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A B S T R A C T

Background: Epidemiologic evidence has linked refined grain intake to a higher risk of gestational diabetes (GDM), but the biological underpinnings
remain unclear.
Objectives: We aimed to identify and validate refined grain-related metabolomic biomarkers for GDM risk.
Methods: In a metabolome-wide association study of 91 cases with GDM and 180 matched controls without GDM (discovery set) nested in the pro-
spective Pregnancy Environment and Lifestyle Study (PETALS), refined grain intake during preconception and early pregnancy and serum untargeted
metabolomics were assessed at gestational weeks 10–13. We identified refined grain-related metabolites using multivariable linear regression and
examined their prospective associations with GDM risk using conditional logistic regression. We further examined the predictivity of refined grain-related
metabolites selected by least absolute shrinkage and selection operator regression in the discovery set and validation set (a random PETALS subsample of
38 individuals with and 336 without GDM).
Results: Among 821 annotated serum (87.4% fasting) metabolites, 42 were associated with refined grain intake, of which 17 (70.6% in glycerolipids,
glycerophospholipids, and sphingolipids clusters) were associated with subsequent GDM risk (all false discovery rate-adjusted P values <0.05). Adding 7
of 17 metabolites to a conventional risk factor-based prediction model increased the C-statistic for GDM risk in the discovery set from 0.71 (95% CI:
0.64, 0.77) to 0.77 (95% CI: 0.71, 0.83) and in the validation set from 0.77 (95% CI: 0.69, 0.86) to 0.81 (95% CI: 0.74, 0.89), both with P-for-difference
<0.05.
Conclusions: Clusters of glycerolipids, glycerophospholipids, and sphingolipids may be implicated in the association between refined grain intake and
GDM risk, as demonstrated by the significant associations of these metabolites with both refined grains and GDM risk and the incremental predictive
value of these metabolites for GDM risk beyond the conventional risk factors. These findings provide evidence on the potential biological underpinnings
linking refined grain intake to the risk of GDM and help identify novel disease-related dietary biomarkers to inform diet-related preventive strategies for
GDM.

Keywords: refined grains, gestational diabetes, untargeted metabolomics, biomarker, prediction
Introduction

Gestational diabetes (GDM), one of the most common pregnancy
complications [1], affects approximately 8% of pregnancies in the
United States [2] and predisposes pregnant individuals and their
offspring to a multitude of perinatal complications and long-term
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diabetes and cardiovascular disease sequelae [3]. The etiology of GDM
is multifactorial and remains poorly characterized, with several risk
factors potentially contributing to the onset of GDM, including age,
overweight or obesity, and family history of diabetes [4]. Diet and
lifestyle factors before and during pregnancy have been also associated
with the risk of GDM. One such food group is total grains, which are
ical similarity enrichment analysis; EHR, electronic health record; FDR, false discovery
orthern California; LASSO, least absolute shrinkage and selection operator; MS, mass
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among the most commonly consumed foods in the world, contributing
to approximately 25% of the total daily energy intake among US adults
[5]. In particular, refined grains such as white flour, white rice, and
white bread, which are milled for finer texture and longer shelf life but
lack dietary fiber, iron, and B vitamins and have a higher glycemic
index compared with whole grains, have been implicated in the risk of
GDM [6]. However, the biological underpinnings of the association
between refined grain intake and the risk of GDM remain understudied.

Metabolomics, the study of small molecules known as metabolites
and the omics approach closest to the phenotype, is a powerful tool for
precision nutrition [7]. In contrast to the conventional single-factor
epidemiological approach, metabolomics can provide an integrated
profile of the current biological status, serving as a pathophysiologic
read-out reflecting endogenous and exogenous interplay [8]. Few
studies have used metabolomics to systematically identify metab-
olomic markers for grain intake and further examine their associations
with type 2 diabetes risk [9,10], whereas data among pregnant in-
dividuals are scarce. No previous studies have examined the metab-
olomic profile related to refined grain intake among pregnant
FIGURE 1. Study flowchart
GDM, gestational diabetes; GW, gestational weeks.
11:2 case-control ratio with cases and controls matched on age at delivery (�5 y), c
visit (�3 wk).
2180 not 182 because 2 selected controls had missing blood samples.
3Phase I analysis identified individual metabolites associated with refined grain i
4Phase II analysis identified refined grain-related metabolites associated with a su
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individuals nor has any study investigated the role of refined
grain-related metabolites in the risk of GDM.

To fill this gap, we conducted a prospective discovery and valida-
tion metabolome-wide association study among pregnant individuals
with multiracial and ethnic backgrounds in a large integrated clinical
setting where universal screening and standardized diagnosis for GDM
were implemented. We aimed to 1) identify metabolites in early
pregnancy associated with dietary intake of refined grains, 2) investi-
gate the prospective associations of the refined grain-related metabo-
lites with the risk of GDM, and 3) explore the incremental predictivity
of these refined grain-related metabolites for GDM risk beyond con-
ventional risk factors.
Methods

Study design and population
This study is a secondary analysis of the Pregnancy Environment

and Lifestyle Study (PETALS), designed to examine associations of
alendar time for enrollment (�3 mo), and gestational weeks at baseline clinic

ntake.
bsequent risk of GDM.
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intrauterine environmental factors and the risk of GDM. The study
design has been described in detail elsewhere [11]. Briefly, PETALS
is a population-based longitudinal multiracial and -ethnic pregnancy
cohort study (Figure 1). The study population was drawn from the
membership of Kaiser Permanente Northern California (KPNC), an
integrated health care delivery system serving 4.5 million members,
about 30% of the population across 14 counties of the Greater Bay
Area and the California Central Valley [12]. The KPNC membership
is socio-economically diverse and highly representative of the entire
population living in the served geographic area [12]. After weekly
searches of the electronic health records (EHRs), pregnant in-
dividuals aged 18–45 y at delivery, carrying singletons, and without
recognized chronic diabetes, cancer, hepatitis C, or liver cirrhosis
were invited to participate in the study before gestational week 11,
and 3346 were included in the final cohort. Fasting blood draw,
anthropometric measurements, and questionnaires on health history,
dietary intake, and other lifestyle factors were completed at the
baseline clinic visit (gestational weeks 10–13), and GDM screening
was conducted at gestational weeks 24–28. The study was approved
by the human subjects committee of the Kaiser Foundation Research
Institute. Written informed consent was obtained from all the
participants.
Selection of cases with GDM and controls without GDM
Pregnant individuals at KPNC received universal GDM screening

(96%) with a 50-g, 24-h glucose challenge test (GCT) around gesta-
tional weeks 24–28 [2]. If the screening test was abnormal (GCT �140
mg/dL), a diagnostic 100-g, 3-h oral glucose tolerance test (OGTT) was
performed after an 8–12-h fast. Plasma glucose measurements were
performed using the hexokinase method at the KPNC regional labo-
ratory, which participates in the College of American Pathologists’
accreditation and monitoring program. GDM was ascertained by
meeting any of the following criteria: 1) �2 OGTT plasma glucose
values meeting or exceeding the Carpenter-Coustan thresholds: 1-h
180 mg/dL, 2-h 155 mg/dL, and 3-h 140 mg/dL [13] or 2) 1-h GCT
�180 mg/dL and fasting glucose �95 mg/dL performed alone or
during the OGTT [14].

Among the PETALS participants who delivered between April
2015 and January 2018, we identified 200 individuals with GDM, 91 of
whom were diagnosed by Carpenter-Coustan criteria, had serum
untargeted metabolomics data, and constituted the cases with GDM in
the current nested case-control study. We then identified 180 controls
without GDM from the PETALS cohort who delivered during the same
time and were matched with the cases at a case:control ratio of 1:2
according to age at delivery (�5 y), calendar time for enrollment (�3
mo), and gestational weeks at baseline clinic visit (�3 wk). Notably,
the number of controls was 180 not 182 because 2 selected controls had
missing blood samples. We excluded 10 participants with missing data
on refined grain intake or other covariates, rendering a sample size of
261 for identification of refined grain-related metabolites. To identify
the refined grain-related metabolites associated with GDM risk, we
further excluded 10 cases because they were diagnosed with GDM
before the timing of FFQ administration and blood sample collection,
resulting in a sample of 251 pregnant individuals in the discovery set.
To derive the validation set, we randomly selected approximately 10%
of participants in the PETALS cohort (38 individuals with GDM and
336 individuals without GDM) who delivered between April 2014 and
May 2019, were not included in the discovery set, and had complete
data on dietary intake and serum untargeted metabolomics in early
pregnancy.
733
Dietary exposure assessment
Data on habitual dietary intake during the previous 3 mo were

obtained via the Block FFQ administered at the baseline clinic visit
(gestational weeks 10–13), reflecting diet during preconception and
early pregnancy. The Block FFQ has demonstrated adequate reliability
and validity in comparison to multiple dietary records [15], serving as a
useful instrument for analysis at the energy, food, and nutrient level
among diverse populations including pregnant individuals [16,17].
Study participants reported their usual intake and portion size of foods
and beverages, including items modified to accommodate the diverse
dietary habits of the multiracial and -ethnic study cohort as used in
previous studies [18]. The nutrient and food group analysis database
was developed from the US Department of Agriculture Food and
Nutrient Database for Dietary Studies version 5.0, the Food Pyramid
Equivalents Database, and the Nutrient Database for Standard Refer-
ence [19]. Energy intake values <400 kcal/d or >6000 kcal/d were
defined as implausible and excluded.

Metabolomics data acquisition and pre-processing
Serum samples collected during the baseline visit (gestational

weeks 10–13) were stored at -80�C before analysis. To conduct a
metabolome-wide association study, untargeted metabolomics data
were acquired at the University of California, Davis West Coast
Metabolomics Center, using 3 complementary mass spectrometry (MS)
based assays as follows [20]: 1) primary metabolites such as mono- and
disaccharides, hydroxyl- and amino acids were measured by gas
chromatography/time-of-flight MS [21] including data alignment and
compound annotation using the BinBase database algorithm [22], 2)
complex lipids ranging from triacylglycerides, phosphoglycerolipids,
and sphingolipids to free fatty acids were analyzed by liquid chroma-
tography (LC)/quadrupole time-of-flight (QTOF) MS [23], and 3)
biogenic amines including microbial compounds such as trimethyl-
amine N-oxide, methylated and acetylated amino acids, and short di-
and tripeptides were measured by hydrophilic interaction LC/QTOF
MS. All LC-MS/MS data included diverse sets of internal standards.
LC-MS data were processed by MS-DIAL version 4.0 software [24],
and compounds were annotated based on accurate mass, retention time,
and MS/MS fragment matching using LipidBlast [25] and Massbank of
North America libraries [20]. MS-FLO was used to remove erroneous
peaks and reduce the false positive peak in LC datasets [26]. A total of
821 known metabolites were annotated and included in our
metabolome-wide association analysis, with the raw metabolite con-
centrations measured as peak intensities. Data in the discovery and
validation sets were normalized via systematic error removal using
random forest [27] and further transformed using the inverse normal
transformation to account for the batch effect and improve normality.
Residual technical errors were assessed by coefficients of variation: on
average, 5.8% (range 1.2%–17.8%) for primary metabolites, 3.7%
(range 0.7%–19.2%) for complex lipids, and 11.8% (range 2.7%–

19.5%) for biogenic amines.

Covariates
Potential covariates were selected based on biological plausibility

and prior knowledge, including: age at delivery (<25, 25–29, 30–34,
�35 y), self-identified race and ethnicity (Asian/Pacific Islander, non-
Hispanic Black, Hispanic, non-Hispanic White, and Other/unknown),
education (high school or less, some college/associate degree, college
degree or higher), prepregnancy BMI (<18.5, 18.5–24.9, 25.0–29.9,
�30.0 kg/m2), nulliparity (yes/no), family history of diabetes (yes/no),
chronic hypertension (yes/no), smoking before and during pregnancy
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(yes/no), alcohol use before and during pregnancy (yes/no), gestational
weeks at blood collection (continuous), fasting status at blood collec-
tion (yes/no), total energy intake (kcal/d) (quartiles), overall dietary
quality assessed by alternate Healthy Eating Index for Pregnancy
(aHEI-P) score (quartiles), and physical activity during pregnancy
assessed as metabolic equivalent of tasks-h/d (continuous).

Information on the pregnant individuals’ sociodemographic and
lifestyle factors was collected by a structured questionnaire administered
at the baseline clinic visit (gestational weeks 10–13) and information on
medical history was extracted from the EHR and if missing, supple-
mented by the study questionnaire. Prepregnancy BMI was calculated as
prepregnancyweight (kg)measured by the clinical staff on average 11wk
before conception and abstracted from the EHR (97.5%) or by self-report
(2.5%), divided by squared height (m2)measured at the baseline visit. The
aHEI-P was adapted from the AHEI-2010 by Chiuve et al [28] and an
earlier pregnancyAHEI score byRifas-Shiman et al. [29],which included
a whole grain but not refined grain component. Moderate-to-vigorous
physical activity was assessed by the validated Pregnancy Physical Ac-
tivityQuestionnaire in the first trimester [30]. A covariate was included in
the final model if the coefficient of exposure of interest changed by 10%
ormore.Although cases and controlswerematchedon age at delivery and
gestational weeks at blood collection, we adjusted for these factors in the
regression models to account for potential residual confounding [31].
Statistical analysis
Characteristics of study participants included in the nested case-

control study (discovery set) and in the validation set were summa-
rized as frequency (%) for categorical variables and mean (SD) by
quartiles of refined grain intake.

To systematically identify refined grain-related metabolites associ-
ated with GDM risk, the statistical analysis was conducted in 2 phases.
In phase I (metabolome-wide association analysis), we identified in-
dividual metabolites associated with refined grain intake using multi-
variable linear regression adjusting for age at delivery, race and
ethnicity, education, prepregnancy BMI, chronic hypertension, smok-
ing before and during pregnancy, alcohol use before and during
pregnancy, total energy intake, aHEI-P score, gestational weeks at
blood collection, and fasting status at blood collection. We considered
refined grain intake as the primary exposure and presented the results as
percentage difference in metabolite levels per single serving (1 ounce,
28.35 g equivalent/d) increase in refined grain intake, using the
following exponential function: [exp (β coefficient) - 1] � 100% [32].
In a sensitivity analysis, we tested the linear trend of the association
between refined grain intake and metabolite levels (both examined as
continuous variables) by applying restricted cubic splines with 3
equally spaced knots at 33rd (reference) and 66th percentiles.

In phase II, we examined the associations of the refined grain-related
metabolites identified in phase I with subsequent risk of GDM using
conditional logistic regression. In addition to the covariates adjusted for
in phase I, we adjusted for nulliparity and family history of diabetes as
major risk factors for GDM. We then conducted a chemical similarity
enrichment analysis (ChemRICH) of the refined grain-related metabo-
lites associated with GDM risk to facilitate biological interpretation.
ChemRICH is a statistical enrichment approach that is based on chemical
similarity rather than sparse biochemical knowledge annotations [33].
ChemRICH yields study-specific, nonoverlapping clusters of metabo-
lites, and each cluster has a self-contained sizewhereP values of different
metabolite clusters were calculated using the Kolmogorov-Smirnov test,
not relying on the size of the background database [33].
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Finally, we developed 3 sequential prediction models using logistic
regression analysis to examine the incremental predictive ability of
refined grain-related metabolites above and beyond conventional risk
factors in GDM risk prediction. Model 1 included the covariates in phase
II as conventional risk factors for GDM. Model 2 included a subset of
the refined grain-related metabolites associated with GDM risk in the
discovery set identified using the least absolute shrinkage and selection
operator (LASSO) regression. A subset instead of all the metabolites
was used to develop more interpretable and parsimonious models.
Model 3 included a combination of predictors in Models 1 and 2. Model
discrimination was evaluated by the C-statistic, which represents the
area under the curve of the receiver operating characteristic curve, and
which was pair-wisely compared using the nonparametric DeLong test
[34]. To avoid overfitting, 10-fold cross-validation was performed to
derive conservative estimates within the discovery set. To derive reca-
librated results of the prediction models generalizable to the entire
PETALS cohort, samples from the nested case-control discovery set
were reweighted using sampling weights created via a weighted likeli-
hood approach based on the inverse probability of GDM in the sub-
sample compared with the entire cohort. We further validated the
predictive performance of the selected metabolite subset by applying the
prediction models derived from the discovery set to the validation set.

Regarding power calculations, among 91 cases with GDM and 180
matched controls without GDM, with 80% power and a false discovery
rate (FDR) of 5%, we can detect a true minimum effect size of 0.15
(15% difference in normalized metabolite concentration between cases
and controls) for all annotated metabolites (n¼ 821), assuming that at
least 80% (nondifferential proportion) compounds are not associated
with the outcomes. Lowering the percentage of associated compounds
to only 10% reduces the minimum effect size to 0.14 for all metabo-
lites, suggesting that there is sufficient power to detect even small ef-
fects in this study for a large number of compounds and to discover
metabolic signatures of interest.

All analyses were performed using SAS version 9.4 (SAS Institute
Inc) and R version 3.6. We calculated the FDR-adjusted P value to
correct for multiple comparisons. The statistically significant level was
set at a 2-tailed P value <0.05.

Results

The Table presents the characteristics of study participants by
quartiles of refined grain intake in the nested case-control study (dis-
covery set) and the random subsample of the PETALS cohort (vali-
dation set). The weighted participant characteristics in the discovery set
after applying sampling weights to account for the oversampling of
cases with GDM were similar to those of the PETALS cohort (Sup-
plementary Table 1). The distribution of the 821 annotated metabolites
by metabolic superclass was as follows: lipids and lipid-like molecules
(71.0%), organic acid and derivatives (13.0%), organoheterocyclic
compounds (5.6%), organic oxygen compounds (4.5%), benzenoids
(2.2%), organic nitrogen compounds (1.7%), nucleosides, nucleotides,
and analogs (0.7%), phenylpropanoids and polyketides (0.6%), alka-
loids and derivatives and homogeneous nonmetal compounds (0.3%
for both), and hydrocarbons (0.1%) (Supplementary Figure 1).

In the phase I metabolome-wide association analysis, among the
821 annotated metabolites, 42 (78.6% lipids and lipid-like molecules,
14.3% organic oxygen compounds, 4.8% organoheterocyclic com-
pounds, and 2.4% phenylpropanoids and polyketides) were associated
with refined grain intake after FDR adjustment (PFDR <0.05) (Figure 2



FIGURE 2. Volcano plot depicting the percentage difference in the metabolites per serving increase in refined grain intake among participants in the discovery
set of a nested case-control study within the PETALS cohort.
DG, diglyceride; PC, phosphatidylcholine; PE, polyethylene; PI, phosphatidylinositol; SM, sphingomyelin; TAG, triacylglycerol.
1Calculated using linear regression analysis adjusted for age at delivery, self-identified race and ethnicity, education, prepregnancy body mass index, chronic
hypertension, smoking before and during pregnancy, alcohol use before and during pregnancy, total energy intake, alternate Healthy Eating Index for Pregnancy
(aHEI-P) score, gestational weeks at blood collection, and fasting status at blood collection.
2Different electrospray ionization (ESI) modes of the indicated metabolite.
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and Supplementary Table 2). Of these 42 metabolites, 47.6% were
positively and 52.4% were negatively associated with refined grain
intake. In a sensitivity analysis exploring nonlinear associations,
regression based on restricted cubic splines showed that most of the
metabolites (83%) had linear associations with refined grain intake (P
value for nonlinearity >0.05; data not shown).

In the phase II analysis, 17 out of the 42 metabolites were associated
with the risk of GDM (PFDR <0.05) (Supplementary Table 3). We
further conducted ChemRICH analysis to map biochemical clusters
and facilitate biological interpretation of metabolic processes under-
lying the associations of refined grain metabolites and the risk of GDM.
Seven clusters of refined grain-related metabolites significantly asso-
ciated with GDM risk were enriched via ChemRICH (P <0.05), 3
clusters (glycerolipids, glycerophospholipids, and sphingolipids) of
which remained significant after FDR adjustment (PFDR <0.001;
Figure 3). Overall, the glycerolipid cluster was positively associated
with the risk of GDM and driven by key metabolite triacylglycerol 49:3
(OR: 2.15; 95% CI: 1.33, 3.48) with the lowest P value within this
cluster. The glycerophospholipids and sphingolipid clusters were
overall negatively associated with the risk of GDM with phosphati-
dylcholine 36:3 B (OR: 0.45; 95% CI: 0.28, 0.73) and ceramide d34:0
(OR: 0.58; 95% CI: 0.38, 0.88) as the key metabolites, respectively. In
a sensitivity analysis further adjusting for physical activity, we found
similar results to those in the main analysis.

To evaluate the incremental predictability of metabolites beyond
conventional risk factors (Model 1 as reference), we developed mul-
timetabolite panels using 10-fold cross-validation (Model 2) and an
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additive Model 3 including predictors in Models 1 and 2 in the dis-
covery set (Figure 4A). The multimetabolite panels selected using
LASSO regression included the following 7 of the 17 GDM-associated
metabolites: polyethylene p-38:4, sphingolipids d40:1, hydrocinnamic
acid, N-methylproline, sphingolipids d43:1, diglyceride 34:3, and tri-
acylglycerol 51:3. Details of feature selection via LASSO regression
are shown in Supplementary Figure 2. The C-statistic for Model 1
using the conventional risk factors (0.71; 95% CI: 0.64, 0.77) was
similar to that for Model 2 (0.71; 95% CI: 0.64, 0.78; P ¼ 0.990). In
Model 3, adding the 7 LASSO-selected metabolites to the conventional
risk factors model further increased the C-statistic to 0.77 (95% CI:
0.71, 0.83; P ¼ 0.008 comparing Model 3 vs. Model 1). In the vali-
dation set (Figure 4B), 6 out of the 7 metabolites (i.e., polyethylene p-
38:4, sphingolipids d40:1, N-methylproline, sphingolipids d43:1,
diglyceride 34:3, triacylglycerol 51:3) selected by LASSO in the dis-
covery set were detected and available. The C-statistic for Model 2
(0.65; 95% CI: 0.57, 0.73) was lower compared with Model 1 (0.77;
95% CI: 0.69, 0.86; P ¼ 0.038). Combining the conventional risk
factors and metabolite biomarkers increased the C-statistic in Model 3
(0.81; 95% CI: 0.74, 0.89) compared to Model 1 (P ¼ 0.013) and
Model 2 (P < 0.001).
Discussion

In a case-control metabolome-wide association study nested within
the prospective PETALS cohort, we identified 42 serum metabolites



FIGURE 3. Multivariate ChemRICH enrichment plots depicturing the clusters and metabolites associated with intake of refined grains and the risk of
gestational diabetes in the discovery set of a nested case-control study within the PETALS cohort.
DG, diglyceride; FDR, false discovery rate; GDM, gestational diabetes; PC, phosphatidylcholine; PE, polyethylene; SM, sphingomyelin; TAG, triacylglycerol.
1P value of each metabolite pathway was calculated using the Kolmogorov-Smirnov test.
2PFDR was adjusted across the metabolites in all clusters.
3Key metabolite: the metabolite with the lowest P value within each cluster.
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(mainly lipids and derivatives) as biomarkers for the intake of refined
grains. Of the 42 metabolites, 17 were also associated with GDM risk.
Moreover, 7 refined grain-related metabolites selected by LASSO
regression exhibited incremental predictability of GDM risk above and
beyond conventional risk factors. These findings provide new insights
into the metabolomic profiles of refined grain intake and the underlying
mechanisms linking them to the risk of GDM to inform diet-related
preventive strategies for GDM.

To the best of our knowledge, no previous study has investigated
the metabolomic profile of refined grain intake, nor has any study
examined the metabolic pathways linking refined grain intake to the
risk of GDM. The majority of the annotated metabolites in our study
were lipids and lipid-like molecules, consistent with other studies in the
literature among pregnant individuals [35,36], potentially due to the
easier identification of lipids compared to other metabolites. We
identified 17 metabolites associated with both refined grain intake and
the risk of GDM, including those belonging to fatty acyls, glycer-
olipids, glycerophospholipids, sphingolipids, steroids, carboxylic
acids, organooxygen compounds, and phenylpropanoic acid clusters.
These findings underscore the key role of lipid metabolism in the
refined grain-related GDM etiology and echo those from previous
studies on the metabolomic profile of GDM. In a case-control study of
321 pregnant individuals nested in the National Institute of Child
Health and Human Development Fetal Growth Studies-Singleton
cohort, plasma glycerolipids at the time of GDM diagnosis were
positively associated with GDM risk [37]. Two case-control studies in
Poland and Germany among 24–40 pregnant individuals showed that
plasma glycerophospholipids at the time of GDM diagnosis were
736
negatively associated with GDM risk [38,39]. One longitudinal study
with 61 pregnant individuals in China found that unsaturated glycer-
ophospholipids and sphingolipids were lower in the plasma samples of
participants with GDM throughout pregnancy compared with controls
[40]. However, none of the previous studies have comprehensively
assessed the associations among refined grain intake, serum untargeted
metabolites, and the risk of GDM.

Importantly, we identified novel metabolomic markers including N-
methylproline and hydrocinnamic acid related to both refined grain
intake and GDM risk. Despite the lack of comparable data among
pregnant individuals, previous studies among nonpregnant individuals
have linked N-methylproline to dietary intake of healthy plant-based
foods and lower risk of diabetes and cardiovascular disease [41,42].
Hydrocinnamic acid, as a major component of cinnamon extract, may
increase glucose disposal by enhancing glucose transport activity in
animal models [43].

Given the positive association between refined grain intake and
GDM risk, we expected the associations between refined grain-related
metabolites and the risk of GDM to be consistent so that metabolites
positively associated with refined grain intake are also positively
associated with GDM risk and vice versa. However, 3 metabolites (i.e.,
triacylglycerol 49:2, phosphatidylcholine 36:3 B, and ceramide d34:0)
that were positively associated with refined grain intake were nega-
tively associated with GDM risk, and 4 metabolites (i.e., polyethylene
p-34:1, sphingomyelin d43:1, 5-α-androstan-17-β-ol-3-one glucosi-
duronate, and lactose) that were negatively associated with refined
grain intake were positively associated with GDM risk. It is plausible
that these metabolites do not function individually; therefore, we used



FIGURE 4. The C-statistic (95% CI) of prediction models of gestational diabetes risk based on conventional risk factors and/or serum refined grain-related
metabolites in the discovery set (a) and validation set (b) within the PETALS cohort.
1All models were calculated using logistic regression analysis.
Model 1 adjusted for conventional risk factors for gestational diabetes, including age at delivery, self-identified race and ethnicity, education, prepregnancy body
mass index, nulliparity, family history of diabetes, chronic hypertension, smoking before and during pregnancy, alcohol use before and during pregnancy, total
energy intake, alternate Healthy Eating Index for Pregnancy (aHEI-P) score, gestational weeks at blood collection, and fasting status at blood collection.
Model 2 adjusted for the 7 refined grain-related metabolites selected via least absolute shrinkage and selection operator (LASSO) regression in the discovery set:
polyethylene p-38:4, sphingomyelin d40:1, sphingomyelin d43:1, diglyceride 34:3, triacylglycerol 51:3, N-methylproline, and hydrocinnamic acid. All 7
metabolites except hydrocinnamic acid were available in the validation set.
Model 3 adjusted for the combination of predictors in Models 1 and 2.
2P value for pairwise comparisons of C-statistics calculated using DeLong’s test.
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ChemRICH analysis to overcome the inherent limitation of univariate
analysis for individual metabolites. We observed that the glycerolipid
cluster, which included metabolites positively associated with refined
grain intake, was positively associated with GDM risk. In addition,
clusters of glycerophospholipids and sphingolipids, with mixed asso-
ciations of metabolites with refined grain intake (two-thirds negative
and one-third positive), were overall negatively associated with GDM
risk. These findings highlight the importance of assessing the
comprehensive metabolomic profile using multivariate pathway
enrichment methods to account for metabolite interplay.

Our findings were biologically plausible. Triacylglycerols, which
constituted the majority of metabolites within the glycerolipid cluster
and were positively associated with refined grain intake and GDM risk,
might not directly inhibit insulin signaling [44]. Rather, lipid in-
termediates produced during triacylglycerol synthesis, such as diac-
ylglycerol, which activates insulin-signaling inhibiting protein kinase
Cε, and phosphatidic acid, which alters mTOR kinase activity, may
interfere with the intracellular signaling pathway leading to insulin
resistance [44]. Sphingolipids are involved in the cascade of intracel-
lular signaling and cell recognition [45]. A case-control study and its
follow-up experiments in mice and cells showed that a downregulation
in sphingolipid metabolism was associated with pancreatic β-cell
dysfunction and insulin resistance, potentially disrupting glucose ho-
meostasis [46]. On the other hand, the mechanism behind the negative
association of phosphatidylcholine and polyethylene, the most abun-
dant phospholipids in mammalian cells, which constituted most
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metabolites in the glycerophospholipids cluster in our study, with in-
sulin sensitivity is less clear [47]. Reduced phosphatidylcholine levels
mediated by hepatic knockout of the key enzyme for phosphatidyl-
choline biosynthesis led to triacylglycerol accumulation but had no
effect on insulin sensitivity in a knockout mouse model [48]. Similarly,
deletion of the rate-limiting enzyme for polyethylene production in
mice increased levels of diacylglycerol but did not lead to insulin
resistance [49].

Our study had several notable strengths. The study used untargeted
metabolomics profiling, which is a promising tool for a comprehensive
measurement of exogenous and endogenous metabolites in a biological
fluid [50]. Compared to targeted metabolomics profiling, which is
usually less expensive and follows a hypothesis-driven approach of
metabolites of known identity, untargeted metabolomics may provide
novel information on biological pathways with clinical relevance [51].
Moreover, we performed external validation for the refined
grain-related metabolites and their associations with GDM risk, using
samples assayed via the same metabolomic platforms following the
same data generation and quality control procedures in a single labo-
ratory, which ensures consistent measurements of metabolites and re-
duces technical variations. There were differences in participant
characteristics between the discovery and validation sets; however, the
heterogeneity between the 2 sets and higher C-statistics in the valida-
tion set demonstrated the robustness of our findings. Finally, our study
also collected detailed data on a multitude of covariates to reduce
potential residual confounding.



TABLE
Participant characteristics according to quartiles of refined grain intake in the discovery and validation sets of within the PETALS cohort (2014–2019)

Refined grain intake, quartiles Discovery set (n ¼ 261) Validation set (n ¼ 374)

Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile 1 Quartile 2 Quartile 3 Quartile 4

Total, n (%) 65 (24.9) 65 (24.9) 66 (25.3) 65 (24.9) 93 (24.9) 93 (24.9) 95 (25.4) 93 (24.9)
Refined grain intake, serving, mean
± SD

1.1 � 0.4 2.0 � 0.2 3.0 � 0.3 5.5 � 2.1 1.3 � 0.3 2.2 � 0.2 3.3 � 0.4 6.0 � 2.4

Age at delivery, years, n (%)
<25 3 (4.6) 6 (9.2) 4 (6.1) 7 (10.8) 12 (12.9) 8 (8.6) 8 (8.4) 19 (20.4)
25–29 12 (18.5) 15 (23.1) 9 (13.6) 14 (21.5) 19 (20.5) 28 (30.1) 24 (25.3) 26 (27.9)
30–34 30 (46.2) 31 (47.7) 31 (47.0) 24 (36.9) 38 (40.8) 37 (39.8) 43 (45.3) 28 (30.1)
�35 20 (30.8) 13 (20.0) 22 (33.3) 20 (30.8) 24 (25.8) 20 (21.5) 20 (21.1) 20 (21.6)

Race and ethnicity, n (%)
Asian/Pacific Islander 18 (27.7) 22 (33.8) 28 (42.4) 18 (27.7) 20 (21.4) 22 (23.6) 32 (33.6) 26 (28.1)
Non-Hispanic Black 5 (7.7) 5 (7.7) 5 (7.6) 9 (13.8) 19 (20.3) 12 (12.9) 18 (18.9) 28 (30.1)
Hispanic 25 (38.5) 18 (27.7) 19 (28.8) 18 (27.7) 24 (26.0) 22 (23.6) 27 (28.6) 24 (25.8)
Non-Hispanic White 15 (23.1) 14 (21.5) 11 (16.7) 17 (26.2) 30 (32.3) 37 (39.9) 18 (18.9) 15 (16.1)
Other/unknown 2 (3.1) 6 (9.2) 3 (4.5) 3 (4.6) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Education, n (%)
High school or less 5 (7.7) 6 (9.2) 10 (15.2) 7 (10.8) 7 (7.5) 9 (9.7) 12 (12.6) 19 (20.5)
Some college/associate degree 30 (46.2) 27 (41.5) 24 (36.4) 24 (36.9) 31 (33.4) 31 (33.3) 28 (29.4) 39 (42.0)
College degree or higher 30 (46.2) 32 (49.2) 32 (48.5) 34 (52.3) 55 (59.1) 53 (57.0) 55 (58.0) 35 (37.5)

Nulliparity, n (%) 31 (47.7) 31 (47.7) 28 (42.4) 30 (46.2) 52 (55.8) 48 (51.6) 35 (36.9) 39 (42.0)
Prepregnancy BMI, kg/m2, n (%)
<18.5 2 (3.1) 0 (0.0) 2 (3.0) 1 (1.5) 4 (4.3) 0 (0.0) 2 (2.1) 2 (2.1)
18.5–24.9 24 (36.9) 23 (35.4) 19 (28.8) 28 (43.1) 38 (40.7) 43 (46.2) 33 (34.6) 38 (40.7)
25.0–29.9 26 (40.0) 15 (23.1) 20 (30.3) 16 (24.6) 28 (30.0) 20 (21.4) 32 (33.8) 27 (29.1)
�30.0 13 (20.0) 27 (41.5) 25 (37.9) 20 (30.8) 23 (25.0) 30 (32.3) 28 (29.5) 26 (28.1)

Chronic hypertension, n (%) 5 (7.7) 6 (9.2) 2 (3.0) 2 (3.1) 7 (7.5) 4 (4.3) 5 (5.2) 8 (8.6)
Family history of diabetes, n (%) 11 (16.9) 18 (27.7) 16 (24.2) 20 (30.8) 20 (21.6) 23 (24.7) 28 (29.5) 19 (20.4)
Smoking before and during
pregnancy, n (%)

1 (1.5) 0 (0.0) 4 (6.1) 3 (4.6) 2 (2.1) 4 (4.3) 7 (7.5) 4 (4.4)

Alcohol use before and during
pregnancy, n (%)

31 (47.7) 40 (61.5) 39 (59.1) 37 (56.9) 52 (55.9) 51 (54.9) 52 (54.8) 48 (51.7)

Total energy intake, kcal/d, mean±
SD

1065.6 �
421.0

1283.2 �
346.1

1485.5 �
415.6

2275.1 �
864.1

1077.7 �
383.3

1401.3 �
361.4

1716.6 �
513.0

2495.4 �
875.0

aHEI-P score, mean ± SD 59.0 � 11.8 57.5 � 11.1 58.4 � 9.9 61.1 � 12.4 56.2 � 11.7 60.4 � 10.8 58.2 � 9.5 63.3 � 12.7
Gestational weeks at blood
collection, mean ± SD

13.4 � 2.3 13.5 � 1.9 13.3 � 2.1 13.5 � 2.1 13.6 � 0.2 13.3 � 0.3 13.6 � 0.3 13.5 � 0.2

Fasting status at blood collection, n
(%)

56 (86.2) 56 (86.2) 58 (87.9) 58 (89.2) 92 (98.9) 93 (100.0) 94 (99.0) 92 (98.9)

aHEI-P, Alternate Healthy Eating Index for Pregnancy.
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Some study limitations are worth noting. First, refined grain intake
was assessed using a conventional dietary assessment tool (FFQ),
which may be subject to recall bias and measurement errors. However,
the Block FFQ has been validated against 3 4-d diet records and
demonstrated applicability to analyses on food group and nutrient
levels among diverse populations, including pregnant individuals [16,
17]. Second, many food groups are intercorrelated, resulting in po-
tential residual confounding. Although we controlled for overall di-
etary quality, changes in the concentrations of certain metabolites may
be due to the consumption of food groups other than refined grains.
Nonetheless, this metabolome-wide association analysis identified a
comprehensive metabolic profile associated with refined grain intake
and GDM risk, improving our understanding of the underlying meta-
bolic processes. A short-term controlled feeding study among pregnant
individuals can help validate the metabolomic signature of refined
grains during pregnancy. Third, although we adjusted our analysis for
race and ethnicity, we were not able to identify whether refined
grain-related metabolites associated with GDM risk are racially and
ethnically specific given our sample size. Future larger-scale studies are
needed to help answer this question. Finally, since our study is
observational, we cannot infer causality between refined grain intake,
the associated metabolites, and the risk of GDM.
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In conclusion, we identified 42 metabolites (mainly lipids and de-
rivatives) associated with refined grain intake in early pregnancy, 17 of
which were also prospectively associated with the risk of GDM. The
significant associations of the metabolites belonging to glycerolipids,
glycerophospholipids, and sphingolipid clusters with both refined grains
and GDM risk and their incremental predictive value for GDM risk
beyond the conventional risk factors potentially implicate these metab-
olites in the association between refined grain intake and GDM risk.

Our findings provide evidence on the potential biological un-
derpinnings linking refined grain intake to the risk of GDM and help
identify novel disease-related dietary biomarkers including N-methyl-
proline and hydrocinnamic acid to inform GDM preventive strategies.
Future studies are warranted to validate our findings and further
elucidate the biological mechanisms for the associations between di-
etary intake and the risk of GDM.
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