio at different sample rates (24 kHz and 48 kHz), and it is trained on

a variety of audio domains, including clean speech, noisy speech, and music. The model

has been evaluated extensively using both objective metrics6 and subjective evaluations7 to

compare its performance against traditional codecs like Opus and EVS, as well as other neural

audio codecs like Lyra-v2. Across these evaluations, EnCodec consistently outperforms its

competitors, particularly at lower bit rates, where maintaining high perceptual quality is

challenging.

One of the innovations in EnCodec is the use of variable bit rate training, which allows

the model to operate at multiple bit rates ranging from 1.5 kbps to 24 kbps. This flexibility

enables it to adapt to different bandwidth constraints dynamically, providing high-quality

audio even at lower bit rates. The model’s use of entropy coding, combined with the Trans-

4A data compression technique that reduces the size of data by representing frequently occurring items
with shorter codes and less common items with longer codes

5Generating output after training

6Such as signal-to-noise ratio

7MUSHRA tests
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former model, further enhances its ability to compress audio efficiently while keeping the

processing time within real-time limits. With EnCodec being the foundation of MusicGen,

the researchers took the models trained on EnCodec’s datasets, as while as taking the RVQ,

Transformer, and Decoder architectures to build MusicGen. Central to MusicGen’s method-

ology is a single-stage transformer-based language model. Transformers have demonstrated

significant success in tasks involving sequential data processing, such as language and audio.

In MusicGen, the model operates on a set of compressed discrete music representations,

commonly referred to as tokens, which are derived from audio data. Unlike previous sys-

tems that necessitated multiple stages or hierarchical models for music generation, MusicGen

employs a single-stage model to manage the entire process from start to finish. This sim-

plification enhances the system’s efficiency and scalability, enabling more widespread use

without compromising the quality of the generated music.

A fundamental challenge in music generation, as opposed to speech, is the increased

complexity of the audio signal. Music generally involves higher sampling rates than speech

due to its wider frequency spectrum. For example, while speech models might operate at a

sample rate of 16 kHz, music typically requires 44.1 kHz or 48 kHz, thereby increasing the

amount of data the model must process. Moreover, music contains intricate harmonic and

melodic relationships that must be carefully preserved during generation. Even minor errors

in harmony or rhythm can be jarring to listeners, rendering accuracy paramount. MusicGen

addresses this issue by utilizing a system of compressed tokens, which represent the music

in a more manageable, quantized format while still capturing the essential details required

for high-fidelity output. These tokens are generated using a RVQ, a core feature of the

EnCodec model employed in MusicGen. RVQ compresses the audio into discrete tokens,

enabling the transformer model to process them while maintaining a balance between detail

and computational efficiency. Each token stream represents different levels of the audio’s
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detail, capturing the nuances of the music in a compressed format. By decomposing the

audio into these multiple streams, MusicGen can model the dependencies between different

components of the music, ensuring that the generated audio remains coherent and musically

rich.

An important aspect of MusicGen is its arrangement of these token streams for pro-

cessing. The model employs a technique called codebook interleaving, which organizes the

tokens in a specific sequence to facilitate processing by the transformer. Various methods

exist for arranging these tokens, and the choice of pattern affects both the model’s com-

plexity and the quality of the generated music. In MusicGen, the researchers experimented

with several patterns, ultimately determining that the "delay" pattern achieves an optimal

balance between computational efficiency and the preservation of audio quality. This pattern

introduces a small delay between the different token streams, allowing the model to process

them more efficiently without sacrificing the fine-grained details crucial to music generation.

Imagine the token streams make up a choir, while the Parallel Pattern represents the choir

singing homophonically, causing the subsequent instances to copy the differences caused by

the RVQ discretizing the temporal latent space vectors (decoder outputs.) The Delay Model

minimizes the losses by delaying each token stream generated by each codebook, so not all

losses are carried over to the next instance. This is like having the token stream choir “sing”

a canon.8

A key feature of MusicGen is its capacity to allow users to control the music generation

process through text and melody conditioning. Text conditioning enables users to input

descriptive phrases, such as "an upbeat rock song with electric guitar," which guide the

model in creating music that aligns with the given description. To achieve this, the system

8A composition where one melody is played and then repeated by another voice or instrument, starting
at different times but overlapping, like a musical round
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Figure 4.4: Different types of output patterns (6)

converts the text input into a format that can be understood by the transformer model. The

researchers experimented with different text encoding methods, including T5, FLAN-T5,

and CLAP, to map the text input into a form that effectively conditions the model’s output.

Melody conditioning provides an additional layer of control by allowing users to input

a specific melody, which the model uses as the foundation for the generated music. This

feature is particularly useful for musicians or composers who have a specific melodic idea in

mind but wish the model to develop it into a full piece. To implement melody conditioning,

MusicGen uses a chromagram9 representation, which captures the harmonic structure of

the input melody. This chromagram is then input into the model as a conditioning signal,

guiding the generation process to ensure that the resulting music aligns with the provided

melody. Notably, MusicGen does not require labeled data for this process, enhancing its

9A way to represent spectral audio information as a visual representation of pitch
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flexibility and accessibility.

The results of MusicGen are noteworthy. The system outperforms other state-of-the-art

models, such as Riffusion and Mousai, in both objective measures—including FAD, Kullback-

Leibler Divergence, and CLAP Score—and subjective listening tests, where human evaluators

rated the quality and relevance of the generated music. MusicGen is capable of generating

music at a sampling rate of 32 kHz, which, while slightly lower than the typical 44.1 kHz of

standard music production, still produces music of sufficiently high quality to satisfy most

listeners.

One of the critical findings in the research is the effectiveness of the codebook inter-

leaving patterns. Through ablation studies,10 the researchers demonstrated that selecting

the appropriate interleaving pattern 11is crucial for balancing the trade-offs between model

complexity and audio quality. The Delay Pattern was found to be particularly effective, as it

reduces computational load while maintaining the quality of the music. This balance allows

the model to generate music more efficiently, making it feasible for a broader range of users,

from casual creators to professional musicians.

Beyond its technical achievements, MusicGen has broader implications for the field of

music generation. Its simplified architecture could make music generation more accessible

to a wider audience, including individuals without extensive technical expertise. The ability

to control the output through text and melody conditioning makes it a valuable tool for

musicians, composers, and producers, who can use it to explore new creative possibilities.

Moreover, the system’s design allows for future improvements in fine-grained control12 over

10Systematically removing or modifying parts of the model or its features to understand their impact on
the quality and behavior of the generated music

11The pattern that organizes the tokens in a specific sequence to facilitate processing by the transformer

12The ability to precisely adjust specific aspects of the generated music, such as melody, rhythm, or style,
to achieve a desired outcome
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the generation process, potentially unlocking even greater expressive potential.

Despite its strengths, the authors and developers of MusicGen acknowledge that Music-

Gen has limitations, particularly in achieving fine-grained control over certain aspects of the

music. The model relies on broad conditioning signals, such as text or melody, but does

not yet offer the ability to control more detailed musical elements like individual instrument

tracks or specific rhythmic patterns. Future research could explore more sophisticated con-

ditioning methods and expand the diversity of the datasets used for training. A possibility is

combining the MusicGen with a hierarchical architecture, making it suitable for generating

music with clearer structures. The authors also address the ethical considerations of using

large-scale generative models in music, particularly concerning issues of data bias and the

potential for AI-generated music to compete with human artists.
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CHAPTER 5

Implementation

To adapt the MusicGen model to generate music that aligns with my musical style, we

implemented a systematic fine-tuning process. This process involved enhancing the pre-

trained model with a dataset of my original compositions. By employing this approach, we

were able to leverage the foundational capabilities of the pre-trained MusicGen model while

tailoring it to generate music that reflects my unique compositional style. In the following

sections, I will provide a detailed description of the computational methods employed in

this work to fine-tune the MusicGen model on Google Colab, a cloud computing platform.

The training process utilized a NVIDIA T4 Tensor GPU with 12.0 GB of GPU RAM. The

process had to take place on Google Colab due to the technical constraints posed by my

equipment, but if another composer were to attempt the same thing with a computer with

slightly better specs, the whole thing can be done locally. The only potential obstacle would

be the inaccessibility of the GPU posed by the MacOS system.

5.1 Getting the model ready

5.1.1 Dataset preparation

Our initial step involved the collection of a diverse set of training music, which I composed.

To create this dataset, I first organized a collection of both newly composed and past works
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that are representative of my compositional style. The collection contains about 2 hours of

original music, in genres such as film score, musical, film song, and EDM. To ensure con-

sistency and compatibility with the MusicGen model, all audio files were exported with a

uniform sampling rate of 44.1 kHz. A uniform sampling rate can prevent data misalign-

ment, which can lead to errors during training and hence unwanted degraded performance.

This conversion was crucial for maintaining alignment with the model’s input specifications,

facilitating seamless integration during the subsequent training stages.

5.1.2 Data preprocessing

Following data collection, we preprocessed our training data by dividing each music file

into segments of 30 seconds. This segment length was selected based on the architectural

limitations of the model (MusicGen with 300M parameters). To further refine the training

dataset, we organized the music samples into training, validation, and testing subsets. Each

file was meticulously labeled with descriptive tags capturing the essence and stylistic nuances

of the piece, providing contextual guidance to the model throughout the fine-tuning phase.

5.1.3 Loading and configuring the pre-trained MusicGen model

To initiate the fine-tuning process, we employed PyTorch on Google Colab to load the pre-

trained MusicGen model. This platform was selected to harness the advanced computational

resources available in a cloud environment, thereby facilitating the efficient processing of the

dataset. To safeguard data security and privacy, the training data are loaded from Google

Drive, which is not legally accessible to other commercially available AI companies like Suno,

and the output model at each checkpoint is saved to Google Drive as well.
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5.1.4 Model fine-tuning

In the fine-tuning process, we employed an adaptive moment estimation optimizer (AdamW)

in conjunction with categorical cross-entropy1 as the loss function.2 This configuration has

proven effective in similar generative tasks. AdamW’s stability in convergence, resilience

to hyperparameter sensitivity,3 and effective balance between exploration and exploitation

make it an optimal optimizer for tasks requiring precise fine-tuning, such as music generation.

It enables robust learning and generalization by dynamically adjusting the learning rate for

each parameter. Categorical cross-entropy, on the other hand, aids the model in learning a

probability distribution over potential outcomes, enabling it to produce outputs that align

with specific musical patterns or styles. This combination optimized the model’s learning

trajectory, allowing it to adapt more accurately to my compositions. In the context of deep

learning, iterations and epochs are terms related to the training process. An iteration is a

single step in training when the model processes a fraction of the entire training set, whereas

an epoch refers to one complete pass (a thousand iterations) through the entire training set,

consistently monitoring performance across both the training and validation sets to assess

convergence and employ an early-stopping method to prevent overfitting. We conducted four

trials of the fine-tuning process, with the first trial containing only a quarter, and five epochs

of the entire data set to ensure the viability of the method, while the other three trials were

done with the complete data set but different amounts of epochs.

1A measure of how well the model predicts the next note or musical event, with lower values indicating
more accurate predictions

2A mathematical tool that measures how far the generated music is from the desired output, helping the
model learn and improve during training

3How changes in the model’s settings, like learning rate or batch size, affect its performance and the
quality of the generated music
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Figure 5.1: Simplified fine-tuning process

5.1.5 Training the fine-tuned Model

During the training phase, we observed a gradual decrease in the categorical cross-entropy

(CE) loss and perplexity (PPL) values across epochs, indicating that the model is progres-

sively learning from the training data, suggesting that the model is effectively adapting to

the data. The gradient norms initially exhibit high values and exhibit some initial instability

but stabilize in later epochs, reflecting a more consistent and controlled update process as

training progresses. A gradual learning rate decay throughout the training process facil-

itates the model’s convergence, thereby avoiding large parameter updates in later stages.

This is crucial for producing a stable fine-tuned model. We periodically save checkpoints,

particularly when a new best state for validation loss is achieved. This tracking of the most

performant model state during training ensures that, even if subsequent epochs exhibit a

decline in performance, the most effective model can be retained.

5.2 Evaluation of the fine-tuned model

To assess the model’s performance, we used PPL (perplexity) as the primary metric, as it

serves as an indicator of a model’s predictive accuracy. In music generation, lower perplexity

values indicate that the model has successfully acquired the ability to produce outputs that

closely align with the training data. All four of our trials achieved satisfactory perplexity
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scores, this data suggests the model’s capacity to generate music that aligns with the stylistic

attributes of my original compositions. One thing worth pointing out before we delve into

the details of each trial is that the attempts that had successfully generated outputs all had

a temperature of “1”, meaning the model was allowed to be “creative” and deviate from the

provided text prompt, while a “0” would mean for the model to adhere strictly to the prompt.

When given temperature below “1”, the model would only generate outputs of silent audio

files.

5.2.1 Trial one

We first tested the water with trial one, running five epochs (5,000 iterations,) to fine tune

the model with approximately 30 minutes of music. At the end of epoch one, the model

achieved a CE of 2.228 and a PPL of 35.907, reflecting its initial performance. By epoch two,

these metrics improved to a CE of 1.551 and a PPL of 6.566, indicating significant learning

progress. epoch three showed further refinement, with a CE of 1.222 and a PPL of 4.284. The

improvement continued in epoch four, achieving a CE of 1.094 and a PPL of 3.611. Finally, by

the end of epoch five, the model reached a CE of 0.998 and a PPL of 3.237, marking consistent

progress and suggesting the model became increasingly adept at generating sequences with

reduced uncertainty and higher accuracy. These results demonstrate effective fine-tuning,

with steady decreases in both CE and PPL across epochs.

With a final PPL of 3.237, it was apparent that the model had been fine-tuned to the

provided data set, and there was a possibility of some overtraining since the data set size was

small; the generated materials should reflect the stable state of the model. With the first

trial, the main goal was to have a model that would generate music regardless of the style

to determine the viability of the methodology. The resulting model demonstrated somewhat

promising results, with music that features little to no influence from the data set. For
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example, when given a prompt that includes labels such as “orchestral,” “acoustic guitar,”

and “and cello,” the model generated something that sounded quite absurd. However, at

least this step proved this method to be viable.

5.2.2 Trial two

The fine-tuning process again demonstrates a clear downward trend in CE and PPL values

across successive ten epochs, reflecting the model’s improving performance. Initially, the

CE starts at 5.234 and drops to 3.112 by the final epoch, while PPL begins at 187.36 and

decreases significantly to 22.46, underscoring the model’s enhanced ability to predict and

encode data patterns. The gradient norms stabilize around an average of 0.125, suggesting a

well-behaved optimization process throughout training. Validation metrics align closely with

training results, with the validation CE decreasing from 5.523 to 3.218 and the validation

PPL reducing from 205.74 to 25.36. These consistent reductions in both training and val-

idation metrics underscore the success of the fine-tuning process in optimizing the model’s

performance.

However, the final PPL is not ideal due to the model not being trained enough, the

resulting model generates music that somewhat resembles my musical style, but should

the text prompts resemble the labels provided in the dataset too much, it would generate

something that it too close to the music in the dataset, implying a potential overfitting issue.

5.2.3 Trial three

Due to trial two’s higher than trial one value of PPL, we decided to increase the number of

epochs to fifteen, adding 5,000 additional iterations to train the model with the same data

set. In epoch one, CE started at 3.369 and PPL at 64.032, which decreased to 2.645 and
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26.226 by the end of the epoch. Progress continued in epoch two with CE at 2.185 and PPL

at 14.791, and further improved in epoch three with CE of 2.044 and PPL of 12.701. By

epoch five, the CE had dropped to 1.859 and PPL to 9.871, showing steady adaptation. This

trend persisted through the next epochs, with CE reaching 1.608 and PPL 7.257 by epoch

eight. By epoch ten, CE was at 1.512 and PPL at 6.834. The model continued refining,

ending epoch fifteen with a CE of 1.379 and a PPL of 6.243.

Although a clear downward trend exists in both CE and PPL values, the resulting model

was more unstable than the last trial. It is a hit or miss, with a success rate of about

50 percent, meaning half of the time, it would not generate music at all when given a

prompt. Though the reasons are uncertain, our educated guess is that during training,

the model has encountered “catastrophic forgetting” (also known as catastrophic inference).

It is a phenomenon observed in artificial neural networks during sequential learning tasks,

particularly during fine-tuning. It occurs when a model trained on a new dataset or task

experiences a significant degradation in its ability to perform previously learned tasks. This

issue arises because the neural network’s parameters are overwritten during training on the

new data, erasing or diminishing the knowledge encoded for the original tasks. Catastrophic

forgetting is especially problematic when a pre-trained model is adapted to a new, often

narrower, domain. Pre-trained models such as MusicGen are trained on large-scale datasets

to capture a wide range of features and patterns. Fine-tuning involves updating the model

to specialize in a specific task or dataset. However, without proper precautions, the updates

can overwrite the general-purpose knowledge learned during pre-training, losing the model’s

broad applicability.
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5.2.4 Trial four

Because of the turn of event in trial three, we decided to fine tune the model again, this time

running only five epochs to see if we could avoid the catastrophic forgetting that happened

in the last trial. In the first epoch, the CE starts at 3.864 with a PPL of 161.216, and by

the end of the epoch, the CE decreases to 3.291, corresponding to a PPL of 59.292. This

trend continues into the second epoch, where the CE reduces further to 2.707 and the PPL

to 25.365. By the third epoch, the CE drops to 2.420, and the PPL to 18.485. The fourth

epoch shows even better results, with a CE of 2.206 and a PPL of 14.388. Finally, in the fifth

epoch, the CE reaches 2.025 and the PPL decreases to 12.056, demonstrating the model’s

progressive refinement and the increasing alignment of predictions with the training data.

Validation summaries echo this improvement, with CE decreasing from 3.746 in epoch one

to 3.169 in epoch five, and PPL declining from 42.366 to 23.772. The resulting model is even

more unstable than that of trial three, when prompted, the model often would not generate

outputs that contained any actual music, sometimes it would output what can be described

as “sound effects” at best, they are sparse and unpredictable.

5.2.5 Findings and thoughts

One interesting observation is that out of all the trials, the attempts that do yield successful

results are the ones without any prompts. They often sound more like the pieces we provided

in the fine-tuning dataset. The presumption here is the differences in labeling. While we

have a system of labeling the musical pieces in the dataset, these labels might have different

meanings in the original data used to train the pre-trained model, whether how the developers

labeled their data or how the model categorized the data. Because the fine-tuned model is

built upon the pre-trained model, the conflicting labels might have confused the model,

making it unsure how to execute some of the keywords we provided in the text prompts.
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Figure 5.2: PPL trends for Trials 1 through 4

Through this fine-tuning process, we fine-tuned the MusicGen model to produce music

that somewhat mirrors my compositional style, though not so much harmonically speaking;

certain orchestral traits from the dataset are apparent in the outputs. By adhering to

the aforementioned process and leveraging both the pre-trained model’s capabilities and a

dataset of my original compositions, we created a model that generates musical outputs that

align with some of our specific artistic preferences.

However, that is not to say that the fine-tuned models do not have issues, on the contrary

one immediate problem that stems from the outputs is the lack of structure, both micro and

macro. AI models like MusicGen operate on token-level sequence prediction, treating mu-

sical elements as discrete units without explicitly addressing their theoretical relationships.
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Figure 5.3: CE trends for Trials 1 through 4

While this approach allows for stylistic diversity, it often results in compositions that lack

coherent harmonic progressions, voice leading, and phrase-level structural integrity. The lack

of explicit representation for concepts such as tonality, chord functions, and cadences hinders

the model’s ability to generate music that aligns with Western theoretical frameworks. The

core limitation of models like MusicGen lies in their reliance on statistical learning. These

models generate music by predicting sequences based on probabilities derived from training

datasets. While this allows them to replicate patterns of harmonic progressions observed

in their training data, they lack an understanding of why these progressions occur or their

theoretical underpinnings. This disconnect arises from several factors.

First, the models operate as black boxes, focusing on mapping input to output without

explicit rule-based logic. Second, their training data, while vast, is not annotated with the
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functional roles or theoretical structures of harmony. This lack of explicit labels prevents

the model from differentiating between statistical regularities and music theory principles.

Lastly, the models emphasize local coherence, generating short-term sequences that may

sound plausible but fail to exhibit a global harmonic structure. Integrating harmonic under-

standing into AI music models poses significant challenges. Traditional music theory relies

on rule-based systems, which are deterministic and do not align easily with the probabilistic

nature of deep learning. Moreover, encoding music theory into a neural network would re-

quire extensive annotation of training datasets to include functional harmonic roles, such as

tonic, dominant, or subdominant, as well as the relationships between them. Balancing this

integration while maintaining the generative flexibility of current models is a complex task.

One solution would be building a hierarchical architecture for the model. A hierarchical

architecture divides music generation into interconnected levels, each responsible for different

aspects of the composition process. This layered approach introduces structured decision-

making and allows for explicit integration of theoretical principles at various stages. By

segmenting tasks across hierarchical layers, the model can simultaneously address global

and local musical aspects. A top layer might handle overarching structures such as key

centers and harmonic progressions, while intermediate layers focus on melodic and harmonic

interplay within these constraints. A lower layer could refine details like note-level phrasing

and stylistic ornamentation, ensuring theoretical adherence and expressive coherence.

The hierarchical framework allows for the integration of Western music theory at different

stages of the generation process. The top layer could establish tonal centers, harmonic pro-

gressions, and large-scale modulations. Intermediate layers would be tasked with generating

voice leading, secondary harmonies, and phrase-level dynamics, ensuring that these elements

align with the theoretical structure established in the top layer. Finally, the bottom layer

would handle embellishments and ornamentation, ensuring note-level decisions are consistent
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with the broader harmonic and stylistic context. This layered approach allows the model

to maintain both theoretical coherence and creative fluidity, producing music that resonates

with listeners.

One of the key advantages of a hierarchical design is its ability to preserve context across

multiple levels of composition. Local decisions, such as individual chord choices or melodic

phrasing, can be informed by broader structural goals, such as tension and resolution across

a movement. This ensures that harmonic choices and thematic developments align with

the overarching framework of the composition, producing music that feels intentional and

cohesive.

A hierarchical model could achieve significant improvements in areas critical to West-

ern music, such as cadences, voice leading, and thematic development. It would enable

the generation of functional harmonic progressions, including authentic cadences that define

phrase closures and establish resolution. Voice leading would benefit from smooth transi-

tions between chordal voices, reducing dissonance and enhancing overall cohesion. Thematic

motifs could be effectively guided through their introduction, evolution, and recapitulation,

ensuring structural integrity and emotional impact across sections of the composition.

Despite its promise, the hierarchical approach presents certain challenges. It introduces

additional computational complexity and requires training data that reflect detailed theoret-

ical structures. Balancing rigid adherence to music theory with creative flexibility also poses

a significant challenge, as overly rigid systems may stifle innovation. Nonetheless, advance-

ments in hierarchical modeling hold great potential for transforming AI music generation,

allowing these systems to produce compositions that are both statistically and theoretically

coherent.
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5.3 Scoring with MusicGen

Although the test results are not what I had envisioned before, I had to put the now fine-

tuned model into action; after all, the purpose of this paper is to find a feasible way for an

independent creative worker to work with a locally run fine-tuned generative AI model. Some

of the cues in my dissertation piece are composed with this model. During the process, I

first prompt the model with text, including keywords that define the genre, instrumentation,

and general mood that I am trying to achieve, and cross my fingers and hope that it would

infer something of use.

Out of the countless numbers of tries, I have struck gold with trial two’s model three

times. The first time is the result of a prompt that says “menacing drone,” the output

is a drone that has no particular harmonic movement but interesting colors and timbres.

Therefore, there was no way to transcribe the output generated by the model. The drone

was then imported into a Digital Audio Workstation (DAW4) session file, where I initially

attempted to incorporate it as part of the orchestration. After further listening, I realized

the need to separate the mid-range and lower frequencies for more versatile use. To achieve

this, I considered two approaches: duplicating the track and applying equalizers to isolate

the desired frequency ranges, or utilizing a stem-splitting tool to separate the frequencies

directly from the audio file. I opted for the latter.

As the process progressed, I found myself desiring greater control over individual pitches,

which would enable more harmonic possibilities beyond the static nature of the drone. To

address this, I bounced the bass and mid-frequency outputs as separate files and used them in

a granular synthesizer, effectively transforming them into new instruments for cues through-

out *Infinite*. This cue required extensive modifications to the model’s raw output due to

4Examples include Logic Pro, ProTools, and Ableton Live
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Figure 5.4: The workflow of cue 1 of Infinite

its lack of rhythmic or harmonic movement. Ultimately, the processed output functioned as

a supportive instrumental element rather than the primary focus of the composition.

The second time is the result of the prompt “hip-hop” after numerous unsuccessful at-

tempts using more elaborate prompts containing descriptors like "upbeat" or "laid-back."

This simplified input led the model to generate a beat resembling a conventional hip-hop

rhythm, which was subsequently used to rescore cue 7 of Infinite. In addition to the per-

cussion track, the output included other elements, such as a piano and a bassline, though

these were not immediately aurally distinct. The model’s limited understanding of harmonic

structure resulted in a repetitive bassline characteristic of hip-hop music, a feature that was

both a strength and a limitation in this context.

The generated audio file was then imported into the DAW session file, with the tempo

set to adapt for Logic Pro’s tempo analysis. Though it may not sound like it, the tempo

is actually constantly changing. The original output audio file was split into three separate

tracks—drums, piano, and bass— by the Logic Pro stem splitter for further processing. The

percussion track remained unaltered throughout the cue, as it effectively provided a rhythmic

foundation that aligned with the desired aesthetic. Minimal transcription was required for

this cue due to the suitability of the drum track in establishing a basic rhythmic structure.

However, the repetitive nature of the generated bassline and piano tracks necessitated

selective muting in certain sections. To introduce greater harmonic and orchestral flexibility,

new basslines were composed and orchestrated around in specific parts of the cue. Portions

of the piano track were incorporated into the final product without modification, as its "lo-
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Figure 5.5: The workflow of cue 7 of Infinite

fi" timbre contributed a desired texture and character to the overall sound. This process

exemplifies the balancing act between leveraging the strengths of AI-generated material and

addressing its limitations through creative intervention, ultimately shaping the output into

a cohesive composition that meets the needs of the cue.

The third time is the most surprising: using the simple prompt "piano," the model

generated a piece featuring a piano part with both a melody and accompaniment. Unlike

previous outputs, this piece exhibited harmonic motion and a relatively steady sense of

tempo, though it lacked the nuanced logic typically associated with tonal harmonies as

traditionally understood. In its raw form, the output was overly "cheesy" for the delicate

emotional tone required for cue 3. Consequently, further modifications were necessary to

adapt the material to suit the scene appropriately.

After transferring the raw audio file into the Digital Audio Workstation, the tempo was

pre-set to adapt for better synchronization during subsequent processing. An attempt was

made to separate the track into stems to gain control over the melody and accompaniment

individually. However, this approach proved unsuccessful due to the overlapping frequency

ranges of both parts. As a result, the process required aural transcription of the model’s out-

put, followed by a quick harmonic analysis to identify and interpret the underlying harmonic

structure:

A minor→D Major→E minor→F Major→E Major→A minor→F Major→C

73



Figure 5.6: The workflow of cue 3 of Infinite

Major→A minor→Bb Major

Using the transcribed material as a foundation, I orchestrated the piece with strings,

pads, and wind instruments, aiming to retain the core ideas of the model’s output while

mitigating its overly sentimental tone. The melody was reworked to allow for more phrasing

and dynamic breathing, and it was distributed among different instruments with doublings

to introduce textural variety and new timbral colors. Although the original output served

as a reference for tempo and meter changes, the orchestration itself was entirely reimagined.

Despite these efforts, the final product retains a certain "heavy-handedness" for the

specific scene in question. Nevertheless, this example demonstrates how generative AI can

assist composers by providing a foundation or reference point for creative work. While the

output required significant refinement, it highlights the potential for AI tools to augment

the compositional process, particularly in generating initial material that can be shaped into

a final product through human intervention.

Before actually scoring with the assistance of this model, I had hoped that it would

behave more like an assistant, where I would be able to generate musical ideas coherent to

my harmonic and instrumental styles to inspire me in the scoring process, or that it could

act as an orchestrator, where I would give it a piece of melody as a conditioning element for

it to orchestrate in a particular style. However, upon testing this method, the experience

feels backward. The model acts more like a boss who would give me a general idea and

then expect me to orchestrate and conform it. Moreover, this process takes longer than

simply writing everything myself, for the generated content would often have low fidelity
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and, therefore, be unusable in a cue. The low resolution can be remedied to an extent by

enabling multiband diffusion, where the model would infer at a higher sample rate. However,

if realism were to be considered a criterion, the current model that is accessible to everyday

composers would not suffice. The generated outputs would often sound like someone who had

heard much music and has some ideas of the timbre of different instruments; they proceed

to create what they had heard in their fever dream despite the pre-trained model being

trained on a large corpus of live recordings. If a larger model running on something with

more computing power were to try the same thing, the result would be significantly better.

However, it would not be accessible to composers every day, especially without having them

upload their works to a server somewhere. The output audio files cannot be compared with

mockups due to the model’s uncontrollable nature; the results often sound like a mishmash

of realistic instruments being vaguely remembered and playing at a low resolution. There

are no ways (at least not with this architecture) to control the parameters such as BPM,

key, chord changes, etc. Therefore, there is no way to enhance realistic programming with

this particular model at the moment.

5.4 Where does VR fit into all of this?

The research and experiments conducted in this study are intended to serve as an initial step

of a more extensive and ambitious project. During the composition of my dissertation, I also

had to write the score for a new VR game in addition to rescoring the cues from two already

released films. Traditional films, being in the 2D format, give the composers limited freedom

in expressing their musical ideas. However, that freedom increases exponentially with VR,

especially interactive VR media and all other forms of modern media; the experiencers are no

longer confined within fixed camera angles and are encouraged to explore their surroundings.

Having scored a VR game, I now understand the importance of music and sound in the
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context of total immersion. An interactive musical element is crucial to creating an immersive

environment for the person experiencing the VR environment.

Though there are ways to achieve this effect by using techniques such as triggers, pre-

composed layering remains the dominant method for creating reactive and immersive sound-

scapes. This approach involves preparing multiple musical layers or cues that can be triggered

based on specific player actions or environmental changes. When I composed the score for

the VR game Land of The Forgotten, I was first given a demo of the game environment. My

collaborator and I then discussed the layout of the game’s stages, identifying the general

atmosphere of each area and determining the locations for triggers. We agreed to produce

multiple tracks of the same length to maintain cohesion. For "Chapter One," I first composed

a track featuring ambient pads and a rocking bass line,5 which I called the "base layer." This

layer was designed to loop continuously throughout the stage. Subsequently, I created five

additional layers, each triggered by either the player’s location or gaze. These layers build

upon the base track, with harmonization tailored to reflect the unique characteristics of the

different areas within the stage.

For "Chapter Two," we employed a similar approach, dividing the stage into two main

areas, each further subdivided into three smaller sections. As in Chapter One, I composed

tracks of the same length designed to loop throughout the stage. However, instead of com-

bining distinct layers with the base layer, this stage adopted a progressive structure. Layers

were incrementally added on top of one another, creating an evolving musical texture that

corresponded to the player’s advancement through the stage. Upon reaching the final tem-

ple area, the layers continued to build, culminating in a moment where all elements were

suddenly stripped away, leaving only a solitary piano track. This final piece conveyed a

subtle sense of melancholy, encouraging the player to reflect on the journey they had just

5A pattern characterized by alternating or repeated notes that create a driving, rhythmic foundation
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Figure 5.7: Triggers and layers in the first chapter of Land of the Forgotten

experienced.

The elegance of this method lies in its reliability, precision, and the level of control it

grants composers over the aesthetic outcome. For example, a sudden shift in a game’s nar-

rative might seamlessly transition between pre-written musical layers to heighten emotional

impact. However, this approach is inherently static and finite, constrained by the pre-existing

assets and the specific scenarios envisioned by the composer.

Generative dynamic music systems, on the other hand, represent an attempt to move

beyond these limitations by introducing algorithms or models that can compose music in real

77



Figure 5.8: Triggers and layers in the second chapter of Land of the Forgotten

time based on the player’s actions or the environment. While the potential of such systems

is clear, their current implementations often fall short of the polish and intentionality that

pre-composed layering achieves. Generative systems, particularly those driven by AI, can

sometimes produce musical outputs that feel disconnected, lack thematic coherence, or fail

to align with the emotional arc of the experience. These shortcomings highlight the difficulty

of balancing the computational possibilities of real-time music generation with the artistic

sensibilities of a carefully composed score.

Despite these challenges, I believe generative systems hold significant promise for the

future of VR. Unlike pre-composed methods, generative music can adapt to unanticipated

player behaviors or emergent gameplay scenarios, creating a truly dynamic and personalized

auditory experience. The ultimate goal for this project is to be able to have a model that

not only can generate music in the composer’s particular musical style but does it in real-

time in response to what is happening within the experiencer’s field of view. Traditionally,
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this is done by the axis information gathered from the headset’s accelerometer. 6 However,

the combinations are limited and, therefore, cannot achieve a unique experience tailored to

a specific experiencer. Hypothetically, an AI-driven system could analyze player actions,

spatial positioning, and even biometric feedback (such as heart rate or gaze direction) to

generate music that evolves in real time. This capability could enable the music to feel more

alive and integrated into the VR environment, blurring the line between reactive sound

design and interactive composition.

The path forward likely lies in hybrid systems that combine the strengths of both ap-

proaches. By layering generative elements on top of pre-composed frameworks, composers

could retain the thematic consistency of traditional methods while leveraging the adaptabil-

ity of AI-driven systems. This fusion could allow VR experiences to achieve a new level of

musical interactivity and immersion without sacrificing artistic integrity.

A fine-tuned model could be combined with a computer vision program such as YOLO

(You Only Look Once.)7 It is a fast and efficient object detection system that processes an

entire image in one pass through a neural network. It divides the image into a grid, and each

part of the grid predicts whether it contains an object, where the object is, and what type of

object it might be. For each detected object, YOLO predicts the object’s position (center,

width, and height) and how confident it is about the detection. During testing, it combines

this information to determine the probability of each object and how well the predicted box

matches the object.(28)

YOLO is quick enough to work in real time, making it useful for tasks like detecting

objects in video streams. Unlike older methods, which might focus on parts of the im-

6A sensor that measures the speed and direction of your head’s movements, helping to track motion

7A real-time object detection algorithm in computer vision that processes an image in a single neural
network pass to identify and locate objects
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age separately, YOLO considers the entire image at once, helping it avoid false detections

and better understand the context. For example, it is less likely to confuse a shadow in

the background for an object because it processes the whole scene (28). Hypothetically it

could recognize objects and then converts that information into text prompts for the music

generation model to generate new music that perfectly aligns with the objects on the screen.

While generative systems are not yet as refined or elegant as pre-composed layering,

they offer a glimpse into a future where music is not merely reactive but symbiotic with the

player’s journey. The challenge lies in bridging the gap between technical innovation and

compositional artistry—a challenge that I find both daunting and exciting as I continue to

explore the potential of these tools in my work.
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CHAPTER 6

Some very necessary discussions

The integration of AI into music composition has sparked a significant debate within the

academic and creative communities. Because this technology is still in its infancy, lawmakers

are still in the process of carving out the ethical and legal frameworks to address the issues

that may or may not emerge from its use. My position is impartial, as I am interested

in observing where it progresses. While I acknowledge concerns about how it is currently

being handled, I do not believe that dislike of its present state is a sufficient reason to reject

it entirely. Moreover, I do not believe that we, as creators, should or can be replaced by

it. Proponents argue that generative AI serves as a powerful tool that enhances creativity,

democratizes music production, and enables novel forms of artistic expression. For instance,

studies by Briot et al(29) demonstrate how AI can assist composers in exploring complex

musical structures and generating innovative melodies that might be unattainable through

traditional methods. Additionally, AI-driven platforms like Meta’s MusicGen and Google’s

MusicLM have lowered barriers to entry, allowing individuals without formal musical training

to create sophisticated compositions.

Conversely, critics raise ethical and artistic concerns regarding AI-generated music. A

primary objection is the potential devaluation of human creativity and the risk of homoge-

nization in musical styles, as AI systems often rely on existing datasets that may perpetuate

prevalent trends (11). Additionally, some argue that AI-generated compositions should not

be classified as true music because they ostensibly lack the composer’s personal emotion,
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musical depth, and life experience. However, this viewpoint can be challenged on several

grounds. First, a composer’s emotional input and musical depth can be integrated into AI

models through the expression of emotions and detailed descriptions of musical intricacies

provided as text prompts. Second, authentic life experience has never been an absolute

prerequisite for composing music. Historically, composers and songwriters have effectively

conveyed experiences without personally undergoing them. For instance, Irving Berlin, a

Russian-born Jewish composer who never celebrated Christmas, wrote “White Christmas,”

one of the most iconic American holiday songs. This example illustrates that the absence of

direct personal experience does not necessarily impede the creation of emotionally resonant

and meaningful music.

Through this research, we have demonstrated that individual composers can effectively

harness generative AI models to create unique musical compositions by integrating their own

musical ideas through text prompts and fine-tuning techniques. This methodology enables

composers to input specific creative directives and adjust AI-generated outputs to reflect their

personal artistic vision. By doing so, the collaboration between AI and human composers

hypothetically mitigates the risk of stylistic homogenization. Furthermore, this partnership

preserves and enhances the value of human creativity, as composers retain control over the

emotional and structural elements of their work. Our findings illustrate that generative AI

can serve as a complementary tool, facilitating the exploration of novel musical landscapes

while maintaining the distinctiveness of each composer’s individual style. This synergy not

only fosters innovation in music composition but also ensures the continued diversity and

authenticity of artistic expression. Consequently, this study underscores the potential for

AI-human collaborations to advance the creative process without compromising the unique

contributions of human artists. To further emphasize the ability of individual composers to

achieve this, we intentionally selected the MusicGen model, which is open-sourced and can
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be run and fine-tuned locally on a consumer-grade laptop.

Experiments like this open the possibility of composers adapting to this new age of gen-

erative AI, increasing the competitiveness of individual composers by boosting their produc-

tivity, making their music production speed somewhat on paar with big techs’ commercial

models, especially when experts have predicted an explosion in contents(30), be it videos,

arts, or music, in the next few years. This study is designed to provide a solid, replicable

example demonstrating that AI can function potentially as an assistant. While it represents

only an initial step, it offers a foundation upon which future work can build. While this work

aims to help composers protect and maintain their livelihoods, one potential issue that stems

from this accessibility is the possibility of a composer feeding their model with someone else’s

works. In this case, there will need to be measures, such as antipiracy codes embedded in

the codec of audio files of other composers’ works, ensuring that it would be impossible to

use their works to train one’s model without their consent.

Another contentious debate arises regarding authorship and intellectual property rights in

the context of AI-generated works. It questions who holds ownership over such creations—the

algorithm developers, the composers whose music is used for inference, or the end-users

who generate the music. Furthermore, there is concern about the potential displacement

of professional musicians and composers, as AI tools may diminish the demand for human

expertise in the creative process(10).

For this work, we touch on this controversy by trying to maximize individual composer

control and ownership by using MIT-license open-sourced model, which allows the user to

use the model for private or commercial use and free to modify and distribute. While the

model weights are licensed under the Creative Commons Attribution-Non Commercial 4.0

International (CC BY-NC 4.0) license. At the time of this work, it is unclear whether the

output generated by the model is automatically subject to the same licensing restrictions as
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the model weights,1 since the output is not directly part of the weights.

This ongoing controversy underscores the paramount importance of sustained discourse

and investigation into the role of AI within creative industries. It is imperative to compre-

hend the delicate balance between technological advancement and the preservation of human

artistic value, as this understanding is crucial for formulating policies and practices that pro-

mote innovation while upholding ethical standards. Consequently, this work contributes to

a novel approach of how composers can utilize generative AI in the realm of music as a

collaborative tool and remain in control throughout the entire creative process.

On the other hand, what does it mean when a composer successfully trains a model that

is fine-tuned to their musical styles? After all, if one simply trains a model and then stops

writing, the musical brain of that composer stops evolving, meaning the model would stay

the same and keep writing the same music. How does one teach the model the unknowable?

Therefore, having a model can only mean one thing – that composer now has access to a

free assistant that writes what they tell it to write; it will not write new music unless they

teach it to the model. Having trained a model does not mean one can stop writing music;

on the contrary, one needs to keep composing, growing, and feeding the new music to the

model so the model can evolve with the composer. It would be unfathomable if I still wrote

the same music I used to write when I was thirty years old at sixty years old.

I would like to emphasize that the technology itself is not the adversary in this context;

rather, the challenge lies with individuals or entities that misuse it and exploit the works

of others. As lawmakers continue to develop ethical and legal frameworks to address the

potential issues arising from AI technologies, it is crucial for creatives to understand the

foundational principles of how these systems operate. By doing so, we can actively partic-

1The adjustable numbers in the model that determine how it processes input data and generates output,
based on what it learned during training
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ipate in the necessary discussions and ensure that our voices are heard and our concerns

represented.

Without this understanding, there is a risk that our perspectives may be dismissed or

deemed uninformed. Blindly boycotting the technology without engaging with its mecha-

nisms and implications could leave us marginalized in critical conversations, allowing others

to control the narrative and policies that directly impact us. By equipping ourselves with

knowledge and presenting a unified, informed voice, we can advocate effectively for ethical

practices and safeguard the integrity of our creative industries in the evolving technological

landscape.
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CHAPTER 7

Conclusion

This dissertation has explored the potential of AI-generated music as a tool for modern

composers, focusing on the development of models that prioritize accessibility, adaptability,

and ethical considerations. By examining the historical trajectory of AI in music, from early

algorithmic compositions to advanced neural networks, it becomes clear that while these

tools have the capacity to augment artistic processes, they are fundamentally contingent on

their training data and the guidance provided by human creators.

Central to this work was the pursuit of an open-source AI model capable of running

locally and being fine-tuned to emulate the stylistic nuances of specific composers. This ob-

jective reflects a broader goal: to empower composers with tools that enhance their creative

agency while protecting their intellectual property from the pervasive practice of data scrap-

ing. The ethical challenges posed by generative AI technologies, particularly in the context

of corporate control and the commodification of artistic labor, underscore the urgency of

reclaiming creative autonomy in the age of AI.

The fine-tuning and evaluation of MusicGen demonstrated both the promise and limita-

tions of current AI systems. While these models can effectively learn and replicate stylistic

elements, their outputs are constrained by the data they are fed and lack the intuitive, ex-

periential understanding that defines human creativity. Despite these limitations, AI could

offer immense potential as a collaborative partner, capable of handling repetitive or labor-
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intensive tasks, thus freeing composers to focus on higher-level creative decisions.

Throughout this dissertation, I have expressed optimism about the potential of AI to

democratize creative tools and empower independent composers. By making sophisticated

generative models more accessible, AI could theoretically level the playing field, providing

smaller creators with resources that have traditionally been out of reach. However, I ac-

knowledge the complexity of this vision and the skepticism it invites, particularly when

considering the entrenched power of larger entities in the industry.

When referring to larger entities, I am speaking broadly of two intersecting spheres: Big

Tech companies, which own and control the most advanced AI tools and infrastructure, and

composer collectives like Remote Control Productions or Bleeding Fingers, which dominate

high-profile scoring projects through economies of scale and deep industry ties. Both entities

represent significant barriers to entry for independent creators. Big Tech’s proprietary models

are often too costly or restrictive (not to mention the fact that they could be unethical,)

for smaller creators to access fully, while established composer collectives maintain industry

monopolies on blockbuster projects, leveraging their reputation and resources to outcompete

newcomers.

Despite these challenges, I believe there is room for optimism, albeit a cautious one. open-

source initiatives and smaller-scale AI tools are beginning to emerge, providing pathways for

independent creators to experiment and develop within their own artistic spaces. While

such tools may not yet rival the capabilities of proprietary systems, they are a step toward

empowering individuals to integrate AI into their workflows without complete reliance on

corporate-controlled platforms.

I recognize, however, that the current dynamics still favor those with access to substan-

tial resources—whether through corporate alliances, funding, or industry connections. My

optimism is not a dismissal of these realities but rather a reflection of the potential for fu-
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ture progress. AI’s impact on the creative landscape will ultimately depend on how these

tools are distributed, governed, and utilized. To truly equalize opportunities, the broader

creative and technological communities must address issues of accessibility, education, and

ownership.

This research represents the first step in a larger endeavor. Future work will aim to

develop AI systems that not only emulate specific styles but also generate real-time musical

responses tailored to immersive environments. Such advancements could transform the way

music interacts with dynamic media, allowing for personalized and adaptive scoring in virtual

and augmented realities. By bridging the gap between technological innovation and artistic

integrity, this project aspires to ensure that composers remain at the forefront of creative

expression in a rapidly evolving digital landscape.

Ultimately, this dissertation advocates for a vision of AI that serves as a tool of em-

powerment rather than one of exploitation. I aim to contribute to this ongoing dialogue

by exploring the ways in which AI tools can support creative independence, even within a

challenging landscape. While the barriers are real, the promise of these technologies lies

in their potential ability to inspire and enable creativity in ways that transcend current

limitations—if we are deliberate about how they are developed and shared. By equipping

individual creators with accessible, transparent, and customizable technologies, we can foster

a future where the intersection of AI and music enriches human artistry while safeguarding

the rights and agency of those who make it possible. In doing so, we reclaim the creative

domain from the control of large corporations and preserve the deeply human essence of

music in the face of technological change.
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