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ARTICLE

Role of dimensional crossover on spin-orbit torque
efficiency in magnetic insulator thin films
Qiming Shao 1, Chi Tang 2, Guoqiang Yu 1,3, Aryan Navabi1, Hao Wu3, Congli He1, Junxue Li2,

Pramey Upadhyaya4, Peng Zhang1, Seyed Armin Razavi 1, Qing Lin He1, Yawen Liu2, Pei Yang1,5,

Se Kwon Kim4, Cheng Zheng 1, Yizhou Liu6, Lei Pan1, Roger K. Lake 6, Xiufeng Han3, Yaroslav Tserkovnyak4,

Jing Shi2 & Kang L. Wang 1,4

Magnetic insulators (MIs) attract tremendous interest for spintronic applications due to low

Gilbert damping and the absence of Ohmic loss. Spin-orbit torques (SOTs) on MIs are more

intriguing than magnetic metals since SOTs cannot be transferred to MIs through direct

injection of electron spins. Understanding of SOTs on MIs remains elusive, especially how

SOTs scale with the MI film thickness. Here, we observe the critical role of dimensionality on

the SOT efficiency by studying the MI layer thickness-dependent SOT efficiency in tungsten/

thulium iron garnet (W/TmIG) bilayers. We show that the TmIG thin film evolves from two-

dimensional to three-dimensional magnetic phase transitions as the thickness increases. We

report the significant enhancement of the measured SOT efficiency as the TmIG thickness

increases, which is attributed to the increase of the magnetic moment density. We

demonstrate the current-induced SOT switching in the W/TmIG bilayers with a TmIG

thickness up to 15 nm.
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The interplay between heavy metals (HMs) and magnetic
insulators (MIs) in heavy metal/magnetic insulator (HM/
MI) bilayer systems has attracted tremendous attention

from both fundamental research and practical applications1–4.
First, the HM/MI bilayer benefits from the low Gilbert damping
in the MI. In contrast to magnetic metal, MIs only allow spin
information to propagate through magnons, instead of itinerant
electrons, due to their large electronic bandgaps. The absence of
Ohmic loss from the magnetic layer makes HM/MI bilayers more
energy efficient than HM/magnetic metal bilayers.

The second advantage of the HM/MI bilayer is that the spin-
orbit coupling in the HM or at the HM/MI interface allows the
efficient generation of spin-orbit torques (SOTs) on the MI layer
through the spin Hall effect (SHE) or Rashba–Edelstein effect5–9.
These SOTs enable efficient manipulation of magnetization
dynamics in the MI layer. Although the MI layer is electrically
insulating, SOT-driven magnetization dynamics of MIs can be
detected through anomalous Hall resistance (AHR) and spin Hall
magnetoresistance (SMR) in the HM layer10–13. By probing the
AHR, current-induced magnetization switching (CIMS) was
observed in both Pt/BaFe12O19

14 and Pt/Tm3Fe5O12 (TmIG)
bilayers15,16. However, whether SOTs in Pt/MI bilayers are from
SHE remains ambiguous due to the potential existence of the
Rashba–Edelstein effect16. It remains unclear whether the
switching direction will be opposite when we utilize HMs with
opposite spin Hall angles. Moreover, the observed damping-like
SOT efficiency (ξDL) in the Pt/TmIG that is responsible for
switching is still much lower than those in the Pt/ferromagnetic
metals (FMs)15,17,18. To understand the origin of SOTs and to
increase the value of ξDL in HM/MI bilayers, we utilize a HM with
a large spin Hall angle opposite to that of Pt in a HM/MI bilayer,
demonstrate magnetization switching, and analyze the contribu-
tions to the SOT.

In this article, we study the ξDL and CIMS in tungsten (W)/
TmIG heterostructures with different TmIG layer thicknesses
(tTmIG). The thickness dependence of the damping-like SOT
allows us to understand the interplay between spin current and
magnetism in TmIG. Here, W is chosen since it is reported to
give the largest spin Hall angle among elemental HMs and its sign
is opposite to that of Pt19. When the TmIG film thickness is
reduced from 15 to 3.2 nm, the effective exchange coupling is
strongly reduced due to long-wavelength thermal fluctuations,
resulting in a dimensional crossover from three-dimension-like to
two-dimension-like magnetic phase transitions. We quantify ξDL
by using second-harmonic Hall measurements20,21. The ξDL
increases with the tTmIG in W/TmIG bilayers; this is attributed to
the enhanced magnetic moment density due to suppression of
thermal fluctuations. We then demonstrate the CIMS in W/TmIG
bilayers up to tTmIG= 15 nm; for tTmIG= 15 nm, the switching
current density is as low as 8 × 1010 A/m2. The estimated current
switching efficiency enhances as tTmIG increases, which is con-
sistent with the increase of ξDL with tTmIG. Importantly, the
switching direction of our W/TmIG devices is indeed opposite to
that of the Pt/TmIG device15; this contrast confirms the impor-
tant role of SHE in CIMS of MIs.

Results
Dimensional crossover of magnetism. To access SOT and realize
CIMS, we prepare high-quality TmIG thin films with different
tTmIG and characterize their magnetic properties. These TmIG
(111) thin films were grown on substrate Nd3Ga5O12(111) by
pulsed laser deposition13. All TmIG thin films show an atomically
flat surface with mean roughness as low as 0.1 nm (Fig. 1a),
providing a sharp interface for efficient spin momentum transfer.

The Gilbert damping of TmIG thin films increases as the thick-
ness decreases (see Supplementary Note 1). The large lattice
mismatch between the TmIG and the Nd3Ga5O12 provides the
tensile strain to generate perpendicular magnetic anisotropy in all
TmIG thin films. The nature of perpendicular magnetic aniso-
tropy is confirmed using magnetization hysteresis loops of TmIG
thin films as a function of an out-of-plane magnetic field
(Fig. 1b), from which we can determine saturation magnetization
(MS). We observe a strong tTmIG dependence of the MS at room
temperature (Fig. 1c); the MS reduces significantly from the bulk
MS (110 emu/cm3)22 with decreasing film thickness. Note that the
estimated dead layer thickness is less than 1 nm (see Fig. 1c inset
and Supplementary Note 2), which also suggests a sharp interface
between TmIG and substrate23. The reduction of the MS at room
temperature is attributed to finite size effect, strong thermal
fluctuation and strong surface modification effect in ultrathin
magnetic films24–26. Following ref. 25, we extract the critical
exponents β for magnetic phase transitions in these TmIG thin
films using temperature dependence of magnetic moment (M–T).
The M–T curves follow the M=M0(1− T/TC)β (Fig. 1d), where
zero-temperature magnetic moment (M0) and Curie temperature
(TC) are fitting parameters. The tTmIG-dependent β is better
illustrated using log–log plots as shown in Fig. 1e and the results
are summarized in Fig. 1f. We see a clear increase of β from 0.16
± 0.06 to 0.42 ± 0.02 when the tTmIG increases from 3.2 to 15 nm,
where the uncertainty is coming from the fitting. This increase of
β suggests a dimensional crossover from two-dimension-like to
three-dimension-like magnetism since 2D Ising model and 3D
Heisenberg model predict β to be 0.125 and 0.365,
respectively26,27. The dimensional crossover happens at around 6
nm, which is one order of magnitude larger than the typical
transition thickness around 1 nm for magnetic metals25–27. In the
following sections, we point out that the reduction of MS due to
dimensional crossover has a major influence on the magnitude of
the SOT and switching efficiency, which has been neglected in the
previous experiments.

SOT measurement. To perform resistance, SOT, and CIMS
measurements, we fabricate W(5 nm)/TmIG(tTmIG) thin films
into Hall bar devices (Fig. 2a). By using four-probe resistance
measurements in different Hall bar devices, we determine the W
resistivity to be 155 ± 15 µΩ·cm, where the uncertainty is esti-
mated from the multiple (>20) device measurements. According
to ref. 19, pure α-W has resistivity around 20 µΩ·cm, and 6 nm-
thick W with mixed α- and β-phases has a resistivity as high as
170 µΩ·cm. So, most likely, our 5 nm-thick W thin films have
mixed α- and β-phases. The AHR in the W/TmIG is accurately
determined by the sharp anomalous Hall hysteresis at low fields
(Fig. 2b). The transverse planar Hall resistance (PHR) accom-
panying the longitudinal SMR is measured by rotating the mag-
netization in the xy-plane (Fig. 2c). The observation of sizeable
AHR and PHR (SMR) indicates that there is a significant spin
current being transmitted across the W/TmIG interface or a
sizable spin mixing conductance11 (see Supplementary Note 3).

We quantify ξDL by using the second-harmonic analysis of both
AHR and PHR (RAHE and RPHE)20,21. The second-harmonic Hall
resistance (R2ω

H ) in a single domain subjected to an in-plane
magnetic field can be written as21,28

R2ω
H ¼ R2ω

FL cos 2φ sinφþ R2ω
DL sinφ ¼ RPHE

HFL

Hextj j cos 2φ sinφ

þ RAHE

2
HDL

Hextj j � HK
þ RSSE

� �
sinφ

ð1Þ
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where HK and Hext are perpendicular magnetic anisotropy
effective field and in-plane external field, respectively. In Eq.
(1), R2ω

FL and R2ω
DL are the peak values of cos 2φsin φ and sin φ

components in R2ω
H , which are field-like SOT and damping-like

SOT contributions, respectively. HFL and HDL are the current-
induced field-like and damping-like effective fields, respectively.
For example, when the Hext= 2500 Oe, we observe significant
contributions from both damping-like and field-like SOTs, as
reflected by the cos 2φsin φ and sin φ angle dependencies (see
Fig. 2d and Supplementary Note 4). According to Eq. (1), slopes
of linear fits to the R2ω

DL as a function of 1/(Hext−HK) (Fig. 2e)
give the information about HDL, and the intercepts are the spin
Seebeck resistances (or voltages), which is field-independent in
the single domain case (see Eq. (1))21,29.

We calculate ξDL using ξDL ¼ 2eMStTmIGHDL
�hJac

6, where e is the
electron charge, ħ is the reduced Planck constant, and Jac is the
applied current density. We observe a characteristic increase of
ξDL as tTmIG increases with a saturation length of 10 nm (see
Fig. 2f). Similarly, previous experiments have revealed a
saturation length around 1 nm in FM heterostructures18,30,31.
This saturation length is very close to the measured penetration
depth of transverse spin current for FMs using spin pumping
technique32–34. Thus, the saturation length has been interpreted
as an indicator of penetration depth33,34. However, for our MI
TmIG thin films, the scenario becomes complex since the electron
spin cannot directly tunnel into the MI and the magnetism of MI
thin films is strongly dependent on the MI thickness (Fig. 1). Note
that the SOT efficiency (ξDL~0.02) in our W/TmIG (≥9 nm)
devices is smaller than that in β-W/CoFeB (ξDL~0.3)19. There are
two possible reasons. First, our W thin films are in mixed phases,

which have a smaller spin Hall angle. Second, the material
interfaces in W/magnetic metal and W/MI bilayers could be very
different17, which requires further investigations.

SOT switching. After quantifying the SOT efficiency, we per-
form the CIMS experiments for W/TmIGs with different tTmIG.
The switching is achieved in all devices with tTmIG up to 15 nm
and the switching phase diagrams are summarized in Fig. 3a. In
the presence of an external field along the +y direction, a
sufficiently large charge current along the +y direction will
cause magnetization (AHR) switching from the +z direction to
the −z direction (negative to positive). The required amount of
charge current to flip the magnetization decreases as the
external field increases. When we apply a sufficiently large
charge current along the −y direction while keeping the
external field along the +y direction, the magnetization (AHR)
is switched from the −z direction to the +z direction (positive
to negative) (upper panels in Fig. 3b, c). For the same current
direction, the switching direction is opposite when we reverse
the external field direction (lower panels in Fig. 3b, c). All of the
above facts agree with the picture of SOT-driven magnetization
switching. Note that the switching current density is as low as
6 × 1010 A/m2 for the W (5 nm)/TmIG (9.6 nm) (Fig. 3b), which
is three times smaller than the Pt (5 nm)/TmIG (8 nm) case15.
This suggests that W enables more energy efficient magneti-
zation switching.

The switching direction driven by current-induced SOTs is
consistent with the sign of the spin Hall angle of W, and it is
opposite to that in the Pt/TmIG bilayer15. Therefore, our work
strongly suggests the dominant role of the SHE in the generation
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of SOTs and CIMS in HM/MI bilayers. However, we do notice
that there could be an interfacial Rashba–Edelstein effect at the
W/TmIG interface contributing to the SOTs by comparative
analyses of SOTs and SMR (AHR) (see Supplementary Note 5).

To quantitatively compare the switching efficiency of W/TmIG
devices with different tTmIG, we define an effective switching
efficiency as η ¼ 2eMStTmIGHP

�hJswðHy!0Þ
35, where HP is the domain wall

depinning field estimated from the coercive field (see Supple-
mentary Note 6) and Jsw(Hy→ 0) is the zero-field limit of current
density in the switching phase diagram. This formula is chosen
because the CIMS is achieved through domain nucleation and
domain wall motion in the Hall bar devices due to the large scale
of our Hall bar devices, of which the channel width is 20 µm36.
We observe a dramatic increase of η with tTmIG (Fig. 3d), for
which we consider two reasons. First, the ξDL increases with
tTmIG, which means that the same amount of charge current in
the W layer generates stronger damping-like SOT on the TmIG
layer. Thus, the increase of ξDL contributes to a lower Jsw and thus
a larger η. Second, the Joule heating effect becomes much more
significant when a larger charge current is applied, which is the
case for switching a thicker TmIG. Joule heating causes reduction
of thermal stability through decreasing the MS and HP; these two
values will be smaller than those measured at the low current
limit. Therefore, the MS and HP used to calculate η are
overestimated, leading to a larger η.

Discussion
Here, we discuss the mechanism for the MI thickness dependence
of ξDL. We propose that ξDL depends on MS when MS of the thin

films is well below the corresponding bulk value. The
Landau–Lifshitz–Gilbert equation in the presence of damping-
like SOT can be written as

MStM
dm̂
dt

¼ �γMStMm̂ ´~Heff þ αMStMm̂ ´
dm̂
dt

þγJCξDL
�h
2e

m̂ ´ σ̂ ´ m̂ð Þ
ð2Þ

where m̂ is the unit vector of magnetization, σ̂ is the unit vector of
current-induced spin polarization, γ is the gyromagnetic ratio, α
is the Gilbert damping, tM is the thickness of the magnetic layer,
JC is the charge current density, and ~Heff ð¼ ~HK þ ~HextÞ is the
total effective magnetic field acting on the magnetization. The last
term on the right-hand side of Eq. (2) arises due to the absorption
of transverse spin current by the magnet, which is referred to as
the current-induced damping-like (dissipative) SOT. Its strength
is parameterized by dimensionless efficiency parameters ξDL. The
origin of the SOT can be understood in a simple microscopic
picture as follows. A charge current at the HM and ferromagnet
interface induces an accumulation of spin density, ρσ̂, due to the
finite spin-orbit interaction (for example, by SHE or
Rashba–Edelstein effect). Here, ρ is the magnitude of the spin
density, which is proportional to the strength of the spin-orbit
interaction. This spin density interacts with the ferromagnet via
exchange interaction, of the form Uex � ρMSm̂ � σ̂, enabling the
absorption of the spin current by the ferromagnet. In the per-
turbative treatment, the spin current absorbed by the ferromagnet
can be obtained up to second order in the exchange interaction to
yield the damping-like SOT with ξDL � M2

S
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correlation between ξDL and MS is referred as the MS-effect; it has
also been theoretically studied in the frame of spin pumping effect
(in Appendix B of ref. 38), which is the Onsager reciprocal process
of the spin torque effect. The increase of spin mixing conductance
with MS is consistent with the calculation from first principles39

when the surface modification effect presents in the ultrathin
regime26.

Our experiments are the demonstrations of the MS-effect; we
show that as the thickness increases, the SOT efficiency sig-
nificantly increases with MS in the low MS-regime (see Fig. 4),
which is in qualitative agreement with the MS-effect. Also, we
show that as the temperature decreases, the SOT efficiency
increases withMS, due to suppression of thermal fluctuations (see
Supplementary Note 7). Intuitively, as the magnetic moment
density (MS) increases, the interfacial exchange interaction is
enhanced, which allows more spin current to pass through the
interface. As the thickness increases, the SOT efficiency saturates
earlier than MS, around half of the bulk magnetization (60 emu/
cm3), which suggests that the SOT is determined by the local
magnetization that is saturated at a smaller thickness than the
global magnetization MS. Our experiments show the need for
further investigation of the interaction between ultrathin mag-
netic films and HMs, which would include the spin physics of
dimensional crossover.

In summary, we have systematically studied the dimensional
crossover of magnetism and its effect on SOTs in ultrathin MI
films with perpendicular magnetic anisotropy. The characteristic
increase of SOT efficiency with the MI thickness can be under-
stood from the enhancement of magnetic moment density and
the suppression of thermal fluctuations. In addition, we have
realized CIMS in W/TmIG devices with tTmIG up to 15 nm. The
switching current density for W/TmIG devices is lower or com-
parable with these for HM/FM despite the fact that the saturated
ξDL is estimated to be only around 0.02 at this stage, which is
much less than the 0.3 that is estimated for W in W/CoFeB
bilayers19. Further improvement of the ξDL could be done by spin
mixing conductance matching40 and surface treatment41. Our
results presented here show the great potential of ultrathin MI-
based spintronics.
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Methods
Materials growth and characterization. All TmIG(111) films were grown on
Nd3Ga5O12(111) by pulsed laser deposition13 before transferring to a magnetron
sputtering chamber in the ambient condition. At room temperature, we deposited a
5 nm-thick W layer on top of TmIG followed by subsequent deposition of MgO (2
nm)/TaOx (3 nm) layers to protect W from oxidization. Magnetization hysteresis
loops as a function of an out-of-plane magnetic field were measured by a vibrating
sample magnetometer and a superconducting quantum interference device. The
nominal thin film area is 5 × 5 mm2.

Devices fabrication and characterization. The films were patterned into Hall bar
devices (Fig. 2a) by using standard photolithography and dry etching for the
resistance, SOT, and switching measurements. The channel width is 20 µm, and the
distance between two neighboring Hall contacts is 26 µm. We measured the
second-harmonic Hall resistance by applying Iac,r.m.s= 1 mA (Jac,r.m.s= 1010 A/m2)
with a frequency ω/2π= 195.85 Hz. The magnetic field and angle controls were
done in a physical properties measurement system. The CIMS experiments were
performed in the ambient environment by applying a pulse current with 5 ms pulse
width and reading Hall voltage subsequently.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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