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ARTICLE OPEN

Methadone alters transcriptional programs associated with
synapse formation in human cortical organoids
Ila Dwivedi1, Andrew B. Caldwell 2,8, Dan Zhou1,8, Wei Wu 1, Shankar Subramaniam2,3,4,5 and Gabriel G. Haddad 1,6,7✉

© The Author(s) 2023

Opioid use disorder (OUD) among pregnant women has become an epidemic in the United States. Pharmacological interventions
for maternal OUD most commonly involve methadone, a synthetic opioid analgesic that attenuates withdrawal symptoms and
behaviors linked with drug addiction. However, evidence of methadone’s ability to readily accumulate in neural tissue, and cause
long-term neurocognitive sequelae, has led to concerns regarding its effect on prenatal brain development. We utilized human
cortical organoid (hCO) technology to probe how this drug impacts the earliest mechanisms of cortico-genesis. Bulk mRNA
sequencing of 2-month-old hCOs chronically treated with a clinically relevant dose of 1 μM methadone for 50 days revealed a
robust transcriptional response to methadone associated with functional components of the synapse, the underlying extracellular
matrix (ECM), and cilia. Co-expression network and predictive protein-protein interaction analyses demonstrated that these
changes occurred in concert, centered around a regulatory axis of growth factors, developmental signaling pathways, and
matricellular proteins (MCPs). TGFβ1 was identified as an upstream regulator of this network and appeared as part of a highly
interconnected cluster of MCPs, of which thrombospondin 1 (TSP1) was most prominently downregulated and exhibited dose-
dependent reductions in protein levels. These results demonstrate that methadone exposure during early cortical development
alters transcriptional programs associated with synaptogenesis, and that these changes arise by functionally modulating extra-
synaptic molecular mechanisms in the ECM and cilia. Our findings provide novel insight into the molecular underpinnings of
methadone’s putative effect on cognitive and behavioral development and a basis for improving interventions for maternal opioid
addiction.

Translational Psychiatry          (2023) 13:151 ; https://doi.org/10.1038/s41398-023-02397-3

INTRODUCTION
Over the past two decades, Opioid Use Disorder (OUD) among
pregnant women has become an epidemic in the United States
[1]. Between 2010 and 2017, there was a 131% increase in the
estimated rate (per 1000 delivery hospitalizations) of maternal
opioid related diagnoses, including long-term use and depen-
dence [2]. This was accompanied by a parallel surge in the
percentage of expectant mothers seeking treatments for opioid
addiction [3]. The standard of care for maternal OUD is
Medication-Assisted Treatment (MAT) with methadone [3, 4], a
synthetic mu (μ)-opioid analgesic that minimizes deleterious
opioid withdrawal symptoms and risk-taking behaviors that lead
to relapse or overdose [5, 6].
Despite its utility in adults, methadone’s ability to readily enter

fetal circulation and accumulate in neural tissue has led to
concerns regarding its effects on brain development in utero
[4, 7, 8]. Clinically, prenatal methadone exposure is linked with
increased incidence and severity of Neonatal Abstinence Syn-
drome (NAS), characterized by central nervous system hyperirrit-
ability and autonomic nervous system dysfunction [9, 10].

Crucially, longitudinal studies of exposed infants [11, 12], mice
[13], or rats [14–16] also revealed long-term psychomotor and
cognitive sequelae including impaired learning, memory, social,
and motor skills, as well as depression and anxiety.
Investigations into the cellular and molecular etiology of

these cognitive and behavioral impairments point to deficits in
neuronal connectivity and communication that may arise
during early development. Diffusion tensor imaging studies of
human neonates and adults exposed to methadone mainte-
nance therapy uncovered microstructural changes in cerebral
white matter tracts, indicating potential axonal damage
[17–20]. The earliest studies of methadone in rats demonstrated
that the drug diminishes neurotransmitter content, uptake, and
release [21, 22] and influences synaptogenesis [23, 24]. Treat-
ment of rat neuronal cultures with other μ-opioid receptor
agonists like morphine also yielded reductions in neurite
outgrowth and pre- and post-synaptic puncta densities [25].
In addition, morphine, endogenous μ-opioids, and methadone
have been shown to affect central and peripheral neuronal
excitability and communication [26–29].
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Taken together, these studies suggest that prenatal methadone
exposure may lead to long-term neurocognitive sequelae by
disrupting mechanisms of neural connectivity and communica-
tion. Consequently, we hypothesized that exposure to the drug
during early cortical development in humans would likely alter the
fundamental molecular mechanisms underlying synaptogenesis.
Nevertheless, most of these prior studies assessing methadone’s

effects on neurodevelopment have been complicated by duration
of drug exposure, model organism, or subject age [30]. Investiga-
tions have also largely been conducted in murine models, whose
developmental mechanisms and timelines differ significantly from
humans [31, 32]. The few studies done in human subjects are
postnatal and complicated by in utero exposure to other
substances, opioid-based pharmacotherapies for NAS, length of
MAT, and maternal pathophysiology. Moreover, ethical and
logistical complications have led to a dearth of human fetal
tissues available for research. As a result, methadone’s direct
effects on human fetal brain development remain largely
uncharted.
To address these limitations, we utilized human iPSC-derived

three-dimensional models of cortical development called cortical
organoids (hCOs) [33]. These contain multiple cell types and
undergo spatial organization characteristic of the in vivo fetal
cortex, eliminating postnatal factors that have confounded
previous studies of prenatal methadone exposure [33–36]. By
2 months of differentiation, hCOs reproducibly consist of polarized
neuroepithelium-like rosettes arranged around proliferative neural
progenitors (β-catenin+ ), as well as mature (NeuN/MAP2+ )
glutamatergic (VGLUT1+ ) neurons, and an emerging population
of 8 to 10% glial cells (GFAP+ ) [33, 37].
To study the mechanisms underlying abnormalities resulting

from methadone exposure during early human brain develop-
ment, we conducted bulk mRNA sequencing of hCOs chronically
treated with a therapeutically relevant concentration of 1μM
methadone. This concentration falls within the range (0.8 to
1.7 µM) of methadone found in maternal plasma, which sig-
nificantly and positively correlates with levels detected in
umbilical cord blood [7, 38–41]. The organoids were treated for
a total of 50 days, throughout a period of growth and maturation
leading up to the onset of synapse formation at 2-months [33, 37].
This treatment paradigm models a clinical condition of

methadone maintenance treatment beginning in the first
trimester of pregnancy. Coupled with high-depth bulk RNA-
sequencing as well as post-hoc gene ontology, co-expression
module, protein-protein interaction, upstream regulator, and
protein-level analyses, this methodology enabled us to dissect
how methadone alters molecular mechanisms underlying neural
development in the fetal cortex. The resulting findings lay the
groundwork for understanding neurocognitive deficits arising
from prenatal methadone exposure and improving pharma-
cotherapies for maternal OUD.

METHODS AND MATERIALS
Human iPSC culture and cortical organoid generation
Human iPSC lines, A and B, derived from two healthy adult male
individuals, were used to generate hCOs for RNA-sequencing. A third
human iPSC line, WT83, derived from a healthy adult male individual, was
additionally used to develop hCOs for Western blot analysis. Digital
karyotyping with Illumina Human Core Exome Arrays (Illumina, San Diego,
CA) was used to confirm cellular identity as well as chromosome and copy
number stability in culture, and testing for mycoplasma contamination was
performed. iPSCs were derived from fibroblasts acquired with informed
consent from all individuals and utilized in accordance with UC San Diego’s
Institutional Review Board (IRB) guidelines and regulations.
iPSCs were cultured in feeder-free conditions on Matrigel (Corning,

Corning, NY) coated plates, and fed daily with mTeSR1™ medium (Stem
Cell Technologies, Vancouver, Canada). hCOs were then generated and
maintained using methods described by Muotri and colleagues [33].

Treatment with methadone
Methadone (Sigma-Aldrich, St. Louis, MO) was dissolved in sterile nuclease-
free water (Invitrogen, Waltham, MA) and diluted to a working concentra-
tion of 1 μM in fresh stage-specific medium each day of media change.
Treatment began on Day 9 of organoid culture, the first day of the neural
proliferation stage, and concluded at Day 60. Nuclease-free water was used
as a vehicular control.

Cortical organoid collection and RNA isolation
Cortical organoids were collected 2 months (60 days) after initiating
organoid culture. Each well of hCOs (15–20 organoids) was a separate
biological replicate for a given treatment condition (i.e., treated or
untreated). hCOs were aspirated in 1mL of medium and centrifuged at
3000 g for 5 min at room temperature. The pellet was resuspended in 1mL
cold (4 °C) DPBS (Corning, Corning, NY) and centrifuged again at 4 °C and
21,000 g for 10min. Pellets were snap frozen in 1.5mL Eppendorf tubes
using dry ice and stored at−80 °C prior to RNA extraction. RNAwas extracted
from frozen organoid pellets using the Direct-Zol Miniprep Plus Kit (Zymo,
Irvine, CA) according to the manufacturer’s instructions.

RNA-sequencing data generation
Total RNA was sent to the UC San Diego Institute for Genomic Medicine
(IGM) for quality assessment, library preparation, and sequencing. Only
samples with RNA Integrity Numbers (RIN) > 7 were selected for library
preparation. PolyA+ selected libraries were prepared using the TruSeq
mRNA Stranded Library Prep Kit with TruSeq UDI96 indexed adaptors
(Illumina). Samples were multiplexed and sequenced on the Illumina
NovaSeq 6000 S4 to produce approximately 100 million, 100 base pair,
paired end reads per sample. 3 control and 3 methadone-treated samples
were sequenced from cell line A, and 4 control and 4 treated samples from
cell line B. No samples were excluded from the analysis, given comparable
RINs > 7 and read numbers close to the 100 million read per sample target
amount. RINs and total sequenced reads per sample are provided in
Supplementary Table S1.

RNA-sequencing differential expression analysis
Raw fastq file quality assessment and read alignment to the hg19 genome
(GRCh37, RefSeq GCF_000001405.13) [42] were performed through the
FastQC (v1.0.0) [43] and RNA-Seq Alignment (STAR, v2.0.2) [44] applications,
respectively, in the Illumina BaseSpace Sequence Hub. Mapped reads were
assigned to genomic meta-features (genes) using the Rsubread (v2.6.4) [45]
function featureCounts in R. Expression level filtering was performed using
the edgeR (v3.34.1) [46] function filterbyExpr. TMM normalization factor [47]
calculations were also conducted using edgeR. Mean-variance trends and
gene-specific weights were determined via the voom function in the R
package limma (v3.48.3) [48, 49]. Normal distribution of log CPM
expression values by voom also accounted for the natural heteroscedas-
ticity of count probability distributions. Differential expression analysis was
then conducted by fitting the voom output to a linear model using the
lmFit function in limma. Cell line and treatment condition were
incorporated as covariates while contrasting methadone treated versus
untreated control samples. Genes were ranked in order of evidence for
differential expression using the empirical Bayes (eBayes, t-value) method
(n= 17,651). Significantly differentially expressed genes (DEGs) were
selected based on the confident effect size of their log2(Fold Change)
values at FDR < 0.05. This was represented by a “confect score” calculated
by TopConfects (v1.8.0) [50] in R. Genes with |Confect Score | ≥ log2(1.5)
were considered DEGs.

Gene overlap testing
The Fisher exact-test p-value and odds ratio were used to test the
significance of overlap and strength of association, respectively, between
the DEGs from cell lines A and B. These were calculated via the R package
GeneOverlap [51]. Rank-rank hypergeometric overlap analysis (RRHO) and
heatmap construction were done with the RRHO2 [52, 53] package in R.

Gene ontology and gene set enrichment analysis
To identify transcriptional signatures associated with specific cellular
components, gene set enrichment analysis (GSEA) [54] was performed
using the fGSEA (v1.18.0) [55] package in R with the Gene Ontology Cellular
Component (GO-CC) database [56, 57] as a reference as well as all eBayes
ranked genes and associated limma t-statistic values as input. The top 20
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terms with the lowest FDR-adjusted p-values were selected and sorted by
their normalized enrichment scores (NES).
To determine which molecular functions the DEGs associated with each

top cellular component were enriched for, we applied a hypergeometric
test using the GO-Molecular Function (GO-MF) database in the GOrilla web
application [58], setting eBayes ranked genes as background (p < 10−3).
Resulting GO-MF terms were arranged hierarchically and non-redundantly

by semantic similarity via the REVIGO web-application [59]. REVIGO
significance values and term hierarchy were used to visualize GO-MF
enrichment as a circle plot using the CirGO package [60] in Python (v3.9.12)
(Data File S1).
The molecular role of each synaptic DEG was determined based on its

association with enriched GO Molecular Function categories and through
manual searches using the OMIM [61, 62], GeneCards [63, 64], and NCBI
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Gene [65] databases. DEGs were grouped into categories based on the
representative terms found in the CirGO output. ECM-associated DEGs
were categorized by their overlap with Core- or Matrisome-Associated
genes in MatrisomeDB [66]. Genes in each category were then grouped
according to descriptions provided in reviews by Naba and colleagues
[67–69], who generated MatrisomeDB. Major collagen [70] and proteogly-
can types [71, 72] were identified based on descriptions in the literature. As
before, OMIM, GeneCards, and NCBI Gene databases helped categorize
genes not identified in these sources (Data File S2).

Modular gene co-expression and protein-protein interaction
network analysis
Co-expression modules were identified through the Bioconductor cemitool
package [73] in R, using eBayes ranked genes as input with the parameters
apply_vst=FALSE and directed=TRUE. Counts were corrected for cell line
differences using the removebatcheffects function and transformed using
the voomwithqualityweights function in limma. GO-CC fGSEA was
performed on each module, and DEGs from the top two modules with
the greatest similarity in cellular component enrichment were combined
for network analysis.
Edges between DEGs from the first two modules were acquired from

STRINGDB (v.11.0) [74] and filtered to include only physical interactions
(medium threshold= 0.7). Network edges and nodes were imported into
Cytoscape (v3.9.1) [75], and top hub genes ranked by EcCentricity score [76]
were identified using CytoHubba [77]. MCODE [78] determined highly
interconnected clusters of proteins in each network via default network
scoring and cluster finding parameters.

Upstream regulator analysis
Ingenuity Pathway Analysis (IPA; Qiagen Inc., Hilden, Germany) [79] was
used to identify upstream regulators of synaptic, ciliary, and ECM DEGs
from the top two co-expression modules. Each regulator was assigned a
p-value representing the overlap between DEGs and known targets, and a
z-score to infer regulator activation states. Endogenous molecules
(excluding exogenous toxicants, drugs, and reagents) were ranked in
order of significance (Data File S3).

Western blot analysis
3-month-old hCOs derived from cell lines A and WT83 were treated with 0,
1, or 10 µM methadone for 4 weeks, then isolated for protein extraction at
4-months. Each well of hCOs (25–30 organoids) was considered a
biological replicate, with at least 3 replicates tested per condition across
both cell lines. Replicates were collected from four experiments, each with
batch-matched control and treatment conditions. Whole brain tissue from
a healthy, adult mouse was used as a positive control.
Samples were lysed in 10X RIPA buffer containing protease and

phosphatase inhibitors and homogenized with a glass-teflon homogenizer
(Thomas Scientific, Swedesboro, NJ). Homogenates were centrifuged for
10min at 10,000 g and 4 °C, and protein concentration was determined
using a Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, CA). 30 µg of total
protein was separated on a NuPAGE 4–12% Novex Bis-Tris gel (Thermo-
Fisher, Waltham, MA) and transferred to polyvinylidene difluoride
membrane (Millipore, Burlington, MA). Membranes were blocked for 1 h
and incubated in PBST with 5% BSA containing primary antibodies
overnight at 4 °C on a shaker. The primary antibodies used were rabbit
anti-Thrombospondin 1 (37879, Cell Signaling Technology, Waltham, MA;
1:500) and rabbit anti-GAPDH (PA1-987, ThermoFisher; 1:1000). Mem-
branes were then incubated with the secondary antibody Goat anti-Rabbit
IgG (H+ L) HRP (A32731, Invitrogen; 1:2000) for 1 h at room temperature
and developed using an ECL Kit (ThermoFisher). Immunoreactive bands

were visualized using the Bio-Rad ChemiDoc XRS with enhanced
chemiluminescence (Perkin-Elmer, Waltham, MA), and relative band
intensity was analyzed using the ImageLab software (Version 3.0, Bio-Rad).

Statistical analyses
Statistical details specific to the programs or functions used for analysis are
provided in the Methods, Results, and Figure Legends. Unless otherwise
specified, bioinformatic analyses were conducted using R (v4.1.3) [80] in
RStudio (v1.4.1717) [81].
Total sample numbers per condition for RNA-sequencing were

established based on prior estimates of biological replicates required
to appropriately power differential expression analyses using limma and
similar programs [48, 82–84]. Multi-dimensional scaling of voom
calculated gene expression values was performed using the glMDSplot
function in the R package Glimma (v2.2.0) [85]. The resulting dimensions
(covariates) were sorted in order of decreasing variance along them.
Variability in sample-level gene expression was represented in the form
of z-scores plotted in heatmaps using the heatmap.2 function from
gplots (v.3.1.3) [86].
Western blot relative band intensity values were statistically analyzed in

GraphPad Prism (GraphPad Software, La Jolla, CA), using a one-way ANOVA
comparing each treatment group to the control group. Significance was
defined as p < 0.01 (**).

Data visualization
hCO schematics were created with BioRender (https://biorender.com/)
(Fig. 1A). Bar, bar/line, and volcano plots were generated in GraphPad
Prism (Figs. 1C, 1E, 3C, 4A, 5A, 6B and S1A, S2A, B). Sankey plots were made
with the SankeyMATIC tool (https://sankeymatic.com/) (Figs. 2B and 4B).
The MatrisomeDB concentric circle plot was constructed in Microsoft Excel
(Fig. 3B). All other methods of data representation (CirGO plots, networks,
etc) are described above.

RESULTS
Chronic methadone induces a robust transcriptional response
in 2-month-old hCOs
Two-month-old hCOs generated from two iPSC cell lines, A and B,
exhibited robust transcriptional responses to 50 days of chronic
treatment with 1μM methadone (Fig. 1A). 4165 DEGs were
detected in line A, while 1018 DEGs were identified in line B
( | Confect | ≥ Log2(1.5), FDR < 0.05) (Fig. S1A).
Despite differences in the magnitude of response to methadone

between cell lines, multi-dimensional scaling revealed that
methadone treatment was the primary source of sample-level
variation (Fig. 1B). Separation of samples along the second
dimension demonstrated variation introduced by baseline tran-
scriptional differences between iPSC lines. This variability between
iPSC lines has been well described in previous studies and is
primarily attributed to the distinct genetic backgrounds of donors
and/or mutations acquired during somatic cell reprogramming for
iPSC generation or clonal expansion [87, 88].
Importantly, in both cell lines, control samples were differ-

entiated from treated samples by unsupervised clustering
according to their expression profiles, signaling a consistent
response to drug treatment (Fig. S1B). Moreover, the intersection
of 777 genes between cell lines A and B was statistically significant
(Fisher’s exact p= 4.7 × 10−272) and the association between both

Fig. 1 Methadone elicits a robust transcriptional response in 2-month-old hCOs. A Timeline of cortical organoid generation and
methadone treatment. (B) Multi-dimensional scaling of TMM-normalized expression data and metadata from control and methadone-treated
hCO samples derived from cell lines A & B. C RNA-seq volcano plot of all (eBayes ranked) genes, distinguished by their confident effect size
‘confect’ score cutoffs. Genes with |Confect | ≥ log2(1.5) and FDR < 0.05 were considered DEGs (DEGs= 2124), after adjusting for cell-line
differences. For each gene, log2 (Fold Change) effect size values are shown on the x-axis and Benjamini-Hochberg adjusted absolute log10 p-
values are along the y-axis. D Heat map depicting the sample-level expression (z-scores) of the 2124 DEGs across both cell lines. E Top 20 fgsea
enriched GO Cellular Component gene sets based on absolute log10 FDR-adjusted p-values, ranked according to the direction (positive or
negative) of their normalized enrichment scores (NES) and grouped by cellular component. Values to the right of the graph indicate the
number of DEGs associated with each of the top 3 enriched GO-CC gene sets.
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lists was strong (Fisher’s odds ratio= 11.3) (Fig. S1C). The most
significant overlap occurred between downregulated DEGs, which
constituted most of the transcriptional response (Fig. S1D).
Taken together, this information enabled us to incorporate cell line

as a covariate into the differential expression linear model and
account for baseline transcriptional differences between individuals.
Through this methodology we obtained 2124 DEGs whose expres-
sion was altered due to methadone treatment alone (Fig. 1C). Almost
all samples across both cell lines clustered according to treatment
condition based on their expression of these DEGs (Fig. 1D).
Although sample B-Treat 2 clustered with controls, its high RNA
quality and read counts precluded its exclusion from further analyses,
enabling us to retain heterogeneity of response to methadone in our
dataset (Fig. 1D; Table S1).

Methadone alters the expression of pre- and post-synaptic
functional components
Since we had hypothesized that methadone would affect synapse
formation, we began by determining how the observed transcrip-
tional response was associated with the cellular anatomy of our
organoid system. Pre-ranked gene set enrichment analysis (GSEA)
using the Gene Ontology Cellular Component (GO-CC) database
revealed the significant enrichment of gene sets associated with
neuronal synapses (Fig. 1E). We noted sets linked to both the pre-
and post-synapse, distinguished by terms such as “Axon” or
“Somatodendritic Compartment”, respectively. All sets had posi-
tive normalized enrichment scores (NES), trending towards
transcriptional upregulation in the synapse following methadone
exposure.
To identify which aspects of synaptic biology were specifically

affected by methadone, we performed a ranked GO-Molecular
Function (GO-MF) enrichment analysis of the synaptic DEGs and

summarized the resulting non-redundant ontology terms hier-
archically (Fig. 2A; Data File S1). We observed alterations in all
aspects of synaptic biology, including the pre-synaptic trafficking,
release and synthesis of hormones and neurotransmitters, the
postsynaptic reception and response to these signaling molecules,
and intracellular cytoskeletal scaffolding [89–91].
There were 166 synapse-associated DEGs, of which 58 were

identified as pre-synaptic, 64 as post-synaptic, and 44 as linked to
both terminals (Fig. 2B; Data File S2). To further resolve the
identities of these genes, we categorized them functionally
according to the GO-MF, OMIM, GeneCards, and NCBI Gene
databases. Most pre-synaptic DEGs were involved with vesicular
trafficking, while post-synaptic DEGs were primarily receptors or
signal transduction molecules. The 44 DEGs associated with both
terminals were primarily structural, involved with cytoskeletal
integrity, cell-cell adhesion, or extracellular matrix (ECM)
composition.

Methadone induces transcriptional changes in an ECM
regulatory hierarchy
Consistent with the identities of the 44 shared pre- and post-
synaptic DEGs, we detected two GO-CC gene sets with negative
NES values associated with the ECM (“external encapsulating
structure” and “collagen containing ECM”) (Fig. 1E). The ECM is a
critical component of the tetrapartite synapse, which otherwise
consists of the presynaptic bouton, postsynaptic terminal, and
supporting glial cells [92, 93]. Given the ECM’s role in synapse
formation and maintenance, we studied how its composition and
function had been affected by methadone treatment. To this end,
we conducted a ranked GO-MF enrichment analysis of the 129
ECM-associated DEGs and summarized the resulting non-
redundant terms hierarchically. Four distinct functional categories
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Fig. 3 Methadone induces transcriptional changes associated with ECM and ciliary structure and function. A Enriched molecular function
ontology of ECM-specific DEGs compared to a background of eBayes-ranked expressed genes. Parent and descendant terms are determined
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of matrix structural, binding, catalytic, or signaling molecules were
enriched, encompassing the ECM regulatory hierarchy (Fig. 3A;
Data File S1) [94, 95].
To parse these DEGs further, we sorted them according to

MatrisomeDB, a collection of genes defined as core (collagens,

proteoglycans, and other glycoproteins) or associated (ECM
regulators, secreted factors, or other affiliated molecules) matrix
proteins [66–69]. Methadone treatment disrupted the expression
of genes belonging to each of these designations (Fig. 3B;
Table S2; Data File S2). Glycoproteins (other than proteoglycans)
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accounted for over half of the core matrix proteins in our dataset
(55.6%, n= 35/63). These included structural molecules like
laminins, cell adhesion molecules, and non-structural matrix
modulators belonging to the CCN or thrombospondin family of
proteins [94, 95]. ECM regulators also constituted almost half
(n= 31/66, 47%) of the matrix-associated (non-core) proteins.
These were primarily matrix proteases and their inhibitors (n= 23/
31, 74%), including a family of matrix metalloproteinases (MMPs or
ADAMTS) that modulate ECM composition by hydrolyzing its
components [96–98].
Notably, over a quarter of all ECM DEGs encoded known and

proposed matricellular proteins (MCPs) (n= 37/129, 28.7%) (Fig.
3B; Data File S2) [99–105]. MCPs are non-structural proteins that
modulate ECM composition and integrity through interactions
with structural proteins, proteases, cell surface receptors, and
growth factors [100–105]. In the developing brain, MCPs regulate
mechanisms of cellular maturation, proliferation, migration, axonal
guidance, and synapse formation. Among the MCP families
classically found in the brain, thrombospondins (thrombospon-
din1, TSP1), SPARC (including Hevin/SC1/ECM2), the Cellular

Communication Network Factors (CCN1-3 or CYR61, CTGF, and
NOV), glypicans (GPC5 and 6), galectins (LGALS3), plasminogen
activator inhibitor (SERPINE1/PAI-1), and fibulins (FBLN1 and 5)
were all differentially expressed due to methadone (Fig. 3C; Data
File S2) [106–110]. Of these, TSP1 exhibited the greatest
magnitude of change in response to treatment (Fig. 3C; confect
score=−1.92, FDR < 0.05). Altogether, these changes indicated
that methadone alters crucial components of the ECM regulatory
hierarchy that are necessary for developmental synapse formation.

Methadone disrupts the expression of genes involved in
ciliary integrity
Unexpectedly, changes to the ECM were also accompanied by the
enrichment of cilium-associated gene sets (Fig. 1E). As with the
ECM, the 172 ciliary DEGs were mostly downregulated, indicated
by the negative NES values. These DEGs could be separated into
three groups encoding motor proteins (e.g., kinesins and dyneins),
cytoskeletal proteins or cytoskeleton binding proteins contribut-
ing to projection integrity, and enzymes regulating cytoskeletal or
motor protein polymerization (Fig. 3D; Data File S1) [111–113].

Fig. 4 Co-expressed synaptic, ECM, and ciliary genes encode physically interacting proteins. A Sizes of all co-expression modules identified
among all eBayes-ranked genes following correction for cell line differences. The number of DEGs in each module are shown in green. Module
sizes and DEG membership are indicated as ratios to the right of each bar. B Top enriched GO-CC terms associated with modules M1 and M2
based on absolute log10 p-values, which are represented by the relative thickness of the nodes and edges in the plot. C Protein-protein
interaction network of synapse (pink), ECM (purple), and cilia (blue) associated genes belonging to modules M1 and M2. ‘Neuronal Projection’
genes were grouped with synaptic genes based on semantic similarity. Nodes in grey are proteins belonging to more than one cellular
component category. Node sizes reflect the relative magnitude of absolute confect scores, while edges indicate predicted physical
interactions in the brain according to STRINGDB. The top hub genes identified by CytoHubba using the EcCentricity metric are emphasized in
square boxes with yellow borders. Major functional groups are highlighted using labeled grey boxes.
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This data revealed a concurrent, directional response to metha-
done by transcriptional programs informing ECM and ciliary
structure and function. The overall pattern of synaptic, ECM, and
ciliary enrichment was also observed in cell lines A and B
individually, reinforcing a consistent and parallel change in
synaptic and extra-synaptic biology in response to drug treatment
(Figure S2A–C).

Synaptic, ECM, and ciliary DEGs are highly co-expressed and
encode proteins that physically interact
To investigate the relationship between DEGs belonging to the
synaptic, ciliary, and ECM compartments, we performed compre-
hensive modular co-expression analysis of eBayes ranked genes,
which yielded 14 modules of highly co-expressed genes. Of these,
the top two modules retained the greatest DEG membership ratios
(module M1= 1572/6380 and module M2= 330/4382) (Fig. 4A).
GO-CC GSEA revealed that M1 and M2 were significantly enriched
for gene sets associated with the synapse, ECM, and cilia (Fig. 4B,
Table S3). This ontological overlap between M1 and M2 allowed us
to use their intersecting DEGs for further analyses and indicated
that changes to the synapse were not occurring in isolation, but in
concert with changes to the ECM and cilia.
Between the first two co-expression modules, 71 proteins

encoded by synaptic, ciliary, and ECM DEGs were predicted to
physically interact in the brain based on experimental evidence
found in STRINGDB (Fig. 4C). Topological analysis of this network
using the node centrality index EcCentricity in CytoHubba
identified 20 major hubs spanning each cellular component
(Fig. 4C; Fig. S3). Node eccentricity reflects how easily a protein
can be functionally reached by other proteins in a regulatory
network, indicating its centrality of influence [76]. The MCP TSP1
appeared as a major hub based on its magnitude of change,
bridging interactions between matrix proteases, structural con-
stituents, and cell-adhesion proteins. Likewise, the epidermal
growth factor receptor EGFR was central to interactions between
several functional ECM and synaptic proteins. The latter included
synaptic receptors like the μ-opioid receptor (OPRM1) as well as
dopaminergic, serotonergic, and glutamatergic NMDA and AMPA

receptors (GRIN2A, GRIN2D, and GRIA4), which were among the
top 20 hubs. EGFR’s relationship with these receptors was
mediated by its association with kinases like LYN, PAK5, and
PTK2B and G-protein signaling molecules. EGFR was also shown to
interact with the platelet-derived growth factor receptor α
(PDGFRA), which is activated in primary cilia and is required
broadly during CNS development [114, 115].

TGFβ1 is a key regulator of the synaptic, ECM, and ciliary
protein interaction network
We next sought to understand methadone’s influence on the
regulatory hierarchy of this interaction network of co-expressed
synaptic and extra-synaptic DEGs. IPA Upstream Regulator
Analysis identified TGFβ1 as a principal regulator of the
synaptic, ciliary, and ECM DEGs in the first two co-expression
modules M1 and M2 (Fig. 5A; Data File S3). Upon inclusion into
the interaction network described in Fig. 4C, TGFβ1 was
identified as a hub based on its EcCentricity Score (Fig. S4).
The top 20 DEGs with the greatest scores comprised a highly
interconnected nexus of synaptic, ciliary, and ECM regulatory
molecules (Fig. 5B). Via interaction with G-proteins and protein
tyrosine kinases, OPRM1 linked to a cascade of signaling
pathways regulated by the ECM and cilia such as PDGFRA,
Hedgehog, and TGFβ1, that were physically linked to both pre-
synaptic vesicular trafficking (SH3GL3) and post-synaptic
neurotransmitter reception (HTR2C). EGFR and TSP1 were once
again identified as major hub genes by centrality and degree of
differential expression.

TGFβ1-MCP interactions are central to the synaptic and extra-
synaptic response to methadone
MCODE cluster analysis of the interaction network including
TGFβ1 (Fig. S4) placed this growth factor within a tightly
interconnected cluster of MCPs (TSP1, GPC5, GPC6, and SPARC)
(Fig. 6A; Table S4). This finding highlighted the functional
relationship between MCPs and TGFβ1 during synaptogenesis in
the hCOs and emphasized their regulatory centrality in the
response to chronic methadone treatment.

Fig. 6 Methadone alters a highly interconnected growth factor-MCP regulatory axis. A A highly interconnected network of MCPs and the
upstream regulator TGFβ1, identified through MCODE (Cluster score= 2.8, node score cutoff= 0.2). B Western blot of TSP1 levels in mouse
brain tissue and WT83 cell line derived 4-month-old hCOs, which had been treated with 0 (Control), 1, and 10 µM methadone for 4 weeks. The
Densitometry histogram depicts the expression level of TSP1 normalized to GAPDH in 4-month-old hCOs derived from cell lines A and WT83.
Expression levels are represented by relative Western blot band intensities, and bars represent mean band intensities for each
condition ± SEM. One-way ANOVA followed by a post-hoc Bonferroni test was used to determine significance of change in each treatment
condition compared to the untreated control hCO samples (F1µM= 27.52, F10µM= 32.55, **p < 0.01).
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To validate methadone’s functional effect on this cluster, we
quantified protein-levels of the most highly affected MCP, TSP1, in
response to treatment (Fig. 6B). 3-month-old organoids derived
from cell line A and an additional cell line WT83 were exposed to
0, 1, or 10 µM of methadone for 4 weeks and collected for protein
extraction at 4-months, by which point functional synapses have
been established and allowed to mature [33, 37]. TSP1 levels were
significantly diminished in a dose-dependent manner by metha-
done treatment. These results reinforced methadone’s consistent
effect on the ECM regulatory hierarchy across cell lines and
demonstrated that the drug reduces functional TSP1 levels during
a period of synapse formation and maturation.

DISCUSSION
In this study, we investigated the transcriptional effect of chronic
methadone treatment on the earliest stages of cortico-genesis
modeled in human iPSC-derived cortical organoids. hCOs were
exposed to 1 µM methadone, a concentration that falls within the
0.8–1.7 µM range typically reported in the plasma of pregnant
women [7, 38–41]. Studies support extensive materno-fetal
transfer of methadone, with evidence from both humans and
rats indicating accumulation of the drug in fetal tissues and cord
blood throughout gestation [4, 7, 8]. At dosages required to reach
withdrawal relief (100–180mg) during pregnancy, trough con-
centrations of methadone in cord blood are predicted to reach the
maternal reference range used to establish our treatment
paradigm [4, 8]. Therefore, exposing hCOs to this concentration
for 50 days beginning just after neural induction, allowed us to
assess the direct effect of methadone on neural growth and
maturation.
Through this methodology, our findings provided us with

sufficient evidence to submit the following: first, the previously
observed reductions in neural connectivity linked with methadone
arise from disruptions in gene expression programs associated
with synapse formation; second, these synaptogenic changes are
brought about by perturbations in developmental signaling
pathways originating in the ECM and cilia.
In line with prior evidence of μ-opioid-induced alterations in

neural connectivity and communication [17–29], we observed
significant changes in the expression of genes associated with the
pre- and post-synaptic biology of chemical synapses, including the
release, reception, or transduction of signals at the synapse (Fig. 2).
This was congruent with the results of previous multi-electrode
array (MEA) and whole-cell patch clamp studies conducted by our
lab, which demonstrated dose-dependent attenuations in action
potential firing and synaptic transmission (i.e., the frequency and
amplitude of spontaneous excitatory post-synaptic currents) in
response to methadone in 2 to 4-month hCOs [37, 116]. In
conjunction with these data, our findings suggest that the
methadone-induced suppression of neural network activity arises
from perturbations in early pre- and post-synaptic molecular
apparatuses that facilitate the establishment of synaptic transmis-
sion during prenatal development [89, 90]. Unexpectedly, synaptic
gene set NES values trended towards transcriptional upregulation
in response to methadone (Fig. 1E). Given the predicted physical
interactions between synaptic, matrix, and ciliary DEGs, we posit
that the upregulation of synaptic genes may be a compensatory
response to the suppression of essential regulatory mechanisms
modulated by the ECM and cilia.
The ECM’s potential role in bringing about changes at the

synapse downstream of methadone is reinforced by our finding
that the drug alters the expression of a vast matrix regulatory
hierarchy (Fig. 3A–C, Data File S2). These results are consistent
with evidence that ECM remodeling mediates opioid-induced
synaptic abnormalities and may underlie drug-seeking or relapse
behaviors associated with OUD [117–119]. Pivotal to the ECM
hierarchy central to these changes are MCPs, modulators of cell-

matrix interactions that are dynamically expressed at high levels
during brain development [99, 106–110]. We identified 37
differentially expressed MCPs across several categories of core
and matrix-associated proteins (Fig. 3B, C, Data File S2). Through
their known involvement in growth factor signaling, these
molecules mediate a balance between ECM structural proteins
and the proteases that degrade them, which has downstream
effects on cellular adhesion, proliferation, migration, and, ulti-
mately, synapse formation [99, 106–110]. Several gene groups
belonging to the MCP interactome were also downregulated in
response to methadone treatment in our hCOs, including
integrins, growth factors and their signaling molecules, collagens,
and MMPs [97, 100–104].
Of the MCPs classically found in the developing brain,

thrombospondin-1 (TSP1) exhibited the greatest change in
expression in response to treatment and appeared as a central
hub in the co-expression network of synaptic and extra-
synaptic DEGs (Figs. 3C and 4C). TSP1 is a multidomain,
multimeric glycoprotein that is secreted into the ECM of
synapses. Its domain-specific interactions with growth factors,
proteases, and cell surface receptors have proven necessary for
the establishment of synaptic architecture and synaptic
refinement [120–123]. Disruptions in the TSP1-TGFβ1-EGFR axis
have also been implicated in reductions of synapse density in
rat neuronal cultures following partial μ-opioid receptor
activation by morphine [25]. Our study identified TGFβ1 as an
upstream regulator of the synaptic-extra-synaptic network and
both TSP1 and EGFR as a major-hubs in this network based on
their degree of change and centrality (Fig. 5). Indeed, TSP1
protein levels were dose-dependently reduced after 4-weeks of
treatment at later stages of hCO development, indicating that
shorter-term exposure to methadone can also diminish the
amount of functional TSP1 available for the proper establish-
ment and maturation of synapses (Fig. 6C).
Alongside TSP1 and the upstream regulator TGFβ1, PDGFRA

and SHH/IHH also appeared as major hubs in the synaptic-extra-
synaptic regulatory network affected by methadone. PDGFRA is
a receptor tyrosine kinase that localizes to primary cilia, where it
mediates signals for directional cell migration and chemotaxis
[114, 115]. In their capacity as sensory projections, primary cilia
also contain receptors for Hedgehog, Wnt, Notch, other potent
growth factors, integrins, and cadherins [111–113]. Localization
of the soluble SHH and IHH ligands to primary cilia, in particular,
has proven crucial for their signaling [115], which plays a
prominent functional role during synapse formation and circuit
assembly. Recent studies have indicated extensive crosstalk
between cilia and the ECM, with ciliopathies leading to the
dysregulation of ECM proteins like collagens, laminins, MMPs,
and the TGFβ signaling pathway, all of which we observed in
our study [124, 125].
This is the first time such transcriptional changes have been

described for methadone, a full μ-opioid receptor agonist, in a
human-specific model following a treatment regimen clinically
relevant to maternal OUD. In this study, the use of bulk RNA-
sequencing enabled us to probe molecular pathways affected by
methadone with greater depth and resolution compared to
available single-cell techniques, which are limited by substantial
noise, inter-sample variability, fewer expressed genes per cell type,
and low replicates [126]. This technique led us to identify several
molecular targets, including TSP1 and TGFβ1, which we are now
investigating as regulators of the cortical response to methadone
and as avenues for the amelioration of sequelae arising from
disruptions in synapse formation caused by the drug. Altogether,
we believe that our data contribute to a mechanistic under-
standing of the neurobehavioral deficits associated with prenatal
methadone exposure and provide a foundation upon which to
improve pharmacological interventions for OUD in
pregnant women.
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