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Abstract

We present a model of transitive inference (TI) using
ACT-R which strengthens the hypothesis that TI is not
dependent on underlying sequential ordering of stimuli,
but rather on the learning of productions. We neverthe-
less find a weakness in the ACT-R sub-symbolic learning
system and suggest improvements.

Introduction

The last decade has shown an increasing body of work
indicating that ACT-R (Anderson and Lebiere, 1998)
can be used to model human learning in an impressive
variety of tasks. However, ACT-R has been slow to gain
acceptance in mainstream experimental psychology as a
useful model, possibly because it does not seem a very
good correlate to the physical learning systems we find
in the brain.

In previous and concurrent work, we have been ex-
ploring another model of task learning which also seems
at first blush artificial and not particularly parsimo-
nious, but has also shown an impressively tight fit to
human and animal experimental data otherwise unac-
counted for. This is the Harris (1988) production-rule-
stack model of one of the main testbeds of task learning
in the animal literature, the transitive inference task.
We developed the two-tier model (Bryson, 2001; Bryson
and Leong, 2004), which accounts for all of the Harris
model’s data, while extending the model to account for
both learning and failing to learn this task (a common
outcome in live subjects). We’ve also found potential
neurological correlates for the two-tier model.

The two-tier model hypothesises two learning systems:
one for connecting perceptual contexts to actions, and
another for prioritising which of those perceptual con-
texts to attend to if more than one are present simulta-
neously. We realised that this model had similar aspects
to ACT-R, which also has two learning systems, one sym-
bolic and one statistical. We therefore decided to apply
ACT-R to the transitive inference learning task. Our re-
sults show that ACT-R is far better than the standard
TI models at accounting for the particular (and some-
what controversial) data set that prompted the Harris
(1988) model, and for some individuals provides a bet-
ter model than Harris (1988), though for others it can-
not. Our results lead us to believe that the two-tier
model is the best existing model of transitive inference,

although ACT-R is close enough that it is probably fix-
able. ACT-R demonstrates one significant simplification
over the two-tier hypothesis, and has one important dif-
ference from real mammalian task learning.

Transitive Inference

Transitive inference (TI) formally refers to the process
of reasoning whereby one infers that if, for some quality,
A > B and B > C, then A > C. In some domains, such
as integers or heights, this property will hold for any
A, B or C, though for others it does not (see Wright,
2001, for a recent discussion). TI is classically described
as an example of concrete operational thought (Piaget,
1954). That is, children become capable of doing TI
when they become capable of mentally performing the
physical manipulations they would use to determine the
correct answer, a stage they reach at approximately the
age of seven. In the case of TI, this manipulation involves
ordering the objects into a sequence using the rules A >
B and B > C, and then observing the relative location
of A and C.

Since the 1970’s, however, apparent TI has been
demonstrated in much younger children (Bryant and
Trabasso, 1971) and a variety of animals, from mon-
keys (McGonigle and Chalmers, 1977) to pigeons (Fersen
et al., 1991) — not normally ascribed with concrete oper-
ational abilities. The behaviour of choosing A from AC
without training after having previously been trained
to select A from AB and B from BC is consequently
sometimes referred to as “transitive performance”, and
whether it implies sequential ordering at all is now an
open issue.

The main motivation for not considering TI in animals
to be based on a sequential structure is a dataset due to
McGonigle and Chalmers (1977), which they have sub-
sequently replicated both with monkeys and children.
This data set concerns what happens if subjects demon-
strating TI are asked to select between three items rather
than two. Some individuals show significant, systematic
degradation in performance, which cannot be explained
by a sequential model. Some researchers have dismissed
the triad data as resulting from confusion in the sub-
jects due to the extra item. These criticisms were dealt
with in a replication by McGonigle and Chalmers (1992)
which provided the main data set used in this paper
and by Harris and McGonigle (1994). The fact that the
systematicity of the degradation has now been success-
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fully accounted for further validates this data set. This
data concerns monkeys trained on 4 adjacent pairs drawn
from a 5 item sequence, AB,BC,CD, DE.

The Models
Due to space constraints we will not review the more
traditional, sequence-based or simple-associative models
of TI, but see further (Wynne, 1998; Bryson and Leong,
2004). These models cannot account for the triad data
set.

Harris and McGonigle
Harris (1988) showed that both pair and triad TI perfor-
mance could be accounted for if we assume that monkeys
learn a production rule stack. A production rule is a ba-
sic AI representation which connects a stimulus to a re-
sponse. A stack is a prioritised list. In the Harris model,
each monkey learns one rule per possible stimulus, or
up to 5 rules in total. One of two actions is associated
with each rule, either select or avoid. If a subject applies
the rule A→s(A) (see A implies select A), then it will
simply pick up A, regardless of whether other items are
present. However, if a subject applies the rule A→a(A)
it will pick up anything but A. If more than one other
item is present, the subject is at chance for which object
it will pick up. If more than one rule could apply, then
whichever rule is higher in the stack (has higher priority)
will be applied.

Although Harris’ hypothesis may seem obscure, it
shows a remarkable match to the data. If one assumes
that rules are limited to the case that the action refers
to the object attended to, then only 16 of the 1920
(10 × 8 × 6 × 4) possible stacks of four rules operate
correctly on all training pairs (Harris and McGonigle,
1994). All 16 of these stacks also correctly perform TI
on all pairs automatically, thus already accounting for
one of the mysteries of transitive performance.

The degradation some subjects display on the triad
tests is a consequence of the random aspect of the
avoid rules. In fact, triads can be used to discrimi-
nate which rule stack an individual subject has learnt.
For example, a stack that consists entirely of selects
(s(A), s(B), s(C) . . .) will never make any errors. One
that starts with a(E) will be at chance between the other
two options whenever E is present in a triad.

Table 1 shows all of the possible discriminable stacks
as identified by Harris and McGonigle (1994). Because
only the highest-priority applicable rule fires and there
are always at least two applicable rules (since there are
at least two stimuli), there is no way to discriminate the
two lowest-priority rules using triad performance. These
stacks therefore only reflect the top three rules of the
stacks.

The Two-Tier Model
A successfully trained two-tier model creates a replica-
tion of the production-rule-stack model (Bryson, 2001).
However, the two-tier model is dynamic, and as such
gives us insight into why animals have trouble learning
the initial pairs for the TI task, the sorts of mistakes they

Table 1: Enumeration of Harris and McGonigle Stacks

Rule Depth Rule Depth
# 1 2 3 # 1 2 3
1 s(A) s(B) s(C) 5 a(E) s(A) s(B)
2 s(A) s(B) a(E) 6 a(E) s(A) a(D)
3 s(A) a(E) s(B) 7 a(E) a(D) s(A)
4 s(A) a(E) a(D) 8 a(E) a(D) a(C)

Table 2: Primate TI training régime (Chalmers and Mc-
Gonigle, 1984; McGonigle and Chalmers, 1992)

P1 Each pair in order (DE, CD, BC, AB) repeated
until 9 of 10 most recent trials are correct.
Reject if requires over 200 trials total

P2a 4 of each pair in order. Criteria: 32 consecutive
trials correct. Reject if requires over 200 trials total

P2b 2 of each pair in order. Criteria: 16 consecutive
trials correct. Reject if requires over 200 trials total

P2c 1 of each pair in order. Criteria: 30 consecutive
trials correct. No rejection criteria

P3 1 of each pair randomly ordered.
Criteria: 24 consecutive trials correct.
Reject if requires over 200 trials total

T Pair and triad testing

may make, and the impact of training régimes. The first
tier of the two-tier model is a single-vector neural net-
work (NN) which learns the prioritisation of the stimuli.
The second tier is a set of small two-item vectors which
each learn to associate an action with one of the stimuli.
The learning rule for the NNs is a slight simplification of
standard delta learning (Widrow and Hoff, Jr., 1960).

Simulations using the two-tier model show artificial
subjects successfully learning the training data only
about 25% of the time when training pairs are presented
in a random order. However, switching to the train-
ing régime applied by McGonigle and Chalmers (1992)
shown in Table 2, which is standard for primates, the
success rate increases to about 75%, which is compara-
ble to live subjects (Bryson and Leong, 2004).

Further, the sorts of errors made by artificial subjects
failing to learn are consistent with those shown by live
subjects — they tend to confuse the middle pairs. Anal-
ysis of the networks shows that this is nearly always a
consequence of misprioritising the rules representing the
end pairs. An agent can guarantee it always selects A
in the pair AB (the only pair A appears in) by learning
a(B), and there is a great inclination to learn about mid-
dle rules because these are the ones that have the most
data (and the most confusing data, since B is sometimes
rewarded but sometimes penalised.) However, there are
no successful stacks which do not have one end point or
the other at the highest priority (see Table 1). The train-
ing régime greatly increases the probability of learning
correct prioritisation. For further details see Bryson and
Leong (2004).
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ACT-R
As for the above models, ACT-R also learns production
rules, but any number of these rules may have their pre-
conditions for firing satisfied at any given time. In this
case, ACT-R’s conflict-resolution system selects the rule
with highest utility value.

Rule utilities are changed by ACT-R’s sub-symbolic
processing system. It is possible to attach success or
failure tags to productions and when such a rule is fired,
ACT-R backtracks to discover which rules fired previ-
ously and increments or decrements their utilities respec-
tively. More precisely, the utility of a rule is given by:

U = PG− C + ε(s) (1)

where G is the goal value, C is the expected cost, ε(s) is
the expected gain noise and P is the expected probability
of success:

P =
Successes

Successes + Failures
(2)

In our experiments, rather than make arbitrary changes
to ACT-R’s many available parameters in an attempt
to best fit the data, we have used mostly defaults. The
most notable exception to this is that we set the initial
Failure count to 1 which, along with ACT-R’s default
setting of 1 for Successes1, gives an initial probability of
success of 0.5. This change was also made by Belavkin
and Ritter (2003) in their Dancing Mouse model. To
maximise the number of successful agents, we also tried
a range of values for s (which affects the variance of the
noise function), finally deciding upon s = 1.

One trial consists of two or three items displayed on-
screen which the agent encodes into its goal buffer. The
goal state is then changed, enabling it to make decisions
about which item to pick (see below). Once an item has
been picked, either a reward or no reward is displayed
appropriately, the agent notes its success or failure re-
spectively and the next trial begins.

We have tested two different approaches to solving the
TI problem in ACT-R. In the first, the select and avoid
rules for each item are independent, concurrent candi-
dates for execution. For three displayed items, this cor-
responds to six conflicting rules that have their precon-
ditions satisfied. Henceforth we refer to this approach as
ACT-R-1.

In the second, the agent must focus on a displayed
item before either select ing or avoid ing it, as in the two-
tier model. This results in an extra stage of conflict-
resolution for the agent. With three options there are
at first three candidate focus rules whose actions alter
the agent’s goal state. This, in turn, satisfies two further
rules; select and avoid for the focus-item. We call this
approach ACT-R-2.

Results
As with the two-tier model and live subjects, our ACT-R
model produces both agents that successfully learn the
task and agents that do not. 44 of the 100 agents tested

1The default is Failures = 0 ⇒ Pinitial = 1.

with ACT-R-1 successfully passed the training régime.
This compares to 35% of those using ACT-R-2, or 75%
of those using the two-tier system. We examine these
groups separately.

Successful Agents
The stack model proposed by Harris and McGonigle
(1994) attempts to fit the McGonigle and Chalmers
(1977) triad data to any of the eight discriminable cor-
rect stacks (Table 1). In contrast, the ACT-R agents
learn only two possible solutions.

There are two rules which are always successful for all
pairs: s(A) and a(E). This means that, provided these
rules are discovered by the agent, their utilities will begin
to converge to maximal, given by:

lim
t→∞

U = lim
t→∞

(PG− C) (3)

= lim
t→∞

(
Successes

Successes + Failures

)
G− C

= lim
t→∞

(
1

1 + Failures
Successes

)
G− C

= G− C

where t is the number of trials, and G and C remain
constant at ACT-R default values throughout. Therefore
any successful ACT-R agent will have these two rules at
highest priority. This eliminates half of the Harris and
McGonigle stacks, leaving 3, 4, 5 and 6 (Table 1).

In addition, because the top-two rule utilities are con-
verging to the same value, it becomes essentially ar-
bitrary (in fact, governed by the expected gain noise)
whether s(A) or a(E) occupies the top stack position for
any given choice. In other words, the ACT-R agents do
not learn a totally ordered stack, but effectively a pair
of stacks. The two possible pairs are:

Hybrid Stack 1 (HS1): s(A)a(E)s(B) & a(E)s(A)s(B)
Hybrid Stack 2 (HS2): s(A)a(E)a(D) & a(E)s(A)a(D)

Table 3 shows each triad with the expected percentage
of trials in which each item in that triad is chosen. These
probabilities are the same for both Hybrid Stacks, except
for the triad BCD. In this case, the format is HS1 / HS2.
A 75%/25% split occurs when both A and E are present
in the triad. We assume that half the time s(A) has top
priority and is thus selected. Otherwise, a(E) has top
priority, giving an even chance of A or the other item
being selected.

Taking into account the noise added to the system,
this model well describes the behaviour of many of the
ACT-R agents. In 45% of cases, one of the Hybrid Stacks
fitted the agent’s distribution better than any of the in-
dividual stacks, and a further 47% were best fitted by
Stack 5; a contributor to HS1.

Failed Agents
Despite these encouraging results, a majority of the
ACT-R agents failed the training régime (Table 2), which
is not true of the monkeys (albeit there were only seven
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Table 3: Projected percentage choice distributions for
Hybrid Stack 1 / 2

Triad A B C D E
ABC 100 0 0 - -
BCD - 100 / 50 0 / 50 0 / 0 -
BDE - 50 - 50 0
CDE - - 50 50 0
BCE - 50 50 - 0
ABD 100 0 - 0 -
ACD 100 - 0 0 -
ADE 75 - - 25 0
ABE 75 25 - - 0
ACE 75 - 25 - 0
Mean 52.5 22.5 / 17.5 12.5 / 17.5 12.5 0

test subjects) or children (Chalmers and McGonigle,
1984). Virtually all of the agents which failed did so
at stage P2a (Table 2), typically having seen less than
300 training pairs in total. There are two exceptions for
both ACT-R models which failed at P3.

To best understand why agents fail, we examine each
training pair and determine what causes agents to pick
the wrong item:

AB Since s(A) almost always has a high utility, errors
on this pair tend to be caused by interference from
s(B), whose utility is driven up by its success on pair
BC. Ironically, then, it is agents who are too successful
too soon who fail because of this pair, training stage
P2a having the most stringent pass criteria.

BC C is picked when s(C) is too high relative to s(B)
or, less frequently, a(C). Occasionally a(B) adds to
this interference but, due to the success of s(A), rarely
attains a high enough utility.

CD The symmetric case of BC. Here a(C)/a(D) inter-
ference is the chief cause of error (see Figure 1).

DE As for AB, if a(D) is discovered early to be a good
rule, it interferes with a(E) causing small but signifi-
cant errors in P2a.

For some agents (around 25%), failure is a result of
a combination of the above interferences. If many of
the interfering rules are interdependent (eg. s(B), s(C),
a(C), a(D)) then this can lead to a more even distribu-
tion of errors across all training pairs. Conversely, if two
sets of independent rules (eg. s(A), a(B), a(D), a(E))
are interfering, often two training pairs are consistently
incorrect, with little or no error on the other two.

As Tables 4 and 5 show, agents confuse the middle
pairs far more often than the end pairs (see also Anal-
ysis). This, in turn, is most often the result of s(C) and
a(C), both of which perform incorrectly for one of the
middle pairs. We have restricted these data to the last
200 trials carried out by the failed agent. This focuses
on the specific phase of training at which the agent failed
and removes the noisiest choices, made during P1.

0 200 400 600 800
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a(C)
a(D)

Figure 1: a(C) and a(D) fight for control of the pair CD

Table 4: Aggregate percentage error on each pair

Group AB BC CD DE Mean
ACT-R-1 6 25 30 7 17
ACT-R-2 6 43 39 9 24

Table 5: Percentage distribution of failed agents

Modal Error Pair
Group AB BC CD DE
ACT-R-1 2 39 54 5
ACT-R-2 0 42 50 8

Analysis
For ease of statistical comparison, we applied the χ2 test
in the same way as Harris and McGonigle (1994): by
excluding item E, which (usually) has an expected value
of 0.

For three of the five individual test subjects for whom
McGonigle and Chalmers (1977) triadic data is avail-
able, one of the hybrid stacks fits better than any of the
eight others (Table 6). As explained in the Successful
Agents section above, and in contrast with the Harris
and McGonigle stacks, the hybrid stacks do not repre-
sent a total ordering. Thus it would seem that neither do
some monkeys form a total ordering, and their choices
cannot be perfectly modelled by a simple production-
rule system. For Bump and Brown, however, our model
is rejected (p < 0.01), suggesting that other monkeys
do come up with a total ordering, which cannot be well
modelled in ACT-R.

The two-tier model does support both models, al-
though its admittedly simplistic learning rule tends to
favour the total ordering. These results suggest that

1473



Table 6: Comparison of individual triadic choice data
(1977) with both Hybrid and Harris’ Stack models

A B C D E χ2 p(O)
Bill 55 17 20 8 0 - -
HS2 52.5 17.5 17.5 12.5 0 2.1 n.s.
S 4 60 15 15 10 0 2.8 n.s.
Blue 55 25 14 6 0 - -
HS1 52.5 22.5 12.5 12.5 0 4.0 n.s.
S 3 60 20 10 10 0 4.9 n.s.
Bump 53 34 8 4 1 - -
HS1 52.5 22.5 12.5 12.5 0 13.3 < 0.01
S 2 60 30 5 5 0 3.4 n.s.
Brown 36 29 24 11 0 - -
HS2 52.5 17.5 17.5 12.5 0 15.3 < 0.01
S 7 35 25 25 15 0 1.8 n.s.
Roger 51 26 6 17 0 - -
HS1 52.5 22.5 12.5 12.5 0 5.6 n.s.
S 5 45 25 15 15 0 6.5 < 0.1

an improved priority-learning rule for either the two-tier
model or ACT-R could result in a highly accurate model
of TI and possibly task learning in general.

There were just five monkeys who passed criteria and
so were included in the triad phase of the 1977 exper-
iment. These five only represented three of the eight
stacks in Table 1. This may render the grouped data
unrepresentative, but our ACT-R model still displays a
better correlation than Harris and McGonigle (1994) of
α-choices, as shown in Table 7, where α represents the
correct choice in a given triad (see also Table 8).

Table 7: Correlation of α-choices to group data

Group r p
ACT-R-1 0.688 p < 0.05
ACT-R-2 0.692 p < 0.05
Hybrid Stack Model 0.616 p < 0.1
H & M Stack Model 0.634 p < 0.05

Upon closer examination of the choices made for
each triad, we see ACT-R closely matching the monkey
data for those triads which do not contain the item E
(Table 8). For those that do, ACT-R makes more mis-
takes, suggesting that the monkeys do not have a(E)
at as high a priority. This might reflect a primate bias
against having identical priorities for rules.

There may be a good reason for favouring priorities
over utilities for ordering rules. For example, there is
no circumstance in which an ACT-R agent can reach a
stable enough solution to reduce error to zero. Suppose
such a situation was attained. Then every decision made
would result in success and thus increase the utility of
the executed rule. Eventually, these rules (of which there

must be at least three to produce a correct stack) would
converge upon the same value (see Equation 3 above).
But since no three rules in a correct stack are indepen-
dent for all triads, they will start to interfere with each
other, causing error to be re-introduced.

This phenomenon is best demonstrated by examining
the errors of agents who did not take part in structured
training, but were presented with the training pairs in a
random order. Here, as is usual, the s(A) and a(E) rules
have high, convergent utilities (these rules are indepen-
dent for all training pairs). Then the utility of one (or
both) of the other successful rules, s(B) and a(D), will
also start to converge. This results in errors made on the
end pairs since s(B) interferes with s(A) for AB (Figure
2) and a(D) interferes with a(E) for DE. Neither s(C) nor
a(C) can attain a high utility, because they will perform
incorrectly on one of the middle pairs (BC and CD). The
final result is that the middle pairs are chosen consis-
tently correctly, whereas the end pairs have small errors
(typically around 15%). This certainly seems somewhat
biologically implausible, and contradicts the End-Anchor
Effect (Bryant and Trabasso, 1971; Wynne, 1998).
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Figure 2: Interference with s(A) prevents the utility of
s(B) reaching above a certain level

Conclusions and Further Work
The ACT-R models lack in their ability to represent sta-
ble, totally ordered stacks, which some real subjects ap-
pear to form. On the other hand, the Harris and McGo-
nigle (1994) stacks lack the flexibility to represent more
dynamic solutions to the TI problem. For this reason
we conclude that the two-tier model is the best exist-
ing model of TI. On the other hand, the fact that there
is no significant difference between ACT-R-1 (where no
initial item focus is required) and ACT-R-2 (where this
focus is required) implies that the two-tier model can be
simplified to allow arbitrary numbers of stimulus action
pairings, as is the default case in ACT-R.
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Table 8: Percentage of items selected - triadic analysis

Triad Monkeys ACT-R-1 ACT-R-2 Hybrid Stack Model H & M Stack Model
αβγ α β γ α β γ α β γ α β γ α β γ
ABC 80 18 2 83 17 0 86 14 0 100 0 0 94 6 0
BCD 70 26 4 70 29 1 72 26 2 75 25 0 75 25 0
BDE 66 34 0 59 35 6 56 37 6 50 50 0 63 38 0
CDE 62 38 0 49 41 10 48 44 7 50 50 0 56 44 0
BCE 78 22 0 58 42 0 58 42 0 50 50 0 63 38 0
ABD 80 20 0 79 21 0 80 20 0 100 0 0 88 13 0
ACD 86 12 2 90 9 0 91 8 0 100 0 0 88 13 0
ADE 86 14 0 72 24 4 71 26 4 75 25 0 75 25 0
ABE 88 12 0 68 32 0 70 30 0 75 25 0 75 25 0
ACE 80 20 0 76 24 0 74 25 0 75 25 0 75 25 0
Means 78 22 1 70 28 2 71 27 2 75 25 0 75 25 0

There are several obvious next steps. First, as stated
in the Introduction, the learning rules for priorities in
both the two-tier model and ACT-R need improvement,
though in different ways. We will be focusing on im-
proving the two-tier model, but would be happy to see
or support ACT-R being modified to reflect these re-
sults. Also, we suggest two possible improvements to
the ACT-R model. Allowing ACT-R to compile its own
system of rules from a minimal starting set (Anderson
and Lebiere, 1998) may provide a more natural solution,
although interpreting the underlying decision processes
would be more difficult. Starting with a high initial noise
would allow the agents to always discover and benefit
from the most successful rules, while rapidly reducing
this noise level (in conjunction with the entropy of suc-
cess (Belavkin and Ritter, 2003)) would be necessary in
order to obtain a stable enough solution to pass stage
P2a of the training régime.

The other obvious next step would be to collect and
analyse more triad testing results across a larger number
of primates. For our purposes, it would be useful to have
triad testing on subjects who fail TI training as well as
those who succeed. We are investigating collaborations
in this area.

The greatest significance of this work is that it gives
further evidence for a non-sequence-based representation
underlying the TI task and further supports the utility
of the McGonigle and Chalmers (1977) triad data set.
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