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A recent genome-wide association meta-analysis showed a suggestive association
between alcohol intake in humans and a common single nucleotide polymorphism in
the ras-specific guanine nucleotide releasing factor 2 gene. Here, we tested whether
this variant – associated with lower alcohol consumption – showed associations with
brain structure and longitudinal ventricular expansion over time, across two independent
elderly cohorts, totaling 1,032 subjects. We first examined a large sample of 738
elderly participants with neuroimaging and genetic data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI1). Then, we assessed the generalizability of the findings
by testing this polymorphism in a replication sample of 294 elderly subjects from
a continuation of the first ADNI project (ADNI2) to minimize the risk of reporting
false positive results. The minor allele – previously linked with lower alcohol intake –
was associated with larger volumes in various cortical regions, notably the medial
prefrontal cortex and cingulate gyrus in both cohorts. Intriguingly, the same allele
also predicted faster ventricular expansion rates in the ADNI1 cohort at 1- and 2-year
follow up. Despite a lack of alcohol consumption data in this study cohort, these
findings, combined with earlier functional imaging investigations of the same gene,
suggest the existence of reciprocal interactions between genes, brain, and drinking
behavior.

Keywords: neuroimaging genetics, ventricular expansion, aging neuroscience, rasgrf2, brain volume, structural MRI

INTRODUCTION
A recent genome-wide association meta-analysis of alcohol intake
in humans showed a suggestive association with a common vari-
ant (rs26907) in the RASGRF2 gene (Schumann et al., 2011). Each
copy of the minor A allele at rs26907 (MAF = 0.17), was asso-
ciated with about 2.6% lower alcohol consumption (Schumann
et al., 2011). Functional analysis of the RASGRF2 gene by the same
group revealed that alcohol preference is associated with whole-
brain RASGRF2 mRNA expression and that RASGRF2 regulates

†Data used preparating this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the
investigators within the ADNI contributed to the design and implementation
of ADNI and/or provided data but most of them did not participate in anal-
ysis or writing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf

alcohol-induced reinforcement by affecting mesolimbic neuron
activity and dopamine release (Stacey et al., 2012).

Ras-specific guanine nucleotide-releasing factor 2 (Ras-GRF2)
is a protein encoded by the RASGRF2 gene. It is involved in signal
transduction from ion channel receptors (Tian et al., 2004) and
the regulation of MAPK signaling cascades, including the ERK
pathway (Fasano and Brambilla, 2011; Feig, 2011), which plays a
critical role in drug-induced reinforcement and synaptic plasticity
(Girault et al., 2007). RASGRF2 also helps to regulate neuronal
excitability, neuronal survival in response to ischemia, learning
and memory formation, and carcinogenesis (Jin and Feig, 2010;
Feig, 2011; Fernandez-Medarde and Santos, 2011).

A growing enigma in neurology is how alcohol intake, and
related genes, affect brain aging. Moderate alcohol intake protects
against cardiovascular events (Rimm et al., 1999; Mukamal et al.,
2006; Hvidtfeldt et al., 2010), but it is less clear how moderate
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drinking affect the brain over the long term. Elderly people
who drink moderately may have fewer white matter abnormal-
ities and infarcts than both non-drinkers and heavy drinkers
(Mukamal et al., 2001; den Heijer et al., 2004; Mukamal, 2004).
Genetic factors affect alcohol intake (Olfson and Bierut, 2012;
Blaine et al., 2013; Meyers et al., 2013) but we do not know
if the same genes affect brain structure and the rate of brain
atrophy.

Dynamic changes in the brain’s lateral ventricles reveal the rate
of brain atrophy as we age and reflect brain tissue loss with high
effect sizes (Hua et al., 2013). Lateral ventricle expansion accom-
panies gray and white matter degeneration globally and in nearby
subcortical regions (Ferrarini et al., 2008). The ventricles do not
play a role in cognition, but ventricular expansion is associated
with many brain-related health factors in the elderly, including
current cognitive status and future memory decline (Coffey et al.,
2001).

Here, we hypothesized that this candidate variant for reduced
drinking (the minor A allele at the rs26907 locus in RASGRF2)
might be associated with structural differences in fronto-limbic
regions relevant to alcohol reinforcement in elderly subjects. To
test if the findings generalized, we examined an independent repli-
cation sample of elderly participants, reducing the risk of false
positive findings. We predicted that this variant might be asso-
ciated with the ventricular expansion rate, in the larger sample
whose ventricular volumes were measured at baseline, and at 1-
and 2-year follow ups.

MATERIALS AND METHODS
SUBJECTS
Data used in preparing this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
ADNI, followed by ADNI-GO and ADNI-2, recruited over 1500
adults, ages 55–90, to participate in the research, consisting of
cognitively normal older individuals, people with early or late
mild cognitive impairment (MCI), and Alzheimer’s disease (AD).
Subjects originally recruited for ADNI-1 and ADNI-GO had the
option to be followed in ADNI-2. For up-to-date information, see
www.adni-info.org.

Here, we analyzed two independent samples of elderly sub-
jects with neuroimaging and genome-wide data from the ADNI1
and ADNI2 cohorts. We refer to ADNI-GO and ADNI-2 par-
ticipants as “ADNI2,” as the only distinction was the grant
funding that supported data collection, and the data collection
was identical for them both. All ADNI studies are conducted
according to the Good Clinical Practice guidelines, the Dec-
laration of Helsinki, and U.S. 21 CFR Part 50 (Protection of
Human Subjects), and Part 56 (Institutional Review Boards). Writ-
ten informed consent was obtained from all participants before
protocol-specific procedures were performed. To avoid the known
effects of population stratification on genetic analysis (Lander and
Schork, 1994), we only included non-Hispanic Caucasian sub-
jects identified by self-report and confirmed by multi-dimensional
scaling (MDS) analysis (Stein et al., 2010) in both ADNI
cohorts.

1adni.loni.ucla.edu

Alzheimer’s disease neuroimaging initiative1
The ADNI1 cohort included three diagnostic groups: people
with AD, MCI, and healthy elderly (cognitively normal) par-
ticipants. We included participants from all diagnostic groups,
as power is limited when performing any genetic association
analysis. Typical effects of candidate genes on the phenotype
are often around 1% of the mean value per allele (Stein et al.,
2012), so we have often been able to pick up effects only when
ADNI’s full sample is included. Even so, we have been able
to replicate effects from ADNI in other non-overlapping sam-
ples, showing that affects found in ADNI can be robust and
can generalize (Stein et al., 2011; Hibar et al., 2013; Roussotte
et al., 2013). Effect sizes for individual genetic variants on brain
structure in particular are expected to be small, so the genetic
analysis would be underpowered if we further subdivided the
sample (Stein et al., 2012). Our final analysis comprised 738 indi-
viduals (average age ± s.d. = 75.52 ± 6.78 years; 438 men/300
women) including 173 AD, 359 MCI, and 206 healthy participants
(Table 1).

Alzheimer’s disease neuroimaging initiative2
The ADNI2 cohort also included people with MCI who were fur-
ther subdivided into early and late MCI (EMCI, LMCI). When
we conducted these analyses, just under 300 ADNI2 subjects had
been genotyped and processed using tensor based morphometry
(TBM; see Minimal Deformation Target and Tensor Based Mor-
phometry). Our final analysis comprised 294 individuals (average
age ± s.d. = 73.16 ± 7.33 years; 166 men/128 women) includ-
ing 25 AD, 66 LMCI, 81 EMCI, and 122 healthy participants
(Table 2).

GENOTYPING AND SNP SELECTION
In ADNI, genome-wide association study (GWAS) data was col-
lected from 1252 participants. All 818 subjects (including the
non-Caucasians not used in this study) from the ADNI1 sample
were genotyped using the Illumina Human 610-Quad BeadChip
(San Diego, CA,USA),and DNA samples were genotyped from 434
ADNI-GO/ADNI-2 participants using the Illumina OmniExpress
genotyping array.

Data from both cohorts were imputed to a common refer-
ence space; the 1000 genomes CEU (Caucasian) reference set
following freely available imputation protocols (ENIGMA2, 2012).

Table 1 | Demographic and genetic data for the ADNI1 cohort.

ADNI1 Males Females Total

Total 438 300 738

Healthy elderly 112 94 206 (28%)

MCI 231 128 359 (49%)

AD 95 78 173 (23%)

rs26907 0 A alleles 318 226 544 (74%)

rs26907 1 A alleles 114 67 181 (24%)

rs26907 2 A alleles 6 7 13 (2%)

Mean age (±sd) 75.90 (±6.76) 74.98 (±6.78) 75.53 (±6.78)
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Table 2 | Demographic and genetic data for the ADNI2 cohort.

ADNI2 Males Females Total

Total 166 128 294

Healthy elderly 64 58 122 (41%)

EMCI 47 34 81 (28%)

LMCI 38 28 66 (22%)

AD 17 8 25 (9%)

rs26907 0 A alleles 117 88 205 (70%)

rs26907 1 A alleles 46 38 84 (28%)

rs26907 2 A alleles 3 2 5 (2%)

Mean age (±sd) 74.49 (±7.14) 71.45 (±7.25) 73.16 (±7.33)

The imputed data were filtered for standard imputation quality
criteria (imputation quality: Rsq < 0.3) and minor allele frequency
(MAF < 0.05). The final, filtered genetic datasets were used for our
genetic analyses.

We analyzed a common (G/A, minor allele frequency:
A = 0.170) single nucleotide polymorphism (rs26907) in the
ras-specific guanine nucleotide releasing factor 2 (RASGRF2)
gene previously implicated in alcohol consumption (Schumann
et al., 2011; Stacey et al., 2012) for association with regional
brain volumes in both ADNI cohorts, and longitudinal ventric-
ular expansion in the ADNI1 subjects who had been included
in the regional brain volumes association study. The allele
distribution in both samples did not deviate from the Hardy-
Weinberg equilibrium (p = 0.6118 for ADNI1 and p = 0.1912
for ADNI2).

IMAGE ACQUISITION
ADNI1 subjects were scanned with a standardized MRI proto-
col developed for this cohort (Leow et al., 2006; Jack et al., 2008).
Briefly, high-resolution structural brain MRI scans were acquired
at 58 sites across North America, using 1.5 T MRI scanners. A
sagittal 3D MP-RAGE sequence was used, optimized for con-
sistency across sites (Jack et al., 2008; TR/TE = 2400/1000 ms;
flip angle = 8◦; FOV = 24 cm; final reconstructed voxel res-
olution = 0.9375 × 0.9375 × 1.2 mm3). Each ADNI2 subject
received a 3 T accelerated T1-weighted MRI scan. By vendor, Gen-
eral Electric (GE) scanners use IR-SPGR sequences and Philips and
Siemens use MP-RAGE sequences. Scan vendors and sequences for
ADNI2 are available online.

REGIONAL BRAIN VOLUMES ASSOCIATION STUDIES (ADNI1 AND
ADNI2)
Image correction and pre-processing
For both ADNI samples, image corrections were applied using a
processing pipeline at the Mayo Clinic, consisting of: (1) a pro-
cedure termed GradWarp to correct geometric distortion due to
gradient non-linearity (Jovicich et al., 2006), (2) a “B1-correction”,
to adjust for image intensity inhomogeneity due to B1 non-
uniformity using calibration scans (Jack et al., 2008), (3) “N3”
bias field correction, for reducing residual intensity inhomogene-
ity (Sled et al., 1998), and (4) geometrical scaling, according to

a phantom scan acquired for each subject (Jack et al., 2008) to
adjust for scanner- and session-specific calibration errors2. To
adjust for global differences in brain positioning and scale, all sub-
jects’ scans were linearly registered to the stereotaxic space defined
by the International Consortium for Brain Mapping (ICBM-53;
Mazziotta et al., 2001), using a 9-parameter (9P) transformation
(three translations, three rotations, three scales (Collins et al.,
1994). For both ADNI cohorts, we used standard trilinear inter-
polation and resampled the resulting aligned scans to have 1mm
isotropic voxels. Subjects’ brain images were not skull-stripped
during pre-processing.

Minimal deformation target and tensor based morphometry
For ADNI1, we created a minimal deformation target (MDT),
which serves as an unbiased average template image for auto-
mated image registration, and to reduce statistical bias. The
MDT was created using the MRI scans of 40 randomly selected
healthy elderly subjects, as detailed elsewhere (Hua et al., 2008a,b).
The MDT image was calculated as a geometrically centered
mean anatomical image, using a method called sKL-MI to align
data to an average affine registered target image; this procedure
leads to fairly “sharp” average brain image for a group and fol-
lows a procedure we developed and tested elsewhere (Hua et al.,
2008a,b).

To quantify 3D patterns of volumetric tissue variations, all
individual T1-weighted images (N = 1,032) were non-linearly
aligned to the MDT template created for ADNI1 with an inverse-
consistent 3D elastic warping technique using a mutual infor-
mation cost function (Leow et al., 2005). For each subject, a
separate Jacobian matrix field was derived from the gradients of
the deformation field that aligned that individual brain to the
MDT template. The determinant of the local Jacobian matrix
was derived from the forward deformation field to character-
ize local volume differences. Color-coded Jacobian determinants
were used to illustrate regions of volume expansion, i.e., those
with det J(r) >1, or contraction, i.e., det J(r) <1 (Freebor-
ough and Fox, 1998; Thompson et al., 2000; Chung et al., 2001;
Riddle et al., 2004) relative to the template. All images were reg-
istered to the same template, so these Jacobian maps shared
common anatomical coordinates, defined by the normal tem-
plate. Individual Jacobian maps were retained for further statistical
analyses.

Regression of structural brain differences with the candidate SNP
In both ADNI cohorts, we investigated how the rs26907 variant
affected regional brain volumes using univariate linear regression
to associate the number of minor A alleles (0,1, or 2) with the
Jacobian values (describing the amount of brain tissue deficit or
excess relative to the standard template) at each voxel in the brain,
after covarying for age, sex, and diagnosis (i.e., AD, MCI, and
healthy elderly for ADNI1 and AD, LMCI, EMCI, and healthy
elderly for ADNI2).

Multiple comparisons correction
Computing thousands of association tests across the brain can
introduce a high Type I (false positive) error rate in neuroimaging

2http://adni.loni.ucla.edu/methods/mri-analysis/mri-pre-processing/
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studies, if not controlled. We used a searchlight method for
false discovery rate (FDR) correction (Langers et al., 2007), which
controls the FDR in any reported statistical map. This corrected
the map of statistical associations between the image pheno-
type (morphometry) and genotype at the rs26907 locus. All
maps shown are thresholded at the appropriate corrected p-
value, after performing searchlight FDR (q = 0.05), to show
only regions of significance that passed the multiple comparisons
correction.

LONGITUDINAL VENTRICULAR EXPANSION STUDY (ADNI1)
Image correction and pre-processing
For lateral ventricle segmentation, we analyzed baseline (N = 738),
1-year (N = 623), and 2-year (N = 481) follow-up brain MRI
scans from all the ADNI1 subjects included in the regional
brain volumes association study described above. Raw MRI scans
were pre-processed to reduce signal inhomogeneity and linearly
registered to a template (using 9 parameter registration). Segmen-
tations were assessed visually for defects from multiple views. All
subjects were quality controlled for ventricular segmentation, and
one baseline ADNI1 subject was removed from the longitudinal
ventricular expansion study after quality control of the ventricu-
lar surfaces. Our final analysis thus included 737 ADNI1 subjects
at baseline, 623 at 12-month follow-up, and 481 at 24-month
follow-up.

Segmentation of the lateral ventricles
Prior methods for ventricular segmentation have used semi-
automated, automated (Chou et al., 2008), and single-atlas or
multi-atlas methods (Chou et al., 2009). Here we segmented
the ventricles with our modified multi-atlas approach (Gutman
et al., 2013; Madsen et al., 2013). Our segmentation approach
uses group-wise surface registration to existing templates in addi-
tion to surface-based template blending to yield more accurate
results. The lateral ventricles were segmented in each subject
using a validated method (Chou et al., 2008). Ventricular sur-
faces were then extracted from these segmentations and an
inverse-consistent fluid registration with a mutual information
fidelity term aligned a set of hand-labeled ventricular tem-
plates to each scan (Leow et al., 2007). The template surfaces
were registered into homologous point-to-point correspondence
as a group using medial-spherical registration (Gutman et al.,
2012).

To construct a surface boundary of the new subject, a nor-
malized similarity measure between each template image and
the new image was computed in a neighborhood around each
vertex point of each deformed template surface. The position
of each point of the new boundary was defined by the tem-
plate, which showed the best similarity score, here normalized
mutual information. The final surface was then constrained to
be a smooth approximation of this winner-takes-all construc-
tion. This approach is very similar to that of (Yushkevich et al.,
2010), except ours is based on surface geometry rather than
voxels in an image. The approach is advantageous compared
to whole-template approaches typically used in multi-atlas seg-
mentation, allowing more flexible segmentation, particularly for
outliers.

Statistical analyses: associations of rs26907 genotype with
ventricular volumes
Statistical tests using the number of minor A alleles at the rs26907
locus to predict left and right ventricular volumes were con-
ducted with SPSS 21.0. This assumes an additive model of allele
effects – a common assumption. We tested general linear mod-
els (GLMs) with outcome variables of ventricular volume at
baseline [N = 737, one subject was excluded as mentioned in
Section “Image Correction and Pre-Processing” under Longitu-
dinal Ventricular Expansion Study (ADNI1)], difference between
ventricular volume at baseline and volume after 1 year (in cubic
mm, N = 623), difference between ventricular volume at baseline
and volume after 2 years (in cubic mm, N = 481), and covary-
ing for age, sex, and diagnosis (i.e., healthy elderly control, MCI,
or AD). As the volume images were already normalized for overall
brain size during the 9-parameter affine alignment, additional vol-
ume normalization was unnecessary. It would only have obscured
the effect of faster relative expansion rates. As our expansion rates
are computed over some snapshot in time - here only 1 or 2 years –
the variation in rate of expansion, after being normalized for over-
all brain size, would have already had an effect on total volume
prior to baseline image acquisition. In all analyses, the left and
right ventricular volumes were tested separately and combined.

RESULTS
REGIONAL BRAIN VOLUMES ASSOCIATION STUDIES
In the ADNI1 sample, the RASGRF2 polymorphism rs26907 pre-
dicted differences in regional brain volumes, after covarying for
sex, age, and diagnosis, and after multiple comparisons correction
at q = 0.05 (Figure 1, top panel). Larger volumes in the medial
prefrontal cortices, cingulate gyrus, and right temporal lobe, were
statistically related to carrying the minor A allele at the rs26907
locus. Regional volume differences associated with the minor allele
ranged from 2 to 4%.

The RASGRF2 polymorphism rs26907 also predicted differ-
ences in regional brain volumes in the ADNI2 cohort, after
covarying for sex, age, and diagnosis, and after multiple com-
parisons correction at q = 0.05 (Figure 1, bottom panel). As in
ADNI1, the minor A allele was associated with larger volumes
in the medial prefrontal cortices and cingulate gyrus. It also pre-
dicted larger volumes in the postcentral gyrus. Regional volume
differences associated with the minor allele ranged from 3 to 5%.

In the ADNI1 cohort, the minor A allele was also associated with
smaller volumes in the cerebellum, but this was detectable in the
ADNI2 cohort only when a less conservative threshold for multiple
comparisons correction at q = 0.10 was used (data not shown)
possibly because the ADNI2 sample was smaller and afforded less
statistical power to detect small gene effects on the brain.

LONGITUDINAL VENTRICULAR EXPANSION STUDY
Genotype at the rs26907 locus was not significantly related to
baseline volumes of the left (p = 0.173) or right (p = 0.629) lat-
eral ventricles, after sex, age, and diagnosis were regressed out
(N = 737). To determine if the allele was related to rates of brain
tissue loss, we then examined the differences between ventricu-
lar volumes at baseline and volumes after 1 year (in cubic mm,
N = 623), and 2 years (in cubic mm, N = 481), after covarying
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FIGURE 1 | Effects of the A allele at the rs26907 locus in the RASGRF2

gene, on regional brain volumes in the ADNI1 (top panel) and ADNI2

(bottom panel) cohorts. Positive beta values (warm colors) show regions
where the minor A allele was associated with greater tissue volumes.
Negative beta values (cool colors) show regions where the minor A allele
was associated with lower tissue volumes. The color bar encodes the
average percentage of volume difference relative to the template
associated with the minor allele. Tests for associations are adjusted for age,
sex, and diagnosis; maps are corrected for multiple comparisons with the
searchlight false discovery rate (FDR) method at q = 0.05. Images are in
radiological convention (left side of the brain shown on the right).

for sex, age, and diagnosis. Ventricular expansion rates relative to
overall brain size showed a significant correlation with the num-
ber of A alleles at rs26907. After 1 year, carrying more minor
A alleles was associated with greater rates of expansion in the left
(p = 0.040) and right ventricle (p = 0.010), and with a greater over-
all rate of ventricular expansion (p = 0.017, Figure 2; N = 623).
A similar pattern was observed at 2-year follow-up. Carrying more
minor A alleles at the rs26907 locus was associated with faster
ventricle expansion in the left (p = 0.030) and right ventricle
(p = 0.028), and with greater total ventricle expansion (p = 0.024,
Figure 3; N = 481).

DISCUSSION
This study is the first to report an association between brain
structure, longitudinal ventricular expansion, and a common sin-
gle nucleotide polymorphism (rs26907) associated with alcohol
intake (Schumann et al., 2011; Stacey et al., 2012) in the gene
encoding ras-specific guanine nucleotide releasing factor 2. The
variant previously associated with lower alcohol consumption
predicted larger cortical volumes in the elderly at baseline. We
replicated these findings in an independent elderly cohort despite
a smaller sample size with lower statistical power, suggesting that
the association of this variant with larger cortical volumes in the
elderly may be independent of age, sex, or disease status. The
same allele associated with reduced alcohol intake also predicted
faster longitudinal ventricular expansion at 1- and 2-year follow
up.

The rs26907 polymorphism in RASGRF2 is associated with
alcohol intake (Schumann et al., 2011; Stacey et al., 2012), and

FIGURE 2 | Effects of the A allele at the rs26907 locus in the RASGRF2

gene, on total longitudinal ventricular expansion in the ADNI1 cohort

at 12-month follow-up (N = 623).

FIGURE 3 | Effects of the A allele at the rs26907 locus in the RASGRF2

gene, on total longitudinal ventricular expansion in the ADNI1 cohort

at 24-month follow-up (N = 481).

this study further links it to regional brain volumes, in several sys-
tems involved in alcohol reward – where cellular and molecular
processes including dopamine release are also affected by this
gene. It may seem surprising that the rs26907 allele associated
with reduced alcohol intake – which is the less common one –
predicts larger regional cortical volumes in the elderly at base-
line but faster ventricular expansion rates over time, reflecting
an accumulation of brain tissue loss globally, throughout multi-
ple brain regions. In fact, baseline regional cortical volumes are
likely to depend on factors unrelated to neurodegeneration, such
as neurodevelopmental differences. Even so, if the lateral ven-
tricles expand approximately linearly with age in healthy elderly
individuals (Blatter et al., 1995), accelerated rates of ventricular

Frontiers in Aging Neuroscience www.frontiersin.org December 2013 | Volume 5 | Article 93 | 5

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


“fnagi-05-00093” — 2013/12/18 — 19:59 — page 6 — #6

Roussotte et al. Alcohol-related gene and elderly brain structure

expansion may be indicators or predictors of degenerative brain
disorders (Apostolova et al., 2012).

The rs26907 polymorphism in RASGRF2 was associated with
regional brain volumes and longitudinal ventricular expansion,
but we are unable to provide mechanistic evidence for how this
variant might affect brain structure. Rs26907 is an intronic SNP
that is not linked with any known changes in gene function.
SNPs in non-coding regions can affect gene splicing, and RAS-
GRF2 may have one alternative splice variant (Feig, 2011). This
polymorphism may affect transcription factor binding, mRNA
degradation, and other molecular genetic processes that may
relate to brain volumes. Data from the encyclopedia of DNA ele-
ments (“ENCODE”)3 as presented in HaploReg4, suggest that
rs26907 alters the Rad21 regulatory motif. Since Rad21 is a
transcription factor involved in apoptosis (Pati et al., 2002), pro-
grammed cell death represents a plausible mechanism by which
this variant could affect brain volumes and rates of ventricular
expansion, which indicate neuronal loss. Although we do not
know the precise mechanisms that relate this polymorphism to
brain structure, this particular variant may drive the observed
associations, as there are no SNPs in high linkage disequilibrium
(as defined by r2 > 0.8) with rs26907 in the 1000 Genomes
Caucasian (CEU) panel5.

An important limitation of this study is that no alcohol con-
sumption measures were available in these samples (although the
cohorts excluded alcohol abusers). We cannot establish a relation-
ship between the rs26907 variant and alcohol intake, or among
brain volumes, longitudinal ventricular expansion, and alcohol
intake in these particular cohorts. Some of these associations have
been reported in other cohorts. Our experimental design does
reveal whether the variant of interest directly affects the brain
or just modifies drinking behaviors that affect brain structure
and the rate of brain atrophy. This would be an interesting tar-
get of study. Nonetheless, the functional imaging literature may
shed light on our results. A haplotype containing rs26907 as well
as other SNPs in RASGRF2 was associated with ventral striatal
activity during reward anticipation in healthy 14-year old boys,
suggesting a hypersensitive reward system (Stacey et al., 2012).
Follow-up at age 16 showed an association between this haplo-
type and number of drinking episodes (Stacey et al., 2012). The
existence of differences, first in brain activation and later in drink-
ing behaviors, between young carriers of risk alleles in RASGRF2
and carriers of protective alleles, suggests that this gene may
directly affect the developing brain. This may result in different
drinking patterns later in life. Along with other behaviors, this
may further affect brain structure and function throughout the
lifespan.

RASGRF2 regulates alcohol-induced reinforcement and
alcohol preference is associated with whole-brain RASGRF2
mRNA expression (Stacey et al., 2012). During neurodevelopment,
carriers of the rs26907 allele associated with reduced drinking
may have developed neurological circuits conferring less sen-
sitivity to alcohol reward. This could be one factor associated

3http://www.genome.gov/10005107
4http://www.broadinstitute.org/mammals/haploreg/haploreg.php
5http://www.1000genomes.org

with their volume differences in the medial prefrontal cortex,
which plays a role in the mesolimbic reward system (Baltazar
et al., 2013). As a result, these individuals may have been more
likely to abstain from drinking throughout their lives. In our
study, this may be linked to the faster lateral ventricle expan-
sion rates (typically associated with neurodegeneration across
the brain) in elderly carriers of the allele. Elderly individuals
who abstain from drinking have higher rates of brain abnor-
malities and infarcts than moderate drinkers (Mukamal et al.,
2001; den Heijer et al., 2004; Mukamal, 2004). This frame-
work remains speculative, and future studies relating alcohol
consumption data to brain imaging and genetic data, should
clarify the direction of these relationships. Even so, our find-
ings, combined with earlier functional imaging investigations
of the same gene (Stacey et al., 2012) point to interdependent
and reciprocal interactions between genes, brain, and drinking
behaviors.
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