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Abstract—Life-cycle assessment (LCA) is utilized to analyze
SolFocus Inc. concentrator solar systems. A hybrid LCA method-
ology is explained that combines process and input-output LCA
techniques. The use of the greenhouse gas return on investment
metric for solar technologies is discussed as a complement to
energy metrics. Finally, preliminary results of a hybrid LCA for
the SolFocus concentrator technology are presented. It is found
that transportation and electricity consumption play a significant
role in energy consumption and greenhouse gas emissions.

I. INTRODUCTION

Alternative energy technologies are being developed as
“low carbon” alternatives to fossil fuel energy generation,
with the ultimate goal of providing reasonably priced energy
while mitigating climate change. To understand how well
various technologies meet this goal, previous researchers have
conducted life-cycle assessments to determine emissions per
kWh and energy payback time (EPBT). In 2008, Fthenakis
et al. conducted an assessment of greenhouse gas, NOx, SOx,
Cd, and heavy metal emissions for various energy technologies
including fossil fuels, multicrystalline silicon, monocrystalline
silicon, ribbon silicon, and CdTe [8]. Alsema, additionally,
reviewed the GHG emissions of fossil fuel technologies,
nuclear, biomass, wind, multicrystalline silicon, and CdTe [1].
Peharz et al. investigated the EPBT of the FLATCON fresnel
concentrator solar technology in 2005 [13], one of only a few
EPBT analyses of concentrator technology. Their conclusions
and more are summarized in Table I.

TABLE I
REVIEW OF ENERGY TECHNOLOGY LCA RESULTS.

Technology EPBT
(years)

GHG
(g/kWh) Reference

Si 2.2-2.7 30-55 [7] [8]
CdTe 1.1 21-25 [7] [8]

Concentrator PV 0.7-1.3 - [13]
Solar Thermal 2.2-3.9 34.7-37.6 [18] [11]

Wind 0.27-0.7 8.8-18.5 [3] [2]
Coal - 900 [1]

CC Gas Turbine - 400 [1]
Nuclear - 20-40 [1]

While the previous studies are extremely useful for under-
standing the basic feasibility of new technologies in terms
of environmental impact, there are two important drawbacks
to these studies: (1) It is often the case that a single LCA
database that is specific to a given region of the world is used
for an LCA assessment; therefore, it is inherently assumed
that the electricity mix is constant for what actually may be a
varied mix of electricity supply across the supply chain. (2) In
many solar energy assessments, transportation is not included
or is only included in the final leg of the supply chain from
assembly to installation.1 The potential importance of trans-
portation was discussed by Zhang et al. in an initial assessment
of SolFocus concentrator PV technology where transportation
to and from assembly was found to contribute 10-20% to the
Energy Payback Time [20]. Additionally, Peharz et al. included
the final leg of transportation and found it contributed 10% to
the EPBT.

Furthermore, the metrics used by previous researchers do
not acknowledge differences in installation site based on what
is offset by the new technology. For example, a technology
installed to replace coal-fired power is preferable to one
installed to replace hydro power, in terms of GHG emissions.

In this paper, metrics appropriate for a climate change
mitigation goal are discussed and preliminary results of a
SolFocus Concentrator PV life-cycle assessment are presented.

II. METRICS FOR SOLAR ENERGY

The most common energy metric used by solar researchers
today is the Energy Payback Time (EPBT). EPBT is described
as the number of years a technology must output electricity to
“payback” the energy required for its manufacture. However,
because EPBT does not acknowledge differences in tech-
nology lifetime, researchers have also suggested the Energy
Return on Investment (EROI) metric, which is calculated as
the technology lifetime (standard assumption is 20 to 30 years)
divided by the EPBT [12] [16] (equation 1). EROI indicates
how many MJ of primary energy are saved from consumption
for every MJ of primary energy consumed.

1Note that assessments using economic input-output databases (for example
[11]) automatically include transportation in the way the LCA database is
created, however they assume only regional distances are crossed.



EROI[
Esaved

Econsumed
] =

Lifetime

EPBT
(1)

EPBT is considered to be simply a measure of technological
efficiency, however a conversion factor is required in the EPBT
formula that translates produced electricity back to primary
energy using the local electricity mix efficiency (Celec). There-
fore, EPBT is actually an indicator of the number of years
a technology must offset the use of primary energy from
another electricity source, to offset the total energy required
over its lifetime (ELCA) (equation 2). Given this definition,
EPBT is not only a measure of technological efficiency but
also of installation tradeoffs regarding the offset electricity
mix and available solar radiation. The electricity output by
the system is here called Elecuseful because it only includes
useful electricity leaving the system; electricity consumption
by peripherals, wiring losses, and conversion efficiency from
DC to AC should already be accounted for.

EPBT [years] =
ELCA

CE ∗ ElecAnnualUseful
(2)

The greenhouse gas emissions metric used by previous
researchers is the GHG/kWh. The GHG/kWh metric is cal-
culated as the LCA determined greenhouse gas emissions
divided by the total kWh output by the system over its
lifetime (dependent on solar radiation at installation site). A
drawback of the GHG/kWh metric is that it does not encourage
installations to replace electricity where conversion is least
efficient. The GHG/kWh is equivalent if a technology replaces
a coal fired power plant or if it replaces a hydro facility.

Therefore, the greenhouse gas payback time (GPBT) and
return on investment (GROI) are proposed here for assessing
energy technology supply chains and installations. Following
the example set by EPBT and EROI, which incorporate the
conversion efficiency of electricity at the location site, GPBT
(equation 3) and GROI (equation 4) are proposed to indicate
which technology and supply chain scenario will enable the
fastest route to climate change mitigation. Similar to EROI,
GROI indicates the GHG emissions prevented for every unit
of GHG emitted.

GPBT [years] =
GHGLCA

CGHG ∗ ElecAnnualUseful
(3)

GROI[
GHGsaved

GHGemitted
] =

Lifetime

GPBT
(4)

Determining Celec and CGHG requires an understanding of
the consumer, the current electricity supply, and alternative
new installations [15]. These nuances have been ignored in
previous calculations of Celec. There is a difference between
a technology installed directly at the point of use and one
installed to the grid; solar technology installed at the point of
use offsets both the production and distribution losses, while a
grid-tied option only offsets production. Additionally, there is
a difference between providing electricity to new customers,
who would require additional capacity in the grid regardless of

Energy vs. GHG Intensity of Electricity

GHG Data: UNFCCC (2005), Electricity and Energy Data: IEA (2005), Circularity: OECD (1997/2002)
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Fig. 1. Electricity Mix Greenhouse Gas Intensity and Energy Conversion
Variations by Country [10] [19] [15].

technology, and providing electricity to customers who already
have full access to the current electricity grid.

It is important to realize that energy does not directly
reflect environmental impact or greenhouse gas emissions and
could be deceiving for decision makers seeking to reduce
these impacts. This can be seen in an investigation of the
primary energy and greenhouse gas emissions associated with
the average electricity mix in different countries (Figure 1),
which was found using data from the International Energy
Agency [10] and the United Nations Framework Convention
on Climate Change [19]. Given a decision on whether to locate
a facility in Australia or the United States, the primary energy
intensity of the electricity mix is not very different between
the two locations. However, the greenhouse gas intensity
difference of electricity is significant. This realization allows
for honest tradeoffs between solar resource availability, supply
chain transportation, offset electricity (CGHG), and supplier
electricity use.

III. CASE STUDY: SOLFOCUS CONCENTRATOR

A. Methodology

A hybrid life-cycle approach, as suggested by Hendrickson
et al. [9] and Zhang et al. [20], is used to analyze the SolFocus
concentrator technology. Included in this analysis are the
following life-cycle aspects: materials, manufacturing yield,
shipping yield, component transportation, final transportation,
local energy efficiency, inverter replacement, and overhead;
end of life is not yet incorporated. SolFocus manufacturing
systems are still in their design phase, therefore cost estimates
including overhead and machinery depreciation are used to
evaluate each component’s environmental impact through the
U.S. economic input output life-cycle assessment database
(EIOLCA) [5]. The photovoltaic cell environmental impact is
approximated from work by Peharz et al. [13].

Transportation GHG emissions and energy use is based on
transportation studies by Facanha et al. [6], Spielmann et al.
[17], and Corbett et al. [4] (results previously summarized by
Reich-Weiser et al. [14]).

B. Results

Results are presented in Figures 2 and 3. For clarity,
transportation is split into transportation of the final product
to its installation (included in previous assessments [13] [20])



and the intermediate transportation of goods throughout the
supply chain. Two important realizations are made by these
results: (1) supply chain transportation and electricity usage
are important factors in the life-cycle energy and greenhouse
gas emissions (2) use of an energy or greenhouse gas metric
changes the relative importance of each component to the total
impact. Note that the “cell” value in these figures includes
electricity to make the cell - this electricity is not included
again in the “electricity” component.

Preliminary Results
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Fig. 2. GHG Breakdown for SolFocus Concentrator System.
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Fig. 3. Energy Breakdown for SolFocus Concentrator System.

The system is found to have an EPBT of 0.7 years, an
EROI of 40 (MJ of energy saved for every MJ consumed),
and a GROI of 20 (tons of GHG saved for every ton of
GHG emitted). Assumptions are a lifetime of 30 years and
installation in Phoenix, Arizona (DNI2 of 6.9 kWh/m2/day).
Transportation values are based on a global supply chain,
with assembly in India. Electricity values assume the average
United States electricity mix. These results indicate that the
SolFocus technology shows promise compared with previous
assessments of alternative solar technologies.

IV. SUMMARY AND FUTURE WORK

Supply chain decisions relevant to electricity mix and trans-
portation are found to have a dramatic influence on EROI and
GROI, requiring further investigation. Future work will involve

2Direct Normal Insolation

optimizing supply chain decisions based on insolation, trans-
portation, electricity mix, and offset electricity at installation
tradeoffs to design minimal impact solar supply chains.
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