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Abstract

We investigate the situation in which some
target values in the training set for a neu-
ral network are left unspecified. After
training, unspecified outputs tend to as-
similate to certain values as a function of
features of the training environment. The
roles of the following features in assimila-
tion are analyzed: similarity between in-
put vectors in the training set, similar-
ity between target vectors, linearity versus
non-linearity of the mapping, training set
size, and error criterion. All are found to
have significant effects on the assimilation
value of an unspecified output node.

Introduction

We consider here the case in which the target
vectors in the training set for a neural network
are not completely specified. That is, for cer-
tain output units on some input patterns, the
desired (target) values may be indeterminate or
irrelevant (don’t-care). During Back Propaga-
tion [Rumelhart et al., 1986] the error at these
don’t-care outputs is zero, so weight changes
do not include terms from these nodes.

We define assimilation in neural networks to
be the act of a don’t-care output unit taking
on (assimilating to) a value after training. The
focus of this work is on examining the char-
acteristics of the training environment which
determine a node’s assimilation value.

Assimilation in neural networks is interesting
because it has been used to model the articu-
lation of words or phrases occurring in natural
language [Jordan, 1986] [Hare, 1990ﬁ. Our abil-
ity to evaluate these models and apply them to
other domains relies heavily on our level of un-
derstanding of the underlying assimilation phe-
nomenon in the model.

Our interest in assimilation also derives from
its involvement with other more general neural
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network learning issues. It involves an interest-
ing form of generalization, in which the input
patterns for the don’t-care targets have been
seen by the net during training, rather than
having been reserved for a separate test phase.
How a don’t-care node responds depends on
how the representational resources of the hid-
den units have been employed to perform the
task. This, of course, would seem to depend on
the similarity structure in the input and target
domains and other characteristics of the map-
ping. The value which an output assimilates to
may also suggest values which would be easier
for the output to learn if it were required to.
Thus, understanding assimilation may offer in-
sights on the general learning process.

The Assimilation Effect

We briefly review two works which use assimi-
lation to model articulation data from linguis-
tics [Jordan, 1986] [Hare, 1990]. Each work
offers an alternative hypothesis to explain the
assimilation results which were witnessed. We
will present these two explanations, and offer
counter-examples demonstrating that neither is
accurate in all cases.

Both works use the same Jordan network
model! trained to generate a sequence of
phonemes representing the articulation of a
word or phrase. Phonemes are represented as
feature vectors, and some of the features for
certain phonemes are left unspecified. For ex-
ample, the nasal feature for the phoneme sub-
sequence /ria/ might be left unspecified in
the articulation of freon (phoneme sequence
/frian/) [Jordan, 1986]. After training, this

!The network can be viewed as a feed forward
network except that a portion of the input vector
(the “state”) is a function of the previous outputs:
the state at time t equals the state at t — 1 times
a decay parameter u,(0 < g < 1) plus the output
at time t — 1. See [Jordan, 1986] for a detailed
treatment of the Jordan Network architecture.



Time Input/State Target
1 2 o o5 » w0 b 2 |1 00 0 0 I 1
2 13 3 3 3 3 13 1310 0 0 1 0 0 1
3 8 2 2 12 2 8 18]*/09 0 0 0 0 1 1

Table 1: Jordan’s hypothesis based on input similarity predicts that the don’t-care output (“*”) will
assimilate to value 0. This is because the third input pattern is more like the second input than like
the first input, and the don’t-care output at time ¢t = 2 is 0. However, assimilation is to 1.

feature might take on intermediate values (be-
tween low /f/ and high /n/), indicating that
the model predicts anticipation of the nasal fea-
ture for the phonemes before the /n/.

Input Similarity

Coarticulation in speech i1s a phenomenon in
which the pronunciation of two phonemes over-
laps in time. That is, there can be a blurring of
articulation features between phonemes which
are nearby temporally.

In Jordan’s assimilation model of this phe-
nomenon, don’t-care outputs also assimilate to
nearby articulated features. Jordan’s explana-
tion for this observed assimilation effect in the
network is that, typically, similar inputs gen-
erate similar outputs. We may justify this in-
put similarity hypothesis by reasoning that the
function computed by a network is a continuous
mapping; therefore, two similar inputs will gen-
erate two similar outputs, unless trained oth-
erwise. Additionally, Jordan notes that the se-
quence of states traversed by the network tends
to be continuous in time (that is, nearby states
in time will tend to be more similar than arbi-
trary pairs). He calls this the continuily prop-
erty of the next-state function. This, in com-
bination with the hypothesized input similar-
ity effect?, predicts the observed results: that
don’t-care outputs will assimilate to specified
outputs that are nearby in time.

Although this hypothesis is useful in explain-
ing Jordan’s results, a counter-example can be
provided. Table 1 depicts such a case (due
to Hare?). A don’t-care target is denoted by
a “*” in the table, followed by the mean as-
similation value after training. In this case,
an input similarity explanation predicts assim-
ilation to 0 since the third input is more like

2Note that in this model, the “state” acts as the
input for the mapping performed at each time step.
Thus, similar states also generate similar outputs.

30ur assimilation results in this case (averaged
over 50 samples) differ somewhat from the results
reported in [Hare, 1990], although this may be at-
tributable to different initial weights or a larger
sample size. Results are achieved with initial state
= 0.5, p (state decay) = 0.6, n (learn rate) = 0.1,
and o (momentum) = 0.0.
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the second than like the first (by euclidean dis-
tance). However, assimilation is actually to 1
(mean = 0.9, stddev = 0.05, 50 samples).

Target Similarity

In the Hungarian vowel harmony system, suf-
fix vowels will alternate in backness in order
to agree with the last vowel of the root. For
example, the suffix vowel a in pugo + nak is
a back vowel in order to agree with the back
vowel 0. However, in certain exceptional cases,
the last vowel of the root will be fransparent
to the assimilation process. In this case, the
suffix vowel will agree for backness with a non-
final root vowel, ignoring the final transparent
vowel. An example is tazi + nak, in which i1is
transparent and the suffix vowel alternates to
agree with the back vowel a.

In Hare’s assimilation model of this phe-
nomenon, the don’t-care outputs assimilate to
the last vowel of the root in the general case,
and also correctly assimilate to the back vowel
in the exceptional case. This linguistic data is
satisfied without the stipulation of transparent
vowels by the model.

Hare’s explanation for this observed assimi-
lation effect in the network is that high similar-
ity between target patterns can override the ef-
fect of input similarity. Thus, although a suffix
vowel will usually assimilate with another vowel
that has the most similar input (which, accord-
ing to Jordan, will be the most recent vowel),
the suffix vowel will override input similarity
in the case when the suffix and another vowel
share many of the same target features. In this
case, assimilation is to the similar target, rather
than input. A possible justification for this tar-
get ssimilarity hypothesis is that similar outputs
will constrain the hidden unit representation
of their inputs to nearby regions in activation
space. This is plausible since the hidden unit
representation must be linearly separable for
the mapping to be learned. Therefore, two hid-
den unit representations generating very simi-
lar outputs may be relatively similar, causing
a don’t-care output in one pattern to take on
the value of the specified output in the other.

As in the case with Jordan’s input similar-
ity hypothesis, we can also construct a contra-



Time Input/State Target
1 O w0 O D 0 o 0 [0 0 0 0 0 0 0
2 3 3 3 3 3 3 3|1 1 11111
3 12 12 12 12 12 12 12 [*/00 1 1 1 1 1 1

Table 2: Hare’s hypothesis based on target similarity predicts that the don’t-care output will as-
similate to value 1. This is because the target pattern at time ¢t = 3 is very similar to the target at
t = 2, and the output at t = 2 for the don’t-care node is 1. However, assimilation is to 0.

diction to Hare’s target similarity explanation.
This case is illustrated in Table 2. Although the
target at the third time step is exactly like the
second target but unlike the first, assimilation
of the don’t-care output is to the first output
(mean = 0.0, stddev = 0.03, 25 samples).

Some Factors Affecting
Assimilation

We have presented two possible explanations
for the assimilation effect in neural networks:
assimilation based on similar inputs, and as-
similation based on similar targets. Both hy-
potheses have intuitive justifications and have
been used to explain network behavior in the
literature. Nevertheless, the counter-examples
suggest that other factors are also involved.

We turn now to a set of experiments which
examine the effects on assimilation of the fol-
lowing factors:

e input and target similarity,
e linearity versus non-linearity of the mapping,
e the error criterion to halt training, and

e the size of the training set (TS), for fixed
hidden layer size.

These factors are considered because they
are conspicuous features of the simulations in
[Hare, 1990], and therefore may contribute to
the observed assimilation effects. Specifically,
in Hare’s work, input and target similarity are
not independently varied while testing the as-
similation effect (see section V in [Hare, 1990]
— varying the first target in the sequence also
varies all subsequent states). Also, the net-
works tended to be highly trained and have
twice as many hidden units as there are pat-
terns to learn. Lastly, all mappings were linear.

We restrict our attention to feed forward bi-
nary mappings®. In the following experiments,
7 (learn rate) = 0.2 and a (momentum) = 0.9.

Input and Target Similarity

A 3 x 3 x 3 x 11 experiment was performed
in order to test the independent and inter-

*Note that Hare’s simulations can be posed as
static feed forward tasks, because all inputs are
determined by the initial state and target vectors.
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active effects of input similarity, target sim-
ilarity, training set size, and error criterion,
on the assimilation process. For each of the
3-3-3-11 = 297 cells in the experiment, 50 tri-
als were performed. In each trial, a randomly
initialized network was trained on a parameter-
ized randomly initialized training set.

Design We use a strategy in which certain
patterns (called Key) in a training set serve as
potential “magnets” or sources of assimilation
for other patterns (called Don’t-Care) which
contain unspecified units. The training set is
parameterized by the input similarity and tar-
get similarity factors (each are one of LOW,
MEDIUM, or HIGH), and the training set size
(one of 4, 8, or 12). Table 3 depicts an exam-
ple training set for factor values input=HIGH,
target=LOW, and TS size=4. The training
set is constructed as follows: 1) random binary
vectors are generated for the Don’t-Care pat-
tern, 2) the Key pattern is generated such that
its input and target vectors are as similar to
the Don’t-Care pattern as is specified by the
input and target similarity factors, 3) Neutral
patterns are added to make the trainingset the
size of the TS size factor, and 4) the extra tar-
get unit for the Don’t-Care pattern is made a
don’t-care (“*”), the target unit for the Key
pattern is made a 1, and for all Neutral pat-
terns it is made a 0°.

The network is a 3-layer feed forward archi-
tecture with 10 inputs, 4 hidden units, and 11
outputs. The network is trained until the er-
ror criterion factor is reached (one of 11 mean
squared error levels between 2.0 and 0.0002
in roughly a logarithmic progression)®. Once
trained, the Don’t-Care input is presented, and
the don’t-care output unit is examined. A
value near 1 indicates high assimilation to the
Key pattern; lower values indicate a decreasing

®There is a bias introduced by making the ex-
tra target unit for all of the Neutral patterns a
0. With many Neutral patterns in the training set,
the don’t-care output is biased towards 0 more than
with fewer Neutral patterns.

SA trial is aborted if the network takes many
cycles without reaching the error criterion. There-
fore, there are not 50 samples in each test cell.



Pattern Input (10) Target (10 + 1)
DontCare |1 1 1 I I I I I I I|[0 0 O 0 0 0 0 0 0 0 *|
Key 1 10111111 1}1ro01 1111111 1
Neutral-1 1 111 0 1 0O OO OJO O O OT1 1 01 11 0
Neutral-2 (1 1 1 0 0 0 1 0 0 1/0 0 0 1 1 0 0 1 1 1 O

Table 3: An example training set. The Key pattern has HIGH input similarity with the Don’t-Care
pattern, but LOW target similarity. The 2 Neutral patterns all have NEUTRAL input and target

similarity with the Don’t-Care pattern.

Assimilation by Input/Target Similarity
(TS size = 4, MSE criterion = 0.0002 )
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Figure 1: Mean assimilation results by input
and target similarity for an underconstrained
(TS size = 4) and highly trained (MSE =
0.0002) network.

assimilatory effect of the Key pattern.

Results All four factors examined as well as
all possible interactions between factors have
significant effects on assimilation (with p <
0.001 for all factors, except size x input and
size x input x target with p < 0.01; the size=12
training set case is excluded from the analysis
of variance because at this level, too few of the
networks respond in all variations of the other
factors). The single largest effect is due to tar-
get similarity (F = 293.9), followed by interac-
tion between target similarity and error crite-
rion (F = 197.2), input similarity (F' = 99.9),
error criterion (F = 58.0), and training set size

(F = 52.0).

Figure 1 displays mean assimilation values
by the 3 x 3 combinations of input and target
similarity. Note that assimilation is high when-
ever one of the input or target patterns is highly
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Assimilation by Error Criterion
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Figure 2: Mean assimilation results by in-
put and target similarity as the MSE criterion
varies between 2.0 and 0.0002. High MSE val-
ues (corresponding to networks trained for a
short time) are on the right; low MSE values
(for highly trained networks) are on the left.

similar and the other is neutral or similar. The
assimilation response is also above the a pri-
ort rate (0.33) whenever either input or target
similarity is high, regardless of the similarity
of the other vector. The assimilation response
is actually suppressed (below the a priorirate)
when one of the input or target patterns is dis-
similar and the other is neutral or dissimilar.
Figure 2 displays mean assimilation values
as the MSE criterion varies between 2.0 and
0.0002. Initially, input similarity alone has a
higher mean assimilation value than target sim-
ilarity alone, and generally mimics the case in
which both input and target patterns are sim-
ilar. However, below MSE= 0.1 input similar-
ity steadily decreases, and is eventually over-
taken by the increasing target similarity case
just above MSE= 0.001. Thus, a high degree



Assimilation by Input/Target Similarity
(TS size = 8 , MSE criterion = 0.0002 )
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Figure 3: Mean assimilation results by input
and target similarity when the training set in-
creases in size (TS size = 8) relative to a fixed
number of hidden units (4).

of training seems to accentuate the role of tar-
get similarity over input similarity.

Figure 3 displays mean assimilation values
by input and target similarity for the case in
which the training set has increased in size to
8. In this case, with high target similarity there
is some assimilation response regardless of the
level of input similarity (and the response gets
larger as input similarity increases, as would be
expected). However, the same is not true for
high input similarity. When input similarity is
high but target similarity is low, there is no as-
similation response. Thus, the target similarity
effect appears to be somewhat robust to an in-
crease in the training set size, whereas input
similarity appears less robust.

Non-linear Task Effect

The relationship between assimilation and the
non-linearity of the mapping task is tested us-
ing the 2, 3, and 4 bit parity problems with
varying numbers of hidden units. Only the 2
hidden unit XOR case is reported; more hidden
units and 3 and 4 bit parity yield qualitatively
similar results.

Ten output units are used. The 10 targets
are identically the XOR of the 2 inputs, except
that a single output unit is left unspecified for
one of the input patterns (00) or (11). See Ta-
ble 4 for an example. For 50 trials, a network
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Input | Hidden | Output (10 units)

0 00 0 0 0 0 .. 0
0 1 (0 1 1 1 1 .. 1
1 00 1 1 1 1 1
1 1 [T 1 *1 0 0 0

Table 4: An example of the XOR mapping, in-
cluding the hidden unit representations learned
during one trial. Although target similarity
predicts assimilation to 0, the don’t-care out-
put never sees the “boxed” hidden units (11)
during training and instead assimilates to 1.

with random weights is trained on this task. 17
of the 50 samples did not solve the problem at
the end of 500 epochs and were discarded.

Based on target similarity, we would predict
that the don’t-care value should take on a value
0. This is because the target vector containing
the don’t care output is all 0’s, and this is iden-
tical to another target vector in the training set
which is also all 0’s and specified on all units.
In fact, the opposite occurs. In 30 of the 33
trials (91%), the don’t-care output assimilates
to 1 rather than 0.

These results can be understood by analyz-
ing the internal representations learned to solve
the task. The representations learned during
one trial, in which assimilation is to 1, are de-
picted in Table 4. The don’t-care output is
never trained on the fourth internal state cor-
responding to input = (11). Thus, it never sees
the first hidden unit on. Because of this, the
don’t-care output simply learns to be on when-
ever the second hidden unit is on. All other
output units learn to be on if the second hid-
den unit is on and the first hidden unit is off.

An interesting fact occurs in the XOR case:
assimilation to similar targets can be encour-
aged by adding another layer for possible re-
codings. To demonstrate this, an additional
hidden layer with 4 units is added between the
first hidden layer and the output layer. Of 74
sampled networks which learn the mapping, 42
(57%) assimilate to 0. Recall 0 is the value
which would be expected if target similarity
was having an effect on assimilation. 22 (30%)
assimilate to 1 and 10 take on intermediate val-
ues. Thus, “target similarity” based assimila-
tion can occur in the non-linear case, but it
requires an extra layer for recoding.

Non-linear Interaction

It is interesting to examine what happens if
similar and dissimilar inputs and targets are
placed in a single training set. Our experiment
to test this has a design quite similar to the 3
x 3 x 3 x 11 design, except that there are no



Neutral patterns, and there are four Key pat-
terns corresponding to the four combinations of
similar and dissimilar inputs and targets. The
Don’t-Care pattern also has four don’t-care bits
instead of just one, in order to examine the as-
similation values in the four cases in a single
training set.

Non-linear interactions are observed when
similar and dissimilar patterns are grouped in
this way. For example, in a small training set
(4 Key patterns and 1 Don’t-Care pattern), the
response when both input and target are simi-
lar in the same pattern is larger than the sum of
the responses for similar input alone and sim-
ilar target alone. As the training set size in-
creases (to 12 Key patterns 3 sets of similar
and dissimilar inputs and targets), the effect
is magnified tremendously. An assimilation re-
sponse is only achieved when both input and
target are similar in the same pattern, and the
response is very strong and consistent. In the
other cases, the assimilation response is sup-
pressed to 0.0.

Discussion

The results presented here suggest the follow-
ing framework for understanding assimilation
in feed forward nets on random boolean tasks:

e both input and target similarity have an ef-
fect on assimilation,

e in a non-linear mapping, positive target as-
similation responses are minimal unless an
extra hidden layer is provided,

e the assimilation response for the target sim-
ilarity case appears robust to an increase in
the number of patterns in the training set;
the input similarity response is less so,

e when the error criterion is high, input simi-
larity has a stronger assimilation response;
for low error criteria, target similarity is
stronger, and

e when similar and dissimilar inputs and tar-
gets are in the same training set, non-linear
interactions can occur: in our simulations
both input similarity and target similarity
together are necessary for any assimilation
response (for a large training set).

It is possible to reexamine Hare’s work in the
context of our results. In particular, the work
corresponds to the linear, highly trained, small
training set case. We can predict that, had
the mappings learned in that work been non-
linear, similar target assimilation results would
have been achieved only using a second layer
of hidden units. Our results also suggest that
training a single Jordan Network to generate
multiple sequences will result in a minimized
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role for target similarity or input similarity in-
dividually on the assimilation value. Rather,
assimilation will tend to coincide with patterns
in which both the input and the target are sim-
ilar to the assimilation pattern.

Further work i1s needed before we can pro-
vide a complete explanation of the assimilation
effect in networks. The current focus on binary
mappings and feed forward networks should be
widened. Also, although our training set con-
struction is a convenient formulation, it does
not cover the range of possible similarity rela-
tionships between vectors in a training set. For
a truly complete account, we further need an
understanding of the effect of individual train-
ing patterns on the learning process, perhaps
through analyzing the induced error surface.

Conclusion

We have examined two hypothesized explana-
tions from the literature for the effects of sim-
ilarity on assimilation in networks with don’t-
care outputs. Both are demonstrated to be
incomplete by counter-example. Experimental
evidence is provided which suggests factors to
be included in a more comprehensive account.
These factors are: the similarity of the don’t-
care pattern to other input and target vectors,
the non-linearity of the mapping, the amount of
training performed, and the size of the training
set for a fixed number of internal units. Results
in the literature can be reexamined in light of
the current findings. This provides an alter-
nate descriptive framework, and allows predic-
tions of a model’s behavior in novel training
environments.
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