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Deep learning-enhanced R-loop
prediction provides mechanistic implications
for repeat expansion diseases

Jiyun Hu,1,9 Zetong Xing,1,9 Hongbing Yang,1,9 Yongli Zhou,1,9 Liufei Guo,2 Xianhong Zhang,3 Longsheng Xu,1

Qiong Liu,4 Jing Ye,1 Xiaoming Zhong,5 Jixin Wang,6 Ruoyao Lin,1 Erping Long,6 Jiewei Jiang,7 Liang Chen,3

Yongcheng Pan,4 Lang He,2,* and Jia-Yu Chen1,8,10,*
SUMMARY

R-loops play diverse functional roles, but controversial genomic localization of R-loops have emerged
from experimental approaches, posing significant challenges for R-loop research. The development and
application of an accurate computational tool for studying human R-loops remains an unmet need.
Here, we introduce DeepER, a deep learning-enhanced R-loop prediction tool. DeepER showcases
outstanding performance compared to existing tools, facilitating accurate genome-wide annotation of
R-loops and a deeper understanding of the position- and context-dependent effects of nucleotide compo-
sition on R-loop formation. DeepER also unveils a strong association between certain tandem repeats and
R-loop formation, opening a new avenue for understanding the mechanisms underlying some repeat
expansion diseases. To facilitate broader utilization, we have developed a user-friendly web server as
an integral component of R-loopBase. We anticipate that DeepER will find extensive applications in the
field of R-loop research.

INTRODUCTION

R-loops, non-B nucleic acid structures composed of an RNA:DNA hybrid and a displaced single-stranded DNA, are key cellular regulators.1–4

Dysregulated R-loops have been linked to various diseases, including neurodegenerative disorders, autoimmune diseases, and cancers.5,6

Key to a better understanding of physiological and pathological roles of R-loops lies in the accurate detection of R-loops.

Twomajor types of experimental approaches have been developed to detect R-loops at a genome-wide level. The first relies on S9.6 anti-

body that can selectively recognize RNA:DNA hybrids, including DRIP-seq,7 RDIP-seq,8 DRIPc-seq,9 bisDRIP-seq,10 ssDRIP-seq,11 qDRIP-

seq,12 etc. The second leverages a catalytically deficient but binding-competent RNase H mutant for R-loop enrichment, including DRIVE-

seq,7 R-ChIP,13 RR-ChIP,14 MapR,15 bisMapR,16 R-loop CUT&Tag,17 etc. However, each approach exhibits inherent biases and may yield

false-positive discoveries due to the utilization of distinct R-loop sensors and library construction strategies.18–20 To date, there is no

consensus yet regarding the number, size, and genomic distribution of detected R-loops.

Computational prediction of R-loop formation is an important complement to experimental approaches. R-loopBase21 and RLBase22

computationally deduced consensus R-loop regions; however, they relied on integrating existing R-loop mapping data. The RNA or the sin-

gle-stranded DNA strand of R-loops is typically G-rich to ensure higher thermodynamic stability of the RNA:DNA hybrid23 or permit

G-quadruplex formation to facilitate RNA invasion.24 Negative supercoiling can also promote R-loop formation.25 QmRLFS-finder, R-loop

tracker and other tools take advantage of the previous features to predict or characterize R-loop forming sequences.7,26–29 These tools might,

however, fail to detect R-loops associatedwith any unprecedented features. Deep learning has gainedpopularity in various genomic domains

and achieved numerous successes,30 having the potential to make accurate prediction and provide novel insights into unprecedented
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features. The first deep learning-based tool in R-loop field, named deepRloopPre, was recently developed to predict R-loops in plants.31

However, such a tool for studying R-loops in human has yet to be developed and applied.

Repeat expansion diseases are a group of genetic diseases resulting from expansion of short tandem repeats. Although advances in

genome sequencing andgenotyping have revealed�50 such diseases, themolecularmechanisms behindmost of them remain unresolved.32

Recognized pathomechanisms include genome instability, transcriptional repression, and the expression of aberrant RNA and protein prod-

ucts.32 Noncanonical DNA secondary structures, facilitated by the pathological expansion of repeats, have emerged as pivotal players in dis-

ease pathology. For instance, the expansion of GAA repeats in the FXN gene of Friedreich’s ataxia patients can lead to the formation of

H-DNA, thereby suppressing transcription.33 GGGGCC repeat expansions in C9orf72 gene can form G-quadruplexes, triggering molecular

cascades implicated in ALS/FTD pathogenesis.34 Furthermore, expanded repeats have been implicated in promoting R-loop formation to

induce transcriptional silencing or DNA damage responses.6,34–37 However, it remains uncertain whether all types of repeats are associated

with R-loop formation. In vitro transcription studies have suggested that some types of trinucleotide repeats are prone to R-loop formation,38

but it is unclear whether these repeats induce R-loops in their native genomic contexts. We anticipate that a deep-learning model could

potentially provide answers to these questions.

Here, we developedDeepER, both as standalone software and a web server, which allowed us to utilize deep learning techniques to accu-

rately predict R-loop formation sites throughout the human genome. We identified crucial sequence features associated with R-loop forma-

tion, enabling us to gain mechanistic insights for some repeat expansion diseases.

RESULTS

Development of DeepER, a deep learning-enhanced R-loop prediction tool

We committed to developing a deep learning model that can make sequence-based prediction of R-loops. Considering that high-quality

training data plays a crucial role in achieving optimal performance of a machine learning model, we prepared R-loop-positive and -negative

datasets of higher reliability as follows (see STAR Methods): We utilized R-ChIP-mapped R-loops due to relatively higher accuracy and res-

olution,18 and strand-specific signals. Specifically, we collected R-ChIP-mapped R-loop peaks conserved between K562 and HEK293 cells.24

To furtherminimize R-ChIP-specific false positives, we kept only 3,204 peaks detected by at least one other R-loopmapping technology.21We

randomly selected 5-kb-long intervals containing the previous R-loop peaks and surrounding R-loop-negative regions across the human

genome. Ten intervals for each R-loop region were selected to enhance the model’s robustness in handling R-loops at various positions rela-

tive to the 5-kb segment (Figure 1A). An approximately equal number of 5-kb-long intervals that did not contain R-loop peaks detected by any

R-loop mapping technologies were randomly selected as additional R-loop-negative regions (Figure 1A).21 Finally, we combined all selected

intervals and allocated them into training, validation, and testing datasets at a ratio of 7:2:1. Their corresponding sequences were one-hot

coded and used as input for training our deep learning model (Figure 1A).

Considering the critical roles of sequence contexts in R-loop formation, sequence-based R-loop prediction can be taken as a problem of

long-term dependencies. Consequently, we built a deep-learning enhanced R-loop prediction tool (DeepER) using a residual BiLSTMmodel,

known for its notable ability to address such challenges (Figure 1A and STARMethods). One-hot coded input sequences underwent process-

ing through one layer of BiLSTM followed by two layers of residual BiLSTM and a fully connected layer. After applying a sigmoid transition,

DeepER generated probabilities of R-loop formation at the base level, ranging from 0 to 1. We then employed a sliding window approach

with a window size of 200 bp and a step size of 10 bp to predict R-loop regions. A threshold value of 0.95 was then selected to optimize the F1

score, which represents the harmonic mean of the accuracy rate and recall rate. Adjacent windows with an average probability value R0.95

were merged to identify R-loop regions (Figure 1A). DeepER demonstrated good performance across all metrics for classification of R-loop-

positive or -negative bases and regions (Figures 1B and 1C; Table S1). Of note, the AUROC values are 0.97 and 0.98 at the base and region

levels, respectively, suggesting high discriminatory power and balanced performance (Figure S1A). The AUPRC values are 0.72 and 0.77 at the

base and region levels, respectively, indicating adequate but improvable positive class identification (Figure S1B).

DeepER exhibited good generalization capability on an independent dataset. In this dataset, R-loop-positive regions were defined as sub-

regions of DRIP-seq-mapped R-loop peaks that are sensitive to RNase H treatment,18 which is a generally accepted ‘‘gold standard’’ for vali-

dating mapped R-loops. DeepER demonstrated comparable performance to that observed on testing data (Figure 1D), indicating its ability

to effectively capture the underlying sequence features of R-loops and generalize well to new datasets.

Outstanding performance of DeepER compared to other R-loop prediction models

DeepER outperformed a series of alternative models trained using the same dataset. Feedforward neural networks failed to converge on the

training dataset in most experiments. Extensive hyperparameter tuning was required to achieve convergence and satisfactory performance

on the training data (Figures S2A and S2B). Despite these efforts, the performance of these models on the same testing dataset as DeepER

was notably poor (Figure S2C), indicating overfitting and a failure to recognize the key features of R-loops, which rely on long-range depen-

dencies. We also constructed a residual U-Net model for comparison by treating sequence-based R-loop prediction as a one-dimensional

segmentation task. While the U-Net model successfully learned key sequence features and exhibited good generalization ability, its overall

performance did not match that of DeepER (Figures S2D–S2G).

DeepER also showcased superior performance compared to other existing R-loop prediction tools. We conducted a comparative analysis

between DeepER and deepRloopPre,31 the first deep learning-based tool in the R-loop field, as well as R-loop tracker,29 an efficient web-

based implementation of the QmRLFS-finder algorithm.26 By referring to the original literature of these three tools,29,31 we found that
2 iScience 27, 110584, August 16, 2024



Figure 1. The framework and performance of DeepER

(A) R-loop-positive and -negative bases are labeled as 1 (blue) and 0 (gray), respectively. DeepER receives one-hot coding of R-loop-positive and -negative

sequences as input, uses BiLSTM blocks with residual layers as basic framework to predict base-level probability value of input sequence. Adjacent sliding

windows (window size = 200 bp and step size = 10 bp) with the average probability value R0.95 are merged and defined as predicted R-loop regions.

(B) DeepER’s performance evaluated with the testing dataset.

(C) Predicted base-level probability values and R-loop regions in comparison with R-ChIP-mapped R-loop signals (RPM) at POMGNT1 gene locus.

(D) DeepER’s performance evaluated with an independent dataset of experimentally verified R-loops.
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DeepER demonstrates better recall, F1 score, accuracy and specificity than the other two tools (Table S1). Only the precision (0.61) is lower

than R-loop tracker (0.73), but still comparable with deepRloopPre (0.64) (Table S1). Although the previous comparison is based on different

datasets, it still provides circumstantial support for the superior performance of DeepER. Furthermore, we applied all three tools to predict

R-loops across the humangenome for direct comparison. Currently, there is still a lack of a gold standard dataset for R-loop regions across the

human genome. Here, we used consensus R-loop regions deduced by RLBase39 or R-loopBase21 from existing R-loop mapping data to eval-

uate the performance of all three tools. Clearly, DeepER outperformed the other two tools in 5 out of 7 metrics, with the remaining metrics

being comparable to those of the best tools (Figure S3; Table S2).

However, when running on CPU, DeepER required about five times as much time to complete the prediction compared to the other tools,

and it also incurred a larger memory cost. This is attributed to the inclusion of two additional layers of BiLSTM and approximately 5-fold more

parameters than DeepRloopPre (235,650 vs. 41,550), which are necessary to achieve better prediction performance (Figure 1B; Table S1).

Importantly, these resource requirements significantly decreased once DeepER was executed on GPU (Table S3). We believe that, as a

trade-off for the improved prediction results, the relatively longer processing time and increased memory usage of DeepER are acceptable.

Whole-genome annotation of R-loop-forming sequences with DeepER

The outstanding capabilities of DeepER enabled us tomake accurate predictions of R-loop regions across the entire human genome. In total,

79,626 R-loop regions were predicted. The sizes of predicted R-loop regions ranged from 200 bp to 3,050 bp (mean = 538 bp and median =

400 bp) (Figure 2A), slightly longer than R-loops in the training dataset (Figure S4A). Although R-loops in the training dataset were almost

exclusively located at transcription start sites (TSS) (Figure S4B), 42.4% of predicted R-loops were located at transcription termination sites

(TTS), gene body and intergenic regions (Figure 2B), suggesting DeepER’s capability to learn features from the training dataset, and react

properly to previously unseen, new data.

The R-loop regions predicted byDeepERwere in good agreement with those identified by other experimental or computational methods.

Around 45% of the R-loops predicted by DeepER were also detected by QmRLFS-finder algorithm, which searched for G-rich sequences

based on a pattern-based rule26 (Figure 2C). The remaining 55% DeepER-specific R-loops likely represented R-loops characterized by other

sequence features missed out by QmRLFS-finder. About 80% of the predicted R-loops could be detected by at least one R-loop-mapping

technology, and these were classified as class I R-loops (Figure 2D). As shown in Figure 2E, one class I R-loop at BCL10 promoter that was
iScience 27, 110584, August 16, 2024 3



Figure 2. Genome-wide R-loop prediction by DeepER

(A and B) The size (A) and genomic distribution (B) of R-loops predicted by DeepER.

(C) Comparison of R-loops predicted with DeepER and QmRLFS-finder. Numbers indicate percentages of method-specific R-loops.

(D) Fractions of predicted R-loops detected with different numbers of R-loop mapping technologies. R-loops detected by one or more technologies are defined

as class I R-loops, and the others as class II R-loops.

(E) Examples of predicted R-loops in reference to R-loop peaks detected by different R-loop detection technologies. Highlighted in the pink and gray rectangles

are R-loop peaks included and not included in the training dataset, respectively.

(F) Genomic distribution of class I and class II R-loops.

(G) Class I and class II R-loop numbers as a function of gene expression levels.
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not detected by R-ChIP, and therefore not included in the training dataset, was detectable by many other R-loopmapping technologies. The

remaining �20% of predicted R-loops, which were not supported by any R-loop mapping technologies, were classified as class II R-loop re-

gions. DeepERwas trainedwith sequence information only, it likely failed to identify R-loop forming characteristics not encoded in sequences.

We hypothesized that the DNA sequences of these regions did contain features that could promote R-loop formation; however, there was

probably no complementary RNA generated to invade the DNA for R-loop formation. Consistent with our prediction, more class II R-loops

were found in intergenic regions than class I R-loops (Figure 2F). Furthermore, class II R-loops were generally associated with non-expressed

or lowly expressed genes in different cell lines (see Figures 2G and S4C–S4E).

Position- and context-dependent effects of G nucleotides on R-loop formation

The sequential nature of input data posed challenges to feature importance analysis for BiLSTM model. Here, we explored the sequence

features important for DeepER-predicted R-loops using a permutation-based method (Figure 3A). Briefly, we introduced one single point

mutation at a randompositionwithin each R-loop region and re-evaluated the formation probability with DeepER.Mutations leading to prob-

abilities falling below the threshold for R-loop region prediction were classified as R-loop-disrupting mutations. In contrast, mutations that

preserved the integrity of the R-loops, referred to as R-loop-preserving mutations, were taken as control. We then compared these two mu-

tation classes to dissect the crucial sequence features governing R-loop formation. About 11.5% of the initial R-loop regions exhibited disrup-

tion, as exemplified in Figure 3B. Stronger disrupting effects were observed for R-loop-disrupting mutations than R-loop-preserving muta-

tions (Figure S5A). Notably, R-loop-disrupting mutations exerted a discernible impact on a long genomic stretch surrounding the site of

mutation (Figure 3C). This observation aligns with the concept that the BiLSTM model utilizes information from flanking regions for R-loop

prediction, enabling further investigation of sequence features.

We unveiled the significance of position-aware sequence composition for R-loop formation. Notably, R-loop-disrupting mutations dis-

played a strong bias toward G bases, mainly manifesting as G-to-C and G-to-T mutations (Figure 3D). Both mutation types likely contribute

to reduced thermodynamic stability of RNA:DNA hybrids, stemming from decreased GC-skew levels23 or hydrogen bond counts. Further-

more, we revealed a notable enrichment of G bases at both upstream and downstream regions of the R-loop center (Figure 3E). This
4 iScience 27, 110584, August 16, 2024



Figure 3. Feature importance interpretation of DeepER

(A) Schematic representation of two classes of mutations that will disrupt (orange) or preserve (light blue) the DeepER-predicted R-loops.

(B) Base-level R-loop formation probabilities at a representative genomic locus before (gray) and after (orange) the introduction of an R-loop-disrupting G>A

mutation.

(C) Distribution of sites showing maximum negative change of probability. Zero point represents the mutation site.

(D) Relative enrichments of mutated bases, mutation types and 3-mers defined as the ratio of R-loop-disrupting mutations to R-loop-preserving mutations.

(E) Distribution of R-loop-disrupting and R-loop-preserving G > N (N = A, C, and T) mutations across R-loop regions. The R-loop center is indicated by a

dashed line.

(F) Top 3 enriched sequence motifs of all DeepER-predicted R-loops (top), R-loops that were co-detected by QmRLFS-finder (middle) and DeepER-specific

R-loops. Short tandem repeats are indicated with underlines.
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observation aligns with the higher thermodynamic stability requisite for R-loop initiation and extension proposed previously.26 Intriguingly,

although A bases did not exhibit overrepresentation in R-loop-disruptingmutations, the A-to-Cmutation type displayed specific enrichment,

generally consistent with previous findings linking purine-rich24 and AT-skewed11 sequences to R-loop formation. Analyzing their distribution

across R-loop regions unveiled mutated A bases predominantly positioned downstream of R-loop centers (Figure S5B). Our findings offer

insights into the intricate molecular mechanisms underpinning R-loop formation.

We further noted context-dependent importance of G nucleotides. In line with the role of G-quadruplex structures in promoting R-loop

formation,40 we revealed an enrichment of GGG (Figure 3F, top and middle panels), the basic unit of G-quadruplexes, and a significant as-

sociation between DeepER-predicted R-loops and G-quadruplex formation (Figures S5C and S5D). Interestingly, G nucleotides downstream

of C nucleotides were in general overrepresented in R-loop disrupting mutations (Figure 3D). Consistently, the top-ranked sequence motifs

for DeepER-predicted R-loops all exhibited rich GC content, particularly pronounced for those R-loops co-detected by QmRLFS-finder (Fig-

ure 3F, top andmiddle panels). Interestingly, these sequence motifs were strongly associated with GCG, CGC, and GGGGC tandem repeats

(Figure 3F). This observation underscores the potential connection between R-loop formation and the occurrence of some repeat expansion

diseases (see below).

DeepER specifically identified R-loops characterized byGA-rich sequences (Figure 3F, bottompanel), which aligns with the roles of purine-

rich24 andAT-skewed11 sequences in R-loop formation. Surprisingly, poly-C and poly-U sequenceswere also found to be enriched in DeepER-

specific R-loops (Figure 3F). These sequences might originate from R-loop formation on the opposite strand, considering the prevalence of

antisense R-loops.11

DeepER predicts the potential link of R-loop formation with some repeat expansion diseases

Motivated by the observed association between tandem repeats and R-loop formation, we employed DeepER to analyze all documented

tandem repeats associatedwith repeat expansion diseases (Table S4). Repeat numbers were increased up to 200 copies beyond the reported

minimum pathogenic repeat number, or decreased to the repeat number of the reference genome or 200 copies less than the minimum
iScience 27, 110584, August 16, 2024 5



Figure 4. DeepER predicts the link of R-loop formation with some repeat expansion diseases

(A) Shown are predicted probabilities of R-loop formation (left) for indicated gene loci (middle) with different numbers of indicated tandem repeats (right) in their

native sequence contexts. The minimum pathogenic repeat numbers are labeled.

(B) Expression vector of GGC repeats (20, 67, or 102 copies) within NOTCH2NLC fused with EGFP and HA tag. SspI, HindIII, BsrGI, and XbaI restriction sites, as

well as PCR primers are indicated.

(C) DRIP-qPCR signals relative to input for AMPR and EGFR gene loci are measured and normalized to those for AMPR gene. H, RNase H1 treatment. Data are

represented as mean G SEM (n = 3). *p-value < 0.05, **p-value < 0.01 and ***p value < 0.001 determined by two-sided unpaired Student’s t test. n.s., not

significant.

(D) DRIP-qPCR results for two additional biological replicates (2 and 3). Data are represented as mean G SEM (n = 3). *p-value < 0.05, ***p-value < 0.001

determined by two-sided unpaired Student’s t test.
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pathogenic repeat number, whichever is more. These repeat sequences, along with their surrounding sequences, were then subjected to

DeepER for R-loop prediction. DeepER successfully predicted R-loop formation at CAG (e.g., HTT gene), CGG (e.g., FMR1 gene),

GGGGCC (e.g., C9orf72 gene) repeats that have demonstrated R-loop formation during in vitro transcription or at endogenous gene

loci6,34,37 (Figure 4A). This finding suggests that DeepER could be used to investigate the potential link between R-loop formation and

some repeat expansion diseases.

We subsequently revealed that certain types of repeats exhibited a strong association with R-loop formation (Figure 4A). Consistent with

the data presented in Figure 3F, GGC/CGG/GCG, GCN, and GGGGCC tandem repeats generally displayed a pronounced propensity for

R-loop formation. Additionally, GGCGCGGAGC were observed strongly associated with R-loop formation. However, AT-rich tandem re-

peats, CAG/GCA, and CTG repeats were less likely associated with R-loop formation. It is noteworthy that even though different genes

harbored the same copy number of the same tandem repeats, their probabilities of R-loop formation were not always the same, suggesting

the influence of native sequence contexts on R-loop formation.

DeepER predicted strong R-loop formation at tandem repeats in GIPC1, NOTCH2NLC, VWA1 genes and others. However, there is

currently no experimental evidence available regarding the formation of R-loops at these genes. As a proof of concept, we constructed
6 iScience 27, 110584, August 16, 2024



Figure 5. DeepER web server

(A) Different options (from 1 to 4) for running DeepER.

(B) An example showing the prediction results of DeepER. Top, an interactive plot showing the distribution of R-loop formation probability. Bottom, the meta

information for predicted R-loop regions.

(C) Screenshot of R-loopBase genome browser showing the pre-predicted genome-wide R-loops by DeepER.
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expression vectors carrying NOTCH2NLC exon 1 with 20, 67 and 102 copies of GGC repeats that were fused with EGFP and HA tag

(Figure 4B),41 and verified the formation of RNase H1-sensitive R-loop structures on GGC repeats-containing restriction fragments via

DRIP-qPCR (Figure 4C) in different biological replicates (Figure 4D). Altogether, our DeepER predicts the potential link of R-loop formation

with some repeat expansion diseases, shedding new light on understanding the pathomechanisms.
Development of DeepER web server for customized R-loop prediction

To facilitate the utilization of DeepER for customized R-loop prediction, we developed a DeepER web server (https://rloopbase.nju.edu.cn/

deepr/tool/model) as an integral component of our R-loopBase application.21 The DeepER web server can be run in four different modes,

catering to the diverse requirements of users (Figure 5A). Firstly, users have the option to provide genomic coordinates. DeepER will retrieve

the corresponding genomic sequence on behalf of the users to perform R-loop prediction. Secondly, users can directly paste their query se-

quence(s) into the query box. The web server accepts multiple sequences as long as they are provided in the standard FASTA format. Thirdly,

rather than pasting sequences into the query box, users can choose to upload a FASTA file containing one or more query sequences for

R-loop prediction. Lastly, for advanced users, DeepER can be downloaded as standalone software, enabling the prediction of R-loops

from sequences locally. It does not necessitate any specialized hardware environment, apart from a recommended memory size of at least

4 GB to prevent overflow. An NVIDIA GPU (graphics processing unit) is also recommended for accelerated prediction speed.

Several user-friendly options are available (Figure 5A), including the ability to accept sequences of arbitrary length as input, define a

custom cutoff for the average base-level probability of R-loop formation, select the forward or reverse sequence for prediction, and input

a job id to facilitate result tracking. By providing these versatile input options and customizable parameters, we aim to enhance the user expe-

rience and accommodate different preferences when utilizing DeepER for R-loop prediction.

Once a job is submitted, DeepER will return prediction results on a new page, which will be retained for a period of 30 days (Figure 5B).

These results can be visualized through an interactive 3D plot displaying base-level probabilities of R-loop formation (Figure 5B, top). The

meta-information of each predicted R-loop, including the start position, end position, length, average probability, and strand information,
iScience 27, 110584, August 16, 2024 7
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is summarized in a table (Figure 5B, bottom). Furthermore, links to position-level probability scores and editable figures are available for

download, catering to customized downstream analysis and presentation needs.

Furthermore, we have generated whole-genome annotation of R-loops with DeepER. These pre-prepared results have been seamlessly

integrated into the R-loopBase genome browser as an independent track (Figure 5C). This integration enables users to conveniently visualize

the predicted R-loops alongside other genomic data available in R-loopBase database, and facilitate valuable insights into the potential func-

tional implications of these structures.

DISCUSSION

Broad discrepancies exist among experimental approaches for genome-wide R-loop mapping,1,18,20,42 and it is sometimes impractical to

experimentally detect R-loops. Consequently, the need for an R-loop prediction tool arises. Deep learning models have recently shown

remarkable success in the genomics field.43 The first deep learning-based tool in R-loop field, deepRloopPre, was developed recently

for predicting R-loops in plants.31 However, the deepRloopPre model was trained solely based on ssDRIP-seq data. Since a substantial

portion of ssDRIP-seq-mapped R-loops lacked support from other technologies, and there is no consensus on the best method,18 the

reliability of deepRloopPre-predicted R-loops remains uncertain. In this study, we trained the DeepER model using R-ChIP-mapped

R-loops that were also supported by other technologies as positive data, while using regions undetected by any technologies as negative

data. The R-loop regions predicted by our DeepER were in good agreement with those identified by other experimental or computational

methods.

Formation of R-loops, characterized by specific sequence features, is conserved across species.9 Therefore, QmRLFS-finder, initially

applied in the human genome, is utilized for predicting R-loop forming sequences in other species.26 We believe that it is feasible to employ

our DeepER for R-loop predictions in other species as well.

DeepER deepens our understanding of sequence characteristics linked to R-loop formation. Although G-rich and A-rich sequences have

previously been reported as associated with R-loop formation, DeepER analysis suggests that their influences are contingent on their posi-

tions. Furthermore, DeepER predicted a substantial association between specific tandem repeats and R-loop formation, suggesting that

R-loop formation may serve as the underlying mechanism for certain repeat expansion diseases.

Limitations of the study

While DeepER demonstrated notable performance, there is still room for improvement. In addition to sequence features, R-loops are asso-

ciated with nucleosome-free regions,44 the presence of complementary RNA molecules and other factors. The performance of DeepER will

probably get improved if trained based on both DNA sequences and epigenomics data, e.g., chromatin accessibility, DNAmodifications and

histonemodifications. Although DeepER predicts the potential link between R-loop formation and certain repeat expansion diseases, further

efforts are still needed to elucidate the underlyingmechanisms. Theoretically, DeepER can be used for R-loop prediction in any species. How-

ever, experimentally determined R-loops in species other than human are generally scarce or profiled via specific R-loop mapping technol-

ogies that may suffer from a high rate of false positives. Therefore, we were unable to evaluate the performance of our DeepER in these

species.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal S9.6 antibody Kerafast Cat# ENH001; RRID: AB_2687463

Chemicals, peptides, and recombinant proteins

Proteinase K Sigma-Aldrich Cat# 124568

Glycogen Thermo Fisher Cat# R0561

HindIII - HF NEB Cat# R3104

BsrGI - HF NEB Cat# R3575

XbaI NEB Cat# R0145

SspI - HF NEB Cat# R3132

RNase H Thermo Fisher Cat# EN0201

RiboLock RNase inhibitor Thermo Fisher Cat# EO0382

Experimental models: Cell lines

Human: HEK293T Laboratory of Yu Zhou at Wuhan University Zhang et al.45

Oligonucleotides

Primers for DRIP-qPCR experiment This Paper See method details

Deposited data

R-ChIP data Chen et al.24 GEO: GSE97072

K562 RNA-seq data Moore et al.46 ENCODE: ENCFF671NWM

HeLa-S3 RNA-seq data Moore et al.46 ENCODE: ENCFF625ZJI

HepG2 RNA-seq data Moore et al.46 ENCODE: ENCFF281BBM

A549 RNA-seq data Moore et al.46 ENCODE: ENCFF739RNG

DRIP-qPCR data This Paper Mendeley Data: https://doi.org/10.17632/4z4z2kxng8.1

Software and algorithms

Bedtools Quinlan et al.47 https://bedtools.readthedocs.io/en/latest/

Bowtie2 Langmead et al.48 https://bowtie-bio.sourceforge.net/bowtie2/index.shtml

DeepER This Paper Zenodo: https://doi.org/10.5281/zenodo.12596858

MACS2 Zhang et al.49 https://github.com/macs3-project/MACS

featureCounts Liao et al.50 http://subread.sourceforge.net

R N/A https://www.r-project.org/

Python N/A https://www.python.org/

Pytorch N/A https://pytorch.org/

MEME Bailey et al.51 https://meme-suite.org/meme/

R-loopBase Lin et al.21 https://rloopbase.nju.edu.cn/

R-loopDB Jenjaroenpun et al.26 http://r-loop.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jia-Yu Chen

(jiayuchen@nju.edu.cn).
Materials availability

The plasmids and cell lines generated in this study are available upon request.
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Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

Original qPCR results have been deposited at Mendeley Data and are publicly available as of the date of publication. The DOI is listed

in the key resources table.
� All original code has beendeposited at Zenodo and are publicly available as of the data of publication. DOI is listed in the key resources

table.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and plasmids

HEK293T cells, previously purchased from and authenticated by the Cell Bank of the Chinese Academy of Sciences (Shanghai, China), were

obtained from the laboratory of Yu Zhou at Wuhan University45 and cultured in DMEM supplemented with 10% FBS and penicillin/strepto-

mycin (100 U/ml) at 37�C with 5% CO2. Cells were determined to be free from mycoplasma contamination. Expression vector carrying

NOTCH2NLC exon1 with different numbers of GGC repeats were prepared and transfected into HEK293T cells as described before.41
METHOD DETAILS

Data preparation for DeepER model

R-ChIP data from HEK293 and K562 cells were downloaded from the GEO database (GEO: GSE97072).24 All data were aligned to the human

genome (hg38) using Bowtie2,48 retaining only uniquely-mapped reads. MACS2 was employed with stringent criteria (fold change R5 and

q-value%0.001) to identify R-loop peaks.49 Peaks exhibiting a 50% reciprocal overlap between the two cell lines weremerged as conservative

R-loop regions. R-loop regions were considered only if they were supported byR 1 R-loop dataset generated by other R-loopmapping tech-

nologies achieved in R-loopBase.21

Input data for model training were the prepared as follows. We randomly selected 5-kb-long intervals containing the aforementioned

R-loop peaks and surrounding R-loop-negative regions across the human genome. We then introduced a data augmentation step, before

which the testing set was separated in advance to ensure there would be no data leakage. Ten intervals for each R-loop region were selected

to enhance themodel’s robustness in handling R-loops at various positions relative to the 5-kb segment. Base positions within R-loop regions

were assigned as 1 and other positions as 0. An approximately equivalent number of intervals were randomly selected from the entire genome

to serve as negative intervals. These negative intervals had no overlap with the positive intervals, gap regions, or peaks detected by any other

datasets in R-loopBase.21 All bases for negative intervals were labeled as 0. All intervals were allocated into training, validation and testing

datasets at a ratio of 7:2:1. Sequences were then extracted and encoded using one-hot encoding for model training.
DeepER architecture

TheDeepER architecture includes a standard BiLSTM layer, two BiLSTM layers with residual connections, and a fully connected layer activated

by sigmoid function which normalizes the output to the range of [0, 1]. The probability of R-loop formation, Y, is computed as a function of

input sequence, X:

Y = DeepERðXÞ
To elaborate further, the computational steps of the DeepER model can be expressed in the following pseudocode:

XOneHot = OneHotðXÞ
X0 = BiLSM0ðXOneHotÞ
for i =1 to 2:

Xi = resBiLSMiðXi� 1Þ
Y = SigmoidðFCðX2ÞÞ
return Y

OneHot is a function to convert the input sequence into its one-hot encoding representation. BiLSTM0 is a standard BiLSTM layer.

ResBiLSTMi is the i-th layer of BiLSTM with a residual connection. FC is a fully connected layer. Sigmoid is an activation function typically

used for binary classification tasks that maps input values to a range of [0, 1].

Specifically, BiLSTMdenotes a bidirectional LSTM layer that processes input sequences in both forward and backward directions. Forward

LSTM equations are defined as follows:

fi = sðWf $ ½hi� 1; xi� + bf Þ
iScience 27, 110584, August 16, 2024 13
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ii = sðWi $ ½hi� 1; xi� + biÞ
~Ci = tanhðWc $ ½hi� 1; xi� + bCÞ
Ci = fi1Ci� 1 + ii1 ~Ci
oi = sðWo $ ½hi� 1; xi � + boÞ
hi = oi1tanhðCiÞ
Backward LSTM equations are defined as follows:

f 0j = s
�
W 0

f $
h
h0
j+1; xj

i
+ b0

f

�

i0j = s
�
W 0

i $
h
h0
j+1; xj

i
+ b0

i

�

~C0
j = tanh

�
W 0c $

h
h0
j+1; xj

i
+ b0

C

�

C0
j = f 0j 1C0

j+1 + i0j1
~C0
j

o0
j = s

�
W 0

o $
h
h0
j+1; xj

i
+ b0

o

�

h0
j = o0

j1tanh
�
C0

j

�

The BiLSTM output at each time step can be obtained by concatenating the forward and backward hidden states:

yₖ =
�
ok ;o

0
k

�
In the above equations, s denotes the sigmoid activation function, 1 denotes element-wise multiplication (Hadamard product), and W

and b represent the weight matrix and bias vector, respectively. hᵢ and h0j represent the forward and backward hidden states at time step i and

j. xi and xj represent the input feature at time step i and j. fi, ii, oi, and ~ci represent the forget gate, input gate, output gate, and candidate

memory cell at time step i, respectively. f 0j , i
0
j , o

0
j , and ~c0j represent the corresponding gates and cell for the backward LSTM. Ci and C0

j are

responsible for updating their respective cell states. yₖ denotes the final output of BiLSTM at time step k.

The residual Bi-LSTM is expressed as the following:

resBiLSTMðxÞ = x +ReLUðBiLSTMðxÞÞ
ReLUðxÞ = maxð0; xÞ
ReLU is a rectifier linear unit activation function.
DeepER training

Themodel uses theWeighted Symmetric Cross Entropy loss function tomeasure the difference between themodel prediction results and the

actual labels. For the binary classification problem, the cross-entropy loss function is expressed as:

CE
�
yi; ypred;i

�
= L

�
yi; ypred;i

�
= �

�
yi � log

�
ypred;i

�
+ ð1 � yiÞ � log

�
1 � ypred;i

��

yi is the actual label (0 or 1) , and ypred,i is the predicted probability by the model. This loss function measures the error of the model by

calculating the negative logarithm of the prediction probability corresponding to the actual label.

From this, the Symmetric cross-entropy loss can be defined as:

SCE
�
yi; ypred;i

�
=

CE
�
yi; ypred;i

�
+CE

�
ypred;i; yi

�
2
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Moreover, we have assigned different weights to the SCE loss at various positions in order to mitigate the effects of excessive negative

samples and varying lengths of positive examples. The negative weights are set as 1 and the positive weights are set inversely proportional

to the length of each sequence. The formula is written as follow:

ui =

8><
>:

l

lp
if yi belongs to positive sample

1 if yi belongs to negative sample

lp represents the R-loop length where the yi belongs to.

The total loss function can be written as follow:

L
�
y; ypred

�
=

1

l

Xl

i = 1

ui $ SCE
�
yi; ypred;i

�
=

1

l

Xl

i = 1

ui$
CE

�
yi; ypred;i

�
+CE

�
ypred;i; yi

�
2

In addition, we use the Adam optimization algorithm to minimize loss and update the model’s parameters. Adam combines the idea of

gradient descent with the ability to adapt learning rate and has fast convergence speed and good performance. Adam’s optimization algo-

rithm formula are as follows:

mt = b1 �mt� 1 + ð1 � b1Þ � g
vt = b2 � vt� 1 + ð1 � b2Þ � g � g
bmt = mt

� �
1 � bt

1

�

bv t = vt
� �

1 � bt
2

�

qt = qt� 1 � lrt � bmt = ð
ffiffiffiffiffibv t

p
+ εÞ

mt is the first-ordermoment estimation of the gradient, vt is the second-ordermoment estimation of the gradient, bmt and bv t are correcting

for deviations respectively, b1 and b2 are the decay rates used to control the first-order moment and second-order moment estimations,

t represents the current iteration steps, lr is the learning rate, and ε is a small constant used to prevent division by zero errors.

DeepER hyperparameters

DeepER hyperparameters were tuned experientially through sequential exploration of the hyperparameter space over the validation set. The

learning rate is set as 1.63 10-3 and decays by 10% every 5 epochs, batch size as 64, number of epochs as 100. Initial weights were initialized

with orthogonal initialization. The gradient exponential decay rate and numerical stability parameter were set as default values.

Evaluation of DeepER

Bases with predicted probability valuesR 0.95 were classified as R-loop-positive bases. Comparing these predictions against the true labels

enabled us to construct a confusion matrix, from which base-level evaluation metrics were derived. A sliding window approach was adopted

to define R-loop regions. Considering that the average R-loop size is a few hundred nucleotides,40,47 we set the window size to 200 bp and

step size to 10 bp. If the average probability wasR 0.95, the windowwas defined as an R-loop region. If a segment containing true labels was

intersected with predicted R-loop-forming regions, it would be considered as a true positive event. Similarly, true negative, false positive, and

false negative events were also counted for calculation of region-level evaluation metrics.

DeepER prediction

A pre-processing step for query sequences was implemented to allow DeepER to accept sequences of arbitrary length. Query sequences

shorter than 5 kb will be automatically extended to 5 kb by padding both ends with blanks. Sequences longer than 5 kb will be split into

5-kb segments. If a sequence is not a multiple of 5 kb, the final segment along with upstream sequences will be used for R-loop prediction

for the final segment. Genome-wide annotation of R-loops were generated as follows. For each chromosome, the best DeepER model was

used to predict R-loop formation probabilities of both strands. R-loop regions were predicted using a sliding window approach (window

size = 200 bp, step size = 10 bp and average probability R 0.95) as described above. All overlapping R-loop regions on the same strand

were then merged.

Comparison of DeepER with R-loop tracker and deepRloopPre

All three tools were employed to predict R-loops across the human genome using default parameters. The genome sequences were divided

into 200 bp segments. A segmentwas deemed a true positive event if it containedboth predicted R-loops and consensus R-loops deducedby
iScience 27, 110584, August 16, 2024 15
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RLBase39 or level-4 R-loops defined by R-loopBase.21 Similarly, true negative, false positive, and false negative events were also counted for

calculation of precision, recall, F1 score, accuracy, and specificity. To assess efficiency, we utilized all three tools to predict R-loop formation of

a 24-Mb long random sequence on aCentOS Linux 7 (Core) with Intel(R) Xeon(R) Silver 4210RCPU@ 2.40GHz. Each experiment was repeated

10 times, and the averaged running time and memory size were calculated. The efficiency of DeepER was additionally evaluated on 23NVI-

DIA GeForce RTX 3090.
Deep learning models based on feedforward neural networks

In comparison with DeepER model, we built four fully connected neural networks that can be expressed as the following pseudocode:

X0 = OneHotðXÞ
For i = 1 to layer_number:

Xi = ReLUðWi 3 Xi� 1 + biÞ
Y = Sigmoid
�
Xlayer number

�
Return Y

The Wi and bi represents the weight matrix and the bias of each layer. ReLU is an activation function. Sigmoid is used to normalize the

output to the range of [0, 1]. Step Wi3Xi-1 + bi is the most common form of matrix multiplication and vector addition. Model 1 consists of

only input and output layers. Model 2 includes an additional hidden layer. Model 3 is similar to Model 2, but the neural number of the

hidden layer is smaller than that of Model 2. Model 4 has two hidden layers. The architectures of these models are illustrated in Figure S2A.
Deep learning model based on U-Net

This model is built upon the U-Net architecture, consisting of a series of encoder blocks and decoder blocks connected through skip-con-

nections (see Figure S2).

The U-Net model can be expressed in the following pseudocode:

X0 = OneHotðXÞ
For i = 1 to 4:

Xi = EncoderblockiðXi� 1Þ
X 0
0 = X4

For i = 1 to 3:

X 0
i = Decoderblocki

�
X 0
i� 1;X4� i

�

Y = Sigmoid
�
X 0
3

�
Return Y

The Encoderblock contains a single convolution layer and two residual blocks, and each includes two convolution layers and a batch

normalization layer. It compresses the input dimensions but preserves more features. The formula is as follow:

ConvðxÞ = W � x +b
BNðxÞ = g $
x � mffiffiffiffiffiffiffiffiffiffiffi

s2+ε
p + b
ResidualðxÞ = x +ReLUðConvðBNðConvðxÞÞÞÞ
EncoderblockðxÞ = Residual2ðResidual1ðConvðxÞÞÞ
s is the variance of x, m is the mean value of x. ε is a small number to make sure that denominator will not devide by zero. W ;b;g;b are

parameters to learn.
16 iScience 27, 110584, August 16, 2024
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TheDecoderblock contains a single transposed convolution layer and two residual blocks, and each includes two convolution layers and a

batch normalization layer. Meanwhile, it expands the compressed feature representations from the Encoder, while also incorporating the

saved feature maps from the corresponding Encoder blocks. The formula is as follow:

TransConvðxÞ = x �WT +b
BNðxÞ = g $
x � mffiffiffiffiffiffiffiffiffiffiffi

s2+ε
p + b
ResidualðxÞ = x +ReLUðConvðBNðConvðxÞÞÞÞ
EncoderblockðxÞ = Residual2ðResidual1ðTransConvðx + xencÞÞÞ
Similarly, sigmoid is used to activate the output. The model employs the same weighted symmetric cross entropy loss function to adjust

the predicted results towards the true labels as closely as possible. The Adamoptimizer is utilized to efficiently update themodel parameters.

R-loop characterization

To compare DeepER with QmRLFS-finder, we collected RLFS data from R-loopDB,26 converted genomic coordinates using LiftOver and

calculated their overlaps with R-loops predicted by DeepER using BEDTools.52 Public RNA-seq data (ENCFF671NWM for K562,

ENCFF625ZJI for HeLa-S3, ENCFF281BBM for HepG2 and ENCFF739RNG for A549 cells) were downloaded from ENCODE project,46 and

used for gene expression level quantification for class I and II R-loops with featureCounts.50 STREME (default parameter) of MEME Suite51

were used to find R-loopmotifs. G4motif andG4ChIP-seq data were downloaded fromR-loopBase21 for comparisonwith DeepER-predicted

R-loops.

Feature importance analysis

We used a permutation-based method to analyze the sequence features important for DeepER-predicted R-loops. In short, one single point

mutation (the reference base was mutated to one of other three bases) was introduced randomly within each R-loop region using in-house

scripts, followed by DeepER predictions. Mutations were considered as R-loop disrupting mutations if the resulted R-loops after mutation

introduction exhibited < 50% overlap with original R-loop regions. Percentages of mutated bases, mutation types and 3-mers were deter-

mined for R-loop-disrupting and -preserving mutations for fold enrichment calculation.

R-loop predictions for disease-related tandem repeats

Information for repeat expansion diseases were collected from reviews53–60 and additional PubMed literature61–66 (see Table S4). Five kilo-

base sequences, consisting of different numbers of disease-related tandem repeats and equal number of bases upstream and downstream

of repeats, were subjected to DeepER predictions. The number of random repeats ranges from 200 copies less than theminimumpathogenic

repeat number or the repeat number on the reference genome to 200 copies beyond the reported minimum pathogenic number.

DRIP-qPCR validation

For DRIP-qPCR, HEK293T cells (53 106) were washed in cold PBS, treated with 1 ml PBS and collected by centrifuge at 600 g for 5 min at 4�C.
Cells were treated with PK buffer (100 mM NaCl, 10 mM Tris pH 8.0, 1 mM EDTA, 0.5% SDS), 6 ml Proteinase K (300 mg/ml) and 3 ml Ribolock

RNase inhibitor, followed by incubation at 37�C for 5 h. DNA was extracted by phenol-chloroform-isoamyl alcohol in light phase lock tubes,

precipitated with 1.5 ml glycogen, 1/10 volume sodium acetate (40 ml) and 2.5-fold volume of ethanol (1,000 ml) at -80�C for 30 min, spin at

14,000 rpm at 4�C for 15 min, washed twice with 70% ethanol and re-suspend in 50 ml Tris elution buffer (10 mM Tris-HCl pH 8.0).

DNA was digested by 3 ml HindIII (20,000 units/ml, NEB), 3 ml BsrGI (20,000 units/ml, NEB), 3 ml XbaI (20,000 units/ml, NEB) and 3 ml SspI

(20,000 units/ml, NEB). For R-loop validation, fragmented DNAwas pretreated with 3 ml RNase H (0297S, 10-unit total NEB) at 37�C. Digested
DNAwas purified by 200 ml TE buffer (10mMTris-Cl pH 8.0, 1mMEDTApH 8.0), extracted by phenol-chloroform-isoamyl alcohol, followedby

ethanol precipitation.

Immunoprecipitations were performed by diluting 4 mg of fragment DNA to 150 ml 13 binding buffer (10 mMNaPO4 pH 7, 140 mMNaCl,

0.05% Triton X-100, 13 PI and Ribolock) and 0.4 mg withdrawn to serve as input in qPCR. RNA-DNA hybrids were immunoprecipitated with

3 mg of S9.6 overnight at 4�C.
Magnetic beads were washed 3 times with ChIP-dilution Buffer, incubated with Blocking buffer at RT for 2 hours on the rotating platform

and washed 3 times with BSA+PBS. After removing BSA+PBS, DNA/antibody complex was added to beads and incubated for 2-3 hours at

4�C. Beads was washed three times in binding buffer (+0.33 PI, 2 ml Ribolock) and elution was performed in 150 ml elution buffer (10 mM Tris

pH 8, 1 mMEDTA, 1% SDS and 6 ml Proteinase K) for 45 min at 55�C. After adding 150 ml TE buffer, DNAwas extracted by phenol-chloroform-

isoamyl alcohol, followed by ethanol precipitation. ElutedDRIP DNAwas washed twice with ethanol, re-suspended in 50 ml H2O and analyzed

by qPCR. Primers used for DRIP-qPCR were CAATGATACCGCGAGACCCA (AmpR-F), CTTGATCGTTGGGAACCGGA (AmpR-R), AAGGAC

GACGGCAACTACAA (EGFP-F) and CGATGTTGTGGCGGATCTTG (EGFP-R).
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Data were shown asmeanG SEM. Statistical analysis was performedwith R. Differences of mean values and frequencies between two groups

were test using two-sided unpaired Student’s t-test and chi-square test, respectively, as indicated in the figure legends. P-values below 0.05

were considered significant, specifically, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001 and n.s. stands for no significant difference. All

experiments have been independently performed for three times.
ADDITIONAL RESOURCES

DeepER web server: https://rloopbase.nju.edu.cn/deepr/tool/model.
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