
UC Davis
Computer Science

Title
Your Security Policy is What??

Permalink
https://escholarship.org/uc/item/6bs3k9rt

Authors
Bishop, Matt
Peisert, Sean

Publication Date
2006-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6bs3k9rt
https://escholarship.org
http://www.cdlib.org/


Your Security Policy is What??

Matt Bishop
Dept. of Computer Science

University of California at Davis
bishop@cs.ucdavis.edu

Sean Peisert
Dept. of Computer Science & Engineering

University of California at San Diego
peisert@cs.ucsd.edu

Abstract

Systems and infrastructure rarely enforce a site’s security policy precisely. Conversely, determining
the policy (or policy components) that the systems and infrastructure do enforce is difficult because of
the plethora of configuration files and systems at the site. We propose a way to unify these problems by
applying a bi-directional method of enforcing and reverse-engineering system and infrastructure policy.
The process uses a platform-independent intermediate policy representation (IPR) to bridge the gap
between a high-level expression of policy and a machine-dependent, system configuration. The result of
these methods, shown along with a detailed example, is that both policy discovery and enforcement can
be made into a much more rigorous process.

1 Introduction

The disconnect between a site’s stated security policy, and the policy actually enforced by the network and
system configurations, is often large. An institution may ban the use of unencrypted connections, yet its
servers may be configured to accept such connections. Conversely, an organization may require the use of
specific protocols, and internal divisions may ignore the dictates due to fiscal or security constraints.

The gap becomes larger when a site has no stated security policy and decides to create one. The proper
way to create such a policy is to ask each administrative subunit to determine what security requirements
it has, and develop a policy that takes all these needs into account. The usual aproach is for the central
administration to decide what a security policy should contain, and issue it, possibly creating procedures
for exceptions in case some subunits need latitude to perform their function. This can create problems,
especially if the supplied policy is divorced from the reality of the work that the subunits perform.

The situation for auditing compliance with a policy is worse. Auditors can make spot checks to determine
if specific policy requirements are met, but such spot checks are complex. The reason lies in the complexity
of modern systems. For example, a policy may require that no incoming telnet requests be accepted. The
auditor checks that the internal hosts do not accept connections to port 23, and concludes that the policy is
met. In reality, many internal hosts have a line in their configuration file to run telnetd when the system
is rebooted, but the particular set of systems that the auditor checks do not happen to be running telnetd
at that time. Alternatively, telnetd could have even been running on an alternate port. Had the auditor
checked the configuration files, she would have noticed the policy violation.

Extracting the actual policy from the system and network configuration files enables an analyst to see
exactly what policy the system enforces. The analyst can then either alter the intended policy to reflect the
actual policy, determine how to reconfigure the systems to implement the intended policy, or do some of
both.

Such a process of unifying actual and intended policy falls short of our current abilities. We cannot
express a policy in a language that policy makers can read, that also can be rigorously transformed into
machine specific and operating system specific commands to implement the policy.

This paper pushes the idea of languages encapsulating policies in both directions. We argue that not only
must a higher-level policy language be transformable into an implementation of a policy (or set of policies)
on systems, but also that it must be deriveable from the existing configuration of systems. This means that
mechanisms to handle contradictions must be defined, as must syntax and semantics to handle procedures
external to the computer.
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We describe methodologies to enforce a policy or set of policies. This requires that the policy (or set of
policies) be checked for consistency, that systems and infrastructure be properly configured, that human-
oriented procedures provide the support that technological mechanisms cannot, and that as the policy is
updated to reflect changes in environment (such as new or evolving threats and laws or regulations), the
changes are reflected in configurations. The element of policy discovery allows one to determine the actual
policy of a new system being connected to the infrastructure, as well as to validate the enforcement of the
existing policy or policies on systems being managed.

Our paper is organized as follows. First we discuss some characteristics of policy languages that are
relevant to our thesis. Then we describe our model, and apply it to policy enforcement and discovery. We
present a simple example, and conclude with a discussion of difficulties and areas for research and experience.

2 Background

Previous work in policy languages has focused on expressiveness of policy languages and the ability to
transform policy languages into wrappers or other mechanisms that enforce policies. The first type typically
focuses on whether a policy language can express needed constraints, or which language is more powerful or
appropriate for expressing particular constraints [JSS97, CC97, ZS96, SZ97]. The second typically allows a
program to translate the policy statement into sets of configuration commands that will enforce the stated
policy [BSSW96, HMT+90, PH99, DDLS01]. Our work is closer to the second than the first.

Our work adds a layer of abstraction and the ability to “reverse engineer” the resulting configuration back
into the policy language. Then we can apply techniques to analyze the results and determine soundness and
completeness of the actual (as opposed to intended) policy. We can then iterate. The actual and intended
policies are combined, and checked for soundness and completeness. The analysts and policy makers deal
with any resulting contradictions and undesireable aspects of the policies. Then the final policy is applied
to the system.

Work on determining policy from existing configurations has focused on firewall rules. Typically, these
involve analyzing the firewall rules to create a database that an administrator can query to determine what
actions the rules allow [Woo01, MWZ00, BMNW99], or performing static or dynamic analysis of the rules
to check for problems [YMS+06, ASH04]. Previous work has also investigated extracting policy from logs
[CGL00] and understanding the limits of on-line policy enforcement [Sch00]. Our work deals only with static
discovery, and discusses abstracting configurations to an alternate, higher level of expression rather than
focusing on handling queries, log entries, or execution monitoring.

3 Language Characteristics

Consider a policy language suitable for expressing policy constraints in a form that can be rigorously an-
alyzed. Once the policy’s soundness and completeness have been verified, the policy constraints determine
how systems and infrastructure are to be configured. View the policy constraint language as a high-level
programming language.

Taking this analogy further, the language must compile into an intermediate form, in which the constraints
are expressed in terms of services offered by the systems and infrastructure. While not focused on specific
implementations, this level would specify (for example) what accesses file systems, web servers, and other
components must provide. Think of this level as a bytecode-like language. We will call this a “macro-
assembly language.” Then this form is assembled into machine-dependent, specific commands to configure
individual systems and infrastructure components.

The advantage of this view to others are twofold. First, it provides a high degree of abstraction; if
the infrastructure or details of systems change, the high-level policy constraints need not change; a simple
recompilation (or reassembly) will provide the appropriate changes. The services are divorced from the
details of their implementation, much as a macro assembly language abstracts the details of bit patterns
from the machine language into macros. The second advantage is the explicit tie to reverse engineering policy.
In this case, one can determine low-level (macro assembly) policy constraints for services by “disassembling”
the configurations of systems, and then, ideally, “decompile” the server-based constraints into the higher
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level policy language. The result could then, for example, be compared to the (desired) policy constraints,
and checked for inconsistencies.

Such a policy language must have several attributes. It must be extensible. For example, if digital rights
management is not included in the set of projects studied in our security architecture, it would need to be
added. Perhaps specific components of digital rights management require language elements that are not
present in the original language. The security management architects must be able to add those elements
easily. The language must include procedural, as opposed to technical, elements. How to do this best is
unclear (perhaps treat this element as a system, and generate specific rules much as the language mechanisms
generate specific configuration rules for specific systems), but what is clear is that humans are central to any
effective security system. A policy-based security architecture that does not take the human element into
account is fatally flawed. Finally, the language must be able to capture environmental constraints. Security
is a product of people, technology, and the environment in which people and technology must function. For
example, the health care environment (where availability and confidentiality are paramount) has different
security constraints than the financial environment (where integrity of bank accounts is paramount).

A policy constraint language also expresses a distributed computation, because the policy constraints
might apply to many systems on a network, and the systems must work together to enforce the overall
policy. For this purpose, policy changes that apply to more than one machine must occur simultaneously, for
example if two machines control access to a single resource (e.g. on a webfarm). Natural language policies
must also translate to compatible configurations across multiple platforms. For example, if a policy requires
encrypted remote logins, and one machine is only running ssh1, and another machine is only running ssh2,
the policy enforcement mechanism must be able to re-configure one or both systems to be compatible with
each other.

4 Overview of Our Approach

Consider how a program expressed in a high-level programming language such as C or Pascal might be
translated into a form that a computer can execute. First, a compiler transforms the high-level language into
an intermediate form. The high-level language is (usually) machine independent. The statement ‘‘x = 1+y”
says nothing about how the variables “x” and “y” are represented internally, nor about how addition is
managed. But the compiler translates this into an intermediate form that expresses the specific operations
that must be performed. One such form is the abstract syntax tree (AST) that shows the variable “y” and
the integer “1” under a node containing the operator “+”, and that tree as a child of a node with “x” as
the other child, and the node contains the “=” operator. This intermediate form is then translated into a
machine-specific form, machine language, that the target system can execute.

The intermediate form has two advantages and one disadvantage over the higher-level form. It abstracts
the relationship of the components of the program. This allows the program to be analyzed in ways that
the original form, and the final (machine language) form, do not allow. For example, the AST can be
checked for type conflicts, or analyzed to find dependencies on user input. Secondly, the AST is not tied to a
particular system, or indeed to a particular higher-level language. For example, the GNU compiler provides
several front-ends for langauges such as C, C++, FORTRAN, and Ada. It uses the same code generation
mechanism to generate code for any of these languages for a wide variety of systems, including Motorola
68000 systems, Intel x68 chips, and Sparc and MIPS-based systems. The disadvantage is the unreadability
of the intermediate form. For example, a programmer would have difficulty looking at an AST for a large
routine and figuring out what it does, or programming in that form. The usual notion of a program is
considerably easier to read.

We advocate a similar approach to expressing policies in policy languages. The high-level language should
be designed with humans in mind, to ease the task of those writing policies (or translating policies from
a natural language to the high-level language). Then a “policy compiler” would transform this expression
into an intermediate form, called the “intermediate policy representation” (IPR). The IPR is independent of
system and infrastructure architecture, and expresses relationships in terms of services and rights. Then a
“policy assembler” translates the IPR into a set of configuration commands appropriate to a specific system.

This also eases the difficulty of reverse engineering a policy from a specific system configuration. One
first determines what services the system is configured to offer, and who may access them. This is translated

3



into the IPR. Then the IPR can be “decompiled” into the higher-level policy language. Techniques of reverse
engineering applied in programming languages may be useful here (see for example [VO01, CG95]).

5 Applying Policies to Systems and Sites

The first step in enforcing a policy is “compiling” the policy into the intermediate policy representation
(IPR). The process of converting a policy to an IPR involves a validation process, as well as building a
hierarchical representation of the policy components, from the most general to the most specific.

A key aspect of this conversion is handling conflicts. A hierarchy provides one way to resolve conflicts.
Specifically, one can allow the more specific policies to violate the more general policies. For example, “no
network access” could be overridden by “except responding to pings.” Another means of resolving conflicts
is to combine the relevant parts of the policies. For example, there should not be one policy which states
that only the superuser is able to execute a program and another policy which says that anyone can execute
a program. Those policies would be in conflict. On the other hand, by specifying a single policy which
states that both the superuser and everyone else on the system can execute a program, a policy enforcement
mechanism can be more certain that the policy is consistent and correct.

Validation must first be performed for internal consistency and next for consistency with the system to
which it is to be applied. The validation for internal consistency is entirely machine-independent. There are
many existing techniques for evaluating self-consistency of a policy, which includes making certain that there
are no conflicting policies and that a policy is both syntactically and semantically correct. For example, this
validation must be able to compare two sides of an assignment statement and be able to validate whether
the right hand side is allowed to include a range of possible values, or must be binary (on or off, true or
false, etc.).

The machine-dependent evaluation requires more specific domain knowledge. For example, the evaluation
must make certain that specified subjects and objects exist on a given system, and that the policy’s states
and actions, both allowable and prohibited, are appropriate for the subjects and objects to which they apply.
Consistency of a policy with a system requires that a policy must be checked to ensure that the sub-policies
are applicable to a designated system. Some policies may be less precisely enforceable on some systems than
others. For example, access control on traditional UNIX systems uses an abbreviated ACL, which is much
less granular when compared with ACLs on modern implementations.

The IPR does not possess domain knowledge, however, and thus must be written to deal with more than
one possible system. The IPR of policies like the one involving ACLs should be accompanied by an indication
of how to handle situations in which ACLs are not implemented, and cannot be emulated precisely. A number
of possible solutions exist. A warning could be generated, a more relaxed policy might be accepted, or an
alternate solution could be found, which might include a different means of achieving similar goals on the
system, or adding third-party software might compensate for functionality absent in the original operating
system.If a more relaxed policy is to be accepted, then the IPR must indicate the minimum acceptable policy
as well as the desired policy.

Some policies may not be enforceable on some systems at all, either because the systems possess no
means of ever violating the policy (“write” permissions on a file are irrelevant when the disk that they are
on is mounted read-only) or because the systems possess no configuration mechanism with which to enforce
the policy (if user home directories, temporary files, and swap space are required to be encrypted, but there
is no means of doing so, the policy is unenforceable). Many such situations may be unanticipated. In such
cases, there should be default behavior that indicates what the policy enforcement mechanism should do.
Regardless of whether the behavior is anticipated or the result of following defaults, one must specify whether
the policy enforcement mechanisms should generate a warning and continue, or generate an error and halt.

We can view the translation of policies to system configurations by analogy, in much the same way that
we view an ACL. ACLs are themselves simple policy grids which translate into permissions for accessing
and manipulating system objects. In general, security policies also should be able to use a grid, tree, or
lookup-table to map to a set of implementation mechanisms.

Once the IPR has been mapped into the policy mechanisms on the particular type of system under
consideration, the “compiler” can generate the actual configuration commands.

As an example of this scheme, suppose at the highest level, only users with logins are to be able to access
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systems. The high-level policy language might have a statement like:

if (login(user).allowed == NO)
then system.access = NO;

else
system.access = YES;

At a lower level, the “compiler” may be configured to check web services, and ftp services. The resulting
low-level statements might be:

ftp:
-- allow anonymous login if user need not have login to access system
anonymous = (login(user).allowed == NO);
...

web:
-- require password if user needs login to access system
authentication = (login(user).allowed == NO);
...

At the configuration level, these might be translated into the following:

echo ''ftp.anonymous = NO'' >> /etc/rc.local
echo ''allow any authenticated'' >> /usr/web/.configure
echo ''disallow all'' >> /usr/web/.configure

in which the first line explicitly turns off anonymous ftp, and the second and third force all web accesses to
be authenticated, for the particular target system.

6 Reverse Engineering Policies

Policy discovery is the reverse of policy enforcement, and as such, many of the techniques are shared between
both. Rather than starting at the policy and working down to the system, policy discovery starts at the
system and works up to the policy.

A policy discovery process can reverse engineer policies in one of three ways: (1) it can examine the state of
the system (e.g. filesystem, configuration files), (2) it can monitor events (or look at events previously logged),
or (3) it can observe a system’s response to stimulus. The second method is very much like vulnerability
analysis or intrusion detection. The third is similar to penetration testing. Some information can be gleaned
in more than one way, and some information might need to be cross-checked for consistency. One of the
concerns with combining method #1 with either #2 or #3 is there might be policy conflicts between them
that are difficult to resolve.

Complicating matters is that an observed state is not static but rather is transient. A transient state,
as opposed to a fixed state, is one that changes over time. Unfortunately, by combining techniques, we may
not be able to distinguish between static and transient events and states. Therefore, we cannot necessarily
know whether we are viewing an actual policyor a deficiency in how a policy is implemented. Because
implementation flaws are outside of the scope of this paper, we do not consider discovery mechanisms that
tell us about transient policies. Therefore, in the rest of this paper, we will focus on method #1: examining
the state of the system that does not change, except by design.

Static policies can be reverse engineered from a finite number of key sources. For a BSD-like operating
system, the key sources are:

1. Configuration files (including everything in /etc and /usr/local/etc). This includes user IDs and
group IDs. Note some of these files may be in users’ home directories (such as .rhosts and .shosts
files).
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2. Ownership, locations, and permissions of files in the filesystem, including “special” files, such as device
files; and

3. Build configuration files, such as those for the kernel and other compiled binaries.

The most challenging part of policy discovery is assigning meaning to the data sources. While file
ownership, location, and permissions are simple to represent and automatically process, configuration files
or compiled binaries are significantly more difficult to process. This is another example of where analogy to
source code compilation is useful. Binaries may actually require decompilation to fully understand, although
if the build files are present, it is possible to extrapolate the policies built into the binaries from those.
For simple system configuration files, it may be sufficient to apply C++-like templates to subjects and
objects. In doing so, a reverse-engineering process can distinguish subjects from objects and determine what
is allowable in a particular context. For more complex system configuration files, a language specifying how
to parse other languages might be needed. For example, regular expressions that indicate how to perform
token lexing, and a grammar specifying productions (e.g. Backus-Naur Form (BNF)) with which to parse
configuration files, might be needed. For example, the following configuration:

/etc/ssh/sshd_config:
PermitRootLogin no

might be read with this C++-style template:

/etc/ssh/sshd_config:
PermitRootLogin <boolean>

But this configuration:

/etc/master.passwd:
root:$1$SzebsWei$sjWoeMzpTjJkRVbWsDgJrk:0:0::0:0:Charlie &:/root:/bin/csh

requires a more intricate regular expression, indicating optional fields and syntax of paths, and other fields in
/etc/master.passwd. It should also be noted that not all configurations are relevant to security policy. The
field in the file above containing “Charlie &” provides general information about the user and is irrelevant
to the security policy.

As a more complex example, the following configuration potentially requires not only regular expressions
to lexical analysis tokens, but a more complicated grammar to understand the hierarchical (and sometimes
even recursive) productions. This configuration file controls access to the root account whe a program
called sudo [Mil] is used. That program verifies the user’s identity by checking his or her password, and then
granting access to other accounts based on the contents of the configuration file. The file below gives anyone
access to all accounts.

/etc/sudoers:
ALL ALL=(ALL) ALL

Once this, and other configuration commands, are decompiled into the IPR, the result might contain:

login(root).remote = NO;
allowchangeEUID(root,ALLUSERS) = YES;
allowchangeEUID(root,ALLUSERS) = NO;

These policies demonstrate the need of the next step: once individual policy components generated
by each configuration file have been checked, the components must be analyzed together, in a hierarchy,
and checked for consistency. Discovered policies should not conflict. When they do, the resolution of the
conflict depends (again) on domain-specific knowledge. For example, within one component, are the rules
interpreted by the last match overriding the first, or the first match causing future matches to be ignored?
Across components, what does having a non-empty password for the root account mean when at the same
time the hosts.equiv file is set to allow any remote user to log in as root? In the former, the actual policy
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must be discerned based on an analysis of the system components affected by the configuration file. In the
latter, the actual policy has two components, one that bars access to root and the other that grants it to
anyone. Perhaps other aspects of the system (such as a lack of servers that use the hosts.equiv file) provide
the needed resolution.

individual policy components generated by each configuration file have been checked, the components
must be analyzed together, in a hierarchy, and checked for consistency. Discovered policies should not
conflict. When they do, the resolution of the conflict depends (again) on domain-specific knowledge. For
example, within one component, are the rules interpreted by the last match overriding the first, or the first
match causing future matches to be ignored? Across components, what does having a non-empty password
for the root account mean when at the same time the sudo program gives root access to all users of the
system? In the former, the actual policy must be discerned based on an analysis of the system components
affected by the configuration file. In the latter, the actual policy appears to be that remote access to the
root account is denied, but any local user may have access to that account.

So, the only way to resolve conflicts, without having to generate an error and require human intervention,
is by assigning priority of policies using a hierarchy. For example, if “owner” and “world” permissions on
a binary permit execution, but the “group” permissions do not, since “group” permissions are contained
within “world” permissions in a hierarchy, we report that the policy allows anyone to execute the binary.

7 A Detailed Example

In this section, we will show examples of enforcing and reverse engineering policies. The examples involve
enforcing and discovering policies related to a user’s ability to alter both their “real” and “effective” user
IDs. The examples demonstrate how general the security policies need to be, and how specific the system
configurations must be. For example, most systems have the concept of a “superuser” but only UNIX-like
operating systems call that user root. Therefore, the policy must reflect the more general concept. These
examples also demonstrate a portion of the hierarchy of the machine-independent policy.

7.1 Enforcing Protected Superuser Access

Suppose that we wish to impose a policy on a computer system that states that a password is required for
a user to perform any superuser functions on a computer system, and that remote access directly to any
superuser privileges is prohibited. A high-level policy might be stated as simply as this:

system:
// next line prevents remote logins as the superuser directly
login(superuser).remote = NO;
// next line requires that the superuser account have a password
password(superuser).exists = YES;
// next line prevents any user from being able to execute all programs as superuser
allowchangeEUID(superuser,ANYUSER,ALLCOMMANDS) = NO;
// next line prevents any user from executing a command to change their effective
// user ID
allowchangeEUID(ANYUSER,ANYUSER,changeEUIDCommand) = NO;

Skipping the IPR, on a machine-specific level, the configuration might be translated into these instructions
on a UNIX-like system, shown in pseudocode:

grep '^root' /etc/master.passwd;
if (<password_field> is empty) {

open(/etc/master.passwd);
set root's password = ''xxxxxxxx'';

}
replace or append 'PermitRootLogin no' in /etc/ssh/sshd_config
function checkSudo () {

7



/* This function parses the EBNF-formatted sudo grammar and removes any productions
* that allow any user to have sudo abilities (to root or any other user) on ALL
* commands. This function also specifically removes any function which permits a
* user to run the 'su' command as root, as well.
*/

}

The pseudocode instructions translate the policies into consistent, machine-specific configurations.

7.2 Reverse Engineering Superuser Access

To reverse-engineer policies relating to elevating user privileges on a system, we need to identify the relevant
commands in the relevant files. First, we determine what network servers are available, because remote
access requires the ability to connect to the system. In this case, we assume that machines are all UNIX-like,
and that the remote secure shell, sshd, is the only server allowing remote logins. We can derive the IPR
from the configuration file as follows:

if sshd is running then:
output ''RemoteAccess:'';

find value of 'PermitRootLogin' in configuration file /usr/ssh/sshd_config;
output ''login(superuser).remote = (PermitSuperuserLogin.value is yes)'';

Next, we consider other configuration files that control access to root. Clearly, the password file is one
because it contains a representation of root’s password. Another one is sudo as discussed above. For our
purposes, we only consider these two. The appropriate IPR can be generated as follows:

output ''login:'';
find value of root's password in configuration file /etc/master.passwd;
output ''superuser_has_password = (password_field_length > 0)'';

output ''changeEUID:'';
/* Parses the EBNF-formatted sudo (or equivalent) grammar and computes
* productions to determine their higher-level meanings; return YES if any
* user can become superuser
*/

output ''can_execute_any_program(superuser) = '', checkSudo(ANYCOMMAND);

Then taking this to the high-level language, we derive:

login(superuser).remote = NO;
password(superuser).exists =YES;
allowchangeEUID(superuser,ANYUSER,ALLCOMMANDS) = NO;

Suppose that the first step discovers that “PermitRootLogin” is set to “no” in sshd config, which
results in the policy: login(superuser).remote = NO. Then suppose that the script discovers in the
/etc/master.passwd file that the root password field is not empty, meaning root has a password. The pol-
icy allowchangeEUID(superuser, ALLUSERS) = NO results. Finally, suppose that the checkSudo() func-
tion discovers in the /etc/sudoers file that sudo permissions allow any user to issue any command as root.
The policy allowchangeEUID(superuser, ALLUSERS, ALLCOMMANDS) = YES results. Here, we have an in-
consistency. Two policies, in the same place in the hierarchy, have conflicting settings. Given that they are
in the same place in the hierarchy, we cannot resolve the intent of this configuration and must simply report
both policies, the way in which they were derived, and the fact that a conflict exists.
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8 Procedural Policies

Not all “good security practices” can be translated into policies. This is particularly true where human
procedures are involved, and when the “good security practices” are too general for a language to be able
to ultimate make them machine-specific. For example, a principle of “good forensic analysis” is to “consider
the entire system, including the user space, in logging.” [PBKM05] This kind of principle cannot be easily
enforced, because it is too general of a policy to have any way of translating properly into an intermediate
language.

On the other hand, the policy could state that state that function calls must be captured [PBKM06].
On UNIX, the policy could translate into a system-level mechanism that looks to see whether the exec
system call has been modified to force all binaries on the system to be run through a specific dynamic
instrumentation tool that records function calls.

Not all policies can be easily enforced by a computer system, even if they can be specified using the policy
language. For example, if a policy states that a country requires that all cryptographic keys be registered
with the police [Bis05], there is no easy way of enforcing that all cryptographic keys on the system are
registered with the police short of augmenting the system to contain capabilities that it did not originally
have. That is the system would transmit all of the keys to the police.

The question of how to handle procedural aspects of the policy affects the usefulness of the high-level
language. Take our above example of no password for the superuser account. If the high-level language
mandates that there be one, it must also mandate that the password not be removed (or provide explicit
circumstances under which it may be removed). In this case, the compiler must generate some procedural
instructions to support this (implicit) requirement.

One way to do this is to consider the procedural practices to be another system. Then, just as the IPR
can be translated to a particular set of configuration commands for a Windows system, and a different set
for a Linux system, so could it be translated to a set of instructions (or policy manual references) for humans
to follow. So translation of the policy to procedural practices is similar to the generation of configuration
information from the IPR.

But reverse engineering procedural practices is more complicated. Ultimately, one needs to put them
into a form that can be translated back to the IPR. The development of such a form, and a demonstration
of its completeness (so that any relevant procedural practices can be entered), is an area for future work.

9 Conclusions

We have described methods for enforcing security policies by translating them to machine-dependent config-
urations, via an intermediate, machine-independent, policy representation. We have also described methods
for “discovering” policies by reverse engineering them from static system configurations, again via a machine-
independent, intermediate representation. This bi-directional language translation helps to unify the difficult,
and often-distinct tasks of specifying policies, enforcing them, adding new systems to a network, and verifying
policy compliance.

By looking only at static system configurations, we are ignoring vulnerabilities — flaws in the implemen-
tation of policy — but it is not our goal to prove, or even determine, that a running operating system, let
alone a network of systems, is secure. Rather, we have described a method to enforce a given policy properly,
and to discover the actual policy that is being enforced. Likewise, our methods help bring mis-configurations
to light.

Not all policies can be enforced as easily as modifying a configuration file, or modifying permissions of
a file. For example we may wish to disallow some users from executing setuid/setgid programs, to prevent
them changing their effective UIDs. Without the advantage of detailed ACLs, this may be non-trivial.
Additionally, some changes to the system based on policies being enforced may require re-compiling binaries
(or the kernel) with different configuration parameters, and even rebooting, for the changes to be reflected
in running system. Also, some actual configuration files are machine-generated by system programs, based
on human-generated, configuration-file counterparts.

This methodology may help people and institutions to determine what their system allows and prohibits.
System software developers could use this approach to help users resolve conflicts when configuring their
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software. This would ensure a more stable system that meets the intent of the policy, rather than one that
unintentionally drifts into a new, less desireable, policy, thereby compromising the institution.
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