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1 Introduction

In this report the experimental setup and the results of a series of large-scale shake table tests of
bridge columns supported on rocking shallow foundations are presented. The project was funded
by the California Department of Transportation (Caltrans) and the tests were performed at the
large outdoors facility of the Network for Earthquake Engineering Simulations (NEES) at the
University of California at San Diego (UCSD). The purpose of this experimental and ongoing
analytical study is to establish criteria for triggering of instability, to show that rocking
foundations can be designed to remain stable and ultimately to develop a performance-based
methodology for the design of bridges with rocking foundations.

This experimental work used the NEES large soil confining box (LSCB) which was
already in place on top of the shake table platen for a previous test. Dry and well compacted sand
was placed inside the soil box up to a height of 3.35 m. Two bridge column specimens were
built, positioned on top of the sand and tested simultaneously. The footing of the first specimen
was placed on an aligned configuration with respect to the direction of shaking (aligned
specimen), whereas the footing of the second specimen was rotated 30° counter-clock wise (skew
specimen). Three different tests were conducted in May 2013; (a) one with no underground
water (test 1), (b) a second with the water level 0.6 m below the footings (test 2) and (c) a third
with the water level 1.2 m below the footings (test 3).

In section 2, following the introduction, the test configuration and specimens are
presented. Section 3 discusses the preparation of the test, whereas the structural material and soil
properties are presented in section 4. The instrumentation and measurements are discussed in
section 5, followed by the ground motions and the test chronology in section 6. Finally, the main
observed and measured responses are discussed in section 7.

Appendix A includes a complete set of construction drawings for the two specimens and
the instrumentation drawings for the test can be found in appendix B. Appendix C presents
additional critical plots from various response parameters, whereas raw plots for every sensor are
included in appendix D.



2  Test configuration & test specimens

2.1 Specimens description & geometry

The basic geometric characteristics of the specimens are shown in Figure 1. Each specimen had a
square footing with side dimension of 1.5 m and a circular column with a diameter of 0.46 m.
The height of the footings was 0.51 m and the height of the column above the footing was 1.96
m. At the top 0.61 m of the column the circular cross section was changed into an enlarged
square section with side dimension of 0.6 m. This part of the column, named here as load stub,
was used for the connection of the prefabricated mass blocks to each test specimen. More
specifically, four steel supporting beams were attached to the load stub, using post tensioned
steel rods and the mass blocks were then attached to the steel beams. The total weight of the
mass blocks per specimen was 235 kN resulting to an axial load at the base of each column equal
to 5% of the column axial capacity, a typical value for bridge piers designed by Caltrans. In
order to prevent excessive rotations of the footings and potential overturning of the specimens
which could damage the soil box, a restraining system including additional steel and tapered
wood beams was attached to each footing. Figure 2(a) shows one of the assembled specimens,
where the restraining system is highlighted.

The reinforcing steel used for the construction of the specimens was A706, Grade 60, as
typically used in bridge piers designed by Caltrans. The footings were reinforced with a grid of
bundles of two #6 bars every 15cm, both at the top and the bottom side. Additionally, 96 vertical
hooks (#4) were placed at every grid point, tying the bottom and top reinforcement layers, see
Figure 2(b). Four high strength steel (HSS) pipes were placed vertically near the corners of the
footings and they were used for mounting the restraining system. The longitudinal reinforcement
of the columns consisted of 16 #6 bars placed on a single layer in bundles of two bars. The
resulting reinforcing steel ratio of the column section was 2.8%, ensuring essentially elastic
behavior of the columns during the rocking mechanism. The transverse reinforcement was a #3
spiral with a pitch of 5.1 cm and it was uniformly placed from the bottom of the footing and
along the height of the column. The load stubs were reinforced with a grid of #4 square stirrups
along all three directions. A complete set of the construction drawings can be found in Appendix
A.
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Figure 1. (a) Plan and (b) elevation view of the test setup and basic geometric characteristics of the soil
confining box, the soil and the bridge column specimens. The direction of shaking is along the
West-East direction.



Figure 2. (a) Picture of the assembled aligned specimen and (b) reinforcing steel cage for the footing and
the column.

2.2  Test configuration

The test configuration is also shown in Figure 1, where for simplicity the restraining system of
the specimens is not depicted. The soil box was filled up with dry and well compacted sand up to
a height of 3.35 m. The elevation of the underground water was 0.0 (no water), 1.46 and 2.06 m,
for test days 1, 2 and 3 respectively. The base of the footings was at an elevation of 2.69 m and
they had an embedment height of 0.66 m. The aligned specimen was located near the east side of
the soil box and the skew one near the west side. Both specimens were centered along the north
south direction with respect to the shake table platen and the soil box. Figure 3 shows the
embedded footing of the aligned specimen and a top view (from the west side looking east) of
the test configuration.

Figure 3. (a) Picture from inside the soil box after the placement of the specimens and (b) final
configuration before test 1.



2.3 Coordinate system

The numeric position information contained in this report has been referenced to global and local
coordinate systems. When the information is specific to a specimen it is referenced with respect
to the specimen local coordinate system, while when it is not it referenced with respect to the
global coordinate system. The global coordinate system has its origin at the top center of the
shake table platen, with the positive x-axis extending towards the East, the positive y-axis
extending towards the North, and the positive z-axis extending vertically upwards. The uniaxial
direction of excitation is along the x-axis, i.e. East-West. The specimen local coordinate system
is parallel to the global coordinate system but has its origin at the bottom center of the footing of
the corresponding specimen. Specifically for the skew specimen, a secondary local to the footing
coordinate system is defined having the same origin as the specimen local coordinate system but
rotated positively about z-axis with 8, = 30°.

In addition to the position information, accelerations and displacement data are defined
positive in the same sense. However, when the vertical displacement is referred as settlement,
then it is defined positive as the downwards movement.

Axial force is defined positive in compression. A positive bending moment and shear
force are defined when the specimen bends and rotates such that the mass of the specimen
displaces East relative to the footing base, or when the acceleration at the mass centroid in x-
direction is negative.



3 Experiment preparation

3.1 Specimens construction & assembly

The specimens were constructed at the NEES outdoors facility in San Diego. The casting of
concrete was done in two stages with the footings being casted first and the columns and load
stubs two days later. Special care was taken for the curing of the concrete. Plastic sheets were
used to cover the specimens and they were water-sprayed regularly for two weeks. Once the
concrete was set, the specimens were transferred near the shake table area, where the restraining
system, the supporting steel beams and the mass blocks were attached to the concrete specimens
using the crane. Figure 4 shows pictures from the different construction stages of the specimens.
For the restraining system, a steel rod was placed inside the HSS steel pipes which protruded
vertically from each corner of the footings and they were then filled with grout. The horizontal
steel beams for the restraining system were placed through the steel rods and were bolted in
place. Finally the tapered wooden beams were positioned at the end of the horizontal steel beams
using smaller steel rods. The vertical position of the wooden beams was therefore adjustable,
controlling the foundation rotation after which the restraining system would be mobilized. Once
the restraining system was assembled, the four steel supporting beams were placed on the sides
of the load stub. For each pair of steel beams, four rods were used to tie them together with post-
tensioning, which were passed through the load stub. The mass blocks were shipped from the
Pacific Earthquake Engineering Research Center (PEER) facility in Berkeley and they were
positioned one by one on top of the steel beams and the load stub. Hydro-stone was used
between the steel beams and the mass blocks, as well as between the mass blocks, to allow for a
smoother support surface and transfer of forces. Finally, four additional steel rods were post
tensioned vertically tying the steel beams with the three mass blocks.



Figure 4. Photos from the assembly of the specimens; (a) concrete footings, columns and load stubs, (b)
steel rods and grouting of the HSS pipes, (c) restraining system, (d) steel supporting beams and
(e) placement of the mass blocks.

3.2 Soil box

The models described in this test were placed within the “rigid” NEES LSCB with internal
dimensions of 10.06 m long x 4.62 m wide x 7.62 m high, see Figure 5 (a). The box was fixed to
the shake table at the four corners and the mid-length sides of the box with PT rods that ran
through the shake table platen. Iron angles were fixed to the shake table platen through PT rods
to ensure good transfer of the accelerations from the shake table to the bottom of the soil profile
(Figure 5 (b)).



Figure 5. (a) General view of the NEES Large Soil Confinement Box and (b) inside view of the LSCB
showing the fixed iron angles at the shake table platen.

3.3 Liner system

To enable addition of water for tests 2 and 3, a system of liner protection was necessary to be
installed. Chronically this project followed the “Earthquake Performance of Large-Scale MSE
Retaining Walls” project that also utilized the LSCB and the same sand compacted at a relative
density of Dg = 95%. Due to time limiting issues and in order to protect the liner system from the
angle irons at the base of the box, the soil from the previous project was extracted up to an
elevation of 0.60 m from the base, while a pile of well compacted soil had been kept covering the
inner PT rods at the four corners of the box (Figure 6 (a)). The sand was wetted with a water
hose and compacted by hand into a curvy surface aiming in better locking between the soil
beneath and above the liner that would prevent soil-liner slipping and ensure good transfer of
accelerations. Subsequently, a geotextile was attached at the sides of the box up to an elevation
of 3.06 m to reduce the risk of the liner ripping from the concrete panels (Figure 6 (b,c)). The
liner system consisted of two layers of plastic liner with an in between layer of geotextile. After
flying the liner system with a crane within the box, it was unfolded and the top four sides of the
liner were clamped at multiple locations to wood beams. Ropes were fixed to the C-clamps and
the liner system was carefully lowered down. Figure 6(d) shows the liner system after
installation with the ropes fixed at the top of the soil box holding vertical the sides of the liner.
As the box was gradually filled with soil, the ropes holding the liner system were untied and the
liner system was slightly lowered making sure that no gap is formed between the liner and the
sides of the box. The liner was then tied back to the PT rods at the top of the box and the
procedure was repeated until the soil reached the height of the liner, allowing for the ropes to be
finally disengaged.



Figure 6. (a) Wetting and hand compaction the base soil into a curvy surface, (b) placing the geotextile at
the sides of the box up to an elevation of 3.06 m, (c) general view of the installed geotextile and
(d) general view of the lowered down liner system.

3.4 Saturation & drainage system

In addition to installing a liner protection system, a saturation and drainage system was also
installed allowing a bottom-up saturation of the soil profile for tests 2 and 3 as well as
desaturation of the soil before final excavation. The plastic liner was first covered with about 13
cm of soil compacted with a small diesel-operated vibratory compactor before installing the
saturation and drainage system. The saturation system consisted of a 30.5 cm diameter vertical
PVC pipe, long enough to extend from the final soil surface, open at the top and capped at the
bottom, placed at the middle of the North side of the box (Figure 7 (a)). Holes were drilled near
the bottom end of the vertical PVC pipe to accommodate 10.2 cm diameter perforated pipes
(Figure 7 (c)) which were placed horizontally and spread radially from the vertical PVC pipe.
The perforated pipes were split at various locations to equally cover the box plan view and were
wrapped around with a geotextile. The saturation and drainage system was covered with another
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13 cm layer of soil compacted with the small diesel-operated vibratory compactor before
proceeding in compacting the sand as described in the next section.

Figure 7. (a) Vertical PVC pipe used to insert and pump out water during saturation and desaturation
process, (b) horizontal perforated pipes extending radially from the vertical pipe used to spread
the water across the box plan view and bottom-up saturate the soil and (c) close picture of the
perforated pipes.

During saturation, the water hose was used to insert water into the vertical PVC pipe that
was then transferred through the horizontal perforated pipes system across the bottom of the soil
profile achieving bottom-up saturation, while during desaturation a submergible pump was
lowered down at the bottom of the vertical PVC pipe to pump out the water.

To monitor and control the saturation process of the soil profile, four vertical observation
PVC pipes of 5.7 cm diameter, sticking out from the final soil surface, were placed at the East
side of the soil box near the perimeter. A geotextile was wrapped around the bottom of the
observation pipes and secured with a zip-tie to prevent soil entering into the pipes. Figure 8
depicts the installed entry pipe and three of the four observation pipes in-situ. The water
elevation in the observation pipes was measured using a laser meter from the top aiming against
a small, thin wood disk floating in the water inside each pipe. Table 1 summarizes the measured
elevation of water inside the entry pipe and the observation pipes for tests 2 and 3.
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Figure 8. General view of the installed entry and observation pipes (photo taken from west side looking
east).

Table 1. Measured water elevation inside the entry and observation pipes for tests 2 and 3.

Water elevation measurements, (m) Test2  Test3

Target 1.47 2.08
Entry pipe, north center side 1.45 2.06
Observation pipe, north center side 1.47 2.07
Observation pipe, east side 1.46 2.06
Observation pipe, south east side 1.46 2.05
Observation pipe, south center side 1.45 2.05
Achieved 1.46 2.06

3.5 Placement of sand & compaction

The sand was transferred inside the soil box using a crane and a concrete hopper in lifts of 20 cm
thick. It was spread around the soil box and compacted down to about 15 cm. The compaction
was performed using a compact truck loader with a vibratory roller attachment making 6 passes
per lift. For the area near the perimeter of the soil box, the small diesel-operated vibratory
compactor has been used instead with 8 passes per lift. After the soil reached the elevation of
footings base (i.e. 2.69 m), two square temporary wooden frames with dimensions 2.5 m x 2.5 m
x 0.75m, slightly larger than the dimensions of the footings, were positioned at the two locations
where the specimens were to be placed. The remaining lifts of sand up to the elevation of 3.35 m
were placed and compacted outside the wooden frames with the diesel-operated vibratory
compactor as shown in Figure 9. Hence, the purpose of adding the wooden frames was to allow
placement and compaction of most of the soil above the foundation level prior to the placement
of the specimens which would impose significant obstructions due to their restraining systems.
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Figure 9. View of the temporary wooden frames used to allow placement and compaction of most of the
soil above the foundation elevation prior to the placement of the specimens.

3.6 Placement & removal of specimens

Before placing the specimens inside the soil box for each test, the soil surface under the footings
was leveled using a 1.83 m long level and it was also re-compacted by hand for tests 2 and 3.
The elevation of the soil surface was measured and a set of strings forming an enlarged by 2.5
cm on each side of the footing footprint was established to aid in the placement of the specimens
to the desired locations with sufficient accuracy. The assembled specimens were then transferred
inside the soil box with a crane; see Figure 10(a). After the crane had the specimens partially
rested on the soil, the position and rotation (i.e., twisting and tilting) of the temporarily placed
specimens was measured again to ensure that they are acceptable. Adjustments were made where
necessary before finalizing the placement of the specimens. Table 1 summarizes the position of
the bottom center of the footing of the specimens for each test with respect to the global
coordinate system described in section 2.3.

After each test the specimens were also removed with a crane. Before removing the
specimens (except for test 3 for reasons described in the next section) the volume of the backfill
soil extending approximately 0.30 m from the sides of the footing and a couple of centimeters
below the foundation elevation was shoveled. Shoveling of the prescribed volume of backfill soil
was done to prevent the backfill soil collapsing into the area of the footing footprint allowing
taking post-test pictures of the soil surface under the footing; hence, capturing mechanisms such
as rounding of the soil surface due to rocking and sand sliding from the backfill under the
gapping side of the footing. Shoveling of the backfill soil resulting to an enlarged hole was
conducted for practical reasons too, such as easier compaction and leveling of the “damaged”
soil surface and accommodation of the upcoming placement of the specimens for the next test.
Figure 10(b) depicts the enlarged hole (front hole) after test 1 prepared to accommodate the
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placement of aligned specimen; the set of strings used to guide the specimen placement are
barely visible.

Figure 10. (a) Placement of aligned specimen for test 1 and (b) enlarged hole after test 1 prepared to
accommodate placement of aligned specimen; sets of string used for guidance are barely

visible.

Table 2. Measured position of the bottom center of the footings of the specimens for each test with
respect to the global coordinate system.

Test Specimen x(m) y(m) z(m)
1 Aligned 2.62 0.00 2.67

Skew 228 000 2.65
2 Aligned 259" 0.00° 2.64
Skew 229"  0.00° 2.63
3 Aligned 259 -0.01 265
Skew -2.26 0.00 2.63

* (X,y) measurements were not taken for test 2;
instead, theoretical values are listed.

3.7  Backfilling around the footings

Backfilling around the footings followed the placement of specimens inside the soil box. For test
1 only, the two temporary square wooden frames used during placement and compaction of the
soil layers above foundation elevation had to be removed before backfilling the footings. The
gaps between the footings and the surrounding soil for tests 1 and 2 were filled with sand which
was compacted using a hand compactor due to space limitations; see Figure 11(a).

The procedure for backfilling around the footings described above turned out to be
critical and affected significantly the overall behavior of the rocking shallow foundations. For
test 1, the sand used to backfill the footings was taken from the soil pit near the shake table. A
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light rain during the days preceding test 1 caused the sand to be slightly moist allowing for a
better compaction and an apparent cohesive behavior. On the other hand, the sand used to
backfill the footings for test 2 was the same backfill soil used in test 1 that was shoveled and
spread around the enlarged holes before the removal of the specimens after test 1; the described
backfill soil can be identified in Figure 11(a) from its darker color due to the contained moisture.
This fact, along with lack of rain, caused the backfill sand for test 2 to be much less moist than
for test 1. The reduced moisture also reduced the effectiveness of the hand compaction of the
backfill. As a result, during test 2 the backfill sand near the foundations slid under the gapping
side of the footings at large rotations, causing significant residual rotations as described in
section 8.

This procedure was changed for test 3 aiming to prevent the falling sand mechanism
observed in test 2. Weak concrete was casted in place of the sand at the perimeter of the
foundations before test 3; see Figure 11(b and c). This concrete extended up to 0.30 m away
from the sides of the footings and was as deep as the foundation level. The sides of the footings
were covered with plastic sheet before casting to prevent bonding of the concrete to the footing
sides, minimizing related foundation moment overstrength. Vertical thin wooden boards wrapped
around with plastic were placed between the footing sides and the soil to create joints such that
the casted concrete can easily break into smaller pieces, allowing footing rocking kinematics and
preventing overstrength. The estimated compressive strength of the weak concrete at the day of
test equals 3.5 MPa.

Figure 11. (a) Compaction by hand of the backfill sand for tests 1 and 2, and construction detail around
the footings for test 3 (b) before and (c) after weak concrete casting.
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4 Material properties

4.1 Structural materials

As mentioned above, the concrete placement for the specimens was done in two separate phases.
The concrete had a specified strength of 41.3 MPa (6 ksi) and a maximum aggregate size of 9.5
mm. The footings were casted first, followed by the columns and load stubs two days later. For
each concrete batch, slump tests were performed prior to casting and cylinder samples were
taken to be tested at a later time. For construction purposes and due to the high congestion of the
steel reinforcement throughout the height of the columns, concrete with higher slump was used
for the columns and the load stubs. This was achieved by increasing the water content of the
concrete mixture in-situ and it resulted into a lower than the specified compressive strength. The
slump for the concrete of the footings and the columns were 14 and 22 cm respectively. Three
cylinder samples were tested from each batch after approximately 1, 2 and 4 weeks as well as on
the day of tests 1 and 2. At the day of test 1, the concrete of the footings had a compressive
strength of 42.1 MPa (6.1 ksi) whereas the concrete used in the columns had a compressive
strength equal to 30.3 MPa (4.4 ksi).

Reinforcing steel samples were tested in tension. For the longitudinal reinforcement of
the column, the experimentally calculated yield stress was equal to 495 MPa (71.8 ksi), the yield
strain was 0.27% and the ultimate stress was 660 MPa (95.7 ksi). Using the calculated values for
the yield stress of steel and the column concrete compressive strength, the moment curvature of
the as built column section was performed and compared against the design moment curvature.
An axial load of 260 kN, equal to the gravity load at the base of the column was used for these
analyses. The as built yielding moment, calculated for peak steel strain & = 0.5%, was equal to
365 kN-m. This value was 8% larger than the design value, despite the decreased concrete
strength of the as built section due to the higher yield stress of the reinforcing steel.

4.2  Soil properties

The model bridges were built upon moist, poorly-graded (uniformly graded and gap-graded),
Carroll Canyon type Il ASTM C33 washed concrete sand (supplied by Hanson Aggregates, West
Region, San Diego, CA). Selected soil properties for the coarse sand used in the test are
documented in Table 3.
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Table 3. Selected soil parameters for sand mixture used in the test.

Classification Poorly-graded, coarse sand; SP
Specific gravity, Gs 2.63"

Grain size, Ds (D10) [um] 737 (186) "

Coeff. of uniformity, C, 5.3

Coeff. of curvature, C, 0.9

Dry unit weight, ygmin (Yama) [KN/M°] 14.41 (17.72)

Void ratio, emax (Emin) 0.790 (0.456)

Friction angle, @pk (9cv) [deg.] 43 (39) *

Relative density in-situ, D, [%] =901

* Manufacturers' supplied datasheet

" From personal
communication with Sander

* Direct shear tests by Group Delta Consultants, Inc., San Diego, CA
I'In-situ sand cone tests

The strength parameters summarized in Table 3 were obtained from consolidated, drained
direct shear tests conducted by Group Delta Consultants, Inc., San Diego, CA. In total, three
direct shear tests were conducted at normal effective stresses of 47.9, 95.8 and 191.5 kPa with
the samples prepared at a relative density of D, = 79.8% (yq = 16.9 kN/m?) with a water content
of w=18.7%.

To estimate the relative density of the built soil profile, a total of 16 sand cone tests were
performed at different stages of the construction; see Figure 12. The calculated relative density
and water content values are summarized in Table 4. From those sand cone tests that result to
reliable measurements, it is considered that an estimate of D, = 90% for the as-built soil is
reasonable. In addition, due to the significant residual rotation of the specimens in test 2 resulted
from the sand sliding under the gapping side of the footing during rocking, water content
samples were taken from the backfill of the footings about 30 minutes after test 2 was completed.
The water content values are also tabulated in Table 4.

Using the soil properties described above, the corresponding factor of safety against
vertical loads of the aligned footing, FS,, was 24. The critical contact area ratio A/A. was equal to
11 and the base shear coefficient for rocking C, was 0.26.
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Figure 12. Sand cone test.
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Table 4. Summary of sand cone tests and water content samples.

Test type Description Location Relative density, = Water content,
x(m)  y(m)  z(m) Dr (%) w (%)
Sand cone Under skew footing center -2.29 0.30 0.97 86.9 51
Sand cone Under aligned footing center 2.59 0.30 0.97 72.8 4.4
Sand cone Under skew footing center -2.29 0.30 1.83 105.7 5.2
Sand cone Under aligned footing center 2.59 0.30 1.83 95.3 5.7
Sand cone Under skew footing center -2.29 0.30 2.49 91.3 3.8
Sand cone Under aligned footing center 2.59 0.30 2.49 78.4 4.5
Sand cone Under skew footing center -2.29 0.00 2.69 68.1 4.9
Sand cone Under aligned footing center 2.59 0.00 2.69 83.0 4.9
Sand cone Skew footing backfill before test 1, SE corner -0.92 -0.36 3.35 352.8 4.1
Sand cone Skew footing backfill before test 1, SE side middle -1.79 -0.86 3.35 88.6 4.4
Sand cone Aligned footing backfill before test 1, SE corner 3.58 -0.99 3.35 69.5 3.4
Sand cone Aligned footing backfill before test 1, S side middle 2.59 -0.99 3.35 95.7 3.2
Water content  Skew footing backfill after test 2, NE side middle -1.43 0.86 3.35 - 2.1
Water content  Skew footing backfill after test 2, NE side middle -1.43 0.86 3.02 - 2.6
Water content  Aligned footing backfill after test 2, E side middle 3.58 0.00 3.35 - 1.9
Water content  Aligned footing backfill after test 2, E side middle 3.58 0.00 3.02 - 2.2
Sand cone Center of aligned footing after test 2 2.59 0.00 2.69 74.3 3.8
Sand cone SE corner of aligned footing after test 2 (fallen sand) 3.12 -0.53 2.69 34.5 2.3
Sand cone Skew footing center before test 3 -2.29 0.00 2.69 64.5 55
Sand cone Aligned footing center before test 3 2.59 0.00 2.69 86.9 5.8
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5 Instrumentation

5.1 Sensors

The test was heavily instrumented using a total of 140 sensors. Table 5 summarizes the type and

number of sensors used in the test.

Table 5. Type and number of sensors used.

Sensor type Location Description Testl Test2  Test3
MEMS Shake table 3 acceleration DoF at top center 3 3 3
accelerometers of shake table platen
Soil box Soil box acceleration response*, 48" 4,8 48
correction of string
potentiometers' mounting points¥
Soil, free- Free-field acceleration response 10 10 10
field
Soil, under  Acceleration in soil beneath the 104, 11° 10%, 11° 10% 11°
footings footings
Footing 6 acceleration DoF of footings 75,8 7H8 78
Mass blocks 6 acceleration DoF of mass g, 8" g8 g g
blocks
Restraining  Correction of soil-footing string 1% 23 1% 28 1% 28
system potentiometers' mounting points
80 80 80
String Footing 6 displacement DoF of footings 6,6 6'.6°  6°,6°
potentiometers Mass blocks 6 acceleration DoF of footings 6, 6° 6, 6° 6, 6°
Soil-footing  Soil settlement at foundation 4+ 43 4% 48 0%, 0°
elevation in the footings' vicinity
Soil, free- Free-field soil settlement 0 0 1
field
32 32 25
Linear Footing Mapping of soil-footing contact ~ 10%, 10° 10%, 10° 10, 10°
potentiometers area
20 20 20
Pore pressure  Soil Excess pore pressure at free-field 8 8 8
transducers and under footings
Total no. of sensors 140 140 133

1 Aligned specimen related sensor.

8 Skew specimen related sensor.
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MEMS accelerometers were placed at the shake table platen, the soil box, the soil, the
footings, the restraining system and the mass blocks. The soil accelerometers were first mounted
within a switch and outlet electrical box that could accommodate up to three sensors before
being placed in the soil. The selected method aimed to prevent damage to the sensors due to
vibrations induced by the vibratory roller attachment of the compact truck loader. A 15 cm long
rod sticking out from the base of the electrical box penetrating into the soil below in combination
with well burying the electrical box before spreading and compacting the new soil lift eliminated
possible displacement and rotation of the sensors. To attach the accelerometers at the concrete
surfaces of the soil box, the footings and the mass blocks, a 2.5 cm-deep hole was drilled into the
concrete and a factory-made 2.5 cm x 2.5 cm x 2.5 cm aluminum block was fixed through a
threaded rod anchored in the concrete hole. The aluminum block had pairs of threaded holes at
its five free sides allowing screwing the accelerometers on them. Figure 13(a) depicts the
installation of the soil accelerometers under the aligned footing, while Figure 13(b) shows one of
the installed accelerometers at the top of the mass blocks of the skew specimen.

String potentiometers were primarily used to measure the relative to the soil box
displacements of the footings and the mass blocks, as well as the relative vertical displacements
between the soil at the foundation elevation in the vicinity of the footings and the restraining
system. Mounting of the string potentiometers at the concrete panels of the soil box was done
similarly to the mounting of accelerometers at the concrete surfaces of the footings and mass
blocks. A wooden wedge or slab was tied to an anchor inserted into a 2.5 cm-deep hole drilled in
the concrete and the string potentiometer sensor was directly screwed in the wooden wedge or
slab. For the other end of the string, an open-eye eyebolt was anchored to the concrete of the
masses and footings (all string potentiometers on mass blocks and inclined string potentiometer
for aligned footing; see Figure 13(b)) or welded to the legs of the restraining system (all string
potentiometers for skew footing and horizontal string potentiometers for aligned footing). Figure
13(c) shows the connected string potentiometers to the mass of the skew specimen in the
direction of shaking.
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Figure 13. (a) Installation of soil accelerometers under the aligned footing, (b) installed accelerometers at
the top of skew mass and (c) installed string potentiometers measuring the relative to the soil
box displacement of the skew mass.

String potentiometers were also used to measure the vertical displacement of the soil at
the foundation elevation in the vicinity of the footings relative to the footings. To achieve the
measurement a special assembly was made consisting of a 10.1 cm x 10.1 cm x 1.3 cm steel
plate and a 0.6 cm diameter threaded rod long enough to stick out from the final soil surface,
attached at its bottom to a coupling nut welded to the steel plate and with an open-eye eyebolt at
its top to accommodate the wire from the string potentiometers (Figure 14(a)). The hand-made
assemblies were placed near the sides of the footings at foundation elevation and subsequently
were covered with soil during the backfilling around the footings (Figure 14(b)). Figure 14(c)
shows the covered assemblies connected to the soil-footing string potentiometers before testing.
The string potentiometer sensors were screwed to a wood board placed at the top of the
triggering beams of the restraining system extending to one side. Fixity of the string
potentiometers mounting wood board was achieved by tying it against a series of wood boards
placed at the bottom of the triggering beams using rods passing through the gap between the
back of the channel beams.
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Figure 14. (a) Prepared hand-made assemblies used to measure the soil vertical displacement at
foundation elevation near the footings’ vicinity, (b) placing the assemblies near the footing
sides and (c) covered assemblies, connected to the soil-footing string potentiometers before
testing.

Pore pressure transducers were placed in the soil at the free-field and under the footings
to measure excess pore pressure and potential triggering of liquefaction during tests 2 and 3. In
place of a porous stone, a stainless steel corrosion-resistant breather vent, able to trap particles
down to 100 microns, was attached through an adapter at the end of the pressure sensor to isolate
pore pressure measurement from total stress. De-aired silicon oil with kinematic viscosity of 200
cSt was used to saturate the cavity of the sensors and the breather vents while Teflon tape was
applied to the pipe threads to prevent leakage of the saturation fluid in the cavity after
installation. The breather vents had been saturated by submerging them within the de-aired
silicon oil for a full day before sensor installation so that trapped air bubbles could dissolve in
the silicon oil. Just before installation, the pressure transducer-adapter was submerged within the
silicon oil to saturate the cavity and the breather vent was tied down to the adapter ensuring that
all the parts remained submerged during assembly (Figure 15(a)). The assembled pore pressure
transducer was deployed vertically with the breather vent facing up in a 12 cm-deep hole and it
was then backfilled with soil until only the top of the adapter and breather vent were sticking out
of the soil (Figure 15(b)). Honey was poured on top of the sensor and the sensor was then fully
backfilled with soil. Honey was used to form a viscous seal that would dissolve after the water
was added for tests 2 and 3, preventing de-saturation of the sensors during the 2.5 weeks period
they remained in unsaturated soil conditions.
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Figure 15. (a) Saturating the sensor cavity and assembling pressure transducer-adapter with breather vent
under the silicon oil and (b) deploying the assembled sensor in situ.

Special gap-no gap instruments using linear potentiometers were installed through the
footings mapping the soil surface under the footings and the uplifting mechanism. Figure 16
illustrates the construction details of the gap-no gap instruments. The gap-no gap instruments had
an inner and an outer mechanism. The outer mechanism consisted of a 4.2 cm outer diameter
PVC pipe with a PVC hex bushing attached at its bottom and a 0.3 cm thick super soft neoprene
rubber wrapped around the bushing and secured with a hose clamp (Figure 17(a)). The
assembled outer mechanism was placed within the footings and it was secured against the cage
and the formwork such that no concrete would flow under the neoprene rubber during casting or
displace the pipes (Figure 17(b)). Two 2.7 cm outer diameter PVC pipes with a compressed
spring in between were inserted inside the outer mechanism. The top inner PVC pipe was
secured with 4 screws against the outer PVC pipe such that the spring reacting against the top
inner PVC pipe would constantly push the bottom inner PVC pipe downwards. Therefore, when
a gap was formed under the instrument due to uplifting of the footing the unsupported by soil
neoprene rubber would deflect downwards. PVC disks were glued to the top and bottom of the
inner bottom and top PVC pipes, respectively, to provide the needed area against which the force
of the spring was applied. The disks had a center hole and a PVC rod was glued to the disk of the
bottom inner PVC pipe while passing through the center hole of the disk of the top inner PVC
pipe. The PVC rod was used to prevent buckling of the spring but also to allow measuring the
vertical movement of the bottom inner PVS pipe, and hence the neoprene rubber membrane
deflection, using a linear potentiometer. The linear potentiometer landed on a PVC disk placed
on top of the previously described PVC rod and was attached to a wood block glued with epoxy
to the concrete surface of the footings. Another PVVC disk was glued at the bottom of the bottom
inner PVVC pipe such that it prevented plunging in the soil beneath but also allowing adequate
downwards deflection of the membrane under the spring force. Figure 17(c) depicts the
constructed internal mechanisms while Figure 17(d) shows the installed gap-no gap instruments
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of the aligned footing. Finally, Figure 17(e) shows the pattern and deflection of the gap-no gap

instruments of the skew footing while flying the specimen into the box.
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Figure 16. Construction details of the gap-no gap instruments.
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Figure 17. (a) Hex bushing attached at the bottom of outer PVVC pipe with neoprene rubber wrapped
around, (b) placed and secured against cage and formwork outer mechanisms for aligned
footing before casting, (c) constructed internal mechanisms, (d) view of the installed gap-no
gap instruments for aligned footing and (e) bottom view of skew footing while flying specimen
in the box showing pattern and deflection of gap-no gap instruments.

Having described the instruments used in the test series, it is worth pointing out the used
instruments naming convection. Each sensor was assigned with a unique alphanumeric ID up to
seven characters to reflect adequate information about the sensor type, position and orientation.
Naming a sensor in a unique way was important for recording and post-processing the data. The
naming convention is categorized in Table 6. For instance, sensor AMTSWE is a MEMS
accelerometer at the south-west corner of the skew specimen mass oriented towards East.
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Table 6. Alphanumeric naming convention of sensors.

A: Accelerometer

T: Table platen  F: Free-field S: South E: East S: South 0: EL+0Om
B: Soil box Z: Aligned M: Middle M: Middle N: North 1: EL+1.17m
S: Soil specimen N: North W: West E: East 2: EL+1.83m
F: Footing T: Skew position in position in W: West 3: EL+2.49m
M: Mass specimen S-N plane E-W plane U: Upwards 4: EL+2.69m
orientation
S/LP: String/linear potentiometer
F: Footing Z: Aligned S: South E: East S: South H: Horizontal
M: Mass specimen M: Middle M: Middle N: North (within £150)
S: Soil T: Skew N: North W: West E: East V: Vertical
G: Gap-nogap  specimen position in position in W: West (within £150)
F: Free- S-N plane E-W plane D: Diagonal I: Inclined
field 1,2,..: No. V: Vertical (otherwise)
orientation of 1,2,..: No.
(x,y) projection
PP: Pore pressure transducer
F: Free-field S: South E: East 1: EL+0.91m
Z: Aligned M: Middle M: Middle 2: EL+1.83m
specimen N: North W: West
T: Skew position in position in
specimen S-N plane E-W plane
AC: Correction accelerometer
P: Protection Z: Aligned S: South 1,2,..: No.
system specimen N: North
B: Soil box T: Skew E: East
...... specimen W: West
S: South U: Upwards
N: North D: Downwards
E: East 1,2,..: No.
W: West
box wall
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Tables Table 7 and Table 8 tabulate the coordinates of the string potentiometers and the
rest of the instruments, respectively, the node and channel through which were connected to the
Data Acquisition system (DAQ), the directional unit vector where appropriate, and the
engineering units output.

The instrument ID is distinguished between “as-built” and “corrected” where necessary
so as the corrected ID complies with the naming convention of Table 6. Such cases include using
already installed or connected to DAQ instruments from the previous retaining wall shake table
test (e.g. shake table platen accelerometers and most of soil box accelerometers), changing
location or orientation of the instrument in situ upon reevaluation of conditions (e.g. PPFSE2 and
some of the soil accelerometers directly under the footings) and introducing a new sensor just
before testing (e.g. SSFSMV) where technical staff has assigned a non-conflicting sensor ID.

To vectorize the (X,y,z) coordinates of the instruments different coordinate systems are
used as they are described in section 2.3. Sensors, or parts of sensors that are not mounted on
specimens are defined with respect to the global coordinate system. Sensors, or parts of sensors
mounted on the specimens are defined with respect to the specimen local coordinate system. In
addition, specifically for instruments mounted on the skew footing, the secondary local to the
footing coordinate system is used where it is thought to be more practical.

A directional unit vector is introduced such that the measurements of the instrument
comply with the sign convention described in section 2.3. For accelerometers, this information is
also included in the (“corrected”) instrument ID. For instance, an accelerometer with East
orientation has a unit vector of 1, while an accelerometer with West orientation will have a unit
vector of -1. Same approach applies to accelerometers with different orientations. Correction
accelerometers mounted on the restraining system and which do not include orientation
information in their respective ID’s have all an upward orientation; hence a unit vector of 1.
String and linear potentiometers are always positive in extension. All linear potentiometers used
in these test series, the soil-footing and free-field soil settlement string potentiometers, are
vertical with the extension of the stroke being towards the negative z-axis. The rest of the string
potentiometers have variable orientations with the (x,y,z) coordinates of the fixed and moving
point of each string potentiometer revealing its respective orientation.

The instrumentation drawings due to their extent are attached separately at Appendix B.

27



Table 7. Instrumentation list for string potentiometers.

Group Sub-group Instrument ID Fixed point Moving point Node Channel Engr.
as-built corrected x(m) y(m z(m) x(m) y(m) z(m) units

Aligned  Mass* SMZNEWH - 4893 0914 6.344 1473 0914 3651 12 45 in
specimen SMZNEWI - 4878 0914 7505 1473 0914 3651 12 47 in
SMZNESH - 3505 2175 6.344 0914 1473 3651 12 39 in

SMZNWSI - 1676 2.161 7.505 -0914 1473 3651 12 37 in

SMZNWSH - 1676 2175 6.344 -0914 1473 3651 12 40 in

SMZSEWI - 4878 -0914 7505 1473 -0914 3651 12 41 in

Footing™ SFZSEWI - 4893 -0.203 5567 0533 -0.203 0.559 12 43 in
SFZNEWI - 4893 0305 5567 0533 0305 0.559 12 50 in

SFZNEDH - 4678 2175 3778 0.622 0.699 0.813 12 38 in

SFZNESI - 2896 2175 5567 0.305 0.533 0559 12 44 in

SFZNWSI - 2286 2175 5567 -0.305 0533 0559 12 49 in

SFZNWDH - 0.503 2175 3.740 -0.622 0.699 0.813 12 42 in

Soil-footingt§  SSZSEV1 - 0.762 -0.914 1440 0.762 -0.914 0.787 12 32 in
SSZSEV2 - 0914 -0.422 1173 0914 -0.422 0.787 12 30 in

SSZSEV3 - 1.067 -0.422 1.173 1.067 -0.422 0.787 12 31 in

SSZSWV1  SSZSEV4  0.762 -1.067 1.440 0.762 -1.067 0.787 12 28 in

Skew Mass* SMTNESI - -1.372 2161 7505 0.914 1473 3.651 12 51 in
Specimen SMTNESH - -1.372 2175 6.344 0914 1473 3.651 12 48 in
SMTNWSH - -3.200 2175 6.344 -0.914 1473 3651 12 46 in

SMTNWEI - -4878 0914 7505 -1473 0914 3651 12 58 in

SMTNWEH - -4.893 0914 6.344 -1473 0914 3651 12 57 in

SMTSWEI - -4.878 -0914 7505 -1473 -0914 3651 12 56 in

Footing* SFTNEDI - -1.703 2175 5572 0.189 0916 0.813 12 53 in
SFTNEDH - -1.703 2173 3.723 0.189 0916 0.813 12 55 in

SFTNWDI - -4.893 0.685 5572 -0.887 0.294 0.813 12 59 in

SFTNWDH - -4.888 0.684 3.723 -0.887 0.294 0.813 12 54 in

SFTSWDI - -2.869 -2.175 5572 -0.189 -0.916 0.813 12 60 in
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Table 7. (continued).

Group Sub-group Instrument ID Fixed point Moving point Node Channel Engr.
as-built corrected x(m y(m) z(m) x(m) y(@m) z(m) units
Skew Footing* SFTSWDH - -2.869 -2.170 3.723 -0.189 -0.916 0.813 12 52 in
Specimen  Soil-footingf§ SSTSEV1 - 1.067 -0.422 1173 1.067 -0.422 0.787 12 36 in
SSTSEV2 - 0914 -0422 1173 0914 -0.422 0.787 12 33 in
SSTSEV3 - 0.727 -0914 1.440 0.727 -0.914 0.787 12 35 in
SSTSEV4 - 0.727 -1.067 1.440 0.727 -1.067 0.787 12 34 in
Soil Free-field*Il SPSWADD SSFSMV  0.894 0.000 4.572 0.894 0.000 3.353 12 63 in

* Fixed point (x,y,z) coordinates with respect to global coordinate system, moving point (x,y,z) coordinates with respect to specimen local

coordinate system.

1 Fixed and moving point (X,y,z) coordinates with respect to specimen local coordinate system.

1 Fixed and moving point (x,y,z) coordinates with respect to footing local coordinate system.

8§ Instrument used in tests 1 and 2.
[I'Instrument used in tests 2 and 3.
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Table 8. Instrumentation list for accelerometers, pore pressure transducers and linear potentiometers.

Instrument  Group Sub-group Instrument ID x(m) y(m) z(m) Node Channel Unit Engr.
type as-built corrected vector units

MEMS Shake ABCOC1 ATMMEO  0.000 0.000 0.000 11 14 1 g

accelerometer table ABCO0C2 ATMMNO 0.000 0.000 0.000 11 8 1 g

platen* ABCOC3 ATMMUO  0.000 0.000 0.000 11 13 1 g

Box* ABC3E1 ABMEE4 5.334 0.000 2.692 11 4 1 g

ABC4E1 ACBEE1 5.334 0.305 5.715 11 11 1 g

ABC5E1 ACBEE2 5.334 1.183 6.401 11 3 1 g

ABC3W1 ABMWE4  -5.334 0.000 2.692 11 6 1 g

ABC4W1 ACBWEl1  -5.334 0.749 5.715 11 15 1 g

ABS5W1 ACBWE2 -5.334 -0.722 7.315 11 7 1 g

ABS3C2 ABSMN4 1.219 -2565 2.692 11 2 1 g

ABN3C2 ABNMN4 1219 2565 2692 11 9 1 g

ACBNN4 - 289 2565 5715 11 1 1 g

ACBNN1 - -1.676 2565 3.747 11 12 1 g

ABN5C2 ACBNN3  -1676 2565 5715 11 5 1 g

ABN4C2 ACBNN2  -1.372 2565 7214 11 10 1 g

Soil Free-field* ASFMMEL1 - 0.000 0.000 1.213 11 17 1 g

ASFMMU1 - 0.000 0.000 1213 11 18 1 g

ASFMME?2 - -0.051 -0.152 1878 11 19 1 g

ASFMMU2 - -0.051 -0.152 1878 11 20 1 g

ASFMME4 - 0.000 0.000 2737 11 27 1 g

ASFMMN4 - 0.000 0.000 2737 11 25 1 g

ASFMMU4 - 0.000 0.000 2737 11 26 1 g

ASFMWE4 - -4.267 0.000 2737 11 32 1 g

ASFMWN4 - -4.267 0.000 2737 11 28 1 g

ASFMWU4 - -4.267 0.000 2737 11 31 1 g
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Table 8. (continued).

Instrument  Group Sub-group Instrument ID x(m) y(m) z(m) Node Channel Unit Engr.
type as-built corrected vector units
MEMS Soil Under aligned ASZNEU3 - 3.251 0.660 2.534 11 50 1 g
accelerometer specimen* ASZNEE3  ASZNEWS3 3.251 0.660 2.534 11 51 -1 g
ASZNEN3  ASZNES3 3.251 0.660 2.534 11 49 -1 g

ASZMEU3 - 3.251 0.000 2.534 11 54 1 g

ASZMEE3 ASZMEW3  3.251 0.000 2.534 11 53 -1 g

ASZMMU3 - 2.591 0.000 2.534 11 52 1 g

ASZMWU3 - 1.930 0.000 2.534 11 44 1 g

ASZNWU3 - 1930 0.660 2.534 11 43 1 g

ASZNWES3 - 1930 0.660 2.534 11 35 1 g

ASZNWN3 - 1.930 0.660 2.534 11 47 1 g

Under skew ASTSEU3 - -1.384 -0.241 2534 11 46 1 g

specimen* ASTSEE3  ASTSEW3  -1.384 -0.241 2534 11 33 -1 g

ASTSEN3  ASTSES3 -1.384 -0.241  2.534 11 45 -1 g

ASTMEU3 - -1.715  0.330 2.534 11 41 1 g

ASTMEE3 ASTMEW3 -1.715 0.330 2534 11 34 -1 g

ASTMEN3 ASTMES3  -1.715 0.330 2534 11 42 -1 g

ASTMMU3 - -2.286  0.000 2.534 11 38 1 g

ASTMWUS3 - -2.858 -0.330 2.534 11 48 1 g

ASTNWES3 - -3.188  0.241  2.534 11 36 1 g

ASTNWN3 - -3.188  0.241  2.534 11 37 1 g

ASTNWU3 - -3.188  0.241  2.534 11 39 1 g

Pore pressure  Soil Free-field* PPFMM1 - 0.000 0.305 1.120 11 22 - psi
transducer PPFMM2 - -0.051 0.152  1.866 11 40 - psi
PPFSE2 PPFNE2 2438 1549  1.808 11 21 - psi

Under aligned PPZMM1 - 2591 0.000 1.136 11 16 - psi

specimen® PPZMM?2 - 2489 -0.025 1.821 11 29 - psi

PPZME2 - 3.213 -0.051  1.820 11 30 - psi
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Table 8. (continued).

Instrument  Group Sub-group Instrument ID x(m) y(m) z(m) Node Channel Unit Engr.
type as-built corrected vector units
Pore pressure  Soil Under skew PPTMM1 - -2.286  0.000 1.225 11 23 - psi
transducer specimen* PPTMM?2 - -2.235 -0.076 1777 11 24 - psi
MEMS Aligned Mass? AMZNEN - 1.219 1219 3.600 12 22 1 g
accelerometer specimen AMZNEU - 1.219 1219 3.600 12 24 1 g
AMZMEE - 1.219 0.000 3.600 12 18 1 g

AMZSEU - 1.219 -1.219 3.600 12 21 1 g

AMZSWE - -1.219 -1.219 3.600 12 23 1 g

AMZSWU - -1.219  -1.219 3.600 12 19 1 g

AMZNWN - -1.219 1219 3600 12 20 1 g

AMZNWU - -1.219 1.219 3.600 12 25 1 g

Footingt AFZNEU - 0.660 0.660  0.508 8 16 1 g

AFZNEE - 0.660 0.660  0.508 8 15 1 g

AFZSEU - 0.660 -0.660  0.508 8 2 1 g

AFZSWE - -0.660 -0.660  0.508 8 7 1 g

AFZSWU - -0.660 -0.660  0.508 8 9 1 g

AFZNWU - -0.660  0.660  0.508 8 3 1 g

AFZNMN - 0.000 0.660  0.508 8 19 1 g

Protection sys.t ACPZ1 - 1.067 -0.422 1.359 12 27 1 g

Skew Masst AMTNEN - 1219 1219 3.600 12 15 1 g

specimen AMTNEU - 1219 1219 3.600 12 9 1 g

AMTMEE - 1.219 0.000 3.600 12 12 1 g

AMTSEU - 1219 -1219 3.600 12 16 1 g

AMTSWE - -1.219 -1.219 3.600 12 10 1 g

AMTSWU - -1.219 -1.219 3.600 12 11 1 g

AMTNWN - -1.219 1219 3600 12 14 1 g

AMTNWU - -1.219 1219 3.600 12 13 1 g
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Table 8. (continued).

Instrument  Group Sub-group Instrument ID x(m) y(m) z(m) Node Channel Unit Engr.
type as-built corrected vector units
MEMS Skew Footingf AFTSEU - 0.902 -0.242 0508 11 62 1 g
accelerometer specimen AFTSEN - 0.902 -0.242  0.508 11 60 1 g
AFTSWE - -0.242 -0.902 0508 11 59 1 g
AFTSWU - -0.242 -0.902 0508 11 63 1 g
AFTNWU - -0.902 0.242 0.508 11 57 1 g
AFTNWN - -0.902 0.242 0508 11 64 1 g
AFTNEU - 0.242 0902 0508 12 5 1 g
AFTNEE - 0.242 0902 0508 11 61 1 g
Protection ACPT1 - 1.067 -0.422 1359 12 29 1 g
systemi ACPT2 - 0.727 -1.067 1.626 12 26 1 g
Linear Aligned Footing} LPGZ1 - -0.445 -0.699  0.000 8 1 -1 in
potentiometer specimen LPGZ2 - -0.692 -0.456  0.000 8 17 -1 in
LPGZ3 - -0.470  -0.446  0.000 8 12 -1 in
LPGz4 - -0.278 -0.451  0.000 8 14 -1 in
LPGZ5 - 0.011 -0.446  0.000 8 13 -1 in
LPGZ6 - 0.265 -0.446  0.000 8 10 -1 in
LPGZ7 - 0.464 -0.443  0.000 8 4 -1 in
LPGZ8 - 0.697 -0.443  0.000 8 18 -1 in
LPGZ9 - -0.700  0.148  0.000 8 5 -1 in
LPGZ10 - -0.470  0.138  0.000 8 11 -1 in
Skew Footing} LPGT1 - 0.437° -0.691° 0.000 12 4 -1 in
specimen -0.017"  -0.456!
LPGT2 - 0.300 -0.456 0.000 12 8 -1 in
LPGT3 - 0.433 -0.457 0.000 12 6 -1 in
LPGT4 - 0.692 -0.446 0.000 12 1 -1 in
LPGT5 - 0.448 -0.164 0.000 12 2 -1 in
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Table 8. (continued).

Instrument  Group Sub-group Instrument ID x(m) y(m) z(m) Node Channel Unit  Engr.
type as-built corrected vector units
Linear Skew Footing} LPGT6 - 0.560 -0.119  0.000 12 3 -1 in
potentiometer specimen LPGT7 - -0.276  0.184  0.000 11 55 -1 in
LPGTS8 - -0.695  0.448  0.000 11 56 -1 in
LPGT9 - 0.425 0.462 0.000 11 58 -1 in
LPGT10 - 0.684  0.438 0.000 12 7 -1 in

* Instrument (X,y,z) coordinates with respect to global coordinate system.

1 Instrument (X,y,z) coordinates with respect to specimen local coordinate system.
I Instrument (x,y,z) coordinates with respect to footing local coordinate system.

§ For test 1.

| For tests 2 and 3.
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5.2 Video cameras

In addition to the instruments placed at and around the specimens a total of 21 cameras were
placed around the periphery of the specimens and the soil box to record video streams of the
dynamic behavior of the specimens during shaking events. Three different types of cameras were
used; namely, coaxial cameras (8), GoPro2 cameras (11) and Sony video cameras (2). Coaxial
cameras recorded live video streams at 768 x 494 pixels and 30 frames per second (fps) that
could be played back during testing. They were used to capture the overall response of each
specimen as well as the gap evolution between the soil and the bottom of the restraining system,
in order to track whether the restraining system had been mobilized during large shaking events.
Wireless, battery-supported GoPro2 cameras that record video streams at 1920 x 1080 pixels and
30 fps were used to capture the overall response as well as details of the rocking specimens.
Videos recorded by the GoPro2 cameras could only be played back after the end of test when the
memory cards were collected. Lastly, battery-supported, man-operated Sony video cameras
recorded video streams at 1920 x 1080 pixels and 30 fps and as GoPro2 cameras could only be
played back after the test. Both Sony video cameras were located outside the soil box as nobody
could be within the soil box during testing. One Sony video camera was used to capture the
overall response of the two specimens from a man lift raising high above the top of soil box,
while a second one was used for tests 2 and 3 to capture the general soil box movement from the
South-West corner. Figure 18 illustrates the position of each camera relative to the specimens
and the soil box in plan view, while Table 9 describes the position and target of each camera.
Table 10 summarizes the available video streams for dynamic events per test since in some cases
the battery of the camera was drained before the end of testing or the wireless camera failed to be
activated.
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Figure 18. Position of cameras around the specimens.



Table 9. Location and type of cameras used.

Cameratype CameralD Mounting location Target

Coaxial CAMO1 Middle of south wall at load stub height SE elevation view of skew specimen
CAMO2 South east wood stoppers of aligned specimen, at soil surface Soil-wood stoppers gap evolution
CAMO3 Middle of south wall at load stub level SW elevation view of aligned specimen
CAMO0O4 NE top of soil box NE top view of aligned specimen
CAMO5 NW top of soil box NW top view of skew specimen
CAMO06 SE of skew specimen's NE and SE wood stoppers at soil surface Soil-wood stoppers gap evolution
CAMO7 West of skew specimen's column at footing top Column base of skew specimen
CAMO7 NW of skew specimen’s NW and SW wood stoppers at soil surface ©  Soil-wood stoppers gap evolution
CAMO8 North of aligned specimen's west wood stoppers at soil surface Soil-wood stoppers gap evolution

GoPro3 CAMO09 East of aligned specimen’s column at footing top Column base of aligned specimen
CAM10 Middle of east wall at load stub level East elevation view of aligned specimen
CAM11 South wall across aligned specimen at load stub height South elevation view of aligned specimen
CAM12 NE corner of aligned footing Aligned footing edge from NE to SE corner
CAM13 SW corner of aligned footing Aligned footing edge from SW to SE corner
CAM14 West of skew specimen's column at footing top Column base of skew specimen
CAM15 Middle of west wall at load stub height West elevation view of skew specimen
CAM16 South wall across skew specimen at load stub height South elevation view of skew specimen
CAM17 NE corner of skew footing Skew footing edge from NE to SE corner
CAM18 SW corner of skew footing Skew footing edge from SW to SE corner
CAM19 NW top of soil box NW top view of skew specimen

Sony CAM20  North of soil box at man lift higher than soil box top Top view of soil box and specimens
CAM21 s of soil box at reference elevation SW elevation view of soil box

“ CAMO7 location for test 1.
" CAMO?7 location for tests 2 and 3.
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Table 10. Available videos by camera view for each test day (ground motion numbering according to

Table 11).

Cameratype CameralD Test 1 Test 2 Test 3

Coaxial CAMO01 v v v
CAMO02 v v v
CAMO03 v v v
CAMO0O4 v v v
CAMO05 v v v
CAMO06 v v v
CAMO7 v v v
CAMO08 v v v

GoPro3 CAMO9 x 1-4 6
CAM10 1-4,6 v x
CAM11 1,4 x x
CAM12 2-4,6 v 6,7
CAM13 2-4 1-4,6 1-6
CAM14 2-4,6 x 2-4
CAM15 1-4,6 v x
CAM16 1-4 v 1-6
CAM17 2-4,6 v 1-8
CAM18 2-4,6 v 1-6
CAM19 2-4,6 x 2-9

Sony CAM20 1 v 1-7
CAM21 x v v

v" All videos are available.
% None video is available.
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6

Ground motions and test chronology

The test protocol involved real ground motion recordings to achieve increasing targeted drift
ratios. Numerical models similar to the ones presented in part | where used for the selection of
the ground motion amplitude scale factors. Since the specimens were assumed to be built at a 1/3

scale, the time of the ground motions was scaled by \/% = 0.577. Table 6 lists the test protocol

used for tests 1, 2 and 3. As shown, the majority of the motions used were records from historic
earthquakes in California. Note that the Pacoima dam record was filtered with a 5 Hz low pass
filter to remove high frequency spikes which could damage the soil box. White noise was also
applied before every motion, as well as in the end of every test, for system identification
purposes. Motions 7, 8 and 9 were used only in test 3. Xxx plots the acceleration and
displacement spectra of the recorded free field soil acceleration at the elevation of the base of the

footings. In this plot, the recordings are from test 3 and a damping ratio of 3% was used.

Table 11. Test protocol for test days 1, 2 and 3.

No. Station Earthquake location, year Amplitude Target dnift
scale factor ratio, (%)

1 Gilroy #1 Loma Prieta, CA, 1989 1.0 <05

2 Corralitos Loma Prieta, CA, 1989 0.8 1.0

3 El Centro #6 Imperial Valley, CA, 1979 1.1 2.0

4 Pacoima dam* Northridge, CA, 1994 0.8 4.0

5 Takatori Kobe, Japan, 1995 0.5 6.0

6 Takatori Kobe, Japan, 1995 1.0 >8.0
77 Parachute test site Superstition Hills(B), CA, 1987 1.0 >8.0
8t Parachute test site Superstition Hills(B), CA, 1987 -1.0 >8.0
97 Parachute test site Superstition Hills(B), CA, 1987 1.1 >8.0

* Filtered at 5Hz.
T Only for test 3.
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Figure 19. (a) Linear acceleration and (b) displacement spectra for the recorded free field soil acceleration
at the elevation of the base of the footings (= 3%).
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7  Observed and measured test response

Table 12 presents the peak column drift ratios, defined as the displacement at the centroid of the
mass block in any direction divided by the height to the base of the footing. The residual values
of the column drift ratio are also shown in parentheses. The residual rotations were negligible
(<0.1%) and small (< 0.5%) for peak drift ratios equal to 2.2% and 3.9% respectively. For
motion 5 (Takatori 50%), the peak drift ratios of the aligned specimen were 6.8% and 6.9%, for
test day 1 and 2 respectively. The corresponding residual rotations were 0.9% and 1.4%,
indicating the effect of the sand falling under the gapping side of the footings. This effect
became more profound during motion 6 (Takatori 100%) where for peak rotations of 11.6% and
13.7%, for test day 1 and 2 respectively, the residual rotations were 3.4% and 7.8%. The
construction detail around the footings in test day 3 resulted into slightly smaller peak rotations
(10.1%) due to larger moment capacity of the foundation, but with significantly smaller residual
ones (2.1%). This can be also seen in Figure 20 which plots the drift ratio time history for
motions 4, 5, and 6. Test day 3 involved three additional strong motions resulting to peak drift
ratio during the last shake equal to 13.8% for the aligned specimen, with a corresponding
residual rotation of 3.5%. The skew specimen resulted to smaller peak drift ratios and residual
rotations in the East- West direction. Larger drifts were observed in the out-of-shaking North-
South direction compared to the aligned specimen (not shown here).

Using the data from the white noise runs before each shake, the fundamental period of
each specimen was estimated as the period for which the amplification ratio of the acceleration
response spectrum (ARS) of the horizontal acceleration at the centroid of the mass to the ARS of
the soil free field acceleration was maximized. The resulting periods are shown in Figure 21. It is
noted that for test days 1 and 3 the fundamental period tends to increase (up to motion 6) after
each shake due to the rounding of the soil surface under the footing during the rocking
mechanism [3] that eventually reduces the effective contact area at the end of shaking. For test
day 3, the period elongation after motion 6 is larger than that observed for test 1 because the
concrete blocks casted around the footings are pushed away from the sides of the footing and do
not contribute to the stiffness of the system during the white noise. On the other hand, the period
remains almost constant for test day 2. This is because sand fell under the footings mainly during
test day 2, since it was looser and drier as explained above, and helped retain the soil-footing
contact area near the edges that mainly contribute to the rocking stiffness of the footing. The
resulting soil surfaces under the aligned specimen after test days 1 and 2 are shown in Figure 22.
This indicates that the falling sand during test day 2 resulted in a gap between the footing and the
soil near the center of the footing.

Figure 23 shows the recorded foundation moment-rotation relation for motions 4, 5, and
6. The equivalent foundation rotation-settlement diagrams are shown in Figure 24. Even for very
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large rotations (13%), the cumulative residual settlement of the footing was about 0.02 m which
corresponds to only 1.3% of the foundation width. The sand falling under the footing reduces the
settlements during test day 2 but increases the residual rotations. The re-centering behavior is
enhanced by preventing this during test day 3 resulting to larger settlements.

No signs of triggering of liquefaction were either observed or recorded using the pore
pressure transducers in the soil during test days 2 and 3 (with underground water).

Table 12. Peak and residual (in parentheses) column drift ratios for the aligned and skew specimens.

Aligned specimen Skew specimen

Motion No. | Testday 1 Testday2 Testday 3 | Testdayl Testday2 Testday3
1 0.7(0.0) 09(.00 0.8(0.0) | 0.7(0.0) 0.7(0.1)  0.9(0.0)
2 1.0(0.1) 15(0.1) 1.1(.0) | 09(0.0 1.0(0.1) 1.0(0.1)
3 1.5(0.1) 22(0.1) 14(.0) | 1.3(01) 1401 15(0.1)
4 37(0.4) 39(5) 33(0.2) | 35(0.2 34(03) 3.3(0.3)
5 6909 69(14) 59(05) | 52(0.8)  45(1.8) 5.7 (0.9)
6 11.6 (3.4) 13.7(7.8) 10.1(21) | 11.7(20) 9.9(22) 10.9(0.7)
7 - - 12.9 (2.5) - - 9.7 (0.8)
8 - - 8.8 (2.7) - - 8.3 (1.1)
9 - - 13.8 (3.5) - - 10.1 (1.1)
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Figure 20. Recorded column drift ratio time histories (WE direction) for motions 4, 5 and 6.
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Figure 21. Fundamental periods of the specimens measured using white noise excitations after each
motion (motion O corresponds to initial period).
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Figure 22. Falling sand area under the aligned footing after (a) test day 1 and (b) test day 2.
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Figure 23. Recorded foundation moment-rotation diagram for motions 4, 5, and 6.
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Figure 24. Recorded foundation rotation-settlement diagrams for motions 4, 5, and 6.
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8 Conclusions

This experimental study involved two one-third scale specimens of bridge piers placed inside a
soil confining box on top of 2.7 meters of well compacted clean sand (D, > 90%), in an aligned
and skew configuration with respect to the direction of shaking. Dry conditions, as well as with
the underground water 1.2 m and 0.6 m below the footings were tested where no triggering of
liquefaction was observed. These tests lead to the following observations;

Shallow rocking foundations were observed to reliably accommodate earthquake induced
deformations corresponding to drift ratios of 3.3% and 5.9% with minimal residual drift ratios
(0.2% and 0.5%). These peak drift ratios are similar to expected drift demands for design and
maximum considered earthquakes respectively [2].

Loose and dry cohesionless backfill can fall under the footing during the uplifting of the
rocking foundation potentially resulting in significant residual drifts. Residual drifts increased
significantly for peak drift ratios larger than 6.9%. The casting of weak concrete around the
footings for test day 3 was successful in limiting material falling under the gapping side of the
footing, leading to minimal residual drifts for peak drift ratios up to 5.9%. The resulting
foundation moment overstrength due to the concrete around the footing was 15%.

The sand falling under the footing during the uplifting mechanism reduces the settlements
but also reduces the re-centering tendency. On the other hand sand falling under the footing
keeps the edges of the footing in contact with the soil, helping to maintain the rocking stiffness
of embedded footings. Without sand falling under the edges of the footing, degradation of
stiffness was apparent. The degradation of stiffness may be explained by the formation of a
rounded soil-footing interface during rocking.
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Appendix A: Construction drawings
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Figure B8. Detailed plan view of accelerometers placed in the soil under the (a) aligned and (b) skew

footing at EL+2.49m.
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Figure B12. Plan view of accelerometers mounted on top of the R/C mass blocks of (a) aligned and (b)
skew specimen.
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Figure B13. Plan view of accelerometers mounted on the restraining
specimen.
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Figure B14. Plan view of string potentiometers mounted on top of the R/C mass blocks.
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Figure B15. West elevation view of string potentiometers mounted on top of the R/C mass blocks of the
aligned specimen.
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Figure B19. Plan view of string potentiometers mounted on the skew footing.
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Figure B20. Elevation views (a) 1 and (b) 2 of string potentiometers mounted on the skew footing.

76



.

(Node: 12, Ch: 31)

(Node: 12, Ch: 30)

SSZSEV3 SSZSEV2
SC a ,'e Fixed P. Moving P.  Fixed P. Moving P.
o X:1.07m X:1.07/m X:0.91m X:0.97Tm
O 5 m B Y:-0.42m Y:-0.42m  Y:-0.42m Y:-0.42m
- pred Z:1.17m Z: 0.79m Z: 1.17m Z: 0.79m
g‘ e : D Orientation: D
(Node: 12, Ch: 32) (Node: 12, Ch: 28)
SSZSEV1 SSZSEV4
= Fixed P. Moving P.  Fixed P. Moving P.
- X:0.76m X 0.76m X:0.76m X: 0.76m
(<4 ¥:-0.91m Y:-0.91m ¥Y:-1.07m Yo -1.07m
3 Z:1.44m Z:0.79m Z: 1.44m Z:0.79m

—~—0.156m

0.34m = ==
0.15m

(a) Aligned Footing, Plan View at EL+4.55m

Orientation: Downwards

(Node: 12, Ch: 36)

SSTSEVA
Fixed P. Moving P.
X:1.07m X:1.07Tm
Y: -0.42m ¥:-0.42m
Z:1.17m Z:0.79m

Orientation: Downwards

(Node: 12, Ch: 35)

Orfentation: Downwards

(Node: 12, Ch: 33)

SSTSEV2
Fixed P. Moving P.
X:0.91m X:0.91m
Y:-0.42m Y -0.42m
Z:1.17m Z:0.79m

Qrientation: Downwards

(Node: 12, Ch: 34)

SSTSEV3 SSTSEV4
Fixed P. Moving P.  Fixed P. Moving P.
o X:0.73m X:0.73m X:0.73m X:0.73m
T ¥:-0.91m  Y:-0.91m  Y:-1.0fm  Y:-1.07m
o Z: 1.44m L0.79m  Z:1.44m Z: 0.79m
> 3 : D
o
>
*% . <
o 2
) L \ m
2 9
] ().J\
. N e
! e
N -
v e 0,‘\6‘“
o
Notes:

(b) Skew Footing, Plan View at EL+4.55m

1. (x,y,z) coordinates are with respect to
specimen and footing local coordinate
system for aligned and skew footing,
respectively.

Figure B21. Plan view of soil-footing string potentiometers of (a) aligned and (b) skew footing.

77



) Transverse
String Triggering Beams

Potentiometer
Longitudinal
\?‘“ Triggering Beams
0.17m

i
i b 1\
l
& i
©
T =
§ 0.6cm Diam., 71.1cm Long, §
2 Steel Threaded Rod with 3
Open-eye Eyebolt &
™
1 1 S
A €1
1 S 4 S 1
IS NS !
£
©o
©
Foundation 10.1cm x 10.17cm x 1.3cm e
Elevation Steel Plate
______\___|£ _________ — '
Cross View 1 Cross View 2

Notes:

1. The string potentiometer sensor is mounted on the top
wooden board that is secured against the bottom wooden
board through a 1.3cm diam. threaded rod passing between
the gap of the triggering C-beam backs.

Figure B22. Elevation view construction details of the soil-footing string potentiometers.
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Figure B23. Plan view of gap-no gap instruments of (a) aligned and (b) skew footing.
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Description Notes

Super-soft neoprene rubber, 3" Wrapped around part 3 and tied

thickn., Durometer hardness 10A  with hose clamp.

PVC rod 174" Dia., 5" Thickn. Glued with PVC cement &
primer to part 4.

PVC Hex Bushing 2 '," Pipe End
Male x 14" Socket Female

3, “N.D. PVC pipe, Sch. 40, 1-3" Glued with PVC cement &
Lg., 1.05" O.D., 0.824"I.D. primer to parts 2 & 6.

174" N.D. PVC pipe, Sch. 40, Exceeds by 3" the top of the
1-11"Lg., 1.66"0.D., 1.38"1.D.  footing.

PVC rod 17 " Dia., 1" Thickn. Drilled #°¢4" center through hole,
glued with PVC cement &
primer to parts 4 & 9.
Compression Spring, 2.188" Fully compressed in its initial
Overall Lg., 0.59" 0.D., 0.51"1.D., position.

0.38" Compressed Lg., 6.80 Ibs

Max Load, 3.80 Ibs/in Rate,

Closed Ends

PVC rod 15 " Dia., " " thickn. Drilled 746" center through hole,
glued with PVC cement &
primer to part 10.

Glued with PVC cement &
primer to part 6.

3, "N.D. PVC pipe, Sch. 40, 4 15" Glued with PVC cement &

Lg., 1.05" O.D., 0.824" 1.D. primer to part 8.

PVC rod 3" Dia., %4 " thickn.

Compression Spring, 3.0" Overall Fully compressed in its initial
Lg., 0.240" O.D., 0.182"1.D., 0.93" position.

Compressed Lg., 5.0 Ibs Max

Load, 3.60 Ibs/in Rate, Closed

Ground Ends

No. 6 x 12" Pan Head
Serrated-Thread Screw for
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PVC rod 35" Dia., 375 " Lg.

Use 4 of them per sensor to
provide reaction for the top
inner PVC pipe against the
outer PVC pipe.

Figure B24. Elevation view construction details of the gap-no gap instruments.
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Appendix C: Critical plots

Day 1, Gilroy #1 1.0 Motion
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Figure C1. Soil free field acceleration time history (direction of shaking).
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Figure C2. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C3. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C4. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C5. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C6. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Day 1, Corralitos 0.8 Motion
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Figure C7. Soil free field acceleration time history (direction of shaking).
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Figure C8. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C9. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C10. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C11. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C12. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Day 1, El Centro #6 1.1 Motion
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Figure C13. Soil free field acceleration time history (direction of shaking).
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Figure C14. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C15. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C16. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C17. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C18. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Day 1, Pacoima Dam 0.8 Motion
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Figure C19. Soil free field acceleration time history (direction of shaking).
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Figure C20. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.

90



300 100
€
z = 50
= S
E L -50r
=
-300, 5 3 -100; 0 5
Rotation, (%) Horizontal displ., (m) 193
© (d)
0.02 x x 0.02
E E
. 0.01 \ ~ 0.01F g\
= a
2 0 == // S 0 s
E 8
£ -0.01} £ -0.01r
) (¥
> 0.02 : ; : : g 0.02
3 2 a1 o0 1 2 3 = 0 5
Rotation, (%) Horizontal displ., (m) 10°

Figure C21. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C22. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C23. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C24. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Day 1, Takatori 0.5 Motion

08 [ [ [ [ [ [ [
0.6- |

0.4

]

0.2

Acceleration, (g)
o
{
4

Time, (S)

Figure C25. Soil free field acceleration time history (direction of shaking).
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Figure C26. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C27. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C28. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C29. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C30. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C31. Soil free field acceleration time history (direction of shaking).
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Figure C32. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C33. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C34. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C35. Bilateral

response for the aligned and skew specimens; (a) mass displacement for the EW(x)

and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C36. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent

foundation

rotation, and (c) mass and footing vertical displacements.
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Figure C37. Soil free field acceleration time history (direction of shaking).
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Figure C38. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C39. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C40. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C41. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C42. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C43. Soil free field acceleration time history (direction of shaking).
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Figure C44. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C45. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C46. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C47. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C48. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C49. Soil free field acceleration time history (direction of shaking).
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Figure C50. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C51. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C52. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C53. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(X)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C54. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C55. Soil free field acceleration time history (direction of shaking).
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Figure C56. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C57. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C58. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C59. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C60. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C61. Soil free field acceleration time history (direction of shaking).
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Figure C62. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C63. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C64. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C65. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.

Aligned —_Mass Skew
g 8 I Foundation 8 ' ‘
g ’
G) c 0
g4
o
14 -80

(b)

Rotation Rx, (%)
o

0.02
©

-0.02-

004, 4 8 12 16 -0.04, 4 8 12 16

Time, (s) Time, (s)

Vertical displ., (m)
o

Figure C66. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C67. Soil free field acceleration time history (direction of shaking).

(a) (b)
4 i i i i 0.8 . . .
G E
-2 0.4
H 3
Y 1 2 3 2 5 1 2 3 4 s
Period, (s) Period, (s)

Figure C68. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C69. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C70. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C71. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C72. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C73. Soil free field acceleration time history (direction of shaking).
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Figure C74. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C75. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C76. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C77. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
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Figure C78. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
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Figure C79. Soil free field acceleration time history (direction of shaking).
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Figure C80. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C81. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C82. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C83. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(X)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C84. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C85. Soil free field acceleration time history (direction of shaking).
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Figure C86. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C87. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C88. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C89. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C90. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C91. Soil free field acceleration time history (direction of shaking).
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Figure C92. (a) Acceleration and (b) displacement response spectra for the recorded soil free field

acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C93. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C94. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base shear
vs horizontal displacement (EW direction), (c) vertical displacement vs foundation rotation, and
(d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C95. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C96. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction

and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C97. Soil free field acceleration time history (direction of shaking).

(@) (b)
3 x x . . 0.5 A A A
52 E
(G" -
? 1 @
Y 1 2 3 2 s 1 2 3 4 s
Period, (s) Period, (s)

Figure C98. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C99. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C100. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C101. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(X)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C102. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C103. Soil free field acceleration time history (direction of shaking).
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Figure C104. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C105. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C106. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C107. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(X)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C108. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Day 3, Parachute site 1.0 Motion
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Figure C109. Soil free field acceleration time history (direction of shaking).

@) (b)
3 ; ; x x 0.5 . . .
52 E
(G- -
mlm &
1 2 3 2 s % 1 2 3 4 s
Period, (s) Period, (s)

Figure C110. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C111. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C112. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.

136



Aligned Skew

o
N
o
I

o
(S
o
(S

@)

S
[

Displacement y, (m)
o
[N o
J
Displacement y, (m)
o

'

o
'

o

4 -02 0 02 04 4 -02 0 02 04
Displacement x, (m) Displacement x, (m)

500 500

Moment Rx, (KN-m)
o

Moment Rx, (kN-m)
o

%00 0 500 %50 0 500
Moment Ry, (KN-m) Moment Ry, (kN-m)

Figure C113. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(X)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C114. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Figure C115. Soil free field acceleration time history (direction of shaking).
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Figure C116. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C117. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C118. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C119. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(X)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C120. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Day 3, Parachute site 1.1 Motion
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Figure C121. Soil free field acceleration time history (direction of shaking).
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Figure C122. (a) Acceleration and (b) displacement response spectra for the recorded soil free field
acceleration (direction of shaking) for damping ¢ = 3%.
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Figure C123. Aligned footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C124. Skew footing response; (a) moment vs rotation diagram (around NS direction), (b) base
shear vs horizontal displacement (EW direction), (c) vertical displacement vs foundation
rotation, and (d) vertical displacement vs horizontal displacement in the EW direction.
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Figure C125. Bilateral response for the aligned and skew specimens; (a) mass displacement for the EW(x)
and NS(y) direction, and (b) foundation moment for the corresponding directions.
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Figure C126. Time histories for the aligned and skew specimens; (a) mass drift ratio for the EW direction
and equivalent foundation rotation, (b) mass drift ratio for the NS direction and equivalent
foundation rotation, and (c) mass and footing vertical displacements.
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Appendix D: Raw time history plots

Day 1, Takatori 0.5 Motion
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Figure D1. Raw data plots for string potentiometers.
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Figure D2. Raw data plots for string potentiometers.
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Figure D3. Raw data plots for string potentiometers.
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Figure D4. Raw data plots for string potentiometers.
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Figure D5. Raw data plots for accelerometers.
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Figure D6.
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Raw data plots for accelerometers.
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Figure D7.
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Raw data plots for accelerometers.
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Figure D8. Raw data plots for accelerometers.
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Figure D9. Raw data plots for accelerometers.
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Figure D10. Raw data plots for accelerometers.
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Figure D11.
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Raw data plots for accelerometers.
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Figure D12.
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Figure D13.
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Raw data plots for accelerometers.

AMTNEN
05
0 _M\APM\ Annﬂl\nn!\!\l\:\v.\' A
AL A
0% 5 10 15 20
AMTSEU
05
0
05 5 10 15 20
AMTNWN
05
0 MA M ﬂnnﬂnnnnﬁnm‘,ﬂ,w
U7 wauvvvvwv'
0% 5 10 15 20
Time, (s)

157

AMTNEU

05
0
0% 5 10 15 20
AMTSWE
1
05 1
0 J.M\ I\ AN ARMAAA A nAAAAS
AT A
-05 4
1o 5 10 15 20
AMTNWU
1
05! 1
_05 4
1 . . :
0 5 10 15 20

Time, (S)



Figure D14.
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Figure D15.
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Raw data plots for linear potentiometers.
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Figure D16. Raw data plots for linear potentiometers.
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Figure D17. Raw data plots for linear and string potentiometers.
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Day 3, Takatori 0.5 Motion
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Figure D18. Raw data plots for string potentiometers.
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Figure D19. Raw data plots for string potentiometers.
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Figure D20. Raw data plots for string potentiometers.
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Figure D21.
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Raw data plots for string potentiometers.
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Figure D22.
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Raw data plots for accelerometers.
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Figure D23. Raw data plots for accelerometers.
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Acceleration, (g)
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Figure D24. Raw data plots for accelerometers.
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Figure D25.
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Raw data plots for accelerometers.
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Figure D26.
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Raw data plots for accelerometers.
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Figure D27.
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Raw data plots for accelerometers.
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Figure D28.
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Raw data plots for pore pressure transducers.
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Figure D29.
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Raw data plots for accelerometers.
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Figure D30.
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Raw data plots for accelerometers.
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Figure D31.
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Raw data plots for accelerometers.
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Figure D32.
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Raw data plots for accelerometers.

-0.5

AFTSEU
1
1 : . .
0 5 10 15 20
AFTSWU

0.5

0 Mﬁr  TPA——

0 5 10 15 20

AFTNEU
2
2% 5 10 15 20
Time, (s)

176

AFTSEN

o

0.2
0‘
02 5 10 15 20
AFTNWU
05
0‘
0% 5 10 15 20
AFTNEE
2

e

0 5 10 15 20

Time, (s)



Figure D33.
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Raw data plots for linear potentiometers.
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Figure D34. Raw data plots for linear potentiometers.
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Figure D35.
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Raw data plots for linear and string potentiometers.
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