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Summary

The generalized plasticity model, which has previously been discussed by the author primarily
in a theoretical way, is made specific in the form of a simple version based on a single function of
the state variables. After a review of the basic concepts of generalized plasticity the appropriate
simplifications are introduced, leading to a one-dimensional model that can be used to generate, in
closed form, stress-strain diagrams under arbitrary stress-controlled loading, including cyclic loading.
This model is then extended into a multiaxial form that is used to solve the problem of the plastic
expansion (with elastic deformations neglected) of a pressurized thick-walled tube.

1. Introduction

In the 1970s I first began writing about what I then called a ‘‘simple’’ theory of rate-
independent plasticity [1-2]. I called it that because I thought it conceptually simpler than the classi-
cal theory; for one thing, it does not require the concept of a yield criterion, an essential ingredient
of classical plasticity. I devoted further work to elaborating the axiomatic structure of the theory [3],
with attention to the form taken by the maximum-dissipation postulate [4], the uniqueness theorem
[5], and the propagation of acceleration waves [6]. In the course of this work it became apparent
how classical plasticity may be precisely defined as a special case, and I have consequently come to
call the theory in question generalized plasticity. With the exception of an illustrative application to
concrete [7], this work has been largely abstract, dealing with the model in its most general form.
The purpose of the present paper is to present a specific and quite simple version of the model that
can be put to immediate computational use. By way of introduction, a brief summary of the essential
features of general plasticity is given first.

There are two fundamental assumptions underlying the model. The first is that the local
mechanical statet in a body described by the model is determined by the control variables (typically
the components of stress or strain, though mixed control is possible as well) and a finite number of
internal variables. The second is that the relation between stress and strain, as mediated by the inter-
nal variables, is rate-independent. For the sake of definiteness stress control is assumed, with the
stress components assembled in the vector o, while the internal-variable vector is denoted &.

A local process is defined as elastic if the internal-variable vector remains constant throughout.
It follows from rate-independence that a process in which the control variables remain constant is
necessarily elastic. The elastic range of a state defined by (o, §), denoted E(w, §), is defined as the
set of stress vectors attainable from o by means of an elastic process. Clearly, o itself belongs to
E(o,&). Furthermore, if £(£) denotes the set of all stresses o such that (o, §) is a possible state,
then it is a quite reasonable assumption that for all o € X(§), E (o, &) is a closed subset of Z(§); a
similar assumption was made by Pipkin and Rivlin [8]. The assumption, in effect, limits the possible
processes to ‘‘reasonable’’ ones. As a result, a given o € X(§) is either an interior point or a boun-
dary point of E (o, &). If it is an interior point, then all stresses in a sufficiently small neighborhood
of o are attainable elastically, and (o, &) may be called an elastic state; the equations of evolution
for & must be such that £ =0 at any elastic state. If, on the other hand, (o, &) is a boundary point,
then only the stresses located inward from the boundary of E(o,§) at ¢ are attainable elastically,
while those located outward can be attained only with a change in &; (o, &) may then be called a
plastic state. 1f the boundary of E(c, &) is formed by a surface in stress space, then this surface is

+Thermal effects are ignored here, though they can be incorporated with no difficulty.



-2

equivalent to what was called the loading surface by Phillips and Sierakowski [9].

The set of all stresses ¢ such that (g, £) is an elastic state is called the elastic domain at & and
denoted D(&). This set can be shown, under some none-too-stringent technical conditions, to be an
open subset of Z(§), and its boundary, if formed by a surface, is equivalent to the yield surface of
Phillips and Sierakowski [9]. In fact, the theory of plasticity with non-coincident yield and loading
surfaces [9, 10] was the inspiration for my resecarch. However, a closed set need not contain any
interior points, so that in generalized plasticity elastic states need not exist at all. A case of some
interest arises when an elastic domain takes the form of a shell of finite thickness, and the shell tends
to zero thickness, so that two parts of the yield surface coalesce to form a quasi-yield surface [2]. In
any case, if a yield surface does exist, plastic states may have stresses lying outside the yield surface,
except in the special case represented by classical plasticity, which may be strictly defined as the
case where the elastic range of (o, &) is independent of ¢. All the features of classical plasticity
(coincident yield and loading surfaces, impossibility of stresses outside the yield surface, and so on)
follow from the definition [4].

2. Simplifications of the Model

Some simplifications are now introduced in order to reduce the model from an abstract to a
specific form. To begin with, only a geometrically linear version of the model is discussed here, so
that one is not concerned with Lagrangian or Eulerian components, objective rates, and the like.

If (o, &) is a plastic state, and if the boundary of E(o, &) is locally smooth at o, with the out-
ward normal denoted v, then both rate-independence and the defining property of a plastic state are
satisfied if the equation of evolution for & at (o, §) is given by

& = g(o,8)<v 6>, (1)

where <> is the Macauley bracket, that is, <x>=x for x20 and <x>=0 for x<0, and g is a func-
tion with values in the space of internal-variable vectors. For convenience, the outward normal vec-

tor v will be taken as a unit vector, that is, |v| =1, where |-l is an appropriate norm.
The internal-variable vector & will be assumed to be composed of the plastic strain vector £”
and an additional internal-vector x, so that Equation (1) is replaced by the two equations
&l = ha<v 6>, @
K = hu<v.&>, (3)

where 4 is nonnegative, and zero at an elastic state, while, again for convenience, 1Al =1. The spe-
cial case A =v corresponds to normality or associated plasticity.

A particularly simple associated form of Equation (2) is one that is defined by single dimen-
sionless function f (o, €7, x) such that

1
h = =<f>, @)
5 f
where B is a constant having the dimension of stress, and
df loo
A= P
M YYE I )

reflecting the assumption that loading surfaces are given locally by f =constant. The resulting form
of Equation (2) is therefore

gf = %<f>v<v-o">. (6)

If there exists a region in stress space where f <0, then this region is just the elastic domain,
and f =0 defines the yield surface. In that case the limit as B — O represents classical plasticity: f
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cannot be positive, while the limit of <f>/B is determined by the classical consistency condition.}
If, on the other hand, f 20 everywhere, but there exist surfaces in stress space where f =0, then
these surfaces are the aforementioned quasi-yield surfaces.

Another interesting feature of the simple model is that it may be combined with the viscoplasti-
city model due to Perzyna [11] so that the plastic strain rate is given by

Y

where vy plays the role of a viscosity (though its dimensions are those of reciprocal time). A body
described by (7) has both instantaneous plasticity and viscoplasticity, with the same yield criterion
governing both. The combined model described by (7) will not be pursued here.

&l =<f>v [713—<v-6-> + l] , )

The function f may be given any form corresponding to the standard yield functions of plasti-
city theory—Mises, Tresca, etc.—with any hardening rule as reflected in the choice of the internal
variables making up x (the ‘‘hardening variables’’) and their evolution equations (3). A common
choice is one in which x consists of a single component x, and p consists of a single component u
that is defined either as |4 | (corresponding to x = 1&”1) or as oA (corresponding to k=08F). A
combination of isotropic and one of the simple kinds of kinematic hardening may then be
represented. More sophisticated hardening models require more components in x, exactly as in clas-
sical plasticity and viscoplasticity.

3. A Simple One-Dimensional Model

The behavior of the simple model introduced in the preceding section will be illustrated by a
one-dimensional case, that is, one with only one independent stress component o and its conjugate
plastic strain €?. The hardening variable x is defined by the evolution equation x = | £71; the har-
dening is assumed to be linear and to consist of both kinematic (with hardening coefficient a’) and
isotropic (with hardening coefficient a”) hardening. With a=0a’+ «”, the yield function f is taken
as

f= é[lc—*a’ef’l - (oy+a”x))], ®

where oy is the initial yield stress. The stress—plastic strain diagrams for any stress-controlled pro-
cess are then the result of integrating the differential equations

P
do ap
dx = ldefl. (10)

Since the equations are piecewise linear with constant coefficients, they can easily be integrated in
closed form,

Initial loading curve. Upon initial loading, with stress and strain positive, we have x =¢”; and
Equation (9) takes the form

def 1
—__;G = -(;E<cr—cy—a£">, (1D

the initial condition being € =0 at c=0. Thus the plastic strain remains at zero for 0<o <oy,
while for o> oy, € is the solution of

de? 1 1
——+ _&f = —(o-oy)

do B ap

+In generalized plasticity there is, of course, no consistency condition, since there is no need to enforce a yield cri-
terion; the major stumbling block of computational plasticity is thus eliminated,




whose solution satisfying e =0 at =0y is

1 -
ef = —(c—-oy-B)+ B te-anip. (12)
o o
The curve is thus asymptotic to a straight line that is parallel to the line o= oy + e representing
the yield surfaces, and displaced from it in the positive stress direction by the distance B. The quan-
tity B is thus a measure of how far outside the yield surface stresses may lie, and it is obvious that
classical plasticity is recovered when 8 =0.
Reloading curves. If the initial loading process is interrupted by unloading that does not pro-
duce reverse plastic deformation and that is followed by reloading, the identity x = &f remains valid
and the reloading is governed by Equation (11). If the plastic strain attained just before unloading is

e} and if the stress is reduced to the level oy + aef or less (but greater than that required for reverse
plastic deformation), then the reloading curve is given by

1 ~(o~oy-
e = —(c-oy—-B)+ Ee (o=oy=eet)B

o o
Note that this curve is asymptotic not only to the line ¢ = oy + ae”, but to the initial loading curve
given by (12) as well.

The initial and reloading curves are shown in Figure 1.

Cyclic loading. As a final illustration we consider a loading program consisting of initial load-
ing up to a maximum stress G, unloading and reverse loading to —o,,, reloading to o, and so on.
Let the index 1 designate the initial loading phase, 2 the first unloading and reverse loading phase, 3
the reloading, and so on, so that all the phases with odd-numbered index are characterized by alge-
braically increasing stress and nondecreasing plastic deformation, while all the phases with even-
numbered index are characterized by algebraically decreasing stress and nonincreasing plastic defor-
mation. Let & and x; denote the values at the end of the ith phase of the plastic strain and the har-
dening variable, respectively. In the course of the 7th phase, then, the hardening variable is given by

K=K+ (=D7(EP - ey,

with k=€ =0. Let ¢; be defined by

¢ =2a" Y (-1y el
j=1
Then the solution of Equation (9) is as follows:

i odd:
ef = ¢l 4, o <oy + ¢+ agly,
p = A p
v = ;{0' - oy = B — ¢y + Bexp[-(o - oy —ci_y—ael)/B1},
oy + ¢ + agf | £ 0 £ Oy
i even;

ef = gl o > -0y — ¢i- + aely,
o 1
el = '&‘{G + oy + B + ¢ — Bexpl(o+oy+ci—oel_1)BlL

-0y — Ci_1 + oefy 2 02 —0p.
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Calculated curves, using the assumed values oy =1.58 and o, =2B, are shown in Figures 2
and 3 for o” =0 and o” = a’/3, respectively. It is to be noted that the former value, representing
purely kinematic hardening, leads to a symmetric limit cycle with numerically equal values of the
extreme plastic strain. These values can be shown to be given by +(B/a)x, x being the solution of
the equation

-

x—eFr*=2z-1,

where z=(c,,—oy)/B; for the case at hand, z=0.5 and x=0.067. The presence of an isotropic-
hardening component, on the other hand, leads to cycles with ever diminishing plastic deformation.

4. A Multiaxial Generalization
A generalization of the model of the preceding section to cover generalized states of stress

requires only the determination of a form of the function f (o, €”,x) that reduces to (8) for the
appropriate one-dimensional case. To be specific, let us assume that (8) applies to uniaxial tension
and compression, and that initial multiaxial yielding is governed by either the Mises or the Tresca

criterion. The general form of f is then

f (@8 x) = (8 - oy = oK) (13)

where & must be defined appropriately for each criterion, as must the norm in plastic-strain-rate
space so that lvIl=1 and K= I£f1. The definitions are as follows:

~ Fw

g = Q,;S,‘J'S,'j,

&P = 24P 6P
1€F] '\/3%%’

The normal vector v is thus given by the tensor with components v,-j=(3/26")(f9',~j, and the com-
ponents of plastic strain rate are

Mises criterion:

where 5= 0, — 10u6;; — Zoef}, and

PR R o
£ = -—‘:‘Z'Sij<0' — Oy — Q& K><§4 0>
206
Tresca criterion:
~ Lo . .
0’2'5“0'1—0'2|+|0'2"'0'3|+| 1—0'31),

where &, = 0; — 2a’¢f, the subscripts referring to principal-axis components, and
. p 1 .., . .
{871 = E(|£1| + 151 + 1e51).
For both criteria, uniaxial tension or compression corresponds to
v = sgn(o, - & €f)(1, -%,"%)

in principal-axis components. Since ef=¢€f= —;—ei’, it can easily be verified that f as given by (13)
reduces to that given by (8) (with o =0, and &” = £f).

Plane plastic deformation. If it is assumed that ¢4 =0 identically, then by analogy with classi-
cal plasticity based on the Tresca flow rule, &, must be intermediate between &, and G, while the
Mises flow rule requires more specifically that &, = %(’cﬂ + &5) and therefore o, = %(0', + o3), since
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£§ =—¢{. Moreover, for the Mises rule x =(2/~/§)lé§’l and v = («/5/2)(1,0, —~1)sgn (&, — &3), while
for the Tresca rule x = 191 and v=(1,0,-1)sgn(&, - &3). For the sake of definiteness the Tresca
formulation will be used, so that at a state where &, 2 &3, f takes the form

1
f(o, €, x) = -(-;(crl - 03— 2a’ef - oy — a”x).

If no unloading leading to reverse plastic deformation takes place, then x = €. With & 4 ta'+a”,
the equation governing the plastic deformation is
.p 1 - . .
&) = —<o, - 03 - oy — Gef><6, - 03>,
ap
since v =(1,0,-1). For monotonic loading, this may be rewritten as
de
———10 + ée{’ = —1—:s, (14)
ds B &P
where B = of/& and s= o0, — 03— 0y. Equation (14) can be solved in the form
Zep=2 14 ek, (15)
B B

virtually the same as the one-dimensional result (12). If it is in turn necessary to solve Equation

(15), then let this solution be written as s=B¢(6¢£f/B).

Thick-walled tube under pressure. The preceding formulation can be readily applied to the
problem of a thick-walled tube under internal pressure. The tube is assumed to be in a state of plane
strain, and elastic deformations are neglected. Consequently, if u is the radial displacement, then as
a result of incompressibility it must take the form u = uoa/r, where r is the radial coordinate and a is

the inner radius, and &f = ugal/r*. With o, and o, denoting the hoop and radial stresses, respectively,
and with b the outer radius, the internal pressure is given by

p= J:O'Q'—Grdr’

r

and therefore, with s = g5 ~ O, — Gy,

_ bra ¢ (Gug/aBp®
p:@m£+prﬂ—iiﬁl@, (16)
a 1 p

where ¢ is the aforementioned solution of Equation (15). This solution may be obtained by
Newton’s method, and the resulting values may be used in the numerical quadrature of the integral of

Equation (16). A relation is thus obtained between [p-oy In(b/a))/B and &uy/Ba that depends
parametrically on b/a. A calculated curve for b/a=2 is shown in Figure 4, together with the

straight-line asymptote that is obtained by assuming s/B large in Equation (15). With the exponential
term neglected, ¢ can be obtained explicitly, and the integration leads to the asymptote

- 2 &
—1— p — Oy ln—lZ = ln—lZ + 1-talb)” ___uo .
B a a 2 Ba

An approximation for small values of u, may be obtained by noting that for s/B small, the
right-hand side of (15) is approximately (s/B)*/2 and hence ¢ can again be obtained explicitly. The

result is
_l_ - ln_l?. = |1 - a 2auo
B P "aj T b Ba
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It can be seen that the pressure-displacement curve obtained is qualitatively quite similar to the
uniaxial initial-loading curve of Figure 1.
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