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Analysis of slice transverse emittance evolution in a photocathode RF
gun

Zhirong Huang, Yuantao Ding
Stanford Linear Accelerator Center, Stanford, CA 94309

Ji Qiang
Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

The slice transverse emittance of an electron beam is of critical significance for an x-ray FEL. In a photocathode RF
gun, the slice transverse emittance is not only determined by the emission process, but also influenced strongly by
the nonlinear space charge effect. In this paper, we study the slice transverse emittance evolution in a photocathode
RF gun using a simple model that includes effects of RF acceleration, focusing, and space charge force. The results
are compared with IMPACT-T space charge simulations and may be used to understand the development of the slice
emittance in an RF gun.

1. Introduction

Photocathode RF gun is one of the key enabling
technologies for an x-ray free-electron laser (FEL).
An important development in designing a photo-
cathode RF gun is the emittance compensation [1],
which is the process to align the transverse phase
space of various temporal bunch slices under intense
space charge in order to minimize the projected
transverse emittance [2,3]. For a properly com-
pensated electron beam, the projected transverse
emittance is close to the emittances of individual
temporal slices. Such a beam is easier to diagnose
and to transport along the accelerator for producing
FEL radiation.

Nevertheless, it is well-known that the x-ray
FEL performance depends critically on the slice
emittance (not the projected emittance), and the
FEL interaction occurs much more rapidly on those
slices with smaller emittances than others with
larger emittances. Therefore, it is imperative to
understand the slice emittance formation in a pho-

tocathode RF gun. Numerical simulations [4] show
that the slice emittance growth (from its intrinsic
or “thermal” level) can mainly be observed close
to the cathode area, and has been attributed to
the non-linear transverse space charge forces acting
inside the bunch during the injection process. Moti-
vated by these considerations, we develop a simple
model to understand and quantify this emittance
growth process. Using this model, we study the slice
emittance evolution in a typical RF gun such as the
one under commissioning at the LCLS [5].

2. Bunch Length Evolution

In order to model the transverse space charge ef-
fects near the cathode, we must first determine the
bunch length evolution right after the bunch is born,
where the electrons are still nonrelativistic and the
bunch length is much shorter than the laser pulse
length cTL. As the bunch is accelerated in the RF
gun, it elongates quickly into the final bunch length
which is usually close to the laser pulse length. Tak-
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Fig. 1. IMPACT simulated rms bunch length without space
charge and analytical estimation from Eq. (3). The flattop
laser pulse length is ∆TL = 10 psec or 3 mm (rms 866 µm).

ing into account the RF acceleration in the gun, a
fitting formula that improve Kim’s original model
for the electron’s final phase (relative to the RF, at
γ À 1) is [6,7]

φ∞ = φ0 +
1

2α sin(φ0 + π/6
√

α)
+

π

15α
. (1)

Here φ0 is the initial electron phase relative to the
RF, α = eE0/(2mc2k), E0 is the peak electric field,
and k is the rf wavenumber (close to 60 m−1 for a
S-band gun). The final bunch length in terms of the
initial phase spread of the bunch is

kc∆Tf = ∆φ∞ ≈ ∆φ0

[
1− 1

2α

cos(φ0 + π/6
√

α)
sin2(φ0 + π/6

√
α)

]
.

(2)
A typical RF gun runs at φ0 = 30◦ and compresses
the final bunch length slightly compared to the laser
pulse length (i.e., ∆Tf < ∆TL).

To estimate the bunch length during the initial
acceleration, we simply multiple ∆Tf by the average
velocity cβ̄, i.e.,

Lb = β̄c∆Tf =
√

1− γ̄−2
∆φ∞

k
. (3)

where γ̄ is the average beam energy in units of mc2.
Figure 1 shows a numerical comparison of Eq. (3)
to IMPACT-T simulation [8] in the absence of any
space charge. Space charge effects at∼ 1 nC charges
tend to lengthen the bunch and offset mild RF com-
pression effect according to Eq. (1).

We will start our calculation assuming the bunch
is just completely born at the cathode. The average
energy is

γ̄0 ≈ 1 +
β̄2

0

2
, (4)

The initial average velocity can be estimated as fol-
lows. The head has velocity (eE0 sin φ0/m)∆TL, and
the tail has zero velocity, hence the average is

β̄0 =
eE0 sin φ0

2mc2
c∆TL . (5)

3. Transverse Space Charge Modeling

After determining the bunch length and the
charge density, we discuss the transverse space
charge modeling. From Ref. [6], the transverse space
charge of a cylinder bunch in the comoving beam
frame is

E′
r(r, a) =

ρ′

4πε0
2a

∫ π

0

dψ cosψ log
(

R− − s−
R+ − s+

)
,

(6)
where ρ′ is the charge volume density in the beam
frame, a is the radius of a uniform cross section, r =√

x2 + y2 is the radial coordinate,

R± =
√

r2 + a2 − 2ra cos ψ + s2± , (7)

s± = s± L′b
2 , and L′b = γ̄Lb is the beam frame bunch

length.
Since the space charge fields vary slowly across

the bunch, we focus our attention to the middle slice
at s = 0 and drop the s dependence in the rest
of the paper. Even when the initial laser transverse
cross section is uniform, the self-consistent evolution
of the transverse bunch distribution becomes quite
complicated due to RF and space charge forces. As-
suming cylindrical symmetry, the transverse space
charge field for a circular ring shell from a to a + da
with a charge density ρ′(a) is

E′
r(r, a + da)− E′

r(r, a) . (8)

The total transverse space charge can be found by
adding contributions from all rings with the normal-
ization ∫ rb

0

ρ′(a)2πada =
Ne

L′b
, (9)

where N is the total number of electrons, rb is the
maximum radius of beam cross section.

We can implement the above space charge field
into a numerical code for an arbitrary transverse
density distribution. Divide the total radial distance
into n(= 10) bins of equal (or unequal) radial sepa-
ration (0, r1, ..., rn = rb), count how many particles
fall into each ring. If fj is the fraction of particles in
the jth ring, then

ρ′j =
Ne

L′b

fj

π(r2
j − r2

j−1)
. (10)
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and the transverse space charge field in the beam
frame is

E′
r =

n∑

j=1

[E′
r(r, rj)−E′

r(r, rj−1)] . (11)

Transforming back to the lab frame, we have the
space charge fields as

ESC
r = γ̄E′

r , BSC
θ = γ̄

β̄

c
E′

r . (12)

4. Paraxial Ray Equations

We use the paraxial expansion for both the RF
and the solenoid fields. The RF fields are approxi-
mately given by

ERF
z (r, z, t) ≈

[
1− r2

4

(
∂2

∂z2
− ∂2

c2∂t2

)]
Ez(0, z, t) ,

ERF
r (r, z, t) ≈− r

2
∂Ez(0, z, t)

∂z
,

BRF
θ (r, z, t) ≈ r

2c

∂Ez(0, z, t)
c∂t

. (13)

where z is the longitudinal distance from the cath-
ode. The solenoid field can be described as

BSol
z (r, z) ≈

(
1− r2

4
d2

dz2

)
Bz(0, z) ,

BSol
r (r, z) ≈− r

2
dBz(0, z)

dz
, (14)

Since both the RF and the solenoid fields possess
cylindrical symmetry, the canonical angular momen-
tum pθ = γmr2θ̇ + erAθ is a constant of motion
(Aθ = rBz(0, z)/2 given by solenoid). The electron
motion is governed by the Lorentz force as (see, e.g.,
Ref. [9], p.71)

d(γmvz)
dt

=eERF
z + evr(BRF

θ + BSC
θ )− evθB

Sol
r ,

(15)
d(γmvr)

dt
=e(ERF

r + ESC
r )− evz(BRF

θ + BSC
θ )

− mr

4γ

(
eBSol

z

m

)2

+
p2

θ

γmr3
. (16)

Here vz = ż, vr = ṙ, vθ = rθ̇, γ = (1 − v2/c2)−1/2,
and v2 = v2

r + v2
θ + v2

z for each individual electron.
We have ignored the longitudinal space charge force
for these electrons that are assumed to be in the
middle of the bunch. We have also found that in-
cluding higher-order terms (than the second-order
ones) in the paraxial field expansion do not change
our numerical results shown in the next section.
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Fig. 2. The normalized on-axis RF and solenoid fields as
functions of distance from cathode for the LCLS RF gun.
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Fig. 3. Transverse momentum (after subtracting the linear
correlation with r) as a function of the radial position r
for the LCLS RF gun (1 nC charge, no solenoid) at various
times: (a) t=6.7 ps (black), (b) t=16.7 ps (blue), (c) t=33
ps (green), (d) t=167 ps (yellow), and (e) t=400 ps (red).

For simplicity, we assume the electrons are
born with zero canonical angular momentum (i.e.,
pθ = 0). This corresponds to the case when the
solenoid magnetic field at the cathode is negligi-
ble or is canceled by the field from a bucking coil
(i.e, B(0, z = 0) = 0). In such a case, we can set
vθ = −eAθ/(γm) = −erBz(0, z)/(2γm) in Eq. (15)
and drop the last term in Eq. (16). Although elec-
tron’s angular momentum γmr2θ̇ = −erAθ is not
zero inside the solenoid, it vanishes once the elec-
tron leaves the solenoid field region. Thus, we only
use Pr = γmvr for the transverse momentum in
computing the transverse emittance in this model
as well as in the simulation studies.

5. Numerical Results and Discussions

In this section, we describe numerical solutions of
the Lorentz equations (15) and (16) and compare
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with the simulation results of the LCLS RF gun. The
equations are solved in Mathematica. Typically, 400
macroparticles are launched at an initial RF phase
corresponding to the center slice (e.g., φ0 = 32◦).
The initial transverse distribution of these particles
is assumed to be uniform in the cross section fol-
lowing a uniform illuminating laser spot (of radius
1 mm). The temporal profile of the laser is assumed
to be flattop with a 10 ps pulse duration, and the
electron bunch length evolution follows Eq. (3). The
thermal emittance is taken to be zero (i.e., Pr(t =
0) = 0) to illuminate the slice emittance growth
mechanism. The on-axis RF and the solenoid fields
are given externally and are shown in Fig. 2, with
peak values E0 = 120 MV/m and B0 = 2513 G, re-
spectively. We follow these particles in time. At a
given time, we recalculate the space charge fields on
a uniform radial grid based on the transverse distri-
bution at that moment. Space charge fields at par-
ticle positions can be smoothly interpolated from
these grid points.

Figure 3 shows a few snapshots of the transverse
phase space (r,∆Pr) inside the RF gun in the ab-
sence of the solenoid, where ∆Pr is the residual
transverse momentum after subtracting the linear
correlation with r. The transverse phase space dis-
tortion occurs due to the nonlinear space charge near
the cathode when the bunch is still non-relativistic
and extremely short in length. The normalized rms
emittance in the case of cylindrical symmetry can
be calculated from

εn
x = εn

y =
1
2

√
〈r2〉〈P 2

r 〉 − 〈rPr〉2 , (17)

where 〈〉means averaging over all particles. Figures 4
and 5 show comparison of the slice emittance and the
rms beam size σx = σy =

√
〈r2〉/2 with IMPACT-T

simulations for two bunch charges in the LCLS gun
without solenoid focusing. The agreements are quite
reasonable. The slice emittance grows rapidly within
the first few mm from the cathode and then start to
decrease. As indicated in Fig. 3, when the transverse
beam size is increased due to space charge defocus-
ing, the phase space distribution tends to become
more linear. This self-linearizing process is also ob-
served in numerical simulations of Ref. [4].

Figures 6 and 7 show the slice emittance and the
rms beam size evolution at 1 nC charge with the
focusing solenoid and a drift space (of about 1.1 m
in length) following the solenoid before the booster
linac. Although the simplified model shows a sim-
ilarly complex behavior of the emittance evolution

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

z ( cm )

ε xn  (
 µ

 m
 )

 

 

IMPACT simulations (1 nC)
Simplified model (1 nC)
IMPACT simulations (200 pC)
Simplified model (200 pC)

Fig. 4. Slice emittance evolution at 1 nC and 200 pC for the
LCLS gun (no solenoid).
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Fig. 5. RMS beam size evolution at 1 nC and 200 pC for the
LCLS gun (no solenoid).

as the IMPACT-T simulation, there remains quan-
titative differences between the model and the sim-
ulation outside the solenoid region (beyond z ≈
0.3 m). The discrepancy in Fig. 6 might arise from
the strong transverse focusing that causes the beam
to converge after the solenoid. The convergence of
the beam may couple different slices with each other
through global space-charge forces which are not in-
cluded in this simplified model. Further studies are
necessary to understand this effect and to improve
the model.
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