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Cancer results from the progressive accumulation of genetic alterations that drive

uncontrolled cell growth. The genetic alterations present in a cancer cell originate from two

sources: 1) inherited, or germline, variants present in every cell of the body and 2) acquired,

or somatic, mutations specific to tumor cells. These two sources of genetic alterations have

largely been studied separately: germline variants for their role in cancer risk and somatic

mutations for their role in shaping somatic phenotypes. Only recently have these two

fields intersected, most notably by the observation that germline BRCA1/2 variants not
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only predispose to cancer but also influence the mutational profile of the resultant tumors.

The degree to which germline variation influences somatic phenotypes in sporadic cancer

remains unclear. We propose that similar to how the climate of a region influences the

local flora and fauna, germline variation in genes mediating processes such as DNA damage

repair, immune response, and drug metabolism, shapes tumor development.

In this work, we study germline variation in 9,099 individuals from the Cancer

Genome Atlas (TCGA) with the goal of identifying associations between germline vari-

ants and somatic phenotypes and determining what, if any, value is added by integrating

germline variants into cancer analyses. A hindrance to this type of study was a lack of

publicly available germline variant calls from individuals with cancer. To address this, we

developed and implemented a variant calling pipeline to generate a high quality germline

variant dataset from TCGA data. Accurately assessing the contribution of germline vari-

ants to somatic phenotypes requires models that account for both germline and somatic

sources of genetic alterations. We integrated germline variation and somatic mutation,

epigenetic modification, and copy number alteration data to identify genetic factors that

underlie variation in two somatic phenotypes: microsatellite instability and somatic mu-

tational signatures. We further describe a novel method to phase germline variants that

leverages unique properties of paired somatic and germline sequence data, and demonstrate

the value of including phase information into germline analyses of cancer. Overall, this

study illustrates that integration of germline and somatic data can reveal novel biological

and methodological insights.
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Chapter 1

The Value of Germline Variation in

Cancer Research

1.1 Background

It is recognized that cancer results from a progressive accumulation of damaging

genetic alterations that drive cells to grow unchecked [1, 2]. In addition to these acquired

somatic mutations that drive to tumorigenesis, all cells of the body, including all cells of

the tumor, posses inherited germline genetic variants. In this light, the cancer cell genome

can be envisioned as two distinct layers: 1. alterations that are inherited and 2. alterations

accumulated during somatic cell replication. These two genomic ’layers’ have largely been

studied separately: somatic mutations to understand how tumors grow and take on certain

molecular characteristics, and germline variants to understand heritable risk for cancer.

This disconnect between these two sources of genomic alterations is evident from the fact

that it has only recently been recommended that joint analysis of paired tumor:normal

sequence data is essential for accurate genomic interpretation [3].

Incorporating germline variants into genomic profiling of cancer patients can aid
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in identifying cancers that have a heritable origin and provide a deeper understanding

of tumor phenotypes in both inherited and sporadic cancers. As germline variants and

somatic mutations are both present in tumor cells, they in theory have the same potential to

shape tumor phenotypes. Germline variants have been demonstrated to influence somatic

phenotypes both independently and through interactions with other somatic mutations

[4, 5]. They can also influence the course of disease in a cell-extrinsic manner by influencing

how permissive the host environment is toward tumor growth. Similar to how the climate

of a region influences the local flora and fauna, there is potential for heritable variation in

genes mediating processes such as angiogenesis, immune response, and drug metabolism,

to shape individual tumor development (Figure 1.1).

The ability of germline variants to shape tumor phenotypes has been increasingly

recognized by the cancer genomics community. For example, it has recently been proposed

that germline variants can act as "co-oncogenes", or genetic alterations that are not suffi-

cient to induce cancer on their own, but can complement acquired somatic mutations [4].

This can be seen as an extension of the Knudson two-hit hypothesis, which focused on

combined germline and somatic bi-allelic alterations in the same gene, to include germline

and somatic alterations co-occurring not necessarily in the same gene, but rather in the

same functional pathways [6, 7]. Here, we will build on this idea and more broadly describe

the importance of integrating germline variation into cancer analyses. To gain additional

perspective, we summarize the current evidence that germline variation modulates cancer

risk and shapes somatic phenotypes with an emphasis on somatic phenotypes derived from

next generation sequencing (NGS) data and germline variants in the DNA damage repair

pathway.
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Figure 1.1: The Environment Shapes Growth. (A) The climate of a region
influences the composition of the local flora and fauna. (B) Similarly, we propose
that germline genetic variants shape the host environment and influence tumor
characteristics.
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1.1.1 Germline Predisposition to Cancer

It has been estimated that 4-7 genetic alterations are required to transform a nor-

mal cell to a fully malignant cell [7, 8]. The origins of these genetic alterations have only

now been the subject of intense scrutiny. The idea that a germline variant could serve as

an initiating genetic alteration was proposed first by Nordling and then Knudson [6, 7].

In Knudson’s ’two-hit’ model, an individual inherits a single damaging allele (’hit’) in a

gene, and at a probability related to the somatic mutation rate, acquires a secondary al-

teration of the remaining wild type allele (’two-hit’) in a subset of cells that go on to form

a tumor. Genes that follow this ’two-hit’ bi-allelic inactivation mechanism typically are

haplosufficient: a single genetic ’hit’ has no phenotypic effect, dual inactivation is required

to drive tumor formation. Inheriting damaging variation in certain genes effectively in-

creases cancer risk by decreasing the number of somatic alterations required to drive a cell

to malignancy.

The germline variants observed by Knudson that are known to drive overt risk

for cancer are highly damaging and relatively rare. Naturally, highly damaging germline

variants that lead to early onset cancer decrease reproductive success and will be selected

against in the population [9]. Study of rare and damaging variants that predispose to can-

cer has led to the description of a number of hereditary cancer predisposition syndromes,

each associated with a specific spectrum of cancer types and characteristic clinical features.

Cancer predisposition syndromes can result from germline alteration of a single gene, such

as Li-Fraumeni and the TP53 gene, or from germline alteration of a functional pathway,

such as Lynch syndrome and the mismatch repair (MMR) pathway [10]. Most of the causal

genetic alterations for these syndromes follow the ’two-hit’ model of dual germline and so-

matic inactivation of the predisposing [6]. However, there is also evidence for heritable

syndromic predisposition to cancer that doesn’t follow this mechanism, such as dominant

negative TP53 alleles [8] or activating mutations seen in RASopathies [11]. While these
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syndromes demonstrate a clear association between germline variants and increased cancer

risk, they account for only 5-10% of the total incidence of cancer [10].

The ability of germline variants to increase risk outside of these known predisposi-

tion syndromes is debated [12, 13]. The estimated heritability of sporadic cancer from twin

studies was recently estimated to be 33% [14]. Importantly, there is significant heritability

even when excluding highly penetrant germline variants in BRCA1 and BRCA2, which

are more common in the population than known cancer syndrome predisposition variants

[15, 16]. Damaging germline variation in genes implicated in cancer predisposition is rare

in sporadic cancer datasets [17]. Studies estimate 8-11% of adult cancers [18, 19] and

8% of pediatric cancers [20, 21] harbor a likely pathogenic germline variant in a cancer

predisposition gene. While this is higher than what was observed in control cohorts, where

1% of patients carried a likely pathogenic germline variant, it still suggests that much of

the heritable component of cancer risk is unexplained [21]. It is unlikely that this ’missing

heritability’ will be largely explained by new high-risk cancer predisposition genes. For

example, it has been suggested that it is highly unlikely that more genes exist that increase

risk for breast cancer to the same degree as BRCA1/2 [22].

In terms of genetic factors that underlie susceptibility to cancer, to date genome-

wide association studies (GWAS) have identified over 430 associations between common

variants and cancer risk [23]. The influence of these loci individually are generally small;

however, multiple susceptibility loci can be combined into a polygenic risk score that can

identify individuals with high risk [24]. In colorectal cancer, individuals in the top 1%

of a polygenic risk score distribution have a 2.9 fold increased risk over the population

median [23]. Often the mechanism by which common, non-cancer syndrome-related SNPs

identified using GWAS increase cancer risk is unclear, and frequently these SNPs are in

noncoding regions. Many noncoding GWAS SNPs, both in the context of cancer and other

diseases, have been shown to act as ’eQTLS’ that impact the expression of genes that con-
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tribute to molecular pathophysiology [25, 26]. For example, multiple cancer susceptibility

SNPs increase expression of cancer-relevant genes in normal tissue, such as PSCA expres-

sion in bladder cancer [27], SMAD7 expression in colon cancer [28], and TERT expression

in melanoma [29]. This suggests common variants identified by GWAS can modulate can-

cer risk through perturbations in expression of genes involved in oncogenic transformation.

The ability of germline variants to influence cancer risk has been shown to be

context dependent, both for high-risk cancer predisposition syndrome variants and for

low-risk GWAS susceptibility loci. A germline variant may increase cancer risk only in

certain tissues, in certain genomic contexts, or following certain carcinogen exposures.

Many cancer predisposition genes are integral components of the DNA damage repair

pathway, yet they only increase risk for specific cancer types [17]. It has not been fully

elucidated how ubiquitously expressed genes can cause tissue-specific patterns of cancer.

Similarly, the majority of GWAS loci predispose to a specific cancer type, they don’t

increase risk for cancer generally [23]. Together, this suggests that the effect of cancer

predisposing germline variants varies across tissue types. This type of interaction was

demonstrated for the 8q24 loci, which increases risk for prostate, colon, and breast cancer.

Cancer-type specific risk is achieved through tissue-specific 3D genome looping interactions

with a nearby oncogene MYC [30]. The effects of germline variants can be modified by

other genetic alteration elsewhere in the genome. Genetic modifier effects that delay cancer

onset have been described for variants pathogenic for both Lynch [31, 32] and Li-Fraumeni

syndrome [33]. Similarly, a SNP in RAD51C has been shown to increase cancer risk

in BRCA1/2 pathogenic variant carriers [34]. Finally, lifestyle factors can modulate the

effect of germline variants; for example, polymorphisms in carcinogen metabolizing genes

are associated with bladder cancer risk in the context of cigarette smoking [35]. As these

examples demonstrate, the association between germline variation and cancer risk can be

indirect and modulated by other factors.
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1.1.2 Heritability of Somatic Phenotypes

If heritable genetic variation can shape tumor development, it follows that geneti-

cally similar individuals should develop phenotypically similar tumors. Two studies have

tested this hypothesis using individuals who developed multiple independent cancers. The

first examined multiple distinct kidney tumors arising in individuals carrying pathogenic

germline variants in the VHL gene. They observed that all tumors acquired clonal chro-

mosome 3p loss and somatic mutation of the PI3K signaling pathway, but that each tumor

acquired different specific genetic alterations, suggesting convergent evolution to a similar

somatic phenotype [36]. The second examined high multiplicity squamous cell carcinomas

(SCCs) in organ transplant patients and observed more similar somatic copy number pro-

files in tumors arising in the same individual than in tumors across the cohort [37]. While

these studies offer insight into how genetic similarity correlates with somatic phenotypic

similarity, both study somewhat unique cases of individuals with an extreme predisposition

to cancer.

Studies of monozygotic and dizygotic twins have offered insight into the heritabil-

ity of cancer risk, but few twin studies have incorporated molecular profiling of tumor

characteristics [16, 14]. Somatic phenotypes have been studied in infant twins with con-

cordant leukemia, a rare phenomenon that occurs through intraplacental transfer of tumor-

initiating cells between monozygotic twins [38]. Due to this unique method of tumor initi-

ation, both twins share a common driving genetic alteration; however, the development of

further genetic alteration in the tumors varied between twins. In one case it was reported

that similar copy number alterations occurred in both twins [39], and another that there

was little similarity [40]. Thus, evidence is inconclusive, and again confounded by the fact

that these studies focus on an atypical form of cancer.

Phenotypic differences due to strain background in genetic mouse models are com-

mon [41]. Mouse models of cancer can provide insight into the role of genetic background
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in cancer development. TP53 knockout models of Li-Fraumeni show different rates and

types of tumors depending on mouse strain background [42]. Similarly, while all strain

backgrounds of APC mutant models of FAP develop colon polyps, the number varies con-

siderably. This effect was mapped to a strain-specific frameshift insertion in PLA2G2A

[41, 43]. These examples demonstrate how naturally occurring genetic variation can mod-

ify the course of cancer in mouse models. Similarly, engineered genetic variation can alter

somatic phenotypes. NF1 deficient models of neurofibromatosis only develop tumors when

NF1 is deleted in Schwann cells and hemizygous in non-neoplastic cells: mice with NF1

deletion in Schwann cells and a wild type NF1 genetic background don’t develop cancer

[44]. Fewer tumor infiltrating immune cells were observed in mice with a wild type NF1

background, indicating that genetic differences in the host environment, particular host

cells that interact with cancer cells, play a key role in the development of neurofibromas.

Both limited studies in humans and extensive work in mouse models demonstrate that

genetic background can alter tumor phenotypes and cancer progression.

1.1.3 Heritability of DNA Damage Response

Defects in DNA repair are closely linked with the development of cancer, as ev-

idenced by the fact that many predisposition genes are involved in the DNA damage

response (DDR) [45, 17]. A typical somatic cell acquires tens of thousands of DNA lesions

per day, giving a cell ample opportunity to acquire transforming mutations should these

lesions not be faithfully repaired [46]. Defects in DDR pathways can leave a signature

pattern of somatic alterations in a tumor, as evidenced by high levels of microsatellite

instability (MSI) in MMR defective tumors [47, 48] and the well-described homologous

recombination deficient (HRD) genomic rearrangement pattern seen in BRCA1/2 defec-

tive tumors [49]. Thus, defective DDR can both increase cancer risk and determine the

molecular phenotype of a tumor.
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The ability to repair DNA lesions has been demonstrated to vary between individ-

uals and is heritable [50, 9, 51]. A common method used to estimate DDR heritability

involves isolating lymphocytes from twin pairs and unrelated individuals, exposing them

to a DNA damaging agent, and assaying the degree of damage accumulated. Using this ap-

proach, multiple DDR phenotypes have been shown to be heritable, including: irradiation

(IR)-induced apoptosis and cell cycle delay [52, 53], IR-induced micronuclei burden [54],

basal micronuclei burden [54], and bleomycin-induced chromatid breaks [55]. In some in-

stances, specific genetic variants have been associated with DDR defects, but these studies

were conducted using a limited number of candidate genetic variants [56].

It has been proposed that defects in DDR could be used as an intermediate phe-

notype to predict cancer risk [54]. Heritability estimates of DDR are higher than the

heritability estimates of cancer, characteristic of an intermediate phenotype. In line with

this reasoning, lymphocytes isolated from cancer patients show DDR defects following

mutagen exposure [57, 58]. Many of these studies are a retrospective case control design

between healthy individuals and cancer patients, thus it is impossible to distinguish if the

DDR defect is constitutional or due to the cancer. However, one study included unaf-

fected family members and observed a stepwise increase in DDR defects, as measured by

the comet assay and micronuclei burden, between healthy controls, unaffected family mem-

bers, and affected patients [59]. It is intuitive to think of DDR defects influencing cancer

risk and phenotypes, but there is also potential for robust DDR to prevent cancer. For

example, ’Super p53’ mice with an extra copy of TP53 under endogenous transcriptional

control show decreased cancer incidence [60].

1.1.4 Somatic Molecular Phenotypes

Novel analytical methods have been developed to dissect a number of molecular

phenotypes from paired tumor:normal HTS data, such as mutational signatures [61, 62],
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MSI [47, 48], and burden of tumor infiltrating immune cells [63, 64]. Many of these pheno-

types exhibit a high degree of variability between cancer types and even between individual

tumors within a single cancer type. While a large fraction of this variability can be ex-

plained by somatic alterations, a number of associations between germline variants and

somatic molecular phenotypes have been discovered. Below we will summarize these find-

ings, with an emphasis on DDR pathways and somatic mutation, copy number alteration,

and methylation phenotypes.

As somatic mutation of DDR genes has been associated with characteristic patterns

of somatic base substitutions and the ability to repair DNA is heritable, it follows logi-

cally that germline variation in DDR genes can also influence somatic mutational patterns.

Rare germline variants in DDR genes have been associated with an overall increase in the

number of somatic mutations [65]. Interestingly, a GWAS approach has also identified

a common haplotype at 11q22 that is also associated with increased somatic mutation

burden that does not seem to be driven by a DDR gene [19]. The strongest evidence that

germline variants can shape the type of somatic mutations a tumor acquires comes from

the study of somatic mutational signatures. Mutational signature analysis is a method that

uses the profile of somatic base substitutions and flanking bases to identify patterns that

reflect an underlying mutational processes, or ’signature’ [61, 62]. Pathogenic germline

variants in BRCA1/2 are associated with an increased number of somatic mutations pro-

duced by mutational signature 3. However, this association requires bi-allelic germline and

somatic BRCA1/2 alteration [66, 67, 68, 19]. In contrast, mono-allelic damaging germline

variants the in homologous recombination genes PALB2, FANCD2, and FANCM have

been associated with signature 3 [65, 69, 68]. Mono-allelic variants in PALB2 in particu-

lar have been shown to cause DDR defects in cell lines and primary lymphocyte models

[70]. In what contexts germline variants require bi-allelic alteration to affect change in

somatic mutational profile remains an open question. For example, there is conflicting
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evidence that mono-allelic alteration of mismatch repair can increase somatic MSI burden

[71, 72].(cite our paper). Outside of DDR genes, associations have been found between

common variants in the APOBEC3 region and signatures 2 and 13 [73, 19], and between

rare variants in MDB4 and signature 1 [19]. An intriguing study showed that germline

HLA type can restrict the type of somatic mutations observed both at the individual and

population level [74]. Using germline HLA type and predicted neoantigen peptide binding

efficiencies, the authors show that the most frequently observed somatic mutations are

those that produce a neoantigen epitope predicted to be poorly presented by HLA. While

HLA type does not alter somatic mutational processes, it can indirectly influence the final

somatic mutational profile of a tumor by determining what somatic mutations are more

likely to escape detection by the immune system.

We have discussed somatic mutations in terms of physical changes to DNA and

mutational phenotypes as patterns of base pair substitutions across the genome. Somatic

mutations can also be analyzed in terms of the genes and functional pathways altered

in the tumor. It has been proposed that inherited variation can act as a ’co-oncogene’

to complement acquired somatic mutations, both at the single gene level in a ’two-hit’

mechanism, and at the functional pathway level [4]. Hanahan and Weinberg have described

’hallmark’ functional processes that confer oncogeneic potential to cancer cells and are

frequently somatically altered [75]. For each ’hallmark’ process, there are different paths

a tumor can take to acquire oncogenic traits. For example, cells can become resistant

to death through somatic upregulation of anti-apoptotic factors or somatic upregulation

pro-survival signals. The choice of what path a tumor takes, and therefore what genes are

somatically altered, could be influenced by germline variants that alter protein function

or expression of ’hallmark’ pathway genes. The average individual carries 85 heterozygous

and 35 homozygous loss of function (LOF) germline variants [76], and considerably more

variants predicted to be damaging or alter gene expression. Should this hypothesis be true,
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it is expected that there will be a relationship between the germline variants a person carries

and what somatic mutations they acquire. Indeed, co-occurrence and mutual exclusivity

between specific germline variants and somatic mutations has been shown [4, 77, 65, 78].

A haplotype at the 19p13.3 locus has been associated with PTEN somatic mutations [77],

and two common SNPs have been associated with PIK3CA mutation, possibly via acting

as cis-eQTLs and increasing expression of MAP3K1 and SETD9 [78]. ATM germline

truncations and TP53 somatic mutations were found to be mutually exclusive, supporting

the idea that germline dysregulation of the apoptotic pathway obviates the need for somatic

mutation of the pathway [65]. Finding meaningful relationships between specific germline

and somatic alterations is difficult as most damaging alterations are rare, and there are

an incredible number of pairwise hypotheses that could be tested. One approach is to bin

alterations by gene or by functional pathway. It has been shown that leveraging known

biological network data to smooth somatic mutation profile produces clusters of individuals

that are predictive of overall survival [79]. Further, most BRCA1/2 germline carriers fell

within the same ’network-smoothed’ cluster. This suggests that germline alterations can

influence somatic mutation of both specific genes and the overall profile of pathways that

are somatically altered.

Somatic copy number alterations (SCNAs) are common in tumors, with approx-

imately 90% of solid tumors exhibiting some degree of aneuploidy [80]. As mentioned

above, SCNA profile has been found to be similar in multiple tumors originating in the

same individual or twins, suggesting that inherited variation can shape the pattern of

SCNAs a tumor acquires [37, 36, 39, 40]. The most frequently studied SCNA phenotype

is ’BRCAness’, a somatic phenotype identified in BRCA1/2 germline pathogenic variant

carriers characterized by loss of heterozygosity (LOH) events, large-scale transitions, and

a distinct somatic mutation pattern described by mutational signature 3 [49, 62]. Us-

ing similar methodology as mutational signature analysis, a rearrangement signature has
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been defined that describes the BRCAness phenotype [66]. The term BRCAness is not

limited to tumors arising in germline BRCA1/2 carriers, associations between other so-

matic alterations in the HR pathway and a BRCAness somatic profile have been identified

[49]. There is suggestive evidence that non-BRCA1/2 hereditary breast cancer, called

’BRCAX’, also have a distinct SCNA phenotype; however this study was limited due to

small sample size [81]. Chromothripsis is a distinctive SCNA event whereby chromosomes

undergo catastrophic ’shattering’ that results in massive rearrangements. An association

between pathogenic Li-Fraumeni germline variants and somatic chromothripsis was found

in pediatric medulloblastoma, with suggestive evidence that the same association exists in

other Li-Fraumeni cancers [82]. Thus, there is evidence that both inherited variation as a

whole and specific pathogenic germline variants can influence SCNA profile of tumors.

DNA methylation is a common epigenetic mechanism of gene silencing in tumors.

The most direct association between germline variants and somatic methylation is con-

stitutional epimutation of MLH1 seen in some Lynch syndromes cases. Germline SNPs

in MLH1 regulatory elements have been shown to induce mosaic methylation of MLH1

in somatic tissues [83]. Similarly, a germline MGMT promoter SNP is associated with

somatic methylation of MGMT in colorectal cancers [84]. The exact mechanism of how

germline variants in gene regulatory elements can cause aberrant methylation remains to

be elucidated. At a broad level, germline MTHFR variants known to decrease MTHFR en-

zymatic activity have been associated with the CpG island methylator phenotype (CIMP)

in colorectal cancer [85]. The overall landscape of methylation in a tumor has been used

to improve classification of brain tumor subtypes over traditional histopathology clas-

sification [86]. Using similar methods, new associations between germline variants and

methylation patterns may be found, similar to the associations between BRCA1/2 and

SCNA profiles. Thus far it has been shown that germline variation can influence somatic

methylation by rending a specific locus more liable to DNA methylation, or by altering
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carbon metabolizing pathways.

A number of somatic gene expression signatures have been identified to characterize

tumors, particularly to identify cancer subtypes with differential overall survival. For ex-

ample, the PAM50 gene expression signature can predict survival in breast cancer [87], and

GBM expression subtypes were defined that predict overall survival [88]. There is some

evidence that germline variants can alter overall somatic expression profile. Studies of BR-

CAX families have shown that expression-derived tumor subtypes were more similar within

families than between unrelated individuals [89]. However, expression-derived signatures

are sensitive to tumor heterogeneity, as differing gene expression among heterogeneous cell

types is lost in bulk tumor RNA profiling. It has been shown using multiregion tumor

sampling that a single tumor can exhibit all GBM expression subtypes [90]. Similar intra-

tumoral heterogeneity of a prognostic expression signature was also shown in multiregion

sampling of kidney cancer [91]. Germline variants have been shown to alter somatic gene

expression at the single gene level as cis-eQTLs [92]. A study of paired tumor and normal

expression data in colorectal cancer revealed that heritable inter-individual variation in

gene expression is largely conserved between tumor and normal samples [93]. A study

in breast cancer estimated that 1.2% of the variation in somatic gene expression is due

to germline cis-eQTLs, with somatic copy number alterations and methylation explaining

another 7.3% and 3.3% respectively [25]. This indicates that germline variants influence

global somatic gene expression profiles, in accordance to what was observed in BRCAX

familial cancers. Further, a subset eQTLs alter gene expression only in the tumor [93].

These tumor-specific eQTLs have the potential to act as germline driver events that are

only activated during oncogenic transformation. While gene expression is a challenging

somatic phenotype to study, there is evidence that germline variants acting as eQTLs

influence individual differences in somatic expression.

Similar to gene expression subtyping, some cancer types are classified into subgroups

14



based on histopathology and expression of a few key genes. For example, presence or

absence of the estrogen receptor differentiates the two main subtypes of breast cancer.

It is well described that BRCA1 pathogenic germline variant carriers are more likely to

develop ER- breast cancers whereas BRCA2 carriers are more likely to develop ER+ [94].

Interestingly, there are no observed histological or molecular differences between BRCA1

and BRCA2 carriers in ovarian cancer [94, 95]. While the relationship between germline

variants and cancer subtypes is most well understood in breast cancer, two different regions

of the 5p15 locus have been associated with two lung cancer subtypes: squamous cell

carcinoma and adenocarcinoma [96]. From the study of cancer predisposition syndromes,

it is known that germline variation can influence the tissue affected by cancer. This work

demonstrates that germline variation can also influence the histopathological subtype.

1.1.5 Tumor Immune Phenotypes, Cell Composition, and Metas-

tasis

The importance of the immune system in cancer is increasing being recognized, as

evidenced by the addition of ’avoiding immune destruction’ to the hallmarks of cancer [75]

and the great interest in immunotherapy [97]. Evidence that the host immune system plays

an important role in cancer development comes from studies of immunocompromised indi-

viduals, which show that these individuals are at a higher risk for some cancer types [97].

Interestingly, it has been shown that melanoma can be transferred from an organ donor

in remission to an immunosuppressed receipient [98]. It is speculated that the donor’s

immune system can keep the cancer in a dormant state, but once in the immune-depleted

recipient environment, the cancer could grow and spread. While in these instances the

host’s immune state is influenced by immunosuppressive medication, not inherited varia-

tion, it suggests that host differences in immune response can affect tumor development.

Methods exist to determine the composition of infiltrating immune cell types using
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bulk tumor gene expression profile [64], and to determine infiltrating T cell abundance by

quantifying the number of sequencing reads that correspond to rearranged T cell receptors

[63]. These methods have allowed for a more robust quantification of the immune cell

environment in large public datasets such as the Cancer Genome Atlas (TCGA) [99]. In

an extensive study of the immune component of tumors from 33 cancer types, evidence

was found that genetic ancestry can influence PD-L1 expression, a key target of check-

point immunotherapy, and the type and abundance of tumor infiltrating lymphocytes [99].

While specific germline variants were not implicated in these associations, it suggests there

is potential for inherited variation in immune-related pathways to influence the immune

cell composition of the tumor. A pair of studies on the rs351855 germline polymorphism

in the FGFR gene exquisitely highlights how a specific germline variant can alter immune

infiltration, and how a single variant can have both cell-intrinsic and cell-extrinsic effects

on tumor development [100, 101]. In the first study, it was shown that this polymorphism

creates a novel STAT3 binding site that enhances STAT3 signaling and cell-intrinsic tu-

mor growth in a transgenic mouse model carrying a homozygous rs351855 polymorphism

[101]. In a follow-up study, it was additionally shown that this polymorphism alters the

balance of CD8+ T cells and T regulatory cells systemically, ultimately resulting in fewer

infiltrating T cells in the tumors of transgenic homozygous rs351855 mice [100]. Another

interesting avenue of investigation in tumor immunology is to understand the genetic

determinants of immunotherapy response. An estimated 9% of patients have accelerated

progression in response to immunotherapy, termed ’hyperprogressors’ [102]. Thus far there

are few genetic markers that can identify which patients may have a negative response to

immunotherapy. It would be interesting to examine heritable variation in host immune

response as a potential explanatory factor.

Associations between inherited variation and other, less easily quantified tumor

characteristics have been reported. It is now well recognized that heterotypic interactions
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between tumor cells and host stromal cells play an important role in influencing tumor

growth [75]. A fact that is often overlooked when pursuing this line of study is that host

stromal cells vary between individuals, and this host:tumor interaction may vary depend-

ing on heritable characteristics of the host cells. This has been demonstrated in prostate

cancer, where polymorphisms in ASPN are associated with an increased risk of metastatic

disease [103]. While the exact mechanism is unclear, ASPN is highly expressed in cancer

associated fibroblasts (CAFs), and a mouse model where CAFs are engineered to overex-

press ASPN risk alleles showed more metastases. It has been proposed that metastasis

is a stochastic process [2]; however, this finding suggests certain host environments may

be more hospitable to metastatic cells. Host differences in angiogenesis have also been

implicated in tumor development. Mice engineered to lack endogenous inhibitors of an-

giogenesis show enhanced angiogenesis and faster tumor growth [104]. Interestingly, these

mice show no phenotype without tumor induction, demonstrating that germline variation

that produces no overt systemic phenotype can influence tumor growth. Finally, a sugges-

tive association between germline variation in the ADAMTSL1 gene and overall survival

have been found in breast cancer, but further study is required to confirm this finding and

determine a mechanism [105].

1.1.6 Other Reasons to Consider Germline Variants in Cancer

Studies

Incorporating germline variants into the analysis of cancer samples can be informa-

tive not only for tumor phenotyping but also for personalized therapy. It is known that

germline variation can alter metabolism of common chemotherapeutics and the propensity

to have an adverse event in response to therapy [106]. For example, genetic variation in

CYP2D6 alters the metabolism of the prodrug tamoxifen to the active metabolite endox-

ifen. It has been demonstrated that there are significant differences in plasma concentration
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of endoxifen based on CYP2D6 genotype [107]. Increasing tamoxifen dose in low metabo-

lizers abrogates this difference without a significant change in adverse events. While it has

not been shown that increased plasma endoxifen correlates with improved response, these

results suggest germline CYP2D6 genotype may be useful tool when deciding tamoxifen

dosing in breast cancer. Study of immortalized lymphoblastoid cell lines from 14 families

estimated that the heritability of response to 29 common chemotherapeutic agents ranged

from 0.06 - 0.64 [108]. Much like in the case of DDR capacity, this study suggests that it

is possible to identify specific germline variants that underlie drug response. The authors

suggest the need for large-scale studies of chemotherapy response to identify pharmacologic

QTLs (pQTLs).

In a similar vein, germline variants may help inform the choice of chemotherapeutic

agent for an individual’s cancer. The breast and ovarian cancers of BRCA1/2 pathogenic

germline variant carriers exhibit high sensitivity to drugs that induce replication fork col-

lapse and DNA double strand breaks, such as platinum agents and PARP inhibitors [49].

These drugs induce DNA damage that would normally be repaired via HR; however, in

HRD BRCA1/2 cancers this onslaught of genetic mutation overwhelms the cell’s capacity

to repair leading to apoptosis or general loss of cell fitness. The increased drug sensitivity

of BRCA1/2 breast cancer is also associated with a greater overall survival [109]. It is

speculated that the improved survival is due to the fact that BRCA1/2 carriers harbor

clonal BRCA1/2 haploinsufficiency, making the development of drug-resistant subclones

less likely. This idea is supported by the observation that somatic back mutation of

germline BRCA1/2 variants is a common mechanism of platinum resistance [110]. Inter-

estingly, platinum sensitivity was also observed in ovarian cancer patients carrying germline

defects in other HR genes, suggesting this phenomenon is not limited to BRCA1/2 [109].

PARP inhibitors are commonly used as a maintenance therapy following platinum-based

chemotherapy in germline BRCA1/2 carriers. The use of PARP inhibitors in BRCA1/2
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carriers represents the first targeted treatment for an inherited cancer disorder [49]. There

is also potential to target chemopreventive agents using germline carrier status, such as the

use of daily aspirin in Lynch syndrome patients [111]. Tailoring treatment to pathogenic

germline variants gives a unique opportunity to target a genetic alteration that is clonal

in the tumor, as well as design chemoprevention strategies for those at high cancer risk.

Another often overlooked consideration when studying germline variation is the

importance of phase information [112]. Humans have two copies of every chromosome,

one inherited maternally and the other paternally. In typical HTS experiments germline

variants are not phased, or assigned to a homologous chromosome of origin. It is impossible

to fully interpret the pathogenicity of multiple heterozygous variants within a gene region

without resolving what variants lie in the same gene copy (cis) vs. those in opposite copies

(trans). For example, deleterious germline variation in a single copy of a MMR gene results

in Lynch syndrome and adult onset cancer [113]; however, deleterious germline variation in

both copies of a MMR gene is known as bi-allelic mismatch repair deficiency (bMMRD) and

leads to pediatric cancer [114]. Phase information is undoubtedly important in situations

where two highly damaging variants are present in the same gene region; however, it can

also be important for variants that are not obviously pathogenic. For example, if an

individual carries a single pathogenic variant and a cis-eQTL that affects the expression

of the relevant gene in the same gene region, two scenarios could occur: the individual

overexpresses the altered gene copy, or the individual overexpresses the WT gene copy. The

difference could have important biological implications and would be overlooked without

phase information. Further, in the situation where multiple missense variants exist in

the same gene, which is common for many large DNA damage repair proteins such as

BRCA1/2, having certain combinations of variants in cis may have a different functional

effect than would be expected from individual variant scores. Currently few tools exist to

computationally model these types of genetic interactions [115]. It is important to include
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phase information when incorporating germline variants into cancer studies, particularly

given the fact that many cancer susceptibility loci have been shown to modulate expression

of local genes.

1.2 Overview and Organization of Dissertation

In this work we aim to further the understanding of how genetic germline vari-

ants shape the course of cancer development and the development of tumor phenotypes.

While there have been numerous studies on the relationship between germline variants and

somatic phenotypes in the context of cancer predisposition syndromes, mainly cancers as-

sociated with pathogenic BRCA1/2 alleles, this relationship is less understood in sporadic

cancers. We note that since the initation of this project in 2014, interest in germline vari-

ation in cancer has grown rapidly, resulting in a number of publications that we described

in the previous section.

To address this question, we utilized the Cancer Genome Atlas (TCGA). TCGA

currently represents the largest dataset containing paired tumor:normal sequence data

from cancer patients, with data from over 10,000 individuals representing 33 cancer types

[116]. While raw germine sequence data is available from TCGA, germline variant calls

are not, largely due to patient privacy concerns. Therefore, in order to study the germline

we first had to call germline variants from the raw sequence data. We selected a cohort of

9,099 individuals with paired tumor:normal whole exome sequencing (WXS) data for our

study. We describe our experience calling germline variants and our subsequent discovery

of a technical artifact in chapter 2. At the time of publication, our data represented the

largest set of germline variant calls in a cancer cohort [117].

After stringent quality control of the germline variants calls, we next tested for

associations between rare, damaging germline variants and somatic phenotypes. We chose
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to focus on microsatellite instability (MSI) and somatic mutational signatures [61] for a

number of reasons: 1) these phenotypes are quantifiable and easily extracted from tumor

sequencing data, 2) these phenotypes are highly variable within and between cancer types,

3) there is strong underlying biological mechanism between DNA damage repair pathway

defects and manifestation of these phenotypes. In chapter 3 we explore the relationship

between germline, somatic, and epigenetic alteration of DNA damage repair (DDR) genes

and these somatic phenotypes. We surprisingly found evidence of heritable cancer predis-

position syndromes in TCGA, a dataset widely thought to represent sporadic adult-onset

cancer. We describe individuals in TCGA that exhibit characteristics of Lynch syndrome

and identify novel potentially pathogenic Lynch syndrome variants.

In the course of identifying loss of heterozygosity (LOH) events, I made the obser-

vation that unique properties of paired tumor:nomral sequence data could be exploited to

phase germline variants. Briefly, changes in variant allele frequency (VAF) between the

normal and tumor sample in regions of somatic copy number alteration can be used to

assign germline variants to their homologous chromosome of origin. Chapter 4 describes

this approach, which we call VAF phasing. We benchmarked VAF phasing against other

phasing methods and performed a phase-informed analysis of germline variants in cancer

predisposition genes.

We conclude in chapter 5 with a discussion of our results in the context of the

current knowledge of the role of germline variants in determining somatic phenotypes.

We identify limitations of the datasets currently used to investigate these questions and

propose directions for future research in the field.
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Chapter 2

Pan-Cancer Analysis Reveals Technical

Artifacts in TCGA Germline Variant

Calls

2.1 Abstract

Background: Cancer research to date has largely focused on somatically acquired

genetic aberrations. In contrast, the degree to which germline, or inherited, variation

contributes to tumorigenesis remains unclear, possibly due to a lack of accessible germline

variant data. Here we called germline variants on 9,618 cases from The Cancer Genome

Atlas (TCGA) database representing 31 cancer types.

Results: We identified batch effects affecting loss of function (LOF) variant calls

that can be traced back to differences in the way the sequence data were generated both

within and across cancer types. Overall, LOF indel calls were more sensitive to technical

artifacts than LOF Single Nucleotide Variant (SNV) calls. In particular, whole genome

amplification of DNA prior to sequencing led to an artificially increased burden of LOF
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indel calls, which confounded association analyses relating germline variants to tumor type

despite stringent indel filtering strategies. The samples affected by these technical artifacts

include all acute myeloid leukemia and practically all ovarian cancer samples.

Conclusions: We demonstrate how technical artifacts induced by whole genome

amplification of DNA can lead to false positive germline-tumor type associations and

suggest TCGA whole genome amplified samples be used with caution. This study draws

attention to the need to be sensitive to problems associated with a lack of uniformity in

data generation in TCGA data.

2.2 Background

Cancer research to date has largely focused on genetic aberrations that occur specif-

ically in tumor tissue. This is not without reason as tumor formation is driven to a great

degree by somatically-acquired changes [2]. However, the degree to which germline, or in-

herited, DNA variants contribute to tumorigenesis is unknown. While it has been clearly

demonstrated that germline variation increases cancer risk in overt and rare familial cancer

predisposition syndromes, the contribution of germline to more common and sporadic can-

cer risk is unclear and highly debated [2, 10]. It is likely that inherited germline variation

in fundamental molecular processes, such as DNA repair, can create a more permissive en-

vironment for tumorigenesis and shape tumor growth in some individuals [55, 50, 51]. It is

also likely that variation in the host germline genome can act synergistically with acquired

somatic mutations to shape the way in which tumors grow and ultimately manifest.

There is a growing interest in better understanding the contribution of germline

variation to cancer risk and tumor phenotypes [65, 21]. The most extensive pan-cancer

germline study to date identified associations between deleterious germline variation in

known cancer predisposing genes and both age of onset and somatic mutation burden [65].
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Lu et. al demonstrated that inherited variants can increase risk of developing cancer, as

well as influence tumor growth and overall phenotypic features. Similar results were found

in a study of bialleleic mismatch repair deficiency (bMMRD). It is known that bMMRD

predisposes to childhood cancer, but it was further demonstrated that acquisition of so-

matic mutations in polymerase genes (POLE, POLD1 ) led to a hypermutated phenotype

in childhood brain tumors [118]. This demonstrates a synergistic interaction between

germline variation and somatic mutation. A comprehensive study of breast cancer whole

genomes identified a somatic copy number profile signature associated with BRCA1 inac-

tivation [66]. Interestingly, this profile was associated with either inactivation of BRCA1

in the tumor via mutation or promoter hypermethylation, or via inherited germline vari-

ants. This shows that somatic mutation and germline variation can both influence tumor

phenotype.

We chose to use the whole exome sequence (WXS) data from TCGA to investi-

gate the role of germline variation in shaping tumor phenotypes. TCGA is an attractive

dataset for this purpose as there are paired tumor normal data for many cancer types.

We took a pan-cancer approach for two reasons: 1. increased sample size and therefore

increased power to detect associations of small effect size; and 2. cancers of disparate

origin may share common features which would be overlooked in a cancer type-specific

analysis [119]. For example, germline mutations in BRCA1/2 are most commonly studied

in breast and ovarian cancer, but have also been shown to increase risk for stomach and

prostrate cancer[120]. Further, germline BRCA2 mutations have been associated with a

distinct somatic mutational phenotype and an overall increased somatic mutation burden

in both prostrate and breast cancer [121, 65, 66]. To our knowledge, a comprehensive

germline analysis of all cancer types available in TCGA has not been performed. Thus

other cross-cancer germline associations likely remain to be discovered.

In an ideal dataset, a single protocol should be used for processing all samples.
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Unfortunately, this is unrealistic in large public datasets like TCGA in which samples are

collected over time and across many data centers. Since its inception in 2005, TCGA has

collected data on 11,000 patients from 20 collaborating institutions and generated sequence

data from 3 sequencing centers [116]. Differences in sample collection and processing

across centers could lead to batch effects, or variation in the data due to a technical

factor that masks relevant biological variation [122]. Problems with batch effects can

be amplified when analyzing samples across TCGA, since the number of methods used

to collect samples increases with the number of cancer types. The Pan-Cancer Analysis

Project has recognized this and aims to generate a high quality dataset of 12 TCGA cancer

types, taking care to identify and minimize technical artifacts [119].

While extensive curated somatic data are available from TCGA, germline informa-

tion is currently only available in raw form, under controlled access. Therefore, we first had

to develop and execute a variant calling pipeline on the raw normal tissue sequence data.

As a main goal of our variant calling analysis is to create a cohesive, pan-cancer dataset,

we chose to use the Genome Analysis Toolkit (GATK) joint calling approach [123, 124].

Joint calling is a strategy for variant calling in which read data are shared across samples,

in contrast to single sample calling where genotype decisions are made based on reads

from a single sample only. There are three major advantages of this approach: the ability

to distinguish sites that are homozygous reference vs. those that have insufficient data

to make a call, increased sensitivity to detect variant sites that are poorly covered in any

individual sample but well covered when the cohort is considered as a whole, and the abil-

ity to use GATK’s statistical modeling approach to variation filtration, known as ’variant

quality score recalibration’ (VQSR).

Here we describe our experience calling germline variants from a large cohort of

TCGA normal tissue WXS samples spanning 31 cancer types. Specifically, we were in-

terested in cataloguing sources of heterogeneity in sample preparation, identifying batch
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effects in our variant calls, and determining methods to reduce or control for technical

noise. Our finding reveals a critical artifact introduced by preparation of DNA samples

through whole genome amplification, leading to false positive LOF indels. The study there-

fore highlights the importance of quality control at all stages of the variant calling process

and suggest that pan-cancer analysis with TCGA data be approached with caution.

2.3 Methods

2.3.1 Cohort

Approval for access to TCGA case sequence and clinical data were obtained from the

database of Genotypes and Phenotypes (dbGaP). We selected a total of 9,618 normal tissue

DNA samples with whole exome sequence data (Supplementary Table A.1). We limited

analysis to samples sequenced with Illumina technology and aligned to the GRCh37/hg19

reference genome.

2.3.2 Germline Variant Calling

Aligned sequence data for normal samples in BAM file format and the accompa-

nying metadata was downloaded from CGhub [125]. Individual samples were matched

with the target regions for the exome capture kit used to generate the sequence data, and

variant calling was limited to these target regions +/- 100 bp. SNVs and small indels

were identified using the GATK v.3.5/v.3.4 best practices pipeline and a joint calling ap-

proach [123, 124]. The GATK pipeline includes two preprocessing steps to improve the

quality of the BAM file. Local realignment of reads is performed in regions containing

indels, and base quality scores are recalibrated to minimize known sources of score bias.

’HaplotypeCaller’ was run on individual samples in gVCF output mode, producing an in-

termediate single sample gVCF to be used for joint genotyping. Running this pipeline on
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a single BAM from CGhub took approximately 15 compute hours and produced a 100MB

gVCF. Individual gVCFs were combined in groups of 100 and the final joint genotyping

step was performed by chromosome on all 9,618 samples as a single cohort. Following

this joint genotyping step, all future analysis was limited to the intersection of all exome

kit capture regions. The intersection of the kits covered 27 MB and 97.7% of Gencode

v19 exons (Supplementary Table A.2) [126]. GATK VQSR was run separately for SNVs

and indels. VQSR learns from variant quality annotations using variants overlapping with

vetted resources such as dbSNP and 1000 genomes as a truth set. VQSR filters are defined

by the percentage of truth variants that pass filter, termed truth sensitivity (TS). For the

initial analysis, SNVs were filtered at VQSR TS 99.5% and indels at VQSR TS 99.0%, as

suggested by GATK documentation.

2.3.3 PCA and Self-Report Ancestry Validation

PCA was performed jointly on the filtered pan-cancer VCF and HapMap genotype

data from 1,184 individuals using PLINK v1.90b3.29 [127, 128]. Multiallelic sites, rare

variants (< 1% AF), and sites with missing values were excluded from the pan-cancer

VCF. A final variant set of 4,376 SNPs was obtained by taking the union of the pan-

cancer and HapMap variant calls, requiring 100% genotyping rate across all samples. To

assess accuracy of self-report ancestry from TCGA clinical data, principle component

(PC) loadings of TCGA samples and HapMap samples were compared. HapMap samples

were clustered on PC 1 and PC 2 using the R package ’flexclust’ and K-means clustering

with k=4 to roughly approximate the four major TCGA self-reported ancestry categories

(White, Asian, Black, and Hispanic) (Supplementary Table A.3) [129]. TCGA samples

were assigned to one of these four clusters using the predict function and PC 1 and PC 2

loadings (Supplementary Table A.4). Comparing self-reported ancestry to HapMap cluster

membership showed 4% of TCGA samples had inaccurate self-reported ancestry.
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2.3.4 Annotation and BAM metrics

Putative LOF variants, defined here as stop-gained, nonsense, frameshift, and splice

site disrupting, were identified using the LOFTEE plugin for VEP and Ensembl release

85 [130]. LOFTEE assigns confidence to loss of function annotations based on position

of variant in the transcript, proximity to canonical splice sites, and conservation of the

putative LOF allele across primates. For our analysis we used default LOFTEE filter

setting and only included high confidence predicted LOF variants. A variant was called

LOF if it received a high confidence LOF prediction in any Ensembl transcript.

Predicted variant effects were obtained using Annovar v.2014Jul14 [131]. Annovar

returns a single prediction for each variant position, collapsing across transcripts and

reporting the most damaging variant prediction.

Allele frequencies were obtained from ExAC v0.3.1 and used for comparison to our

cohort [76].

We quantified capture efficiency in this analysis as the percentage of capture target

area covered by at least 20 X read depth (denoted C20X). Sequence depth information

was obtained on BAMs downloaded from CGhub using GATK ’DepthOfCoverage’ and the

corresponding exon capture bed file to define coverage intervals. Gene level read depth

information was obtained from a 5113 BAM files using GATK ’DepthOfCoverage’ and

a RefSeq exon coordinate file obtained from UCSC’s table browser [132, 133]. For the

gene level depth analysis, files were downloaded from GDC legacy archive to preserve the

original sequence alignment [134].

2.3.5 Realignment Comparison

To assess the effect of heterogeneous alignment protocols on variant calls, we re-

aligned the raw sequence data for a subset of our cohort. We chose 345 samples to represent
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a large range of sample preparation variation present in the TCGA BAM files. Reads were

stripped from the BAM to generate a FASTQ file using samtools v.0.1.18 bam2fq [135].

The FASTQ was realigned to GRCh37 using BWA MEM v.0.7.12 (with parameters -t 3

-p -M) and duplicates were marked using Picard v.1.131 [135, 136]. From this point the

realigned BAM file was processed through the same GATK pipeline described above to

produce individual gVCFs. To directly compare the effect of realignment, we generated a

VCF for the 345 realigned samples (NewAlign) and for the same 345 samples processed

without the realignment step (OldAlign). We were unable to run GATK indel VQSR on

a cohort of this size, thus we filtered both VCFs with GATK SNV VQSR TS 99.5 and

GATK indel hardfilters (settings QD > 2, FS < 200, ReadPosRankSum > -20). We cal-

culated discordance between alignment pipelines as the percent discordant variant calls:

1- (intersection of variant calls/ union of variant calls). Variant calls were matched by

position and alternate base, disregarding zygosity.

2.3.6 WGA Enriched Indels

Indel allele counts were obtained for n=614 WGA and n=9,004 DNA samples sep-

arately. For each indel site, we obtained a contingency table of the number observed

alternate allele counts vs number reference allele counts in DNA vs WGA samples. Refer-

ence allele counts were calculated as (2 * the number of samples) - alternate allele count. A

one-way Fisher’s exact test was used to define indels with allele counts enriched in WGA

samples. A threshold of p < 0.063 was used to define WGA enrichment. This cutoff

corresponds to the p value of a one-way Fisher’s exact test for a singleton present only

in WGA samples. Using this method we define n=5,654 WGA-enriched and n=34,880

non-enriched indels.
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2.3.7 Homopolymer Indel Analyses

To determine if indels occurred within homopolymer sequences, we obtained the

GRCh37 reference sequence +/- 10 base pairs from each indel start position. The only

indels considered for homopolymer analysis were those that were single base insertions

or deletions or multi base insertions or deletions of the same base. All indels used for

homopolymer analysis were < 15 bp in length. An indel was labeled as a homopolymer +

indel if a sequential repeat of the inserted/deleted base/s occurred within +/- 1 bp of the

indel start position. Using this method we labeled every indel in the pan-cancer VCF as

homopolymer +/-. The GC content of the region +/- 10 bp of each indel was additionally

determined as number G,C bases/ total number of bases.

Homopolymer content by gene was determined using RefSeq coding exon defini-

tions and the GRCh37 reference sequence [133]. For this analysis a homopolymer region

was defined as four or more sequential repeats of a single base pair. For each gene, the

sequence of all coding exon regions was scanned for homopolymer sequences. Sum totals

of number of homopolymers of each type (A,T,C,G) were obtained. G/C and A/T ho-

mopolymers were considered together by summing single base homopolymer counts. To

compare homopolymer content across genes of different sizes, these counts were divided

by the total number of base pairs in the gene’s coding region to obtain the homopolymer

count per exonic basepair.

2.3.8 Chimera Read Analysis

We define large indels as those with an inserted or deleted sequence >= 15 base

pairs in length. We identify n=1,418 WGA-enriched and n=2,301 non-enriched large

indels. The inserted or deleted sequence for each indel was aligned to the GRCh37 reference

genome using ncbi-blast-2.6.0+ (with parameters -reward 1 -outfmt 6 -num_alignments
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1 -max_hsps 3) [137]. For insertions, the match with the highest predicted similarly was

retained. For deletions, the best match excluding the actual deleted reference sequence

was retained. For all indels with a BLAST hit, the distance between the start position

BLAST hit and the indel start position was determined. Indels with BLAST hits > 10

kB away from the indel start position were excluded from this analysis, as MDA chimera

artifacts act predominantly within a 10kB proximal region [138].

2.3.9 Repeated Samples

A subset of individuals in our cohort have multiple germline DNA WXS samples.

This cohort of 9,618 samples represents 9,099 unique individuals; 1,012 of the normal WXS

samples were obtained from 492 individuals (2-5 samples per individual). The repeated

samples all represent germline DNA from the individual, but differ in terms of sample

preparation, sequencing, and processing. Percent discordance between repeated samples

was calculated as described above. One sample (TCGA-BH-A0BQ) was removed from

future analysis due to a high discordance between two high coverage DNA samples. We

suspect a sample label mismatch. For association testing, we selected one the sample with

the highest coverage that was not whole genome amplified, leaving 9,098 samples.

2.3.10 Indel Filter Methods

To assess different indel filtering methods, indels were extracted from the raw pan-

cancer VCF using GATK ’SelectVariants’. Multialleleic sites containing both SNPs and

indels were included in the indel VCF. Four filter methods were tested on the pan-cancer

indel VCF: GATK VQSR TS 90.0, TS 95.0, TS 99.0, and GATK Hardfilter. GATK

VQSR and Hardfilter filters were applied using the modules ’ApplyRecalibration’ and

’VariantFiltration’ respectively (Hardfilter settings QD > 2, FS < 200, ReadPosRankSum

> -20). Indels were additionally identified using Varscan v.2.3.9 (with parameters –p-value
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0.1 –strand-filter 1) on BAMs downloaded directly from CGhub with no preprocessing

[139]. Single sample indel VCFs were generated using Varscan for all 9,618 samples in our

cohort.

2.3.11 Statistical Methods

To detect contribution of technical factors to LOF variant burden Type II ANOVA

was performed using the R package ’car’ [140]. To determine the percent variance explained

by technical factors the sum of squared error for each factor was divided by the total sum

of squared error. To create 95% confidence intervals for non-normally distributed data,

we used the R package ’boot’ [141]. The mean for each of 1,000 bootstrap samples was

calculated and a confidence interval was constructed using the boot.ci function with type

set to ’basic’.

To detect association between germline gene LOF status and cancer type, we used

an ’one vs. rest’ approach. For each cancer type, a binary (’dummy’) vector was created

indicating whether each individual had the given cancer type (1) or another cancer type

(0). For sex specific cancers, only individuals of the same gender were compared. LOF

variants with AF < 0.05 were binned by individual by gene to generate on individual

LOF variant count for each gene. Genes were only included in our analysis if at least two

individuals in the cohort had germline LOF variants in the gene. For each cancer type and

each gene we used a logistic regression to test association between germline LOF variant

burden and cancer type. Our regression model took the form: glm( cancer type indicator

~variant burden + race + age ). To discover significant gene-cancer type associations we

obtained the p value of the β coefficient for the variant burden term and used a Bonferroni

cutoff of 1.61 X 10-7 to account for multiple testing (31 cancer types x ~10,000 genes).
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2.4 Results

2.4.1 Technical Heterogeneity in TCGA WXS Data Generation

We obtained TCGA WXS data from CGhub in the form of reads aligned to the

human reference genome (BAM files) [125]. From the BAM files and available metadata we

identified seven technical sources of variation in the way the sequence data were generated:

tissue source of normal DNA, exome capture kit, whole genome amplification of DNA

prior to sequencing (WGA), sequencing center, sequencing technology, BWA version, and

capture efficiency (C20X) (Supplementary Figure A.1). We found substantial variation

existed within and between cancer types with respect to these technical factors (Figure

2.1). Some of these technical factors were found to be highly associated with cancer type,

such as use of Illumina Genome Analyzer II and ovarian cancer (OV), while others exhibited

no clear relationship with cancer type, such as use of solid normal tissue as opposed to

blood as a source of normal DNA. Relationships existed between pairs of technical factors

as well, such as the Broad Institute’s exclusive use of a custom Agilent exome capture kit.

All possible combinations of the first six technical factors produce 1,152 unique workflows,

of which only 44 were used to generate the TCGA data. This further demonstrates that

relationships exist between technical factors. Of the 31 cancer types examined, only uveal

melanoma (UVM) and testicular germ cell tumors (TCGT) had a uniform workflow for

all samples (Supplementary Figure A.2). These observations highlight the substantial

heterogeneity in data generation across TCGA and importantly even within cancer types.
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Figure 2.1: Technical Covariates in TCGA WXS Samples. For each
covariate and cancer type, color represents the fraction of total samples. Fraction
of total samples sums to 1 for each covariate and cancer type. Red indicates
higher heterogeneity. Year first published included for context.
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The technical factors can ultimately be divided into two categories: those that can

be modified during processing of the sequence data (BWA version, target regions of a

capture kit), and those that cannot be modified computationally (source of normal DNA,

WGA, center, technology, capture efficiency). Six exome capture kits ranging in size from

33-64 MB were used to capture normal DNA for sequencing (Supplementary Table A.2).

As the goal of our variant calling pipeline was obtain a uniform set of variants across

samples, we chose to restrict analysis to the intersection of the capture regions. The area

hereby excluded consists largely of exon flanking regions. The intersection covers 97.7%

of Gencode exons, thus for the purposes of studying protein-coding variation using the

intersection of the kits leads to minimal loss of data (Supplementary Table A.2) [126]. It

has been shown that differences in capture efficiency and sample preparation protocols

between exome kits can affect variant calls, even in regions common between kits [142].

Therefore, despite using the common capture region, the use of multiple capture kits may

still introduce artifacts.

To assess the effect of heterogeneous BWA alignments on variant calls, we called

variants on 345 of the TCGA normal samples either using the provided BAM (OldAlign)

or stripping and realigning reads to GRCh37 using BWA MEM v.0.7.12 (NewAlign). The

overall raw discordance rates between the two sets of variants was 5%, which is in the

expected range for different alignment protocols (Supplementary Figure A.3) [143]. Indel

calls were noticeably more discordant, consistent with the specific challenges and notorious

variability of indel calling [144]. Interestingly, the discordance rate was correlated with

BWA version used to generate the BAM file in CGhub, with older versions displaying more

discordance. This effect can largely be reduced by applying VQSR filters, which decreases

overall discordance from 5% to 3% (Supplementary Figure A.4). Greater discordance

between variant calling pipelines has been observed in repetitive regions of the genome,

and in accordance with this we reduce overall discordance to 1.7% with the removal of
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repetitive regions from analysis (Supplementary Figure A.3) [145]. As no set of true

positive variants exists for TCGA samples, we cannot determine whether realigning BAM

files produces more accurate calls. Given the computational cost of realignment, and that

discordance can be mitigated by filtering variants and masking repetitive regions of the

genome, we proceeded with variant calling using the provided BAM files.

Functional annotation of the 1,093,501 variants in the final VCF predicted 625,365

missense; 371,754 silent; 24,455 nonsense; 2,968 splice site; 553 stoploss; 46,280 frameshift

indels and 22,126 in-frame indels in 9,618 samples. For initial quality control we performed

principal component analysis (PCA) to identify the most significant sources of variation in

the variant calls. PCA on common variants showed that the first two principal components

stratified samples by self-reported race and ethnicity, indicating that the largest source of

variation is ethnic background and not technical factors (Supplementary Figure A.5). To

assess the quality of the calls, we measured the fraction of variants also present in the

ExAC database [76]. We expect a high degree of overlap between our calls and ExAC, as

the ExAC v0.3.1 dataset includes germline variants from 7,601 TCGA individuals. Overall

88.56% of the variant calls were present in ExAC, with SNVs showing higher overlap than

indels (89.91% vs. 53.94%). Based on these results, we concluded the variant calls were

free of overt technical artifacts and proceeded to the next stage of analysis.

2.4.2 Impact of Technical Heterogeneity on Loss of Function Vari-

ants

There is great interest in understanding how inherited impaired functionality of

cancer-relevant pathways shapes tumor phenotypes, as has been previously demonstrated

for bMMRD and BRCA1 germline mutations [65, 66, 118]. To identify germline variation

likely to disrupt function of genes, we used VEP and LOFTEE to predict LOF variants

in this cohort [130]. We observed a median 150 LOF per sample across our entire cohort,

37



consistent with the ExAC findings (Figure 2.2A). [76]. However, two cancer types, acute

myeloid leukemia (LAML) and OV deviate significantly from this expected value, with

individuals with these cancers having up to 500 LOF germline variants. This suggests an

artifact was manifesting in rare LOF variants that was not identified by PCA on common

variants. Notably this effect is specific to LOF indels, in contrast to LOF SNVs that are

distributed more uniformly across cancer types (Supplementary Figure A.6).

We used Analysis of Variance (ANOVA) to assess the contribution of each technical

factor to individual LOF variant burden. Initial analysis showed that source of normal

control DNA and sequencing technology were not significantly associated with LOF variant

burden, and that capture kit was highly collinear with sequencing center. Therefore,

we limited subsequent analysis to sequencing center, BWA version, WGA, and C20X. It

is known that LOF variant burden varies between ethnic groups, thus we include self-

reported race as a covariate in this analysis as a reference point for expected variation [76].

All technical factors combined explain less than 1% of the variance in LOF SNV burden,

indicating SNVs are largely unaffected by technical variation. In contrast, 59% of variation

in LOF indel burden was explained by technical factors, with WGA alone explaining over

50% (Table 2.1).

WGA samples have a higher LOF variant burden with a median 201 LOF variants

per WGA sample. Four cancer types contain samples that underwent WGA: colon ade-

nocarcinoma (COAD) (26% WGA), rectum adenocarcinoma (READ) (33% WGA), OV,

(92% WGA) and LAML (100% WGA) (Figure 2.1). Analyzing cancer types containing

both amplified and non-amplified DNA samples, we observed that WGA samples had

a significantly higher LOF variant burden (Figure 2.2B), further suggesting that WGA

rather than cancer type is the main source of bias. The cohort contains 13 individuals

with both amplified and non-amplified DNA samples. We observed a 1.5 fold increase in

LOF variant burden in amplified samples relative to non-amplified samples from the same
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individuals (p = 0.0002 by paired Wilcoxon Signed Rank test) (Figure 2.2C), suggesting

that WGA prior to sequencing leads to an artificially inflated number of predicted LOF

variants.
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Figure 2.2: WGA Increases LOF Indel Burden. (A) LOF variant burden
includes both SNV and indels. Red line indicates expected LOF burden from
ExAC (155). (B) Individual LOF variant burden in cancers with WGA samples
plotted by WGA status. *= Wilcoxon rank sum test p < 0.05, ** = Wilcoxon
rank sum test p < 0.001. (C) Individual LOF variant burden in n=13 samples
that have both DNA and WGA samples available. ** = Wilcoxon paired rank
sum test p < 0.001.
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Table 2.1: ANOVA of LOF Variant Burden. Variance in LOF SNV and
indel burden explained by technical covariates. Sum. Sq., Sum of Squares; Df,
Degrees of Freedom; % Var. Exp., Percent variance explained by each factor
(factor Sum. Sq./total Sum. Sq.)
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To determine whether our choice not to realign BAM files contributed to the ob-

served WGA effect, we calculated LOF variant burden in our NewAlign and OldAlign

cohort using the same protocol. Realignment of the sequence data with BWA MEM

increased the number of LOF calls per individual but overall LOF burden was highly cor-

related (Pearson R2 = 0.95) (Supplemental Figure A.7). WGA explained a significant

amount of variance in LOF variant burden in both NewAlign and OldAlign samples (Sup-

plemental Figure A.7). Thus we can conclude that realignment does not remove WGA

artifacts observed in our variant calling pipeline.

2.4.3 Characterizing WGA Artifacts

Having demonstrated that WGA is associated with increased LOF variant burden,

we sought to characterize WGA samples more deeply. We observe that WGA samples have

an excess of LOF indels while LOF SNV burden appears unaffected, as expected from the

ANOVA results (Figure 2.3A). Interestingly, WGA samples had fewer variants overall, due

more variable coverage depth over the capture regions (Figure 2.3B, Supplementary Figure

A.8). Read depth was highly variable across genes in WGA samples with an average depth

of 165 X and standard deviation of 140 X (Supplementary Figure A.8). As a consequence of

this variable coverage, an average of 27 genes per sample had 0 coverage in WGA samples

(Figure 2.3C).
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Figure 2.3: Characteristics of Variants in WGA Samples. (A) Individual
LOF indel burden vs. individual LOF SNV burden. Color indicates WGA status.
(B) Total number of variant calls plotted by WGA status. (C) Number of genes
with 0 read depth across 16,824 genes. (D) Fraction of insertions and deletions
in n=5,654 WGA-enriched and n=34,880 non-enriched indels. Shading indicates
LOF status. (E) Size in base pairs of WGA-enriched and non-enriched indels.
(F) Density plot showing distribution of insertion and deletion size for WGA-
enriched and non-enriched indels. (G) Individual burden of LOF indels for all
indels, homopolymer + indels, indels 15 base pairs or longer, and other indels.
Color indicates WGA status. Indel burden calculated using GATK VQSR TS99
filter.
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As indel variant calls are the source of inflated LOF variant burden in WGA sam-

ples, we next determined which indels are enriched in WGA samples using a one-way

Fisher’s exact test. While it is impossible to distinguish errors from true indels defini-

tively at this scale, indels that are a found at a significantly higher frequency in WGA

samples relative to DNA samples are good candidates to be errors. The majority of WGA-

enriched indels are insertions, and the ratio of insertions to deletions is skewed relative

to non-enriched indel sites (Figure 2.3D). Further, 75% of WGA-enriched indels are LOF

relative to 60% of non-enriched indels (Figure 2.3D). Upon examining the size of the in-

dels in base pairs, we noticed that WGA-enriched insertions were larger than non-enriched

insertions and their size distribution deviated from what is expected for coding indels (Fig-

ure 2.3E,F). The length of indels in coding regions is frequently a multiple of three base

pairs, due to natural selection acting to maintain the reading frame [146]. WGA-enriched

insertions did not show this expected distribution, and thus are more likely to be LOF

frameshift indels. As previously reported, LOF variants are enriched for sequencing er-

rors, supporting our hypothesis that the excess LOF indels in WGA samples are technical

artifacts [147].

We observe that the local sequence context surrounding WGA-enriched insertions

has a higher GC content, and that G and C insertions are twice as frequent in WGA-

enriched insertions than non-enriched insertions (Supplementary Figure A.9 and Table

A.5). This observation prompted us to look for homopolymer repeats in the sequence

surrounding WGA-enriched indels. WGA-enriched indels occur in homopolymer repeats

more frequently than non-enriched indels (Table 2.2). Further, indels that occur in ho-

mopolymer regions had an increased allele frequency in WGA samples relative to indels

not in homopolymer regions, indicating that homopolymer indels are also more recurrent

in WGA samples (Supplementary Table A.6). We observe that WGA-enriched indels are

larger on average and are frequently in homopolymer regions, but that these two charac-

45



teristics are mutually exclusive. To better resolve the contribution of each of these indel

types to WGA technical artifacts, we define three distinct categories of indels: homopoly-

mer +, large, and all other indels (Table 2.2). Calculating individual LOF indel burden

for each of these categories shows that the increased LOF indel burden observed in WGA

samples is due to an excess of LOF homopolymer + indels (Figure 2.3G).

The pan-cancer cohort contains 492 individuals with multiple germline WXS sam-

ples. Presumably, variants that are not concordant between repeated samples on the same

individual are errors, and thus we used genotype discordance as a surrogate measure for

variant calling error. In addition to the 13 individuals with paired normal WXS samples

with and without amplification (denoted WGA:DNA), 44 individuals have paired normal

WXS samples where both samples have been amplified (denoted as WGA:WGA) and 435

are paired samples without amplification (denoted DNA:DNA). We calculated genotype

discordance between all repeated samples for SNVs and indels separately and observed a

stepwise increase in discordance with amplification of one or both samples. This effect

was most apparent in indels, with a median 59.9% indel discordance between repeated

WGA:WGA samples (Supplementary Figure A.10). Calculating indel discordance using

the indel categories previous defined reveals that discordance between WGA samples is

highest for homopolymer + indels, lower for large indels, and similar to DNA samples for

other indels (Supplementary Figure A.10). This demonstrates that WGA errors manifest

as small indels in homopolymer regions and large indels with no clear sequence context

bias.
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Table 2.2: Characteristics of WGA Indels. Fraction of WGA-enriched and
non-enriched indels in three indel categories. Homopolymer indels: indels with a
4 or more single base repeat directly proximal to the indel; Large indels: indels
with 15 or more inserted or deleted bases. Other indels: all indels that don’t fit
one of the previous criteria.

WGA by multiple displacement amplification (MDA) is known to create chimeric

DNA rearrangements, which manifest in the sequence data as reads with sequence from

noncontiguous portions of the reference genome (Supplementary Figure A.11).[138]. To

determine if chimeric reads were responsible for the large indels in WGA samples, we

used BLAST to align the inserted and deleted sequences of large indels to the reference

genome [137]. We observe that 86% of WGA-enriched large insertion sequences have a

BLAST match, whereas only 10% WGA-enriched large deletions and non-enriched large

indels have a BLAST match (Supplementary Table A.7). Further, the BLAST matches for

WGA-enriched insertions were predominantly within 2 kb of the indel start position which

is in accordance with the mechanism of MDA chimeric rearrangements (Supplementary

Figure A.12). Thus, the large indels we observe in WGA samples can be explained by

known MDA artifacts (Supplementary Figure A.11). Small indels in homopolymer regions

may occur by the same mechanism, as it has been shown that the majority of MDA chimeric

junctions occur in regions of short complimentary sequence [138]. The small homopolymer

indel errors may also be due to known difficulties of calling indels in homopolymer regions,
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which is exacerbated with amplification [148].

2.4.4 Filtering Artifactual LOF Variant Calls

We next sought an appropriate filter to remove artifactual LOF variant calls in

WGA samples. As SNV calls were largely robust to technical artifacts, we focused on

filtering indels specifically (Supplementary Figure A.6). We used two strategies available

from GATK: 1) Statistical model filtering using VQSR with increasing stringency cutoffs

(99%, 95%, 90%), and 2) Heuristic filtering (Hardfilter) based on fixed thresholds (QD >

2, FS < 200, ReadPosRankSum > -20), for a total of four filtering approaches [124]. The

four filters varied in stringency, resulting in a median individual LOF indel burden ranging

from 53-98 across methods (Figure 2.4A and Supplementary Figure A.13). To assess the

efficiency of each filter to remove technical artifacts, we performed an ANOVA analysis

as described in Figure 2.2 for each filtering approach, including the initial filter (GATK

VQSR 99) as a reference (Figure 2.4B). VQSR 90 and VQSR 95 reduced technical artifacts

to a similar degree, whereas VQSR 99 and Hardfilters performed poorly (Supplementary

Figure A.14A and Table A.8).
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Figure 2.4: Comparison of Indel Filters. (A) Individual LOF indel burden
for all indel filter methods in order of decreasing stringency. (B) Percent of
variation in individual LOF indel burden explained by technical covariates for
each filter method.

Variant filtering is a balance between removing likely false positive signal while

retaining true positive signal. Using VQSR 99 we observe an individual LOF variant

burden similar to that reported in the ExAC database, while all other methods produce

lower LOF burden than expected (Supplementary Figure A.14B) [76]. Therefore, while

more stringent filtering approaches can reduce technical artifacts, they do so at the cost
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of losing likely true positive indels. Without a way to manually validate a large number

of rare indel variant calls, it is impossible to exactly measure false positives rates for our

filter approaches. Instead, we once again used the repeated samples in our cohort to

identify likely true positives (indels concordant between repeated samples) and likely false

positives (indels discordant between repeated samples). We assessed filter quality using

three measures: the fraction of discordant indels removed by the filter, the fraction of

concordant indels removed by the filter, and the fraction of indels overlapping the ExAC

database. The stringency of each filter was measured as the total number of LOF indel

sites and the median individual indel LOF burden when each filter was applied (Table

2.3).

Table 2.3: Variant Filter Metrics.

2.4.5 Consequences of Technical Artifacts on Genetic Associa-

tions

To determine how sensitive association results are to filtering method, we tested for

association between germline LOF variant burden and cancer type using different filtering

approaches. We took an ’one vs. rest’ approach with our samples using all cancers except
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the cancer of interest as a control. Thus, we tested for enrichment of LOF germline

variants in one cancer type as compared to other cancers, which is different than other

studies that have used control cohorts [65]. Our rationale for using this approach was to

minimize heterogeneity that would be introduced by including control samples collected in

different studies. We chose to highlight the results only from OV for two reasons. First, it

is established that BRCA1/2 germline variants are enriched in OV so the OV - BRCA1/2

association can be used as a positive control, and second virtually all OV samples have

been amplified and are confounded with WGA artifacts [149, 65, 150].

Quantile-quantile plots from logistic association tests for three indel filter methods

are shown in Figure 2.5A. It was immediately apparent that our initial filtering approach

(VQSR 99) produced an excess of significant associations even above a strict Bonferroni

multiple hypothesis correction (Figure 2.5B). True associations are mixed with false associ-

ations due to WGA artifacts in LOF indel calls. Increasing the stringency of indel filtering

reduced noise due to technical artifacts while retaining a putative true positive BRCA1/2

association signal. Stringent filtering removes noise at the cost of reducing potential signal,

as evidenced by the decreased number of genes that can be tested for association. This

inflation in significant associations was only observed in cancers containing WGA samples,

and persisted, albeit to a far lesser extent, even with the most stringent filter (Figure

2.5B). Supporting the idea that some of the associations in WGA cancer types are false,

only two of the significant genes (BRCA1/2 ) in OV and none in LAML are genes where

germline variation is known to be associated with cancer risk [17].
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Figure 2.5: Association Between LOF Burden and Cancer Type.
(A) Quantile-quantile plots from logistic regression association testing be-
tween germline LOF burden and ovarian cancer for three indel filter methods.
n=number of genes tested. Red line indicates significant cutoff and red points in-
dicate associations significant p < 1.61 x 10-7. BRCA1/2 associations highlighted.
(B) Number of significant cancer type - gene associations in each cancer type for
three indel filter methods. Color indicates cancer types with WGA samples.
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We observe that an unusually high fraction of significantly associated genes were

shared between LAML and OV, with 69%, 55%, and 25% of significant genes shared for

VQSR filters TS99, TS95, and TS90, respectively. Having demonstrated that LOF indels

occur at a high allele frequency in homopolymer regions in WGA samples, we calculated

the number of homopolymer regions in these shared genes. We observe that shared genes

have a higher G/C homopolymer content compared to all genes tested (Supplementary

Figure A.15). Further we see a stronger correlation between LOF indel burden and ho-

mopolymer content in WGA samples than in DNA samples (Supplementary Table A.9).

Taken together, we can conclude that the high fraction of shared genes between LAML

and OV is driven by high allele frequency LOF indels in homopolymer regions. LOF indel

calls are more prone to batch effects than LOF SNVs, therefore we repeated the associa-

tion test limiting to LOF SNVs only. While this reduces the excess number of significant

associations, the analysis was underpowered to detect the true positive BRCA1/2 - OV

association (Supplementary Figure A.16). These results demonstrate that technical arti-

facts can lead to spurious associations and highlight the difficulty of correcting for artifacts

in a pan-cancer analysis when technical factors are highly correlated with the phenotype

being tested (Figure 2.1).

2.5 Discussion

We identified sources of technical variation in LOF variant calls from TCGA germline

WXS data. Overall SNV calls were more robust to technical factors than indel calls. We

found the strongest association between amplification of DNA prior to sequencing and an

excess of LOF indel calls. Other factors tested were found to be significantly associated

with both LOF SNV and LOF Indel burden, but explain little of the total variance in

LOF variant burden when appropriate filters are applied (Table 2.1 and Fig 2.4B). The
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factor explaining the most technical variation in total LOF variant calls after filtering is

capture efficiency (C20X). It is likely that poor coverage over common capture regions,

perhaps due to the different capture technologies used, decreased the ability to assign

genotypes in some samples. Joint calling distinguishes sites with insufficient coverage to

make a genotype call from those with adequate coverage for calling a homozygous reference

genotype. Therefore, while C20X is a significant factor in the simple burden analyses per-

formed here, a more sophisticated burden testing approach that can accommodate missing

genotype values should mitigate this technical artifact.

Difficulty producing reliable variant calls in WGA exome samples has been pre-

viously reported [142, 151]. Inaccurate read alignment has been identified as a main

contributor to spurious calls in WGA samples. However, even with an alignment protocol

optimized for WGA samples it is still estimated that 7% of variant calls in WGA samples

are artifactual [142]. Previous work comparing amplified and non-amplified DNA obtained

from the same biological sample report higher variant call discordance in indels compared

to SNVs, similar to what we observe [151].These studies conclude that overall concordance

between amplified and non-amplified samples is satisfactory; however, neither examined

the impact of WGA on deleterious variants. Here we have demonstrated that errors intro-

duced by WGA manifest as rare frameshift indels that are difficult to distinguish from true

rare deleterious variation. We further demonstrated that the WGA indel errors we ob-

serve are in accordance with known errors and biases that occur due to MDA, and provide

a mechanism by which MDA chimeric reads lead to erroneous indel calls (Supplemental

Figure A.11). In addition to drawing attention to batch effects in TCGA sequence data,

our study also provides valuable insight into potential pitfalls of calling indels in sequence

data generated from MDA.

Simultaneous to our investigation, the genomic data commons (GDC) has called

somatic mutations on TCGA tumor sequence data using four different pipelines and dis-
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covered an excess of insertion mutations in tumor samples with amplified DNA [152]. This

validates our findings in the orthogonal process of somatic mutation calling. Further, GDC

only reports this observation for the MuTect2 pipeline, which combines aspects of the orig-

inal MuTect algorithm and GATK’s ’HaplotypeCaller’ [153]. As WGA artifacts have thus

far only been observed in GATK-derived variant callers, it is possible that these artifacts

are specific to the GATK pipeline. An alternate method of variant calling could reduce

or eliminate WGA errors, but this issue is still problematic as GATK is one of the most

commonly used variant callers for large datasets such as ExAC and gnomAD [76].

While joint calling is the approach recommended by GATK, with the exception of

one paper from our lab exploring the impact of genetic background on joint calling, to our

knowledge there has not been a published systematic comparison of joint calling vs. single

sample calling with GATK on a gold standard dataset to quantify the advantages of joint

calling [154]. GATK’s joint calling approach is not without problems. Greater accuracy for

the group as a whole comes at the cost of loss of singleton variants from any given sample.

Another complicating factor unique to joint called samples are multi-allelic sites, or sites

where multiple alternate alleles are found in the population genotyped. Relatively few

sites in our VCF were multi-allelic (3%, or 30,620 sites), but these sites contain 4,947 high-

confidence LOF variants (11% of all LOF variants), indicating the importance of correct

multi-allelic site parsing. Multi-allelic sites additionally pose a problem when filtering

reliable from unreliable variants. With current tools for filtering VCFs, it is only possible

to filter at the site level, meaning at multi-allelic sites all alleles will either be included

or excluded by the filter. Further, in the version of GATK used for this analysis (v3.5),

quality annotations for a site are calculated using all alternate reads without distinguishing

between alleles. Therefore it is possible for low quality alternate alleles to pass filter at

multi-allelic sites if high quality alternate alleles are present at the same site.

Our work shows that amplification of DNA prior to sequencing resulted in an excess
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of predicted damaging indel variants. In our dataset, we find that using VQSR TS90 can

eliminate the significant association between WGA and LOF indel burden, but it appears

false associations persist in our association analyses (Figure 2.5B, Supplementary Table

A.8). Thus, we find removal of WGA samples to be the only option to fully eliminate

batch effects in our dataset. It is possible WGA indel artifacts could be eliminated in

WGA samples using a different variant calling approach perhaps sensitive to MDA induced

errors. The GDC has worked to optimize MuTect2 parameters for WGA samples, and their

methods could potentially be applied to germline variant calling [152]. We suggest that

variant calling in these samples should be handled with extra care.

TCGA is often thought of as a single dataset, but due to differences in sample

collection and processing across the participating sites, should be thought of as a collection

of studies. While we focused on the germline WXS sequence data, it is likely that batch

effects are present in other data types. This has been recognized by the Pan-Cancer

TCGA effort, although it is less often acknowledged in papers published on one or few

cancer types [119]. There is heterogeneity even within cancer types in terms of sample

preparation, such as in COAD and READ where roughly a third of germline WXS samples

were prepared using WGA. Batch effects present in TCGA data can potentially confound

even single cancer type analyses if not properly addressed. In terms of pan-cancer analysis,

the correlation between certain technical factors and cancer types confounds analyses that

use cancer type as the phenotype of interest, as we demonstrated in Figure 2.5. We note

that since the initiation of our analysis, the raw TCGA sequence data have moved to the

GDC [134]. The GDC has realigned the sequence to the current reference genome (GRCh38

.d1.vd1) using a standardized pipeline to harmonize the BAM file. Although this will

eliminate one source of variation (BWA version), it only serves to remind researchers how

sensitive data analyses might be to non-standardized data collection protocols, especially

in the context of the TCGA data, as our study makes clear. Analyses of large, extant data
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sets will continue to grow and impact biomedical research, with many in the community

committed to pointing out the need for care in interpreting the results and impact of those

analyses [155, 156, 122].
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Chapter 3

Exome-Wide Analysis of Bi-allelic

Alterations Identifies a Lynch

Phenotype in the Cancer Genome Atlas

3.1 Abstract

Background: Damaging germline BRCA1/2 variants do not influence tumor mu-

tation profile unless the remaining copy of BRCA1/2 is somatically altered. Whether

combined germline and somatic bi-allelic alterations are universally required for germline

variation to influence tumor mutational profile is unclear. Here we performed an exome-

wide analysis of the frequency and functional effect of bi-allelic alterations in The Cancer

Genome Atlas (TCGA).

Methods: We integrated germline variant, somatic mutation, somatic methyla-

tion, and somatic copy number loss data from 7,790 individuals from TCGA to identify

germline and somatic bi-allelic alterations in all coding genes. We used linear models to

test for association between mono- and bi-allelic alterations and somatic microsatellite
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instability (MSI) and somatic mutational signatures.

Results: We discovered significant enrichment of bi-allelic alterations in mismatch

repair (MMR) genes, and identified 6 bi-allelic carriers with elevated microsatellite insta-

bility (MSI), consistent with Lynch syndrome. In contrast, we find little evidence of an

effect of mono-allelic germline variation on MSI. Using MSI burden and bi-allelic alter-

ation status, we reclassify two variants of unknown significance in MSH6 as potentially

pathogenic for Lynch syndrome. Extending our analysis of MSI to a set of 127 DNA dam-

age repair (DDR) genes, we identified a novel association between methylation of SHPRH

and MSI burden.

Conclusions: We find that bi-allelic alterations are infrequent in TCGA, but most

frequently occur in BRCA1/2 and MMR genes. Our results support the idea that bi-allelic

alteration is required for germline variation to influence tumor mutational profile. Overall,

we demonstrate that integrating germline, somatic, and epigenetic alterations provides

new understanding of somatic mutational profiles.

3.2 Background

In rare familial cancer, inherited variation can both increase cancer risk and influ-

ence the molecular landscape of a tumor. For example, Lynch syndrome is characterized by

an increased cancer risk and increased burden of somatic microsatellite instability (MSI)

[10, 72]. The study of this phenomenon has been recently extended to sporadic cancers.

For example, carriers of pathogenic mutations in BRCA1/2 have both increased cancer risk

and molecular evidence of homologous recombination deficiency in their tumors [15, 62].

Novel sequencing and analytical methods can be used to reveal a myriad of molecular

phenotypes in the tumor, such as mutational signatures, rearrangement signatures, MSI,

and infiltrating immune cell content [61, 47, 48, 64, 66]. A number of novel associations
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between these molecular somatic phenotypes and germline variants have recently been dis-

covered. Rare variants in BRCA1/2 have been associated with mutational signature 3, a

novel rearrangement signature, and an overall increased mutational burden [65, 66, 69, 67].

Common variants in the APOBEC3 region have been associated with the corresponding

APOBEC deficient mutational signature, and a haplotype at the 19p13.3 locus has been

associated with somatic mutation of PTEN [77, 73]. In addition, interestingly, distinct

squamous cell carcinomas (SCCs) arising in the same individual have a more similar so-

matic copy number profile than SCCs that occur between individuals [37]. Taken together,

these results demonstrate that both common and rare germline variation can influence the

somatic phenotype of sporadic cancers.

Similar to the two-hit mechanism of inactivation of tumor suppressor genes in fa-

milial cancer syndromes described by Nordling and then Knudson decades ago, germline

and somatic bi-allelic alteration of BRCA1/2 is required to induce somatic mutational

signature 3, a single germline ’hit’ is not sufficient [6, 7, 69, 67]. Whether a secondary ’hit’

is universally required for germline variation to influence somatic phenotype is currently

unclear. Here we address this question using the Cancer Genome Atlas (TCGA) dataset.

TCGA is the most comprehensive resource of germline and somatic variation to enable

this analysis, as it contains paired tumor and normal sequence data and a number of other

molecular somatic phenotypes for 33 cancer types [119]. In contrast with previous studies

of TCGA germline variation that focused on specific cancer types or candidate genes, we

performed an exome-wide analysis to identify genes affected by both germline and somatic

alterations (referred to as bi-allelic alteration) and study their association with somatic

phenotypes [77, 65, 69, 67, 88]. Specifically, we conducted an integrated study of all genetic

factors that contribute to somatic MSI burden and identified 6 individuals with charac-

teristics consistent with Lynch syndrome: bi-allelic alteration of a MMR gene, elevated

somatic MSI and an earlier age of cancer diagnosis.
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3.3 Methods

3.3.1 Data Acquisition

Approval for access to TCGA case sequence and clinical data were obtained from

the database of Genotypes and Phenotypes (project #8072: Integrated analysis of germline

and somatic perturbation as it relates to tumor phenotypes). WXS germline variant calls

from 8,542 individuals were obtained using GATK v3.5 as described previously [117].

Samples prepared using whole genome amplification (WGA) were excluded from analysis

due to previous identification of technical artifacts in both somatic and germline variant

calls in WGA samples [117, 152]. Somatic mutation calls obtained using MuTect2 were

downloaded from GDC as mutation annotation format (MAF) files [134]. Raw somatic

sequence data was downloaded from the genomic data commons (GDC) in BAM file format

aligned to the hg19 reference genome. Normalized somatic methylation beta values from

the Illumina 450 methylation array for the probes most anti-correlated with gene expression

were downloaded from Broad Firehose (release stddata__2016_01_28, file extension:

min_exp_corr ). A total of 7,790 samples and 28 cancer types had germline, somatic, and

methylation data available.

Segmented SNP6 array data were downloaded from Broad Firehose (release std-

data__2016_01_28, file extension: segmented_scna_hg19). Segments with an esti-

mated fold change value <= 0.9, which corresponds to a single chromosome loss in 20%

of tumor cells, were considered deletions. RNAseq RSEM abundance estimates normal-

ized by gene were downloaded from Broad Firehose (release 2016_07_15, file extension:

RSEM_genes_normalized). MSI calls from 5,931 TCGA WXS samples were obtained

from previous work done by Hause et. al [48]. MSI is expressed as the percentage of

microsatellite regions that display somatic instability. Aggregate allele frequencies and

allele frequencies in 7 ancestry groups (African, Admixed American, East Asian, Finnish,
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non-Finnish European, South Asian, and other) were obtained from ExAC v3.01 [76].

Gene-level expression data from normal tissues was downloaded from the GTEx portal

(V7, file extension: RNASeQCv1.1.8_gene_tpm) [157].

3.3.2 Variant Annotation and Filtering

Raw variant calls were filtered using GATK VQSR TS 99.5 for SNVs and TS 95.0 for

indels. Additionally, indels in homopolymer regions, here defined as 4 or more sequential

repeats of the same nucleotide, with a quality by depth (QD) score < 1 were removed.

Putative germline and somatic loss-of-function (LOF) variants were identified using

the LOFTEE plugin for VEP and Ensembl release 85 [130]. LOFTEE defines LOF variants

as stop-gained, nonsense, frameshift, and splice site disrupting. Default LOFTEE settings

were used and only variants receiving a high confidence LOF prediction were retained. It

was further required that LOF variants have an allele frequency < 0.05 in all ancestry

groups represented in ExAC. For somatic mutations, LOFTEE output with no additional

filters was used. Gene level, CADD score, and ClinVar annotations were obtained using

ANNOVAR and ClinVar database v.20170905 [158]. A germline variant was determined to

be pathogenic using ClinVar annotations if at least half of the contributing sources rated

the variant "Pathogenic" or "Likely Pathogenic". Li-Fraumeni variant annotations were

obtained from the IARC-TP53 database [159, 160, 131]. Pfam protein domain annotations

used in lollipop plots were obtained from Ensembl biomart [161, 162].

3.3.3 Somatic Methylation

For each gene, the methylation probe that was most anti-correlated with gene ex-

pression was obtained from Broad firehose and used for all subsequent analyses. Methyla-

tion calls were performed for each gene and each cancer type independently. For each gene,

the beta value of the chosen methylation probe was converted to a Z-score within each
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cancer type. Individuals with a Z-score >= 3 were considered hyper methylated (M=1)

and all others were considered non-methylated (M=0). To determine if methylation calls

were associated with reduced somatic gene expression, a linear model of the form log10(Eij)

~Ci + Mij was used, where Eij denotes expression of gene j in tumor i, Ci denotes cancer

type of sample i, and Mij denotes binary methylation status of gene j in sample i. Only

genes where methylation calls were nominally associated with decreased gene expression

were retained. Using this process we identified 863,798 methylation events affecting 11,744

genes.

3.3.4 Loss of Heterozygosity

To assess loss of heterozygosity (LOH) for a given heterozygous germline variant, the

somatic allele frequency of the germline variant was obtained from the somatic BAM files

using samtools mpileup v1.3.1 (SNPs) or varscan v2.3.9 (indels) [139, 135]. Any germline

variant that was not observed in the tumor was excluded from further analysis. A one-way

Fisher’s exact test comparing reference and alternate read counts was performed to test

for allelic imbalance between the normal and tumor sample. Only sites with a nominally

significant (p < 0.05) increase in the germline allelic fraction were retained. To confirm

that the observed allelic imbalance was due to somatic loss of the WT allele and not due

to somatic amplification of the damaging allele, we required that the region be deleted

in the tumor based on TCGA CNV data (fold change value <= 0.9). Loci that had a

significant Fisher’s exact test but were not located in a somatic deletion were considered

’allelic imbalance’ (AI). Using this method, we observed 3,418 LOH events in 1,672 genes.

3.3.5 Gene Set Enrichment Analysis

Gene set enrichment analysis was performed using the fgsea R package and the fol-

lowing parameters: minSize=3, maxSize=500, nperm=20,000 and the canonical pathways
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gene set from MsigDB (c2.cp.v5.0.symbols.gmt) [163, 164]. Genes were ranked according

to the fraction of germline LOF variants that acquired a second somatic alteration (number

bi-allelic alterations/number germline LOF variants). Genes with fewer than 3 germline

LOF variants in the entire cohort were excluded from this analysis to reduce noise.

3.3.6 Mutational Signature Analysis

To identify somatic mutational signatures, counts for each of 96 possible somatic

substitutions +/- 1 bp context were obtained for all tumor samples. For each sample,

mutational signatures were identified using the DeconstructSigs R package, which uses a

non-negative least squares regression to estimate the relative contributions of previously

identified signatures to the observed somatic mutation matrix [165]. DeconstructSigs was

run with default normalization parameters and relative contributions were estimated for

the 30 mutational signatures in COSMIC [166].

To estimate significance of association between germline variants and somatic mu-

tational signature burden we employed both a pan-cancer Wilcoxon rank sum test and a

permutation-based approach to ensure that significance was due to germline variant status

and not cancer type. For the permutation approach, the pairing between germline variant

status and mutational signature profile was shuffled 10,000x. A Wilcoxon rank sum test

was run for each permutation to obtain a null distribution for the test statistic. P-values

were determined for each signature as the fraction of permutations with a Wilcoxon test

statistic greater than or equal to the observed data.

3.3.7 Statistical Analyses

Principal Component Analysis (PCA) was performed on common (allele frequency

> 0.01) germline variants using PLINK v1.90b3.29 and the first two principal components

obtained from this analysis were used to control for ancestry in all of the regression models
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we fit to the data [127]. G*Power 3.1 was used to perform a power calculation for the

contribution of damaging germline variants to somatic MSI [167]. The following parameters

were used: α error probability = 0.05, power = 0.80, effect size = 6.83e-4, number of

predictors = 20. To assess potential co-occurrence of SHPRH methylation with alterations

in other genes, individuals were grouped according to presence (+) or absence (-) of SHPRH

methylation. A one-way Fisher’s exact test was used to test for an abundance of another

alteration of interest in SHPRH methylation positive individuals vs. SHPRH methylation

negative individuals. Individuals with > 5,000 somatic mutations were excluded from these

analyses to exclude potential confounding due to somatic hypermutation.

To test for association between genetic alteration and somatic MSI burden, a linear

model of the form log10(Mi) ~Gij + Sij + Meij + Xi was used, where Mi denotes somatic

MSI burden of sample i, Gij, Sij, and Meij are binary indicators for germline, somatic, and

methylation alteration status of gene j in sample i, and Xi represents a vector of covariates

for sample i (cancer type, PC1, PC2). All analyses using somatic MSI data were performed

on a maximum of n = 4,997 individuals. To test for association between germline alteration

and age of diagnosis a linear model of the form Ai ~Gij + Xi was used where Ai denotes

age of diagnosis for sample i, Gij, is a binary indicator for germline alteration status of

gene j in sample i, and Xi represents a vector of covariates for sample i (cancer type, PC1,

PC2). All analyses using age of diagnosis were performed on a maximum of n = 8,913

individuals.
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3.4 Results

3.4.1 MMR Pathway is Frequently Affected by Bi-allelic Alter-

ation

To find events most likely to influence a somatic phenotype, we limited our analysis

to alterations predicted to be highly disruptive. We therefore only considered loss-of-

function (LOF) germline variants, LOF somatic mutations, epigenetic silencing of genes via

DNA hyper-methylation, and somatic loss of heterozygosity (LOH) events that select for

a germline LOF allele (see methods and Supplementary Figure B.1 and B.2). In total, we

analyzed 7,790 individuals with germline variant, somatic mutation, and methylation data

available, corresponding to 95,601 germline LOF variants, 225,257 somatic LOF mutations,

and 863,798 somatic methylation events (Figure 3.1). Using this data, we were able to

determine the frequency of three types of germline bi-allelic alterations: 1) germline LOF

and somatic LOF (germline:somatic), 2) germline LOF and somatic epigenetic silencing

(germline:methylation), and 3) germline LOF with somatic LOH.

Surprisingly, we found a low incidence of bi-allelic alterations, with only 4.0% of

all germline LOF variants acquiring a secondary somatic alteration via any mechanism. We

observed 198 germline:somatic events (0.02% of all germline LOF), 433 germline:methylation

events (0.04%), and 3,279 LOH events (3.4%). To determine whether bi-allelic alterations

affect specific biological processes, we ranked genes by the frequency of bi-allelic alteration

and performed a gene set enrichment analysis (GSEA) using 1,330 canonical pathway gene

sets [163, 164]. The only association significant beyond a multiple hypothesis correction

was an enrichment of germline:somatic alterations in the KEGG mismatch repair (MMR)

pathway (q = 0.0056) (Supplementary Figure B.3). To ensure that the lack of enriched

pathways wasn’t due to our strict definition of somatic damaging events, we repeated the

analysis including all somatic mutations with a CADD score >= 20. Though this increased
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the number of germline:somatic alterations (376, 0.039%), no additional significantly en-

riched pathways were found. Similarly we repeated the analysis using a less restrictive

definition of LOH, referred to as ’allelic imbalance’ (AI), that accommodates other mecha-

nisms such as copy neutral LOH (see methods). We again observed more AI events (7,920,

8.2%), but no additional pathways were significantly enriched.

3.4.2 Landscape of Germline and Somatic Alteration of DNA

Damage Repair Pathways

Having shown that MMR genes frequently harbor bi-allelic alterations, we next in-

vestigated the frequency of germline, somatic, and epigenetic alterations in a panel of 210

DNA damage repair (DDR) genes. While germline variation in DDR genes has previously

been studied, only a few studies have considered specific DDR pathway information. DDR

genes were assigned to 8 gene sets using pathway information: direct repair, translesion

synthesis, mismatch repair, Fanconi anemia, non-homologous end joining, base excision

repair, homologous recombination, and nucleotide excision repair [45]. We also examined

3 additional cancer-relevant gene sets: oncogenes, tumor suppressors, and cancer predis-

position genes [17, 2]. For each gene set and cancer type, we calculated the fraction of

individuals with bi-allelic, germline, somatic, or epigenetic alteration of any gene in the

gene set (Figure 3.1).

67



A B 

Figure 3.1: Frequency of Germline and Somatic Alterations in Cancer-
Relevant Pathways.(A-B) Circos plots displaying the individual-level frequency
of alterations for each cancer type in DNA damage repair pathways (A) or onco-
genes, tumor suppressors, and cancer predisposition genes (B). Individuals were
grouped into four mutually exclusive categories based on the type of alterations
observed in the gene set: Bi-allelic: combined germline and somatic alteration of
the same gene; Mixed: germline and somatic alteration of different genes in the
set; Germ: germline alterations only; Som: somatic alterations only (mutation or
methylation). The height of each bar represents the fraction of individuals in each
alteration category. The black arrows highlight cancer types with bi-allelic mis-
match repair alterations. Gene sets are ranked according to size moving clockwise.
Pathway abbreviations and size: DR: direct repair (N = 3 genes); TLS: transle-
sion synthesis (N = 19); MMR: mismatch repair (N = 27); FA: Fanconi anemia (N
= 34); NHEJ: non-homologous end joining (N = 37); BER: base excision repair
(N = 43); HR: homologous recombination (N = 53); NER: nucleotide excision
repair (N = 70); OG: oncogenes (N = 54); TS: tumor suppressors (N = 71); PRE:
predisposition genes (N = 144). There are 382 unique genes total and gene sets
are not mutually exclusive.

Consistent with previous studies, the fraction of individuals carrying germline LOF

was low for both DDR genes and cancer-relevant gene sets (Figure Figure 3.1) [65]. Over-

all, 16% of individuals carried a germline LOF in any of the genes interrogated, with 5%

carrying a germline LOF in a known predisposition gene. For each gene set, we tested for
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overabundance of germline LOF carriers in each cancer type vs. all other cancer types.

We discovered associations between breast cancer and germline alteration of the Fanconi

anemia and tumor suppressor gene set, which are likely driven by BRCA1/2 germline vari-

ants (Supplementary Figure B.4A). We expanded our analysis to include known pathogenic

missense variants from the ClinVar database and discovered additional significant associa-

tions between pheochromocytoma and paraganglioma (PCPG) and both the predisposition

and oncogene sets (Supplementary Figure B.4B) [158]. This association is driven by the

known PCPG predisposition genes SDHB and RET that have been previously reported

[168]. Loss of heterozygosity in these PCPG individuals was frequently observed (77% of

SDHB germline carriers), consistent with SDHB acting via a tumor suppressor mecha-

nism [169]. We conclude that there is no cancer type in TCGA that harbors an excess of

damaging germline variants in DDR or cancer-relevant genes, with the exception of the

well-described predisposition syndrome genes BRCA1/2, SDHB, and RET.

3.4.3 Individuals in TCGA Exhibit Lynch Syndrome Character-

istics

We found that the MMR pathway was significantly enriched for germline:somatic

alterations. This association was driven by six individuals who carry a germline:somatic

alteration of a MMR gene. In five individuals, the gene affected was a known Lynch

syndrome gene (MLH1, MSH2, MSH6, and PMS2 ), which we will refer to as L-MMR genes

[72]. The remaining individual carried a germline:somatic alteration of MSH5 (Figure

3.2A, red arrow). While MSH5 is not known to be a Lynch syndrome gene, we included

this individual in further analyses of MMR germline:somatic alteration carriers. Four of

the germline:somatic alteration carriers have uterine cancer (UCEC) and two have colon

cancer (COAD), cancer types characteristic of Lynch syndrome (Figure 3.1A, arrows) [113].

This prompted us to investigate the molecular and clinical phenotype of germline:somatic

69



alteration carriers to determine if they are consistent with Lynch syndrome characteristics.

While germline:somatic alteration of MMR genes in TCGA has been previously described,

detailed somatic phenotyping of these individuals has not been performed [47]. Using

previously published MSI data, we investigated the fraction of microsatellite loci that

exhibit instability in the tumor (somatic MSI burden) of individuals carrying alterations

in MMR genes [48]. Figure 3.2A shows germline, somatic, and epigenetic alteration status

of L-MMR genes for all individuals classified as MSI high (MSI-H) by Hause et.al, with bi-

allelic mutation carriers grouped to the left. Interestingly, only 76% of MSI-H individuals

have an alteration (germline LOF, somatic LOF, or hyper-methylation) of an MMR gene,

indicating that some of the variation in somatic MSI is not explained by the genetic

alterations investigated.
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Figure 3.2: Genetic and Clinical Characteristics of MSI-H Individuals.
(A) CoMut plot displaying germline, somatic, and epigenetic events in L-MMR
genes (bottom 4 rows - number of affected individuals in parenthesis) for 217 MSI-
H individuals (columns). The top histogram represents MSI burden expressed as
the fraction of possible microsatellite sites that are unstable. Age of diagnosis was
converted to a Z-score using the mean and standard deviation age for each cancer
type. Cancer types with fewer than 5 MSI-H individuals are labeled "Other" and
include bladder, head and neck, kidney, glioma, lung, liver, prostate, stomach,
and rectal cancer. The type of genetic alteration is indicated by color and bi-allelic
events are indicated by a black box. Individuals with bi-allelic (germline:somatic)
MMR mutations are grouped to the left. The red arrow highlights an individual
with bi-allelic alteration in MSH5 (not an L-MMR gene). (B) Somatic MSI
burden in 4,997 TCGA individuals grouped by type of MMR pathway alteration.
Categories are the same as those described in Figure 3.1: Bi-allelic: combined
germline and somatic alteration of the same gene; Mixed: germline and somatic
alteration of different genes in the set; Germ: germline alterations only; Som:
somatic alterations only (mutation or methylation). Individuals with bi-allelic
alteration occurring via germline:somatic and germline:methylation mechanisms
are displayed separately. The number of individuals in each category is indicated
in parentheses.
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Using a linear model controlling for cancer type, we found that the six individuals

with germline:somatic MMR alterations were diagnosed on average 14 years earlier (p =

0.0041) and have 2.8 fold higher somatic MSI (p = 3.95e-15) than individuals with any

other type of MMR pathway alteration (Figure 3.2B, Supplemental Tables B.1 and B.2).

Of the five individuals with germline:somatic alteration of a L-MMR gene, four carried

a germline LOF variant that is known to be pathogenic for Lynch syndrome, and one

carried a LOF variant MSH6 (p.I855fs) not present in ClinVar (Supplementary Table B.3).

This MSH6 variant in located in the same exon as another known pathogenic frameshift

variant, suggesting it likely predisposes to Lynch syndrome (Supplementary Table B.4).

While a diagnosis of Lynch syndrome requires clinical family history data not available in

TCGA, the carriers were diagnosed at an earlier age and exhibit increased somatic MSI

characteristic of Lynch syndrome. We note that this result would have gone unnoticed in an

analysis of somatic MSI using interaction terms to model bi-allelic alteration at the single

gene level, highlighting the value of grouping genes by biological pathway (Supplementary

Table B.5). Interestingly, we observed the identical nonsense mutation in PMS2 (p.R628X)

in two individuals, once as an inherited variant and once as an acquired somatic mutation

(Supplementary Figure B.5). This overlap between clinically-relevant germline variants

and somatic mutations suggests that, in some instances, the origin of a mutation is less

important than its functional effect.

3.4.4 Using MSI-H to Reclassify Variants of Unknown Signifi-

cance

Given the large effect of germline:somatic LOF mutations on somatic MSI, we next

asked whether germline:somatic missense mutations produced a similar phenotype. We

expanded our analysis to include missense variants known to be pathogenic for Lynch

syndrome from ClinVar. We identified one individual with bi-allelic alteration of MSH2
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involving a pathogenic missense germline variant (p.S554N) and a somatic LOF mutation

(Supplementary Table B.3). Including missense somatic mutations with a CADD score

>= 20 led to the identification of one individual with bi-allelic alteration of PMS2 in-

volving a germline LOF variant (p.R563X) and a secondary somatic missense mutation

(Supplementary Table B.4).

We observed a number of missense germline variants in L-MMR genes not present

in ClinVar, which we consider variants of unknown significance (VUS). We reasoned that

the phenotype of elevated somatic MSI and germline:somatic L-MMR mutation could be

used to identify germline VUS likely to be pathogenic for Lynch syndrome. Using 212 indi-

viduals classified as MSI-H, we identified 74 individuals with a damaging somatic mutation

in a L-MMR gene (Figure 3.3A) [48]. Of the individuals with L-MMR somatic mutations,

37 have a germline missense variant in the somatically mutated gene. To identify variants

most likely to be damaging, we retained only those with a minor allele frequency < 0.005

in all ancestry groups represented in ExAC. Three individuals met the criteria of having an

MSI-H phenotype and a bi-allelic L-MMR mutation involving a likely damaging missense

germline variant. One was the previously identified MSH2 p.S554N variant carrier, the

others carried two VUS: MSH2 (p.P616R) and MSH6 (p.F432C) (Supplementary Table

B.4).
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Figure 3.3: Identification of Potential Pathogenic Lynch Syndrome
Variants. (A) Analysis workflow: 212 individuals with MSI-H classification were
dichotomized based on presence of germline:somatic mutation of a L-MMR gene.
Individuals carrying germline:somatic mutations were further subdivided by al-
lele frequency of the candidate germline variant in ExAC. Pink boxes indicate the
use of somatic data, blue boxes integrate somatic and germline data. Numbers in
parenthesis refer to number of individuals that fulfill the box criteria. Individuals
that carry bi-allelic alterations are labeled according to ClinVar significance of
the germline variant. VUS: variant of unknown significance. (B-C) Somatic MSI
burden (B) and age of diagnosis (C) of individuals who carry germline:somatic
mutations in a MMR gene. Individuals were grouped by MMR gene mutation
type: None: no alteration; Germ: germline LOF variants only; Som: somatic
LOF mutations only; Bi-Miss: bi-allelic alteration including a missense muta-
tion; Bi-LOF, bi-allelic alteration via dual LOF mutations. Age was converted to
a Z-score using the mean and standard deviation age of diagnosis for each cancer
type. ** = p < 0.001, * = p < 0.01; p-values were determined using a linear
model to predict somatic MSI burden while accounting for cancer type.
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Closer investigation of the MSH6 p.F432C variant showed that other amino acid

substitutions at the same residue were classified as pathogenic in ClinVar (Supplementary

Table B.4). Further, the individual carrying the MSH6 p.F432C variant had an earlier age

of diagnosis (Z = -1.03), suggesting this variant is pathogenic. In contrast, the individual

carrying the MSH2 p.P616R variant had an older age of diagnosis (Z = 1.20), suggesting

this variant is not pathogenic. While validation is required to confirm pathogenicity of this

variant as well as the previously mentioned MSH6 p.I855fs, we offer genetic and clinical

evidence that these variants may predispose to Lynch syndrome, as well as show evidence

suggesting that MSH2 p.P616R is likely benign.

3.4.5 Missense Alterations Exhibit an Attenuated Lynch Pheno-

type

Taken together, we have identified ten individuals with germline:somatic MMR

alterations, six of which carry a germline variant that is known to be pathogenic for

Lynch syndrome (Table 3.1). With this in mind, we asked whether individuals with

germline:somatic LOF mutations have a more severe phenotype than those with combined

LOF and missense mutations. Bi-allelic alteration carriers were divided into two groups:

those with germline and somatic LOF mutations (Bi-LOF, n = 6) and those with missense

germline variants or missense somatic mutations (Bi-Miss, n = 4). We found that both

Bi-LOF (p = 2.78e-15) and Bi-Miss (p = 1.01e-10) groups have significantly elevated MSI

(Figure 3.3B and Supplementary Table B.6). Bi-Miss and Bi-LOF have a median 1.50 and

2.35 fold higher somatic MSI compared to individuals with somatic MMR alteration alone,

demonstrating a synergistic effect between germline variants and somatic mutations. Sim-

ilarly, both Bi-LOF and Bi-Miss groups had significantly higher contribution of mutational

signature 6, a signature associated with mismatch repair defects (Supplementary Figure

B.6) [61]. In contrast, only Bi-LOF individuals were diagnosed at an earlier age (Figure
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3.3C and Supplementary Table B.7). These results show that any damaging bi-allelic

MMR alterations are sufficient to induce a MSI-H tumor phenotype, but only bi-allelic

alterations via dual LOF mutation are associated with an earlier age of diagnosis.

Table 3.1: Bi-allelic Germline:Somatic MMR Alteration. Number of
individuals affected by three types of germline:somatic alterations in MMR genes.
LOF = Loss of function variant, MISS = missense variant, * = individual carries
a ClinVar pathogenic germline variant
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3.4.6 Mono-allelic Germline Alteration has Little Effect on So-

matic MSI

Having shown that combined germline LOF and missense somatic mutations are

sufficient to cause elevated MSI, we hypothesized that damaging germline variation in

the absence of somatic mutation could also increase somatic MSI. To maximize power we

expanded our analysis to include all MMR genes as well as two different categories of

damaging germline variation: known (ClinVar) and predicted (CADD >= 30) pathogenic.

Individuals with any somatic alterations in MMR genes were excluded from this analysis

to get an accurate estimate of the effect of damaging germline variation alone. There were

no significant association between damaging germline variation in the MMR pathway and

somatic MSI burden (Supplementary Figure B.7 and Table B.8). Known variants showed

the strongest effect (0.02 fold increase in MSI burden), and this was largely driven by

MLH3 p.V741F, a variant with conflicting reports of pathogenicity that is carried by 195

individuals. From this we conclude that the effect of damaging germline variation without

concomitant somatic mutation on somatic MSI is small.

3.4.7 Methylation of SHPRH Associated with Somatic MSI

We observe that 24% of MSI-H individuals have no alteration of an MMR gene,

suggesting that there is variation in somatic MSI burden due to factors outside of known

MMR genes (Figure 3.3B) [170]. To investigate this further, we extended the search to all

DDR genes. We separately assessed the contribution of germline LOF, somatic LOF, and

somatic methylation to somatic MSI burden using a gene level linear model. Somatic LOF

frameshift mutations that overlap with microsatellite loci were removed from this analysis,

as we were unable to determine the direction of causality between these mutations and

overall MSI burden (Supplementary Figure B.8 and Table B.9). Additionally, the MMR bi-

79



allelic alteration carriers were excluded from this analysis to obtain an accurate assessment

of mono-allelic germline variation. The results of this analysis are summarized in Figure

3.4. Consistent with the lack of association between damaging MMR germline variants and

somatic MSI, we found no significant association at the single gene level between germline

LOF and somatic MSI (Figure 3.4A).

A B C 

D E F 

Figure 3.4: Germline, Somatic, and Epigenetic Associations with MSI.
(A-C) Volcano plots of gene-level association testing between germline LOF (A)
somatic LOF (B) and somatic methylation (C) and somatic MSI burden. A total
of 127 DDR genes were tested in 4,987 individuals. Red dotted line represents
Bonferroni significance cutoff. (D) Somatic expression of MLH1 and SHPRH in
individuals with somatic methylation. ** = p < 0.001 as determined using a
linear model to predict gene expression while accounting for cancer type. (E-
F) Somatic SHPRH expression is significantly reduced (E, Wilcox p = 0.0018)
and somatic MSI is significantly increased (F, Wilcox p = 0.0067) in uterine
tumors with SHPRH methylation. TPM = transcripts per million. The number
of individuals in each category is indicated in parentheses.

We found that somatic mutation of MLH1 and MSH2 and somatic methylation of
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MLH1 were associated with increased MSI burden, confirming what has been previously

reported (Figure 3.4B,C) [170]. In addition, we discovered a novel association between

methylation of SHPRH and elevated somatic MSI (p = 1.19e-16) (Figure 3.4C). SHPRH

is a E3 ubiquitin-protein ligase and a member of the translesion synthesis pathway, a

pathway that enables DNA replication to traverse regions of DNA damage via special-

ized polymerases [171]. Methylation of SHPRH was associated with a 16% decrease in

gene expression in a pan-cancer analysis (Figure 3.4D). We observed that methylation of

SHPRH has the strongest effect both on SHPRH expression and somatic MSI burden

in uterine cancer (Figure 3.4E,F and Supplementary Figure B.9). Interestingly, SHPRH

expression is highest in normal ovarian and uterine tissues among 23 tissues examined,

suggesting a specific function for SHPRH in these organs (Supplementary Figure B.10)

[157]. Methylation of MLH1 and SHPRH are both associated with mutational signature

6, with a stronger association in uterine cancer (Supplementary Figure B.11).

To confirm that SHPRH methylation is the likely causal factor influencing somatic

MSI, we performed a co-occurrence analysis to find other somatic events correlated with

SHPRH methylation (Supplementary Figure B.12). There were a large number of somatic

events significantly correlated with SHPRH methylation, including somatic MMR muta-

tions; however, we found that SHPRH methylation remains a significant determinant of

somatic MSI even after accounting for other somatic MMR alterations (Supplementary

Table B.10). Furthermore, we found a significant, albeit weaker, association between so-

matic expression of SHPRH and MSI burden, indicating that SHPRH methylation likely

affects MSI burden via silencing of SHPRH (Supplementary Table B.11).
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3.4.8 Mono-allelic Germline Alterations not Associated with Mu-

tational Signatures

It was previously reported that bi-allelic alteration of BRCA1/2 is associated with

somatic mutational signature 3 [69]. As a result, we hypothesized that bi-allelic alterations

in other DDR pathways may also be associated with known mutational signatures. We

first attempted to replicate the BRCA1/2 association, but surprisingly found high levels of

mutational signature 3 in individuals carrying mono-allelic damaging germline BRCA1/2

variation. However, when we considered AI events to be bi-allelic alterations, we no longer

found a significant association between mono-allelic BRCA1/2 alterations and somatic

mutational signature 3 (Supplementary Figure B.13). In contrast to individuals with

BRCA1/2 LOH, we suspect that individuals with AI have sub-clonal BRCA1/2 loss,

which would explain the lower levels of signature 3 observed. Thus, we demonstrate that

variability in LOH calling method can lead to conflicting results.

We next tested for association between 30 somatic mutational signatures from COS-

MIC and germline bi-allelic alteration in six DDR pathways with more than five individuals

carrying bi-allelic alteration (FA, MMR, HR, BER, NHEJ, and TLS) (Supplementary Fig-

ure B.14A) [166]. The only significant association uncovered (FDR < 15%) was between

Fanconi anemia and signature 3, which was driven by the known association between

BRCA1/2 alterations and signature 3. We found that when we include all bi-allelic alter-

ations in MMR genes, there was not a significant association with signature 6. This was due

to the inclusion of germline:methylation events. Limiting our analyses to germline:somatic

events led to an association that was statistically significant after multiple hypothesis

correction (Supplementary Figure B.6). This suggests that the mechanism of secondary

somatic alteration modulates the effect of germline variation on somatic phenotype. We re-

peated this analysis expanding to include individuals with mono-allelic germline alteration

82



in DDR pathways (Supplementary Figure B.14B). We found no significant associations,

consistent with the idea that bi-allelic alteration is required for the germline to alter so-

matic mutational phenotypes.

3.4.9 Cancer Predisposition Syndromes in TCGA

While TCGA is generally thought to represent sporadic adult onset cancers, our

work as well as that of others has shown evidence suggesting that some individuals in

TCGA have hereditary cancer predisposition syndromes. Known pathogenic variation

in SDHB/RET, BRCA1/2 and MMR genes is thought to be responsible for a subset

of pheochromocytoma and paraganglioma, breast, ovarian, colon, and uterine cancers in

TCGA [47, 168, 172, 69]. Another relatively common cancer syndrome that predisposes

to cancer types found in TCGA is Li-Fraumeni syndrome (LFS), which arises due to

inherited variation in TP53 [10]. Using the IARC-TP53 variant database, we identified

38 individuals carrying a potential LFS variant. Interestingly, aside from bi-allelic MMR

alteration, we observed that pathogenic germline variation in cancer predisposition genes

was not associated with an earlier age of diagnosis. To explore this further, we divided

individuals into two groups: those who developed the cancer type expected given the

predisposition gene altered and those with another cancer type. Using this approach, we

found significant associations between germline alteration status and age of diagnosis for

the expected cancer type (Figure 3.5A and Supplementary Table B.12). This suggests

that predisposition syndromes can lead to an earlier age of onset in a specific spectrum of

cancers, but have no significant effect on other cancer types.

83



Figure 3.5: Cancer Predisposition Syndromes in TCGA. (A) Age of diag-
nosis for MMR germline:somatic alteration carriers and individuals carrying Clin-
Var pathogenic or LOF germline variation in BRCA1, BRCA2, TP53, SDHB, and
RET. Age was converted to a Z-score using the mean and standard deviation age
of diagnosis for each cancer type. The expected cancer types for each gene set are:
MMR, colon, uterine, and stomach; BRCA1/2, breast cancer; TP53, adrenal cor-
tical carcinoma, glioma, glioblastoma, breast cancer, and sarcoma; SDHB/RET,
pheochromocytoma and paraganglioma. All MMR germline:somatic alteration
carriers have the expected cancer type. The number of individuals in each cat-
egory is displayed in parentheses. (B) Age of diagnosis for individuals carrying
ClinVar pathogenic or LOF germline variation in genes described in (A) (’known’)
compared to a set of 75 other cancer predisposing genes (’possible’). ** p < 0.001,
* = p < 0.05, . p < 0.1. p values were determined using a linear model to predict
age of onset while accounting for cancer type.
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To determine if damaging germline variation in other predisposition genes was

associated with earlier age of diagnosis, we examined 75 cancer predisposition genes not

included in the previous analysis. We found no significant association between germline

alteration status and age of diagnosis in any of these additional genes (Supplementary

Figure B.15 and Table B.13). To increase power, we examined these additional genes in

aggregate as a gene set ("possible") and compared this gene set to the genes we examined

previously ("known", BRCA1, BRCA2,MLH1,MSH2,MSH5,MSH6, PMS2, SDHB, RET,

and TP53 ). The known gene set was associated with an earlier age of diagnosis, but the

possible gene set was not (Figure 3.5B). It is possible that using biological knowledge

to group genes or cancer types in a meaningful way could increase power and find new

associations. However, we believe much of the variation in age of diagnosis due to germline

variation lies in genes associated with prevalent cancer predisposition syndromes.

3.5 Discussion

We present an analysis of cancer exomes that integrates germline variation, somatic

mutation, somatic LOH, and somatic methylation. To our knowledge, our study is the first

exome-wide analysis of the prevalence of bi-allelic alterations across the full spectrum of

cancer types represented in TCGA, and one of the first to integrate somatic methylation

data for a large number of genes. Of all gene sets and bi-allelic alteration mechanism

examined, we only discovered a significant enrichment of combined germline and somatic

LOF mutations in the MMR pathway. Bi-allelic alteration of the MMR pathway has been

previously reported; however, the individuals harboring these alterations weren’t studied

in detail [47]. While a diagnosis of Lynch syndrome cannot be made without a family

history, we identified 10 individuals with bi-allelic alteration in an MMR gene, elevated

somatic MSI burden, and in individuals with bi-allelic LOF mutations, earlier age of cancer
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diagnosis.

The genes harboring bi-allelic alterations by our analyses are predominantly those

that are less frequently mutated in Lynch syndrome: MSH6 and PMS2. Similarly, only

20% of the proposed Lynch individuals have colon cancer, the classic Lynch presentation.

Thus, it is possible that what we observe is not bona fide Lynch syndrome, but an atten-

uated form of the disease [31, 113]. The median age of cancer onset in TCGA is 60, thus

the individuals in TCGA carrying cancer predisposing variants may have genetic modifier

mechanisms that delay cancer onset and severity. Interestingly, proposed mechanisms of

genetic compensation delaying cancer onset have been described previously both for Lynch

syndrome and Li-Fraumeni syndrome [33, 32]. We observed six individuals carrying a po-

tentially pathogenic germline variant in a L-MMR gene (2 ClinVar pathogenic, 4 LOF) who

did not acquire a second somatic mutation and don’t have elevated somatic MSI burden.

This is not unexpected as the penetrance of Lynch syndrome variants is often incomplete

[72]. We observed that any damaging germline:somatic alteration is sufficient to induce

elevated somatic MSI, but only individuals with Bi-LOF mutation have an earlier age of

diagnosis. This observation is consistent with the previously proposed idea that bi-allelic

MMR mutation is likely not the tumor-initiating event but instead acts to accelerate tumor

growth (Figure 3.3B,C) [72]. Given our observations, we propose that the less damaging

Bi-Miss mutations could lead to slower tumor growth than Bi-LOF mutations.

Recently, Polak et. al demonstrated that somatic mutational signature 3 and

BRCA1/2 LOH bi-allelic inactivation could be used to reclassify BRCA1/2 germline vari-

ants that were previously considered VUS [69]. Here we provide another example of how

somatic phenotype data can be used to reclassify germline VUS. We identify two novel

potentially damaging Lynch syndrome variants in MSH6. Of note, the ClinVar pathogenic

Lynch predisposing MSH2 variant was not present in the ANNOVAR ClinVar database

despite being reported in ClinVar, highlighting the importance of manual curation of po-
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tentially pathogenic variants. Further experimental validation of these variants is required.

Germline MMR variants can be used to guide therapy and monitoring for patients at risk.

For example, the risk of colorectal cancer can be reduced in individuals carrying pathogenic

germline MMR variants using a daily aspirin regimen [111, 17]. Distinguishing between

sporadic cancer and cancer driven by inherited variation is important both for treatment of

the individual as well as for informing relatives who may carry the same inherited predis-

position. The novel variants we discovered could increase the knowledge base of variants

that predispose to cancer.

A large portion of population-level variation in MSI is not easily explained by

germline, somatic, or epigenetic alteration in DDR genes. This could be due to our mod-

eling approach, our strict criteria for defining damaging events, copy number events we

did not analyze, measurement error in the evaluation of the MSI phenotype, or the lim-

ited focus on DDR genes. Despite these constraints, we successfully identified a novel

association between methylation of SHPRH and somatic MSI burden, with a particularly

strong effect in uterine cancer where SHPRH methylated individuals exhibit a 2.4 fold in-

crease in somatic MSI burden. This finding is particularly interesting as outside of MLH1,

there is little evidence of other epigenetic alterations associated with somatic MSI burden

[173, 174]. Knockdown of SHPRH in yeast has previously been shown to increase DNA

breaks and genomic instability [175]. To our knowledge, SHPRH has not been directly

associated with MSI and therefore should motivate further biological validation of this

result.

The lack of significant GSEA hits from the exome-wide bi-allelic alteration analysis

suggests that there are few novel genes to be found using TCGA that fit the two-hit

inactivation model proposed by Nording and Knudson [6, 7]. However, we show how even

with the same raw data, differences in methodology used to determine bi-allelic alteration,

specifically calling LOH events in BRCA1/2, can lead to conflicting results. Therefore, it
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is possible that more sophisticated methods may discover novel genes frequently affected

by bi-allelic alteration. Outside of bi-allelic alteration, we find that mono-allelic damaging

germline variation has little effect on somatic MSI burden. This is not entirely surprising,

as there is conflicting evidence on the effect of MMR haploinsufficiency on mutation rates

[71, 113]. Using the effect size of known pathogenic MMR variants, we performed a power

calculation and estimated that 11,482 individuals (6,485 more than our analysis) would be

required to detect the association between mono-allelic damaging germline MMR variants

and somatic MSI (see methods). We further found no significant association between

mono-allelic damaging germline variants and somatic mutational signatures. Our analysis

suggests that the contribution of mono-allelic germline variation to somatic mutational

phenotypes is likely to be small.

In addition to individuals with potential Lynch syndrome, we identified individuals

who carry germline variants that reportedly predispose to Li-Fraumeni spectrum cancers

as well as pheochromocytoma and paraganglioma. While the number of individuals who

carry these variants is small, in some cases their phenotype is extreme enough to con-

found analyses, as we saw with somatic MSI (Supplementary Figure B.8B and Table B.9).

It is important that studies using TCGA as a sporadic cancer control remove potential

confounding cases [176]. These individuals may have escaped previous notice due to the

fact that many did not develop the cancer type expected based on their germline predis-

position. This confirms what is known about predisposition syndromes: that a variant

can predispose to one cancer type but have no significant effect on the course of disease

of another cancer type [17]. Variable penetrance could explain why some individuals will

not acquire the cancer type they are predisposed toward, but ’bad luck’ or environmental

exposures may lead them to develop another sporadic cancer [13, 12].

The goal of this study was to assess the ability of germline mono-allelic and germline

and somatic combined bi-allelic alterations to alter somatic molecular phenotypes. We
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observed that combined germline and somatic alteration of MMR genes had a synergistic

effect on somatic MSI burden, but germline alteration alone showed no effect. We later

showed that germline variation in known cancer predisposition genes only led to an earlier

age of diagnosis only in a subset of cancer types. From these observations, we conclude

that germline variation has the ability to influence both somatic phenotypes and cancer

development, but often this ability is dependent on other somatic alterations or tissue

type specific processes. Our work highlights the importance of integrating germline and

somatic data to identify bi-allelic alterations when testing for associations between germline

variants and somatic phenotypes.

In this study we intended to characterize sporadic adult-onset cancers, but in the

course of our analyses, we identified individuals that likely have rare cancer predisposition

syndromes. Our results and observations shed important light on the issue of incidental

findings, not just in the TCGA, but with any dataset with paired germline variant and

phenotype data. We have taken care to be sensitive in our reporting of the data for patient

privacy and followed precedents set by others using the TCGA germline data. We believe

it will be important moving forward to have a set standard for reporting germline variation,

especially given the recent surge of interest in germline variation in cancer.
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Chapter 4

Rare Variant Phasing Using Paired

Tumor:Normal Sequence Data

4.1 Abstract

Background: In standard high throughput sequencing analysis, genetic variants

are not assigned to a homologous chromosome of origin. Haplotype phasing can reveal

information important for understanding the relationship between genetic variants and

biological phenotypes. For example, in genes that carry multiple heterozygous missense

variants, phasing resolves whether one or both gene copies are altered. Here, we present

a novel approach to phasing variants that takes advantage of unique properties of paired

tumor:normal sequencing data from cancer studies.

Results: VAF phasing uses changes in variant allele frequency (VAF) between

tumor and normal data in regions of somatic chromosomal gain or loss to phase germline

variants. We apply multiple phasing methods to 6,180 samples from the Cancer Genome

Atlas (TCGA) and demonstrate that VAF phasing is highly concordant with other stan-

dard phasing methods, and can phase an average of 33% more variants than other read-
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backed phasing methods. Using variant annotation tools designed to score gene haplotypes,

we find a suggestive association between carrying multiple missense variants in a single

copy of a cancer predisposition gene and earlier age of cancer diagnosis.

Conclusions: VAF phasing exploits unique properties of tumor genetics and paired

tumor:normal sequence data to increase the number of germline variants that can be phased

over standard read-backed methods in paired tumor:normal samples. Our phase-informed

association testing results call attention to the need to develop more tools for assessing

the joint effect of multiple genetic variants.

4.2 Background

Humans have two copies of every chromosome, one inherited maternally and the

other paternally. Studying genetic variants in the context of their haplotype, termed

diplomics, can yield important biological insights [112]. Assigning genetic variants to their

homologous chromosome of origin is called phasing. There are three main strategies for

phasing unrelated individuals using next generation sequencing (NGS) data: population-

based, which relies on population linkage disequilibrium structure, laboratory-based, which

relies on physical isolation of homologous chromosome segments, and read-backed, which

relies on paired-end sequencing reads that span multiple heterozygous loci [177, 112].

Each method comes with a cost: population-based methods perform poorly on rare and de

novo variants and at phasing distances greater than a haplotype block, laboratory-based

methods require sample preparation which can be costly or impractical depending on the

source of input DNA, and read-backed methods generally can only phase a fraction of

possible variants at distances limited by read and insert size.

Here we present VAF phasing, a method that uses changes in variant allele frequency

(VAF) between paired tumor and normal samples in regions of somatic chromosomal copy
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loss or gain to phase germline variants. Similar to read-backed approaches, VAF phasing

is unaffected by population allele frequency and can be run on existing NGS data. Unlike

read-backed approaches, VAF phasing is not limited by read and insert size, and can phase

over long distances including whole chromosomes. VAF phasing is limited to regions of

somatic copy number alteration (SCNA); however, SCNAs are widespread in cancer and

approximately 90% of solid tumors exhibit some degree of aneuploidy [80]. The concept of

using allelic ratios of heterozygous germline variants to infer somatic copy number changes

is the basis for many SCNA detection algorithms [178, 179]. However, using this data to

infer the phase of germline variants has not been widely implemented. While a similar

method of using SCNAs to phase variants exists, VAF phasing is a more simple approach

that can be run without training data using only read counts from paired tumor:normal

NGS [180].

There is growing interest in the role of germline variation in increasing cancer

risk and influencing molecular tumor phenotypes [77, 20, 65, 69]. Many cancer-relevant

genes, such as DNA damage repair genes, are large and often contain multiple missense

variants [45, 17]. Phasing damaging heterozygous variants in these genes is important

to determine whether an individual carries variants in both homologous copies of the

gene, termed compound heterozygosity, or carries multiple variants in a single copy. The

biological consequences of compound heterozygosity is exemplified by cancer predisposition

syndromes involving deleterious germline alteration of the mismatch repair (MMR) genes

[10]. Germline compound heterozygosity of a MMR gene is associated with bi-allelic

mismatch repair deficiency (bMMRD) and childhood onset cancer [114, 181], whereas

mono-allelic germline altertion is associated with Lynch syndrome and adult onset cancer

[113]. In the event a gene harbors multiple missense variants in a single copy, it is possible

the combined effect of these variants on protein structure and function is different than

the predicted effect of each variant independently. Further, non-coding variants can act
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as eQTLs and alter expression of a single gene copy [157, 93]. Resolving which gene copy

is under regulation by proximal eQTLs can provide important information, particularly

if one gene carryies inactivaing or dominant negative alleles [112]. Therefore, resolving

the phase of both coding and non-coding variants in a gene region can provide important

insight into the biological consequences of germline variation.

We apply VAF phasing to 6,180 whole exome sequencing (WXS) samples from the

Cancer Genome Atlas (TCGA), and benchmark VAF phasing against two read-backed

methods: HapCUT2 and phASER, one population-based method: SHAPEIT, and one

laboratory-based method: 10X Genomics sequencing [182, 183, 184, 185]. VAF phasing

is highly concordant with all phasing methods assessed up to at distances of 10 Mb. We

demonstrate the value of phase information by testing for association between germline

variation in cancer predisposition genes and age of cancer diagnosis. We find suggestive

evidence that carrying sets of non-compensatory missense variants in the same gene copy

is associated with an earlier age of cancer diagnosis.

4.3 Methods

4.3.1 Data Acquisition

Approval for access to TCGA case sequence and clinical data were obtained from

the database of Genotypes and Phenotypes (project #8072: Integrated analysis of germline

and somatic perturbation as it relates to tumor phenotypes). WXS germline variant calls

from 8,542 individuals were obtained using GATK v3.5 as described previously [117].

Samples prepared using whole genome amplification (WGA) were excluded from analysis

due to previous identification of technical artifacts in both somatic and germline variant

calls in WGA samples [117]. Raw somatic WXS sequence data and somatic RNA-seq

data was downloaded from the legacy archive of the genomic data commons (GDC) in
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BAM file format aligned to the hg19 reference genome [134]. Segmented SNP6 array data

were downloaded from Broad Firehose (release stddata__2016_01_28, file extension:

segmented_scna_hg19). Aggregate allele frequencies and allele frequencies in 7 ancestry

groups (African, Admixed American, East Asian, Finnish, non-Finnish European, South

Asian, and other) were obtained from ExAC v3.01 [76]. Clinical biospecimen histology

slide data for tumor purity measurements was downloaded from GDC.

4.3.2 Variant Annotation and Filtering

Raw variant calls were filtered using GATK VQSR TS 99.5 for SNVs and TS 95.0

for indels. Putative germline loss-of-function (LOF) variants were identified using the

LOFTEE plugin for VEP and Ensembl release 85 [130]. Only germline LOF variants with

an AF < 0.05 in all ancestry groups represented in ExAC were used in the age of diagnosis

association analyses. Gene, CADD score, and ClinVar annotations were obtained using

ANNOVAR and ClinVar database v.20170905[158]. A germline variant was determined to

be pathogenic using ClinVar annotations if at least half of the contributing sources listed

the variant "Pathogenic" or "Likely Pathogenic".

4.3.3 Implementation of VAF Phasing

Somatic reference and alternate read counts for germline variants were obtained

from the germline VCF and somatic BAM files using samtools mpileup v1.3.1 (SNPs) or

varscan v2.3.9 (indels) [139, 135]. Germline variants not present in the somatic sequence

data were excluded from further analysis. A two-way Fisher’s exact test comparing ref-

erence and alternate read counts was performed on variants within significant segments

to test for deviation in VAF between the normal and tumor sample. Only sites with a

nominally significant (p < 0.05) change in VAF between tumor and normal sample were

considered for phasing. Circular binary segmentation (CBS) was performed on absolute ∆
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VAF values, calculated as abs(somatic VAF - germline VAF), of all heterozygous germline

variants using the R package ’PSCBS’, a process we refer to as VAF-CBS [186]. Smoothing

of gaps between heterozygous sites was implemented using the function ’findLargeGaps’

and setting ’minLength’ to the values of 0.5, 1, 2, or 3 Mb. For all segments containing >

1 variants, the mean absolute ∆ VAF of all variants was calculated. Significant segments

were determined either directly using a region-specific or a hard cutoff null model. In

the region-specific model, the absolute ∆ VAF of each segment identified by VAF-CBS

is compared to the absolute ∆ VAF of the same genomic region in n = 416 paired nor-

mal replicate samples. Segments with an absolute ∆ VAF in the 90th percentile were

considered significant and to represent true SCNA. In the cutoff model, a hard cutoff of

absolute ∆ VAF >= 0.14 was used to identify significant segments. Within each segment,

significant variants were assigned to a chromosome of origin using the sign of ∆ VAF, such

that all variants with an increasing VAF are assigned to one chromosome and all variants

with a decreasing VAF are assigned to the other. For analyses using TCGA SCNA calls,

segments with an estimated fold change value < 0.9 or > 1.1, which corresponds to a single

chromosome loss or gain in 20% of tumor cells, were considered significant. VAF phasing

was applied to a total of 6,180 TCGA samples with tumor WXS, normal WXS, somatic

RNA-seq, and evidence of SCNA burden > 0.

4.3.4 Comparison To Other Phasing Methods

HapCUT2 was run with default parameters using germline WXS BAM files from

GDC and single sample VCFs of germline variant calls generated as described previously

[184]. PhASER was run with the parameters –mapq 255, –baseq 10, and –paired_end 1

[182]. The HLA region was blacklisted with the –blacklist option and indels were excluded

from analysis. Phaser was run on somatic RNA-seq BAM files and single sample germline

VCFs. For SHAPEIT phasing, the germline VCF from the full cohort of 8,542 individ-
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uals from TCGA was converted to PLINK bed format, excluding multiallelic sites [183].

SHAPEIT was run with default parameters on the full cohort with the genetic HapMap

phase II recombination map provided by SHAPEIT specified with the -M parameter.

To determine overall discordance between two methods, phase blocks in common

between both methods were found. Within a common block, the number of variants

with disagreeing phase orientation by the two methods as well as the total number of

variants phased in common were counted. Discordance was calculated as: 1 - (the number

of concordant phased variants / number of phased variants in common) (Supplemental

Figure C.11). To obtain pairwise discordance and features of individual phase pairs, all

unique pairwise combinations of variants were identified within each common phase block.

Pairs with disagreeing phase orientation were considered discordant (Supplemental Figure

C.11). Additional features calculated for each phase pairs were: Minimum Read Depth =

lowest read depth of phase pair, Segment Size = size of VAF-CBS segment in base pairs,

Segment Abs. ∆ VAF = absolute ∆ VAF of the VAF-CBS segment, ∆ ∆ VAF = difference

in ∆ VAF between the phase pair variants, Pair Distance = distance between phase pair

variants in base pairs, ∆ Allele Frequency = difference in allele frequency between phase

pair variants, Minimum Allele Frequency = lowest allele frequency of phase pair variants.

4.3.5 HMMvar Annotation and Compound Heterozygosity Anal-

ysis

HMMvar v.1.1.0 was used to jointly assess the functional effect of multiple cis-

phased nonsynonymous variants [115]. HMMvar is a method that uses a hidden markov

model computed from multiple sequence alignment of homologous proteins to predict the

effect of multiple nonsynonmyous coding variants in a gene based on amino acid con-

servation of the variant set. For each gene and each individual, a gene variant set was

constructed using phased heterozygous and homozygous nonsynonymous variants. For

98



each gene, the RefSeq standard transcript or the longest coding transcript was used to

calculate HMMvar scores. HMMvar scores were calculated for individual variants and for

variant sets. Compensatory variant sets were defined as those with a set score <= min (in-

dividual variant scores) - 1.5 * (max (individual variant scores) - min (individual scores)),

non-compensatory variant sets were defined as those with a set score >= max (individual

variant scores) + 1.5 * (max (individual variant scores) - min (individual scores)).

For identifying compound heterozygosity events, variants with a CADD score >=

15 were considered damaging. Compound heterozygosity events were defined at the gene

level as possessing two damaging variants in trans configuration (one variant in each copy).

Cis damaging events were defined as possessing two damaging variants in cis configuration

(two variants in one copy).

4.3.6 Statistical Analyses

Principal Component Analysis (PCA) was performed on common (AF > 0.01)

germline variants using PLINK v1.90b3.29 and the first two principal components obtained

from this analysis were used to control for ancestry in all of the regression models we fit

to the data [127]. To test for association between germline alteration and age of diagnosis

a linear model of the form A ~Gij + Xi was used where A denotes age of diagnosis, Gij, is

a binary indicator for germline alteration status of gene j in sample i, and Xi represents a

vector of covariates for sample i (cancer type, PC1, PC2).

4.4 Results

4.4.1 Phasing with Variant Allele Frequency

In regions of SCNA sequencing reads will be skewed toward the homologous chro-

mosome that is amplified, or in the case of deletions, the chromosome that is retained
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(Supplementary Figure C.1). It follows that the VAF of heterozygous germline variants

in the tumor will also deviate from the expected value of 0.5 dependent on the homolo-

gous chromosome of origin. The difference in VAF between tumor and normal sequencing

samples, which we refer to as ∆ VAF, can be used to phase germline variants in regions

of SCNA (Figure 4.1A). Germline variants that lie on the same homologous chromosome

(cis phase) will have ∆ VAF values of similar magnitude and direction, whereas variants

that lie on opposite homologous chromosomes (trans phase) will have ∆ VAF values of

similar magnitude but opposite direction. Importantly, phasing with ∆ VAF requires iden-

tifying regions of contiguous SCNA. Therefore, the VAF phasing method has two steps:

1) determine which heterozygous germline variants have significantly deviant ∆ VAF to

confidently phase and 2) identify the coordinates of SCNAs (Figure 4.1B).

To identify variants with deviant ∆ VAF, a Fisher’s exact test was performed

for each germline heterozygous variant comparing reference and alternate read counts

between tumor and normal samples. Only variants with a nominally significant p-value

were considered for phasing. A number of methods exist to detect SCNAs from SNP array

or NGS data, many of which use differences in signal intensity or read depth between

normal and tumor samples to identify SCNA regions [179, 187]. Similarly, we reasoned that

absolute ∆ VAF could be used to identify SCNAs, as within a single SCNA the absolute

∆ VAF of heterozygous germline variants should contiguous and of a similar magnitude

(Supplementary Figure C.2). While this approach does not distinguish amplifications from

deletions, for the purposes of phasing germline variants only the coordinates of SCNAs are

of interest. We applied circular binary segmentation (CBS), a method to partition the

genome into segments with similar values, using absolute ∆ VAF as input, a method we

refer to as VAF-CBS [186]. While any SCNA calling method could be used to identify

SCNAs coordinates for VAF phasing, we sought to provide a method that could be run

entirely on paired tumor:normal reference and alternate read count data.
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Figure 4.1: Overview of VAF Phasing Method. (A) The left panel il-
lustrates two heterozygous germline SNVs in trans phase with the chromosome
carrying SNV1 somatically amplified. In the normal sample, both SNVs have a
VAF of 0.5. In the tumor sample, SNV1 is overrepresented in the sequence data
(VAF = 0.75) and SNV2 is underrepresented (VAF = 0.25). The difference in
VAF between the tumor and normal sample, which we refer to as ∆ VAF, indi-
cates that the VAF of SNV1 is increased (∆ VAF = 0.25) and that the VAF of
SNV2 is decreased (∆ VAF = -0.25) in the somatic sample. For a pair of vari-
ants, somatic changes VAF in opposite directions suggest that the variants lie on
different homologous chromosomes. (B) The right panel illustrates two heterozy-
gous germline SNVs in cis phase with the chromosome carrying both SNV1 and
SNV2 somatically amplified. In this case, both variants have an increased VAF
(∆ VAF = 0.25). For a pair of variants, somatic changes VAF in the same direc-
tion suggest that the variants lie on the same homologous chromosome. (C) The
VAF phasing pipeline has two steps: a Fisher’s exact test to identify sites with
significant ∆ VAF, and circular binary segmentation (CBS) on ∆ VAF values to
identify SCNA regions.
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Identifying SCNA breakpoints using WXS data is difficult due to the sparse cover-

age of the genome, and this problem is exacerbated when only using heterozygous variants

as informative data points [179]. In an effort to account for this known difficulty, we

tested multiple values of a smoothing parameter that allows the CBS algorithm to join

distant data points with similar ∆ VAF values (see methods, Supplementary Figure C.3).

Increasing the smoothing distance resulted in longer predicted SCNA segments (Supple-

mentary Figure C.3). This allows for longer range phasing, however, it also carries the

risk of missing SCNA breakpoints in regions not covered by exome capture. Increased

smoothing distance also resulted in fewer segments carrying a single heterozygous variant

and more variants able to be phased overall (Supplementary Figure C.4). To balance the

assumptions made by smoothing with the increased phasing capacity, we used a value of

1 Mb for future analyses.

Changes in VAF between normal and tumor samples may be due to a biased read

sampling or low read depth, not a physical change in chromosomal copy number in the

tumor. To determine a threshold to identify true SCNA segments above background

noise, we utilized duplicated normal WXS samples. A subset of individuals in TCGA

have multiple normal WXS samples, typically a blood and normal tissue sample. As there

should be no CNAs in duplicated normal samples from the same individual, we used these

samples to derive a null distribution of read sampling noise (Figure 4.2A). Interestingly, we

identified seven duplicated normal samples with strong evidence of CNAs (Supplementary

Figure C.5). Given that the CNA regions observed in paired normal:normal samples

were also observed in paired tumor:normal samples, we suspect this observation is due to

tumor contamination of normal tissue and excluded these samples from further analysis

(Supplementary Table C.1). We ran VAF-CBS on duplicated normal samples from 416

individuals and observed 95% of segments identified have a mean absolute ∆ VAF value

< 0.14 (Figure 4.2B). Therefore, we expect using a hard cutoff mean absolute ∆ VAF of
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0.14 to call SCNA segments would result in a 5% error rate. In an alternate approach, the

mean absolute ∆ VAF of each segment identified by VAF-CBS was compared to the mean

absolute ∆ VAF of the same genomic region in the duplicated normal samples, generating

a null distribution for that specific genomic region. While this method has the advantage

of accounting for region-specific read sampling noise, it is likely only applicable for samples

within the TCGA cohort. We refer to these methods as "hard cutoff" and "region-specific"

and use the region-specific null model for future analyses.

Similarly, we used duplicated normal samples to confirm that the assumptions of

the Fisher exact test were not violated. Indeed, the Fisher p-values for all heterozygous

germline variants in duplicated normal samples followed the expected distribution, with a

median 6% of heterozygous loci significant at a p < 0.05 cutoff (Figure 4.2C). In contrast, a

median 17% of heterozygous loci were significant in paired tumor:normal samples (Figure

4.2D,E). By requiring that a variant both have a nominally significant p-value and be in

a VAF-CBS SCNA region to be considered for phasing, we further reduce false positives

due to read sampling noise. Applying VAF phasing with the hard cutoff null model to the

duplicated normal samples, we observe only 0.3% of variants erroneously meet criteria for

phasing.
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Figure 4.2: Using Duplicated Normal Samples to Identify SCNAs. (A)
The expectation in diploid regions is that that the VAF of heterozygous SNVs
will be 0.5; however, due to read sampling error, VAF greater or less than 0.5
is frequently observed. Duplicated normal samples in TCGA can be used as
a null model to estimate how often read sampling error resembles an SCNA
event by chance. (B) Distribution of mean segment absolute ∆ VAF for 249,471
segments identified from n = 416 duplicated normal samples. Segments were
identified using VAF-CBS with a smoothing parameter of 1 Mb. The solid line
represents the 95% percentile (absolute ∆ VAF = 0.14). QQ plots showing p-
values obtained from a Fisher’s exact test on tumor and normal read counts for
an example sample (A) paired tumor:normal tissue, (B) tumor:normal blood, (C)
normal tissue:normal blood.
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4.4.2 VAF Phasing is Concordant with Other Methods

We ran VAF phasing on 6,180 TCGA samples using a range of smoothing param-

eters and both region-specific and hard cutoff null model approaches for SCNA identifi-

cation. As there is no gold standard phasing dataset with paired tumor:normal sequence

data, we assessed accuracy of our phase calls by comparing to TCGA germline phase calls

generated by HapCUT2, phASER, and SHAPEIT (see methods) [182, 183, 184]. We ob-

served a median 99% concordance between VAF phasing and both HapCUT2 and phASER

(Supplementary Table C.2). Samples with poor concordance were largely those with few

variants phased in common between methods (Supplementary Figure C.6). Choice of

smoothing parameter did not have a large effect on concordance, however concordance

was lower when using the hard cutoff null model (Supplementary Table C.2).

There is considerable SCNA burden in TCGA samples, allowing VAF phasing to

phase a median 1,276 variants per sample (Supplementary Figure C.7). The addition

of VAF phasing to HapCUT2 and phASER increased the cumulative number of variants

phased by 33% on average, and VAF phasing phased a median 942 variants not accessible

to other methods (Figure 4.3 A,B). We observed similar results when restricting to rare

variants (Supplementary Figure C.8). The number of variant phased by VAF phasing is

variable between samples and across genomic regions (Supplementary Figure C.9). We

performed linear regression to identify factors underlying the performance of VAF phasing

and found that the number of variants phased by VAF phasing is largely determined

by CNV burden and estimated tumor sample purity (Supplementary Table C.3). We

compared the performance of VAF phasing using SCNA calls derived from VAF-CBS vs.

SCNA calls from TCGA SNP6 array data. A median 63% of variants were phased using

both methods of SCNA identification (Supplementary Figure C.10). However, the variants

uniquely phased using VAF-CBS had higher concordance with HapCUT2 and phASER,

suggesting that VAF-CBS provides more accurate phase calls (Supplementary Table C.4).
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Figure 4.3: Comparison of Phasing Methods. Comparison of VAF phasing
to read backed, population based, and laboratory phasing methods. (A) The
fraction of germline heterozygous variants phased by HapCUT2 alone, HapCUT2
and phASER, and by HapCUT2, phASER, and VAF in n = 6,180 samples. (B)
The fraction of germline variants phased that are unique to each method. (C)
Pairwise discordance between VAF phasing and SHAPEIT for n = 6,263 samples
as a function of distance and allele frequency. Pairs of variants were binned
according to distance between the variants in base pairs and binned according to
minimum allele frequency of the variant pair. Colors represent allele frequency
bins. Solid lines represent the mean discordance, dotted lines are mean += 2
s.e.m. (D) Pairwise discordance between VAF phasing and 10X Genomics phasing
for the COLO829 cell line as a function of distance and allele frequency.
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We measured long range phasing performance using SHAPEIT phase calls and

a pairwise approach to measuring phase accuracy (see methods, Supplementary Figure

C.11). VAF phasing and SHAPEIT are highly concordant up to approximately 10kb (Fig-

ure 4.3C). At distances larger than 10kb discordance between VAF phasing and SHAPEIT

sharply increases, likely due to the fact that median haplotype block size in humans is

45 kb [188]. As expected, discordance was also higher for very rare and singleton vari-

ants, which are not amenable to phasing using population-based methods. To validate

VAF phasing in a separate dataset, we performed 10X Genomics phasing on COLO829,

a tumor:normal pair of cell lines generated from a melanoma patient [189, 185]. Overall

concordance between VAF phasing and 10X Genomics phasing was 96% (Supplementary

Table C.5). Pairwise discordance was largely unaffected by allele frequency and distance

up to approximately 10 Mb (Figure 4.3D). Supporting our previous finding that choice of

VAF-CBS smoothing parameter doesn’t significantly impact phasing accuracy, we observe

that discordance between VAF phasing and 10X Genomics phasing is similar for smoothing

values between 0.5-2 Mb (Supplementary Figure C.12, Supplementary Table C.5). Finally,

to assess what genomic features of variants are associated with VAF phasing errors, we ex-

amined all phased variant pairs in the COLO829 sample. We observe that read depth and

magnitude of ∆ VAF change between variants are the features most strongly associated

with phase errors (Supplementary Table C.6).

4.4.3 Application of VAF Phasing to Cancer Predisposition

In genes that carry multiple variants, phase information disambiguates whether a

single copy or both copies of the gene are altered. To demonstrate the value of phasing for

biological analysis, we performed a phase-informed analysis relating germline variants in

a set of 114 cancer predisposition genes to age of cancer diagnosis [17]. We first identified

compound heterozygosity events, which we defined as carrying a variant with a CADD
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score >= 15 in both copies of a gene [160]. Using all read backed phasing methods com-

bined, we were able to phase resolve 50% of all possible compound heterozygosity events

exome-wide, and identified a total of 54,284 compound heterozygosity events in 4,873

genes (Supplementary Figure C.13). As we found few compound heterozygosity events

for any single gene, we categorized individuals into four hierarchical mutually exclusive

groups based on type of alteration in the predisposition gene set: those carrying a com-

pound heterozygosity event (Trans), those with two or more phased CADD damaging

variants in the same gene copy (Cis), those carrying mono-allelic ClinVar pathogenic or

loss-of-function variants (ClinVar/LOF), and those carrying mono-allelic CADD damaging

variants (CADD). We found no association between carrying a compound heterozygosity

event in a cancer predisposition gene and age of cancer diagnosis (Figure 4.4A, Supple-

mentary Table C.7).

We next asked whether carrying multiple missense variants in a single gene copy

may be more deleterious than carrying a single variant. Variant scoring tools such as

CADD scores are not designed to address this question, as they score variants indepen-

dently [160]. Instead we used HMMvar, a variant scoring tool that assesses the collective

effect of multiple missense variants and identifies sets of variants that collectively have a

different score than expected based on single variant scores [115]. HMMvar identifies both

compensatory variant sets, which collectively are less damaging than independently, and

non-compensatory variant sets, which collectively are more damaging than independently.

Similar to the previous analysis, we categorized individuals into four hierarchical mutually

exclusive groups based on type of alteration in the predisposition gene set: those carry-

ing a non-compensatory variant set (Non-Compensatory), those carrying a compensatory

variant set (Compensatory), those carrying mono-allelic ClinVar pathogenic or loss-of-

function variants (ClinVar/LOF), and those carrying mono-allelic CADD damaging vari-

ants (CADD). We found a significant association between carrying a non-compensatory
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variant set in a predisposition gene and an earlier age of cancer diagnosis (Figure 4.4B,

Supplementary Table C.8). However, this may be in part due to six individuals who

carry both a non-compensatory variant set and a ClinVar/LOF germline variant in differ-

ent predisposition genes. Removing these samples reduces this association below nominal

significance (Supplementary Figure C.14, Table C.9). BRCA1/2 is one of the most fre-

quently studied cancer predisposition genes [190, 10, 15]. Limiting analysis to BRCA1/2

identified three non-compensatory variant sets and a suggestive, but not significant, as-

sociation between carrying a BRCA1/2 non-compensatory variant set and earlier age of

diagnosis (Supplementary Figure C.15, Table C.10). Interestingly, all variants in the pre-

dicted BRCA1/2 non-compensatory variant sets are individually predicted to be benign

in ClinVar (Supplementary Table C.11). Our results are suggestive that multiple missense

variants that appear benign based on individual variant scores may collectively contribute

to cancer predisposition.
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A B 

Figure 4.4: Leveraging Phase to Identify Cancer Predisposing Germline
Variation. Association between germline compound heterozygosity events and
non-compensatory cis variants and age of diagnosis. (A-B) Age of cancer diagnosis
Z-score in n = 6,093 TCGA individuals grouped by type of germline alteration in
a set of 144 cancer predisposition genes. (A) Individuals were grouped into four
hierarchical mutually exclusive groups based on compound heterozygosity sta-
tus: those carrying a compound heterozygosity event (Trans), those with two or
more phased CADD damaging variants in the same gene copy (Cis), those carry-
ing mono-allelic ClinVar pathogenic or loss-of-function variants (ClinVar/LOF),
and those carrying mono-allelic CADD damaging variants (CADD). (B) Indi-
viduals were grouped using HMMvar cis variant scores: those carrying a non-
compensatory variant set (Non-Compensatory), those carrying a compensatory
variant set (Compensatory), those carrying mono-allelic ClinVar pathogenic or
loss-of-function variants (ClinVar/LOF), and those carrying mono-allelic CADD
damaging variants (CADD). The number of samples is shown in parentheses. *
= p < 0.05; p-values were determined using a linear model to predict age of
diagnosis while accounting for cancer type.

4.5 Discussion

A major assumption of VAF phasing is that SCNAs detected using VAF-CBS orig-

inate from a single germline homologous chromosome. This assumption is based off pre-

vious work showing somatic amplifications are predominantly mono-allelic [180, 191]. If

VAF-CBS SCNA calls represent copy number alterations of similar magnitude from both
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homologs, phase switch errors will occur (Supplementary Figure C.16). Given our high

concordance with 10X Genomics long-range phasing, we believe our mono-allelic SCNA

assumption is largely valid. Due to the sparse genomic coverage of the WXS data used

in this study, we primarily apply VAF phasing to phase variants within a single gene.

However, VAF phasing could be applied to paired tumor:normal whole genome sequencing

(WGS) data, such as the 2,800 WGS samples in PCAWG, to potentially phase up to entire

chromosomes [19]. While the goal in developing VAF phasing was to create a straightfor-

ward and specific approach, our model could be improved to incorporate uncertainty and

increase sensitivity. Heterozygous variants in SCNA regions with a non-significant Fisher’s

exact test could be given an estimated phase confidence score based on read count and

population haplotype data. From a sample preparation perspective, VAF phasing could

be improved by better isolation of tumor from normal tissue and with deeper sequencing

depth.

VAF phasing can be used to extract more value from the numerous existing paired

tumor:normal datasets. Phasing germline variants from individuals with cancer is not

only of interest to understanding cancer predisposition, as we demonstrated, but also to

population genetics as a whole. Phased germline variants obtained from cancer data can

serve as a reference dataset of phased gene haplotypes. The human leukocyte antigen

(HLA) locus is of great importance to many diseases, including autoimmune diseases,

infection, and cancer [192]. The complex nature and high degree of polymorphism of this

region makes phasing difficult [193]. In the TCGA samples we examined, 3,651 individuals

have SCNA of chromosome 6p spanning the major histocompatibility locus (MHC) region,

including 602 ethnically-diverse samples. VAF phasing could potentially be incorporated

into existing HLA phasing methods to facilitate phasing of this region and increase the

knowledge base of known HLA haplotypes. HLA typing of cancer patients has become

increasing important in personalized immunotherapy [194]. VAF phasing could potentially
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also be leveraged for patients with chromosome 6 SCNA to better estimate individual HLA

haplotypes.

Using phase information we identified compound heterozygosity events and sets

of missense variants in the same homologous gene copy predicted to negatively interact.

We found no significant association between carrying a compound heterozygosity event

in a cancer predisposition gene and age of cancer diagnosis; however, we found that in-

dividuals carrying non-compensatory missense variant sets had a significantly earlier age

of diagnosis. While it seems counterintuitive that alteration of both gene copies is less

deleterious than alteration of a single copy, it’s likely that our definition of compound het-

erozyosity included missense variants that don’t fully disrupt gene function. Using a more

strict threshold to identify damaging variants, we observe few individuals carrying com-

pound heterozygosity events, presumably because dual inactivation of cancer predisposing

genes would result in childhood onset cancer [114]. We noted that different predisposi-

tion genes were preferentially affected by compound heterozygosity vs. those affected by

non-compensatory missense events, which may be in part due to selection against dual

alteration of specific genes key for survival. Further, using VAF phasing we are unable to

resolve all possible compound heterozygosity events, thus we likely underestimated of the

effect of compound heterozygosity.

We identified 42 missense variant sets in 20 predisposition genes predicted to

have a non-compensatory effect on protein function. We investigated non-compensatory

BRCA1/2 missense variants in detail and noted that all were independently annotated

as benign in ClinVar. This could indicate that there is a negative interaction between

variants or that some of the variants are miss-annotated as benign in ClinVar. While there

are a tremendous number of tools aimed at predicting the functional effect of individual

missense variants, few methods exist that predict the effect of multiple missense variants

simultaneously [195, 160, 196, 115]. There is some evidence in cardiovascular disorders
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that multiple missense variants in a gene are more deleterious than single variants [197].

However, as it is not routine to assess the potential for negative interactions between multi-

ple missense variants in a gene, the importance is likely underestimated. High throughput

in vitro assays have been used to predict the effect of 2,000 amino acid substitutions on

BRCA1 E3 ubiquitin ligase activity [198]. Similar approaches could be used to assess the

joint effect of multiple missense variants in a protein.

In this study we present a simple method to phase germline variants in preexisting

tumor:normal sequencing datasets. We demonstrate VAF phasing is highly concordant

with two read-backed and one laboratory-based phasing method, and that the addition of

VAF phasing to existing read-backed methods increased the number of variants phased by

an average of 33%. VAF phasing performs well on common and rare variants and at long

distances, with the potential to phase up to entire chromosome lengths with WGS data.

We identified individuals from TCGA that carry multiple missense variants in a single

gene copy predicted to collectively be more deleterious than independently, and show that

carrying one of these non-compensatory variant sets in a cancer predisposition gene is

associated with an earlier age of cancer diagnosis. Our work demonstrates the biological

relevance of phasing germline variants in cancer and highlights the need for better scoring

tools to account for multiple variants in a single gene copy.
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Chapter 5

The Upshot

5.1 Discussion

5.1.1 Batch Effects in Public Datasets

While the TCGA is an incredible resource, it is not without problems. TCGA

samples were collected over the course of five years using a variety of sample collection and

preparation techniques. For example, the germline WXS samples were collected using 44

different sequencing workflows. This renders TCGA data sensitive to batch effects, as we

demonstrated in chapter 2 with our discovery of a technical artifact in germline indel calls

due to whole genome amplification (WGA) of DNA samples prior to sequencing. While the

TCGA pan-cancer working group is aware of such issues and together with the genomic

data commons (GDC) is attempting to ameliorate batch effects, to our knowledge, our

paper was one of the first to draw attention to the magnitude of variability in sample

preparation procedures and possible implications of batch effects in TCGA [119, 134, 117].

Despite an in-depth analysis of the characteristics and possible mechanisms underlying

WGA indel artifacts, we were unable to identify a method that could satisfactorily filter

out artifacts while retaining true variation. As frameshift coding indels are a major source

116



of pathogenic variation, this is a severe limitation on how WGA samples from TCGA can

be utilized. While we only examined germline sequence data, as noted, GDC has also

observed similar artifacts in the somatic mutation data [152]. Virtually all ovarian cancer

samples were prepared using WGA, making deleterious germline variation in these samples

difficult to interpret. Despite this, papers have been published using the TCGA ovarian

cancer data [149].

In our work, we describe methods to reduce errors due to technical artifacts when

working with public data. First, we describe a method of group-calling for WXS germline

variants that minimizes batch effects and demonstrate the effectiveness of different variant

filtering approaches provided by GATK at reducing technical artifacts [123]. Second, we

describe a ’one vs. rest’ approach for pan-cancer analysis. TCGA is frequently used in a

’case vs. control’ study design where variant allele frequencies from TCGA are compared to

a non-cancer dataset such as ExAC [76]. Using germline variant calls from another dataset

only serves to introduce more heterogeneity and risk of artifactual findings. Overall, this

work draws attention to the difficulty of working with heterogeneous public datasets, and

demonstrates the types of errors than can occur if batch effects aren’t accounted for in

association studies. I hope that our work will prompt other researchers using the TCGA

data to carefully asses how they utilize the germline data, and motivate more homogenous

sample collection for future genomics datasets.

5.1.2 Germline Variants and Tumor Phenotypes in TCGA

Our study of the effect of germline variation on somatic phenotypes in chapter 3

led to unanticipated discoveries. The most striking finding was evidence that at least

six individuals in TCGA likely have Lynch syndrome. We drew this conclusion based on

the fact that these individuals have ClinVar pathogenic or predicted deleterious germline

variants in known Lynch syndrome genes, secondary bi-allelic somatic mutations, earlier
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age of cancer diagnosis, and elevated somatic microsatellite instability (MSI). This finding

prompted us to investigate the frequency of bi-allelic alteration exome-wide. It seems

probable that bi-allelic alteration would occur in sporadic cancer, perhaps not as the

driver event as is seen in cancer predisposition syndromes, but as a compliment to other

somatic drivers. We found bi-allelic alteration to be extremely rare, and enriched in

known pathways (mismatch repair genes and BRCA1/2 ), suggesting that novel genes

acting through a ’two-hit’ mechanism won’t be discovered using TCGA data. We went on

to categorize other pathogenic germline variants and identified a total of ~60 individuals

likely to have a cancer predisposition syndrome. This was surprising to me, as TCGA is

often thought of, and utilized as [176], a sporadic cancer dataset.

We found no evidence that mono-allelic germline variation could alter somatic MSI

or somatic mutational signatures. As detailed in the introduction, other studies have

shown associations between mono-allelic germline variants and somatic phenotypes. Our

lack of significant findings is likely due to a number of factors. First, out study design was

limited to highly deleterious loss of function (LOF) germline variants. From preliminary

testing on the known association between deleterious BRCA1/2 germline variants and

age of cancer diagnosis, we found that we were unable to detect the effects of non-LOF

variants. While LOF variants are more likely to have a large effect, they are rare. It is

possible that associations between mono-allelic germline variants and somatic phenotypes

will be discovered by incorporating both rare and common germline variants. However,

using variant scoring tools to identifying which common variants are functional is still an

difficult problem. Second, it is possible that MSI is less regulated by germline variation

than other somatic phenotypes. Third, it seems probable that germline variants will play a

larger role in pediatric cancer, as pediatric tumors typically have fewer somatic mutations

[20]. This also facilities study of the effect of germline variants on somatic phenotypes, as

fewer confounding somatic mutations need to be accounted for in the model. Finally, as
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detailed in chapter 2, TCGA is heterogeneous dataset. It is possible that some true signal

is lost amidst technical noise in both the germline and somatic sequence data.

In the course of this analysis we stumbled across an interesting ethical dilemma. In

datasets with paired germline and phenotypic data, it is near possible to diagnosis individ-

uals with genetic diseases, as we demonstrated with Lynch syndrome. While the TCGA

data is entirely de-identified to researchers, it would be possible for the individuals who

contributed their data to TCGA to identify themselves based on data reported in a publi-

cation, especially if the reported genetic disease is rare. Further, family members of TCGA

participants may question whether their relative, and possibly themselves, carry genetic

risk variants. We have taken great care in our reporting of our findings to anonymize the

data; however, our experience draws attention to the need for set standards for reporting

germline findings. With the surge of interest in germline variation in cancer, and genomics

in general, it is becoming increasingly apparent that the balance between protecting pa-

tient privacy while also collecting the type of paired genotype:phenotype data needed to

advance genomic medicine is a difficult problem that needs to be addressed.

5.1.3 Germline Variant Phasing in Cancer Samples

In chapter 4 we describe a novel method for phasing germline variants in cancer

samples with paired tumor:normal sequence data. While a similar approach has been

proposed, this approach is more complicated and requires more data to estimate param-

eters [180]. Further, it was not implemented on a large dataset or benchmarked against

other phasing approaches. We demonstrate that VAF phasing is highly concordant with

standard read-backed, population-based, and laboratory-based phasing methods, and can

phase an average of 33% more variants than read-backed approaches. We propose VAF

phasing be used as an add-on to cancer informatics pipelines to extract more potentially

useful information out of pre-existing datasets.
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With WXS sequence data, phase information allows for the discovery of compound

heterozygosity events and genes that carry multiple missense variants. We used HMMvar,

a variant scoring method that jointly scores multiple missense variants occurring in the

same gene, to identify sets of variants that produce a more deleterious effect on gene

function than would be expected from their independent scores (non-compensatory sets)

[115]. We found suggestive evidence that carrying a non-compensatory germline variant

set in a cancer predisposition gene is associated with an earlier age of cancer diagnosis.

While the functional analyses of this study were limited, it suggests that with better tools

to jointly predict the effect of multiple variants within a gene region, novel biological

associations will be uncovered.

5.1.4 Tumors are Like Onions

From my extensive analysis of the TCGA genomics data, I have come to think of a

tumor like an onion (Figure 5.1). At the core are germline variants, present in every cell of

the body including every cell in the tumor. As the tumor develops, layers of complexity in

the form of other genetic alterations, like somatic mutations, methylation, or copy number

changes, are added. It is only through integrating all of these layers of genetic information

that the origin, phenotype, and trajectory of a tumor will be fully understood.

In most instances, somatic genetic alterations likely have a greater impact on so-

matic phenotypes than germline variants. Therefore, it is important to build models that

account for somatic alterations when studying the relationship between germline variants

and somatic phenotypes in order to avoid misattributing significance to germline variants.

Incorporating somatic alterations into these models is particularly difficult when studying

a phenotype such as overall somatic mutation burden, as the probability of having any

specific gene mutated will be correlated with overall mutation burden. We encountered

this problem when looking for relationships between somatic frameshift mutations and
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MSI burden, and attempted to reduce this correlation between predictor and response by

filtering indels in microsatellite regions. Future studies would benefit from more sophisti-

cated models that can account for ’chicken or the egg’ type relationships between somatic

mutations and somatic phenotypes.

Germline Variation 
Somatic Mutation 

Epigenetic Modification 
Copy Number Alterations 

Clonal Heterogeneity 
Rearrangements 

Figure 5.1: Tumors are Like Onions. Multiple layers of genomic altertions
create the final phenotype of a tumor. As germline variants are present in all
cells of the tumor, they represent the core of the onion. Other genetic altertions
acquired during tumorigenesis add layers of complexity. Only by integrating all
genomic perturbations will the etiology, phenotype, and trajectory of a tumor be
fully understood.
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A recent study of TCGA germline data described an association between deleterious

germline variants in PMS2 and earlier age of cancer diagnosis, and an association between

variants in MSH6 and somatic mutation burden [65]. I believe this is a motivating example

of how an incorrect model can lead to misattribution of significance. In my own analysis

of the TCGA, I identified an association between combined germline and somatic bi-allelic

alteration of PMS2 and MSH6 and age of diagnosis and MSI burden, likely due to Lynch

syndrome. I suspect this study did not integrate somatic and germline information to

identify bi-allelic alterations. As a result, they claim there is a direct association between

germline variants and somatic phenotypes, whereas I believe this association is not direct,

but mediated through a secondary somatic bi-allelic alteration.

5.1.5 Germline Variation, What is it Good For?

It has recently been suggested that heritable factors play a small role in the devel-

opment of sporadic cancer, and that the majority of cancer incidence can be attributed to

replicative mutations that occur during cell division [12, 13]. Even in cancers that show a

strong heritable component, the risk of developing cancer in a specific organ is influenced

by tissue turnover rates. For example, in familial adenomatous polyposis (FAP) the risk

of colorectal is much higher than the risk of duodenal cancer, which correlates with the

much higher rate of cell division in the colon vs. the duodenum [13]. While this may seem

to discount the importance of heritable factors in the development of cancer, this find-

ing is not incongruent with what is known about context-dependent associations between

germline variants and cancer risk. It seems likely that germline variants do contribute to

risk of sporadic adult-onset cancer, but that their contribution is modulated by factors

such as tissue turnover, environmental factors, and the genetic background (i.e., ancestry

and polygenic profile) of an individual. Moreover, germline variants not only modulate

cancer risk, but can also shape tumor phenotypes. Even if the development of cancer is
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determined entirely by chance mutations and ’bad luck’, other factors such as tumor pro-

gression, metastatic potential, druggability, and response to therapy may be influenced by

germline variants. As we have made clear, it is quite likely that inherited genetic variation

can also influence the course of tumor development and the phenotypic features exhibited

by tumors.

Germline variants have been shown to influence a number of somatic phenotypes

including: mutation profile, copy number profile, methylation, gene expression, immune

cell infiltration, and metastatic potential. Both rare germline variants that disrupt gene

function and common variants that modulate gene expression have been implicated in

shaping tumor phenotypes. Often these germline variant:somatic phenotype associations

depend on specific contexts, such as a secondary somatic bi-allelic mutation, the cell of

origin, or tumor specific changes in transcriptional regulation. The mechanisms by which

the germline can alter somatic phenotypes have been shown to be cell-intrinsic by increas-

ing mutagenic or oncogenic potential of the cancer cells themselves, or cell-extrinsic by

altering host stromal or immune cell interaction with the tumor. Many of the associations

have been found in breast cancer and involved BRCA1/2 and other HR genes. It is unclear

whether germline variants in other pathways and other cancer types have a smaller effect,

or if they are simply less thoroughly studied, although we believe the latter.

5.2 Future Directions

This study focused on coding variation from the TCGA WXS data. TCGA also

contains roughly 2,000 paired tumor:normal whole genome sequencing (WGS) samples. It

would be relatively straightforward to apply our GATK germline variant calling pipeline

and our VAF phasing method to these samples to obtain phased WGS germline variants.

Using WGS data, one could perform a phase-informed analysis of germline variants that

123



integrates eQTLs and missense variants at the gene level. Combining noncoding variants

that regulate gene expression and coding variants that perturb gene function allows for the

identification of genes with allele-specific expression favoring either the WT or perturbed

allele. This additional information about how germline variants function as a haplotype

may uncover novel mechanisms by which germline variants function in cancer. For exam-

ple, certain missense germline variants may only promote a somatic phenotype when in

cis with an eQTL that increases their expression. In addition to TCGA, other large pub-

lic cancer datasets are now available. As mentioned in the previous discussion, studying

the relationship between germline variants and somatic phenotypes in a pediatric cancer

dataset may yield more results. It would be interesting to investigate this question in a

cohort of both pediatic and adult cancers. GATK’s latest pipeline makes group genotyp-

ing rapid and scalable, such that our germline variant calls from TCGA could easily be

combined with germline calls from a pediatric dataset while minimzing batch effects [123].

In this study we investigated MSI and mutational signatures as somatic phenotypes

that may be modulated by germline variation. There are a large number of other pheno-

types that can be extracted from tumor sequencing and array data. We have discussed

many in the introduction; however, I believe immune phenotypes are the most exciting

direction for future research. Specifically, the type and abundance of infiltrating immune

cells as well as markers of immune reponse. Immunotherapy is a promising new avenue

of cancer treatment, and a better understanding of what tumors are vulnerable to im-

mune attack would be immensely beneficial to patients. The recently published work on

immuno phenotyping of TCGA samples identified possible relationships between genetic

background and different tumor immune characteristics [99]; however, specific germline

variants were not implicated. Recently work in transgenic mouse models suggests that a

germline polymorphism common in the human population can regulate immune cell in-

filtration [100]. Together these results suggest that germline variants can shape immune
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phenotypes, and novel biology remains to be discovered.

Network based stratification of tumors using somatic mutations has produced mean-

ingful clustering of patients that can predict survival [79]. It may be possible to improve

this stratification by incorporating salient germline variants into the network smoothing

algorithm. As we demonstrated with pathogenic variants in PMS2, the same functional

pathogenic alteration can occur as a somatic mutation or an inherited variant (Supplemen-

tary Figure B.5). For some genetic alterations, the need to distinguish between somatic

vs. germline origin, as is currently dogma in cancer genomics, may be unnecessary. While

germline variants are largely studied as mediators of cancer risk, they are genetic variants

present in all tumor cells with the same potential to affect somatic phenotypes as somatic

mutations. Overall, I believe better integration of the germline and somatic ’layers’ of the

cancer genome will be beneficial to understanding of molecular somatic phenotypes.

The analyses discussed above could be performed on pre-existing datasets. A prob-

lem with the current public cancer datasets is a relative dearth of clinical and phenotype

data. For example, in TCGA many samples lack information about important clinical

covariates such as smoking history and clinical outcomes such as response to treatment.

As we demonstrated in our work in chapter 3, a number of patients appear to have a

heritable predisposition to cancer, but the TCGA clinical data available on the samples

had no record of cancer predisposition genetic testing. Some tumor phenotypes of interest,

for example the degree of vascularization or metastatic spread of a tumor, are difficult to

quantify from HTS data. Further, most public cancer datasets generate data from a sin-

gle tumor biopsy, which will not accurately represent the full repertoire of intra-tumoral

heterogeneity that exists within many cancer types. The ability to detect associations

between the germline and somatic characteristics depends on accurate quantification of

somatic phenotypes and important clinical covariates. Therefore, novel discoveries may

require deeper phenotyping of tumor samples and better integration of medical records
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into public cancer datasets.

Large-scale analyses have identified a number of genetic variants associated with

variation in gene expression (eQTLs) or protein levels (pQTLs) [157]. As shown in the

introduction, the ability to repair DNA in response to damaging agents is heritable [51].

Similar QTL analyses could be performed to identify the specific germline variants that

underlie heritable variation in DNA damage response (DDR) activity, which could be

called drQTL. Identifying drQTLs would require paired sequencing and DDR response

measurements from a diverse population of individuals, similar to the GTEx project [157].

A possible source of this information would be the lymphoblastoid cell lines available from

HapMap samples, which have germline variant data available and could be subjected to

a high-throughput DDR assay [128]. If common drQTL are identified, DDR could serve

as an intermediate phenotype for association analyses similar to TWAS [199]. With only

germline variants, DDR could be imputed in cohorts of patients where DDR was not

measured and used as to predict cancer risk or specific somatic phenotypes.

Monozygotic and dizygotic twins have been extensively used to determine the her-

itability of cancer risk [14, 16]; however, these studies generally don’t include somatic

phenotyping of the tumors. If germline variation does influence the growth of a tumor and

the resultant somatic phenotype, cancers that arise in concordant twins should be more

phenotypically similar than those arising in unrelated individuals. In other words, twin

studies could also be utilized to estimate the heritability of somatic phenotypes. To our

knowledge, no study has been undertaken to formally test this hypothesis. While obtain-

ing sufficient numbers of twins concordant for cancer would be difficult, tools like GCTA

could be applied to data from large public cancer datasets to estimate the heritability of

somatic phenotypes [200].
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5.2.1 The Upshot

While our work did not identify novel associations between germline variants and

somatic phenotypes, we provide methods and suggestions for future research on germline

variation in cancer. We provide a best practices approach to analyzing the germline vari-

ant data in TCGA, identified potential confounding Lynch syndrome samples in TCGA,

describe an approach to modeling relationships between germline variants and somatic

phenotypes that accounts for other somatic alterations, and developed a method for phas-

ing variants in that takes advantage of unique properties of paired tumor:normal data. It

has been clearly demonstrated that germline variants can influence somatic phenotypes,

the question remaining for future research is to what degree and in what contexts. We

believe that both creative analysis of existing datasets as well as the generation of larger,

more homogenous cancer datasets will yield novel insights.
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Appendix A

Supplemental Material: Pan-Cancer

Analysis Reveals Technical Artifacts in

TCGA Germline Variant Calls

This appendix contains supplemental figures for the work described in Chapter 2

of this document: "Pan-Cancer Analysis Reveals Technical Artifacts in TCGA Germline

Variant Calls". Each figure is referred to in the main text of the chapter and a brief

description of each figure is given here.
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Figure A.1: Technical Covariates of Cohort. The distribution of the seven
identified technical covariates for n=9618 TCGA WXS samples. Capture effi-
ciency is measured as percentage of capture target area covered by at least 20 X
read depth (denoted C20X).
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Figure A.2: Number of Processing Workflows. The number of unique
combinations of six technical factors (sequencing center, normal tissue, WGA,
BWA version, capture kit, and sequencing technology) per cancer type.
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Figure A.3: Variant Call Discordance Between NewAlign and OldAlign
(n=345). For filtered condition SNPs were filtered using GATK VQSR TS 99.5
and indels using GATK hardfilter. For filtered + RepeatMask condition variants
in UCSC tracks RepeatMasker and Segmental Dups were excluded.
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Figure A.4: Discordance With BAM Realignment. (A) Raw VCF discor-
dance between NewAlign and OldAlign samples plotted by BWA version. (B)
Filtered VCF discordance between NewAlign and OldAlign samples plotted by
BWA version. SNVs were filtered at GATK VQSR TS 99.5, indels with GATK
Hardfilter.
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Figure A.5: PCA of Common Variants.(A) Principal components (PC) 1
and 2 from joint pan-cancer and HapMap analysis, HapMap samples are colored
by population. (B) Same data as A, TCGA samples are colored by self-report
ancestry. (C) Percent total variance explained by the top 10 PCs.
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Figure A.6: LOF SNV and Indel Burden. (A) Individual LOF SNV burden
plotted by cancer type. (B) Individual LOF indel burden plotted by cancer type.
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Figure A.7: LOF Indel Burden in NewAlign Cohort. (A) Number of LOF
indels per individual in NewAlign and OldAlign pipelines. There were a median 8
more LOF indels in the NewAlign pipeline. Overall individual LOF indel burden
was highly correlated between pipelines (Pearson R2 = 0.947). (B) Percent of
variation in individual LOF indel burden explained by technical covariates as
assessed by ANOVA.
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Figure A.8: Coverage and Read Depth in WGA Samples. (A) C20X
plotted by WGA status. (B) Mean read depth per individual across 16,824 genes
for n=446 WGA samples and n=4,667 DNA samples. (C) Standard deviation in
read depth per individual across 16,824 genes.
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Figure A.9: Frequently Inserted and Deleted Bases of WGA Indels.
The ten most frequent inserted or deleted base pairs for WGA-enriched and non-
enriched indels. The height of the bar indicates frequency of each insertion or
deletion relative to all insertions or deletions in that indel set.
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Figure A.10: Discordance Between Repeated WXS Samples. Discor-
dance between repeated samples of n=492 individuals plotted by WGA status.
DNA:DNA = all samples are DNA, WGA:DNA = at least one sample is WGA,
WGA:WGA= all samples are WGA. Discordance was calculated separately for
SNVs (A) and indels(B). (C) Indel discordance on the same samples calculated
separately for hompolymer + indels, indels 15 base pairs or longer, and other
indels.
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Figure A.11: Proposed Mechanism of Artifactual Indel Generation.
(A) Branching during MDA creates free 3’ termini that can anneal to proximal 5’
strands with complementary sequence, generating chimera events. These events
most frequently occur within a 10 kB window. (B) Chimera events manifest
in sequence data as reads containing sequence from two noncontinuous regions
of the reference genome. Here we demonstrate a chimera read formed by an
inverted rearrangement with a deletion. (C) Chimeric reads can be discarded
during multiple stages of variant calling, including initial alignment of reads to the
genome, GATK’s indel realignment step, or GATK’s ’HaplotypeCaller’ pairHMM
realignment. We observe that chimeric reads that persist to the final stages of
variant calling resemble insertions of varying sizes.
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Figure A.12: Distribution of Indel Sequence BLAST Hits. For WGA-
enriched and non-enriched large insertions and deletions with BLAST matches,
the location of BLAST matches are shown. Indel start position is 0, n=1,113
WGA-enriched insertions, n=11 WGA-enriched deletions, n=69 Non-enriched
insertions, n=175 Non-enriched deletions.
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Figure A.13: Individual LOF Indel Burden Across Filtering Methods.
The black line represents the median LOF indel burden in the most stringent
filter condition (VQSR 90) for comparison.
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Figure A.14: LOF Indel Burden in WGA Samples Across Filtering
Methods. (A) Individual LOF indel burden of WGA and DNA samples for
each filter. (B) LOF variant count includes both SNV and indels. The red line
indicates expected LOF burden from ExAC (155).
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Figure A.15: G/C Homopolymer Content of Genes Shared Between
OV and LAML. The number of G/C hompolymer regions normalized by coding
exon length in base pairs plotted for all genes and for genes that were significant
p < 1.61 x 10-7 by logistic regression for both OV and LAML. Significant genes
shared between OV and LAML under three different indel filter conditions (VQSR
TS99, TS95, TS90) are plotted for comparison.
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Figure A.16: LOF SNV Logistic Regression Analysis. (A) Quantile-
quantile plot from logistic regression association testing between germline LOF
SNV burden and OV. n=number of genes tested. Red line indicates significant
cutoff and red points indicate associations significant p < 1.61 x 10-7. BRCA1/2
associations highlighted. (B) Number of genes significant p < 1.61 x 10-7 by logis-
tic regression for all cancer types. Color indicates cancer types containing WGA
samples.
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Table A.1: Composition of the Pan-Cancer Cohort.
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Table A.2: Coverage of the Six TCGA Capture Kits. Size and overlap
with Gencode exons for the six capture kits used to collect TCGA normal DNA
samples.

Table A.3: K-means Cluster Membership of HapMap Samples.
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Table A.4: K-means Cluster Membership of TCGA Samples.

Table A.5: GC Content of the Sequence Surrounding WGA Indels.
Mean GC content of the sequence surrounding WGA-enriched and non-enriched
indels. C.I. = Confidence interval for mean estimate derived from 1,000 bootstrap
samples.

Table A.6: Allele Frequency of Homopolymer Indels. Mean allele fre-
quency of indels in homopolymer regions in DNA and WGA samples. C.I. =
Confidence interval for mean estimate derived from 1,000 bootstrap samples.
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Table A.7: Frequency of BLAST Match for WGA Indels. Total number
of large indels and fraction of large indels with a BLAST hit in WGA-enriched
and non-enriched indel sets. Large indels are indels >= 15 base pairs. BLAST
hits are defined as a BLAST match +/- 10 kB from the indel start position.
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Table A.8: ANOVA of LOF Indel Burden Using Different Filters. Vari-
ance in LOF indel burden explained by technical covariates for each indel filtering
approach. Sum. Sq., Sum of Squares; Df, Degrees of Freedom.
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Table A.9: Correlation Between LOF Indels and Homopolymer Tracts.
Spearman correlation between LOF indel burden and homopolymer content. LOF
indel allele counts were calculated for each gene separately for WGA and DNA
samples. Both allele counts and homopolymer region counts were normalized by
gene by dividing by coding exon length in base pairs.
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Appendix B

Supplemental Material: Exome-Wide

Analysis of Bi-allelic Alterations

Identifies a Lynch Phenotype in the

Cancer Genome Atlas

This appendix contains supplemental figures for the work described in Chapter

3 of this document: "Exome-Wide Analysis of Bi-allelic Alterations Identifies a Lynch

Phenotype in the Cancer Genome Atlas". Each figure is referred to in the main text of

the chapter and a brief description of each figure is given here.
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Figure B.1: Calling Somatic Methylation Status. (A) MLH1 expression is
decreased in methylated samples. Cancer types with 5+ methylated samples are
shown. TPM = transcripts per million. (B) Expression of MLH1 vs. methylation
beta value. Both expression values (in transcripts per million) and methylation
beta values were converted to Z-scores using the mean and standard deviation
for each cancer type. The red line indicates the cutoff used to call methylation.
(C) Expression of MLH1 vs. methylation beta value in colon cancer samples
only. Beta values are from the methylation probe cg13846866, which was most
anti-correlated with MLH1 expression in colon cancer. The red line indicates the
cutoff used to call methylation.
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Figure B.2: Example LOH Events. IGV snapshots of paired tumor:normal
BAM files with a somatic LOH event for ATM (A), BRCA1 (B), and BRCA2 (C).
The germline locus subject to LOH is highlighted with a box. Screenshots were
taken with downsampling settings of max read count 20 per 200 base window.
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Figure B.3: Genes Frequently Affected by Germline:Somatic Al-
teration. Barplot showing gene level frequency of germline:somatic alter-
ation with KEGG mismatch repair pathway genes highlighted in red. Frac-
tion germline:somatic alteration was calculated for each gene as number of
germline:somatic alterations/number of germline LOF variants. Only genes with
> 2 germline LOF variants in the cohort were included in the analysis. Signifi-
cance was calculated using fgsea and is adjusted for multiple hypothesis testing.
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Figure B.4: Association Between Germline LOF Burden and Cancer
Type. QQ plot of Fisher exact p-values of the association between 11 DDR
pathways and 28 cancer types using LOF variants only (A) or LOF and ClinVar
pathogenic variants (B). Only samples determined to be of European descent
using PCA were used (n = 7,734). Red indicates significance above a Bonferroni
threshold. (A) Significant hits: breast cancer:tumor suppressor pathway (p =
9.69e-5 ), breast cancer:Fanconi anemia pathway (p = 7.42e-6 ). (B) Significant
hits: pheochromocytoma and paraganglioma:cancer predisposition genes (p =
1.18e-9), breast cancer:Fanconi anemia pathway (p = 3.89e-7), pheochromocytoma
and paraganglioma:oncogenes (p = 2.30e-6).
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Figure B.5: Germline and Somatic LOF in PMS2 . Both germline and
somatic LOF mutations can alter the same position. Lollipop plot indicating the
amino acids altered in two samples with PMS2 bi-allelic alteration. Germline
LOF variants are represented by solid lines, somatic LOF mutations by dashed
lines. The stopgain mutation highlighted by an arrow, p.R628X, is inherited in
one individual and acquired in the other. PFAM domain abbreviations: HATPase
c 3 = Histidine kinase, DNA gyrase B, and HSP90-like ATPase; MutL C = MutL
C terminal dimerization domain.
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Figure B.6: Mutational Signature Analysis of Germline:Somatic MMR
Alteration. (A) Fraction of mutations attributed to mutational signature 6 plot-
ted by type of germline:somatic MMR alteration. Individuals were grouped by
MMR gene mutation type: NONE, no alteration; GERM, germline LOF variants
only; SOM, somatic LOF mutations only; MISS, bi-allelic alteration including a
missense mutation; LOF, bi-allelic alteration via dual LOF mutation. Wilcox p =
0.00023, 0.0063, and 0.00096; permutation p = 0.0002, 0.011, and 0.002 for SOM,
MISS, and LOF respectively. (B) Fraction of combined germline:somatic alter-
ation carriers mutational profile attributed to the mutational signatures available
in COSMIC. (C) Mutational profile of all germline:somatic alteration carriers
combined.
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Figure B.7: Mono-allelic Germline MMR Variation Not Associated
With MSI. Somatic MSI burden for individuals with MMR germline variants
but no somatic alteration of the MMR pathway. NONE = no alteration of the
MMR pathway, LOF = germline LOF variant in an MMR gene, LOF + CLIN
= germline LOF variant or ClinVar pathogenic variant in an MMR gene, LOF
+ CADD = germline LOF variant or variant with a CADD score >= 30 in an
MMR gene. The number of samples in each category is displayed in parentheses.
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Figure B.8: Association Testing Between Genomic Alteration and MSI
Burden. (A) The same analysis as Figure 3.4, but including all somatic LOF
mutations. (B) The same analysis as Figure 3.4, but including germline:somatic
MMR alteration carriers.
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Figure B.9: SHPRH Methylation in Uterine Cancer. Expression of SH-
PRH vs. methylation beta value in uterine cancer samples only. Beta values
are from the methylation probe cg00571935, which was most anti-correlated with
SHPRH expression in uterine cancer. The red line indicates the cutoff used to
call methylation.
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Figure B.10: SHPRH Expression in Normal Tissues. Expression of SH-
PRH (A) or GAPDH (B) in 23 normal tissue types represented in GTEx. TPM
= transcripts per million.
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Figure B.11: Mutational Signature Analysis of MLH1 and SHPRH
Methylation. (A) Fraction of mutations attributed to mutational signature 6
plotted byMLH1 methylation status. Wilcox p = 3.882e-15, permutation p < 1e-4.
(B) Fraction of mutations attributed to mutational signature 6 plotted by SHPRH
methylation status. Wilcox p = 0.041, permutation p = 0.0264. (C) Fraction of
mutations attributed to mutational signature 6 plotted by SHPRH methylation
status in uterine cancer samples only. Wilcox p = 3.405e-5, permutation p < 1e-4.
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Figure B.12: Co-Occurrence Testing for SHPRH Methylation. QQ plots
of co-occurrence testing between SHPRH methylation and germline LOF variants
(A), somatic LOF mutations (B), and somatic methylation (C) in 9,484 genes
and n = 8,087 samples. Red indicates 5% FDR. Somatic LOF mutations in 213
genes and somatic methylation of 3,694 genes significantly co-occur with SHPRH
methylation. Of these co-occurring genes, 8 are MMR pathway genes (MLH3,
PCNA, POLD3, RFC1, RFC5, RPA3, MLH3, and PMS2 ).
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Figure B.13: Mutational Signature Analysis of BRCA1/2 Carriers.
Fraction of mutations attributed to mutational signature 3 plotted by BRCA1/2
status. Single = germline LOF or ClinVar pathogenic variant only, SOM = bi-
allelic alteration via somatic mutation, AI = allelic imbalance, LOH = loss of
heterozygosity. Wilcoxon rank sum test p = 2.246e-4, 6.981e-6, 2.343e-7; permu-
tation p < 1e-4, for SOM, AI, and LOH respectively.
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Figure B.14: Mutational Signature Analysis of DDR Pathway Alter-
ation. A Wilcoxon rank sum test was used to test for differences in somatic mu-
tational signature burden between individuals carrying DDR alterations vs. those
without. (A) Heatmap of p values for the association between bi-allelic alteration
in 6 DDR pathways and 30 mutational signatures in COSMIC. (B) Heatmap of
p values for the association between mono-allelic alteration in 8 DDR pathways
and 30 mutational signatures in COSMIC.
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Figure B.15: Association Between Age and Damaging Germline Vari-
ants. Volcano plot of association testing between germline LOF and pathogenic
ClinVar variant carrier status and age of diagnosis for 85 cancer predisposition
genes in n = 8,913 samples.

Table B.1: Association Between MSI and MMR Alteration. P-values, β
estimates, and standard errors determined using a linear model.
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Table B.2: Association Between Age and MMR Alteration. P-values, β
estimates, and standard errors determined using a linear model.

Table B.3: Germline Variants Pathogenic for Lynch Syndrome. ClinVar
annotations: P = pathogenic, Num. Sub. = number of sources submitting to
ClinVar.
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Table B.4: Germline Variants of Unknown Significance for Lynch Syn-
drome. ClinVar annotations: P = pathogenic, NA = not in ClinVar, Num. Sub.
= number of sources submitting to ClinVar.
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Table B.5: Modeling a Germline:Somatic Interaction for L-MMR
Genes. P-values, β estimates, and standard errors determined using a linear
model.
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Table B.6: Association Between MSI and MMR Germline:Somatic Al-
teration. P-values, β estimates, and standard errors determined using a linear
model.

Table B.7: Association Between Age and MMR Germline:Somatic Al-
tertion. P-values, β estimates, and standard errors determined using a linear
model.
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Table B.8: Association Between MSI and Mono-allelic Germline MMR
Variants. P-values, β estimates, and standard errors determined using a linear
model.
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Table B.9: Association Between MSI and MMR Alteration Including
Confounders. MSI linear model results using unfiltered somatic mutations and
with germline:somatic MMR alteration carriers included. P-values, β estimates,
and standard errors determined using a linear model.
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Table B.10: Association Between MSI and Alterations Correlated With
SHPRH Methylation. P-values, β estimates, and standard errors determined
using a linear model.

Table B.11: Association Between MSI and SHPRH Expression. P-
values, β estimates, and standard errors determined using a linear model.
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Table B.12: Association Between Age and Known Predisposing
Germline Variants. Association between MMR, BRCA1/2, SDHB/RET, and
TP53 germline variant carrier status and age of diagnosis. P-values, β estimates,
and standard errors determined using a linear model.

Table B.13: Association Between Age and Predicted Predisposing
Germline Variants. P-values, β estimates, and standard errors determined
using a linear model.
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Appendix C

Supplemental Material: Rare Variant

Phasing Using Paired Tumor:Normal

Sequence Data

This appendix contains supplemental figures for the work described in Chapter 3

of this document: "Rare Variant Phasing Using Paired Tumor:Normal Sequence Data".

Each figure is referred to in the main text of the chapter and a brief description of each

figure is given here.
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Figure C.1: Schematic of ∆ VAF Changes in Cancer. In regions of SCNA,
somatic sequencing reads are skewed toward the chromosomes that are physically
more abundant in the sample. Here we illustrate the maternal chromosome in
blue and the paternal in green. (A) The expectation in diploid regions is that
the sequencing reads will originate from the maternal and paternal chromosome
in a 0.5 ratio and that the VAF of heterozygous SNVs will be 0.5. (B) The
expectation in regions of amplification is that sequencing reads will be skewed
toward the amplified chromosome and that the VAF of heterozygous germline
SNVs will change from 0.5. In this illustration the SNV lies on the non-amplified
chromosome and therefore the VAF decreases to 0.25. (C) The expectation in
regions of deletion is that sequencing reads will be skewed toward the non-deleted
chromosome. In this illustration the SNV lies on the deleted chromosome and
therefore the VAF decreases to 0.
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Figure C.2: Example ∆ VAF Data. ∆ VAF changes in SCNA regions for
chromosome 2 of sample TCGA-Y8-A8RZ. (A) ∆ VAF for 812 germline het-
erozygous variants. (B) Absolute ∆ VAF for the same variants as (A). SCNA
segments identified using TCGA data are shown as black lines, SCNA segments
identified using VAF-CBS are shown in red. Color indicates p-value obtained
from a Fisher’s exact test on tumor and normal read counts: gray: p >= 0.05,
purple: p < 0.05.
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Figure C.3: Example VCF-CBS Data. VAF-CBS segments identified using
different smoothing parameters for a SCNA region in chromosome 2 of sample
TCGA-Y8-A8RZ. VAF-CBS segments are shown as red lines and the total number
of segments in the region is shown in the upper right corner. Color indicates Fisher
exact test p-value using tumor and normal read counts: gray: p >= 0.05, purple:
p < 0.05. Four different smoothing parameters were tested: (A) 0.5 megabases
(Mb), (B) 1 Mb, (C) 2 Mb, (D) 3 Mb.
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Figure C.4: VAF-CBS Segment Metrics. SCNA segment metrics from n =
6,158 samples using four different VAF-CBS smoothing parameters: 0.5 Mb, 1
Mb, 2 Mb, and 3 Mb. (A) Mean size in base pairs of segments identified. (B)
Fraction of segments identified that contain more than one heterozygous variant.
(C) Fraction of all germline heterozygous variants that can be phased.
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Figure C.5: ∆ VAF Data From a Contaminated Sample. Example data
illustrating absolute ∆ VAF changes in (A) paired normal tissue:normal blood,
(B) normal tissue:tumor, and (C) normal blood:tumor for chromosome 7 of sample
TCGA-V5-AASX. Example data illustrating absolute ∆ VAF changes in (D)
paired normal tissue:normal blood, (E) normal tissue:tumor, and (F) normal
blood:tumor for chromosome 7 of sample TCGA-Y8-A8RZ. Color indicates p-
value obtained from a Fisher’s exact test on tumor and normal read counts: gray:
p >= 0.05, purple: p < 0.05. Segments with an absolute ∆ VAF >= 0.14 are
red.
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Figure C.6: Discordance Between Phasing Methods. (A) Discordance
between VAF phasing and HapCUT2 for n = 6,180 samples. Number of common
sites are number of sites phased by both methods. (B) Discordance between VAF
phasing and phASER for n = 6,180 samples.
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Figure C.7: Sample Metrics that Affect ∆ VAF Phasing. (A) Percent of
the genome involved in a SCNA event for n = 8,542 TCGA samples across 29
cancer types. Fraction of the genome calculated as: total length in base pairs of
TCGA SCNA regions (predicted FC > 1.1 or < 0.9) / 3e09 (B) Percent tumor
nuclei for the same samples as (A). Percent tumor nuclei values were obtained
from TCGA biospecimen histology slide data. Samples with missing values were
imputed to cancer type median.
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Figure C.8: Phasing Performance on Rare Variants. (A) The fraction of
rare (allele frequency <= 0.01) germline heterozygous variants phased by Hap-
CUT2 alone, HapCUT2 and phASER, and by HapCUT2, phASER, and VAF
in n = 6,180 samples. The addition of VAF phasing increased the number of
phased variants by 98%. (B) The fraction of rare germline variants phased that
are unique to each method.
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Figure C.9: Fraction of Phased Variants Visualized by Chromosome.
(A) Fraction of heterozygous germline variants phased using VAF phasing for
n = 100 samples. Cancer type is indicated by color: BRCA = Breast Invasive
Carcinoma, STAD = Stomach Adenocarcinoma, UCEC = Uterine Corpus En-
dometrial Carcinoma. Samples with more than 33% of the genome involved in an
SCNA are indicated by gray bars. Samples with a histology slide based purity >
80% are indicated by black bars. (B) Fraction of heterozygous germline variants
phased using HapCUT2 for the same samples as (A).
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Figure C.10: Comparison Between TCGA and VAF-CBS SCNAs. Com-
paring number of variants phased using TCGA SCNA segments vs. VAF-CBS
segmentation. COMMON = variants phased by both methods, VAF-CBS =
variants phased only using VAF-CBS segmentation, CNV = variants phased only
using TCGA CNV calls. A median 63% of variants were phased by both methods
in n = 6,180 samples.
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Figure C.11: Method Used to Calculate Pairwise Error. (A) Example
of a shared phase segment showing phase calls from two methods. Rare variants
(allele frequency <= 0.01) are shown in red. (B) The overall discordance was
calculated as the fraction of discordant phase calls within a block. (C) Table
showing all pairwise phase pairs from the segment in (A). Distance between pairs
is calculated as distance in base pairs between the variants. Minimum allele
frequency is the smaller allele frequency of the two variants. Error is a binary
variable that indicated whether the two variants are in the same orientation. (D)
Example showing how pairwise error was binned by distance and allele frequency
as in Figure 4.3. For each category the mean error was calculated.
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Figure C.12: Discordance Between VAF and 10X Genomics Phasing.
Pairwise discordance for the COLO829 cell line as a function of distance and allele
frequency. Colors represent different values of the smoothing parameter.
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Figure C.13: Fraction of Compound Heterozygosity Events Phased].
Fraction was calculated for each individual as: the number of genes with multiple
CADD >= 15 variants phased / the number of genes with multiple CADD >=
15 germline variants. H = HapCUT2 only, H+P = HapCUT2 and phASER,
H+P+V = HapCUT2, phASER, and VAF phasing.
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Figure C.14: Association Between Age and Damaging Germline Vari-
ants. Age of cancer diagnosis Z-score in n = 6,093 TCGA individuals grouped
by type of germline alteration in a set of 144 cancer predisposition genes. Groups
are the same as Figure 4.4B with the exception of six individuals carrying both a
non-compensatory variant set and a ClinVar/LOF variant that are grouped sep-
arately (Both). * = p < 0.05, . = p < 0.1; p-values were determined using a
linear model to predict age of diagnosis while accounting for cancer type.
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Figure C.15: Association Between Age and BRCA1/2 Germline Vari-
ants. Age of cancer diagnosis Z-score in 6,093 TCGA individuals grouped by
type of germline alteration in BRCA1 or BRCA2. (B) Individuals were grouped
using HMMvar cis variant scores: CADD = individuals carrying a germline vari-
ant with a CADD score >= 15, ClinVar/LOF = individuals carrying a ClinVar
pathogenic or LOF germline variant, Non-Compensatory = individuals carrying
multiple nonsynonymous variants in a gene predicted to be more deleterious col-
lectively than independently The number of samples is shown in parentheses. *
= p < 0.05, . = p < 0.1; p-values were determined using a linear model to predict
age of diagnosis while accounting for cancer type.
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Figure C.16: Assumptions of VAF Phasing Model. VAF phasing assumes
that SCNA segments originate from a single homologous chromosome. (A) Under
this assumption, ∆ VAF can be used to correctly phase variants. (B) Should a
SCNA segment result from equal amplification of both homologous chromosomes,
using ∆ VAF to phase will result in switch errors. In this example, amplification
of both homologous chromosomes results in all variants being assigned to the
same chromosome incorrectly.
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Table C.1: Possible Contaminated Normal Tissue Samples. TCGA bar-
codes of suspected contaminated normal tissue samples.
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Table C.2: Discordance Between VAF Phasing and Other Methods.
Null model refers to VAF phasing using duplicated samples directly to determine
significant VAF-CBS segments, cutoff refers to using a absolute ∆ VAF cutoff of
0.14 to determine significant VAF-CBS segments.
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Table C.3: Factors That Influence VAF Phasing.Factors that influence
number of variants phased per sample by VAF phasing. P-values, β estimates,
and standard errors determined using a linear model.

Table C.4: Discordance Between VAF Phasing with TCGA SCNA
and Other Methods. Mean discordance between VAF phasing, HapCUT2
and phASER in n = 6,180 samples either using VAF-CBS segments or TCGA
SCNA calls.
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Table C.5: Discordance Between VAF and 10X Genomics Phasing.

Table C.6: Features of VAF Phasing Errors. Features of incorrect VAF
phasing pairs from COLO829. Features were calculated for all possible pairs of
phased heterozygous germline variants from COLO829 (see Methods).
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Table C.7: Association Between Age and Compound Heterozygosity.
P-values, β estimates, and standard errors determined using a linear model.

Table C.8: Association Between Age and Non-Compensatory Variants.
P-values, β estimates, and standard errors determined using a linear model.

Table C.9: Association Between Age and Non-Compensatory Variants,
ClinVar Samples Removed. P-values, β estimates, and standard errors deter-
mined using a linear model.
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Table C.10: Association Between Age and Non-Compensatory Variants
in BRCA1/2 . P-values, β estimates, and standard errors determined using a
linear model.
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Table C.11: Germline Non-Compensatory Variants in BRCA1/2
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Chen, Ilya Shmulevich, Sharon E. Plon, Feng Chen, Li Ding, Samantha J. Caesar-
Johnson, John A. Demchok, Ina Felau, Melpomeni Kasapi, Martin L. Ferguson, Car-
olyn M. Hutter, Heidi J. Sofia, Roy Tarnuzzer, Zhining Wang, Liming Yang, Jean C.

202



Zenklusen, Jiashan (Julia) Zhang, Sudha Chudamani, Jia Liu, Laxmi Lolla, Rashi
Naresh, Todd Pihl, Qiang Sun, Yunhu Wan, Ye Wu, Juok Cho, Timothy DeFreitas,
Scott Frazer, Nils Gehlenborg, Gad Getz, David I. Heiman, Jaegil Kim, Michael S.
Lawrence, Pei Lin, Sam Meier, Michael S. Noble, Gordon Saksena, Doug Voet,
Hailei Zhang, Brady Bernard, Nyasha Chambwe, Varsha Dhankani, Theo Knijnen-
burg, Roger Kramer, Kalle Leinonen, Yuexin Liu, Michael Miller, Sheila Reynolds,
Ilya Shmulevich, Vesteinn Thorsson, Wei Zhang, Rehan Akbani, Bradley M. Broom,
Apurva M. Hegde, Zhenlin Ju, Rupa S. Kanchi, Anil Korkut, Jun Li, Han Liang,
Shiyun Ling, Wenbin Liu, Yiling Lu, Gordon B. Mills, Kwok-Shing Ng, Arvind Rao,
Michael Ryan, Jing Wang, John N. Weinstein, Jiexin Zhang, Adam Abeshouse,
Joshua Armenia, Debyani Chakravarty, Walid K. Chatila, Ino de Bruijn, Jian-
jiong Gao, Benjamin E. Gross, Zachary J. Heins, Ritika Kundra, Konnor La, Marc
Ladanyi, Augustin Luna, Moriah G. Nissan, Angelica Ochoa, Sarah M. Phillips,
Ed Reznik, Francisco Sanchez-Vega, Chris Sander, Nikolaus Schultz, Robert Sheri-
dan, S. Onur Sumer, Yichao Sun, Barry S. Taylor, Jioajiao Wang, Hongxin Zhang,
Pavana Anur, Myron Peto, Paul Spellman, Christopher Benz, Joshua M. Stuart,
Christopher K. Wong, Christina Yau, D. Neil Hayes, Joel S. Parker, Matthew D.
Wilkerson, Adrian Ally, Miruna Balasundaram, Reanne Bowlby, Denise Brooks, Re-
becca Carlsen, Eric Chuah, Noreen Dhalla, Robert Holt, Steven J.M. Jones, Katay-
oon Kasaian, Darlene Lee, Yussanne Ma, Marco A. Marra, Michael Mayo, Richard A.
Moore, Andrew J. Mungall, Karen Mungall, A. Gordon Robertson, Sara Sadeghi,
Jacqueline E. Schein, Payal Sipahimalani, Angela Tam, Nina Thiessen, Kane Tse,
Tina Wong, Ashton C. Berger, Rameen Beroukhim, Andrew D. Cherniack, Carrie
Cibulskis, Stacey B. Gabriel, Galen F. Gao, Gavin Ha, Matthew Meyerson, Steven E.
Schumacher, Juliann Shih, Melanie H. Kucherlapati, Raju S. Kucherlapati, Stephen
Baylin, Leslie Cope, Ludmila Danilova, Moiz S. Bootwalla, Phillip H. Lai, Dennis T.
Maglinte, David J. Van Den Berg, Daniel J. Weisenberger, J. Todd Auman, Saianand
Balu, Tom Bodenheimer, Cheng Fan, Katherine A. Hoadley, Alan P. Hoyle, Stu-
art R. Jefferys, Corbin D. Jones, Shaowu Meng, Piotr A. Mieczkowski, Lisle E. Mose,
Amy H. Perou, Charles M. Perou, Jeffrey Roach, Yan Shi, Janae V. Simons, Tara
Skelly, Matthew G. Soloway, Donghui Tan, Umadevi Veluvolu, Huihui Fan, Toshinori
Hinoue, Peter W. Laird, Hui Shen, Wanding Zhou, Michelle Bellair, Kyle Chang,
Kyle Covington, Chad J. Creighton, Huyen Dinh, HarshaVardhan Doddapaneni,
Lawrence A. Donehower, Jennifer Drummond, Richard A. Gibbs, Robert Glenn,
Walker Hale, Yi Han, Jianhong Hu, Viktoriya Korchina, Sandra Lee, Lora Lewis, Wei
Li, Xiuping Liu, Margaret Morgan, Donna Morton, Donna Muzny, Jireh Santibanez,
Margi Sheth, Eve Shinbrot, Linghua Wang, Min Wang, David A. Wheeler, Liu Xi,
Fengmei Zhao, Julian Hess, Elizabeth L. Appelbaum, Matthew Bailey, Matthew G.
Cordes, Li Ding, Catrina C. Fronick, Lucinda A. Fulton, Robert S. Fulton, Cyriac
Kandoth, Elaine R. Mardis, Michael D. McLellan, Christopher A. Miller, Heather K.
Schmidt, Richard K. Wilson, Daniel Crain, Erin Curley, Johanna Gardner, Kevin
Lau, David Mallery, Scott Morris, Joseph Paulauskis, Robert Penny, Candace Shel-
ton, Troy Shelton, Mark Sherman, Eric Thompson, Peggy Yena, Jay Bowen, Julie M.

203



Gastier-Foster, Mark Gerken, Kristen M. Leraas, Tara M. Lichtenberg, Nilsa C.
Ramirez, Lisa Wise, Erik Zmuda, Niall Corcoran, Tony Costello, Christopher Hov-
ens, Andre L. Carvalho, Ana C. de Carvalho, José H. Fregnani, Adhemar Longatto-
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[60] Isabel Garćia-Cao, Marta Garćia-Cao, Juan Mart́in-Caballero, Luis M. Criado, Peter
Klatt, Juana M. Flores, Jean Claude Weill, Maŕia A. Blasco, and Manuel Serrano.
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Charames, Harriet Druker, Jordan Lerner-Ellis, Matthew Mistry, Rina Dvir, Ronald
Grant, Ronit Elhasid, Roula Farah, Glenn P Taylor, Paul C Nathan, Sarah Alexan-
der, Shay Ben-Shachar, Simon C Ling, Steven Gallinger, Shlomi Constantini, Peter
Dirks, Annie Huang, Stephen W Scherer, Richard G Grundy, Carol Durno, Melyssa
Aronson, Anton Gartner, M Stephen Meyn, Michael D Taylor, Zachary F Pursell,
Christopher E Pearson, David Malkin, P Andrew Futreal, Michael R Stratton, Eric
Bouffet, Cynthia Hawkins, Peter J Campbell, and Uri Tabori. Combined heredi-
tary and somatic mutations of replication error repair genes result in rapid onset of
ultra-hypermutated cancers. Nature Genetics, 47(3), 2015.

[119] Cancer Genome Atlas Research Network, John N Weinstein, Eric A Collisson, Gor-
don B Mills, Kenna R Mills Shaw, Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich,
Chris Sander, and Joshua M Stuart. The Cancer Genome Atlas Pan-Cancer analysis
project. Nature genetics, 45(10):1113–20, oct 2013.

[120] Helen Cavanagh and Katherine M A Rogers. The role of BRCA1 and BRCA2
mutations in prostate, pancreatic and stomach cancers. Hereditary cancer in clinical
practice, 13(1):16, 2015.

[121] Brennan Decker, Danielle M. Karyadi, Brian W. Davis, Eric Karlins, Lori S. Till-
mans, Janet L. Stanford, Stephen N. Thibodeau, and Elaine A. Ostrander. Biallelic
BRCA2 Mutations Shape the Somatic Mutational Landscape of Aggressive Prostate
Tumors. The American Journal of Human Genetics, 98(5):818–829, may 2016.

[122] Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, Ben-
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