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Chew on this: Amoebic trogocytosis and host cell killing by 
Entamoeba histolytica

Katherine S. Ralston
Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616 
USA

Abstract

Entamoeba histolytica was named “histolytica” (histo-: tissue; lytic-: dissolving) for its ability to 

destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor 

that underlies tissue destruction, but the mechanism was unclear. We recently showed that after 

attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this 

contributes to cell killing. Here we review this process, termed “amoebic trogocytosis” (trogo-: 

nibble), and how this process interplays with phagocytosis, or whole cell ingestion, in this 

organism. “Nibbling” processes have been described in other microbes and in multicellular 

organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an 

evolutionarily conserved process for intercellular exchange.
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Amoebiasis

Entamoeba histolytica is a protozoan parasite and the causative agent of amoebiasis in 

humans (Figure 1). E. histolytica cysts are found in contaminated food or water sources, and 

following ingestion and excystation, motile amoeboid trophozoites colonize the colon (Fig. 

1). This can be asymptomatic or result in diarrheal symptoms. Trophozoites can invade the 

intestine, resulting in amoebic colitis with profound ulceration that is associated with bloody 

diarrhea (Fig. 1). They can also disseminate and cause abscess formation in other sites in the 

body, most commonly in the liver (Fig. 1). While it is difficult to obtain an exact 

measurement of the burden of disease, E. histolytica is remarkably common in developing 

nations, and is responsible for an estimated 50,000,000 diarrheal infections per year [1]. 

Amoebic liver abscess results in an estimated 100,000 deaths annually [1]. Birth cohort 

studies indicate that in the first year of life, approximately 50% of infants in an urban slum 
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in Dhaka, Bangladesh are infected [2]. Malnourishment and stunting are associated with 

repeated infections in children [3]; hence children are a vulnerable group.

There is no vaccine, though acquired resistance to infection is associated with mucosal IgA 

directed to the trophozoite surface D-galactose/N-acetyl-D-galactosamine (Gal/GalNAc)-

specific lectin, suggesting that the Gal/GalNAc lectin represents a vaccine candidate [4]. 

Vaccination with fragments of the Gal/GalNAc lectin heavy chain has been shown to be 

protective in animal models [5–12]. Treatment with metronidazole is the standard [13, 14], 

though it has toxic side effects [13] and E. histolytica can develop resistance in vitro [15, 

16]. Some second line drugs are available [13, 14], and the re-purposed drug auranofin holds 

promise as a potential new therapeutic option [17]. Given the paucity of available drugs, 

resistance is a concern [15, 16]. Improved understanding of disease pathogenesis and 

development of new therapeutics are key priorities.

Host cell killing and pathogenesis

The organism was named “histolytica” (histo-: tissue; lytic-: dissolving) for its ability to 

damage tissue. E. histolytica trophozoites are profoundly cytotoxic, making it likely that 

direct killing of host cells underlies the ability of trophozoites to invade and destroy host 

tissues [18–22]. Despite the fundamental importance in pathogenesis, the precise mechanism 

by which E. histolytica trophozoites kill host cells has been unclear. In studies where E. 

histolytica trophozoites were incubated with a combination of living and pre-killed host 

cells, they appeared to preferentially ingest pre-killed cells, which suggested that the 

trophozoites kill host cells prior to ingestion [23]. Thus the prevailing model has been that 

trophozoites first kill host cells, prior to phagocytosis of dead cell corpses [18, 23, 24].

Cell killing is an active process

Host cell killing by E. histolytica is contact-dependent and requires the trophozoite surface 

Gal/GalNAc lectin for host cell attachment [25, 26]. Gal/GalNAc lectin engagement might 

also transduce signals that initiate the cell-killing mechanism [26]. An intact, viable 

trophozoite is required and there does not appear to be a secreted toxin, since neither 

trophozoite extracts, supernatants, nor killed trophozoites are cytotoxic [19, 20, 27]. Killing 

is an active process since amoebic cytoskeletal rearrangements are also necessary [25]. 

Additionally, trophozoite acidic intracellular vesicles have also been implicated in cell 

killing, since the addition of weak bases raises the vesicular pH and blocks cytotoxicity [28]. 

The precise role of these vesicles in killing is unknown. In host cells, calcium becomes 

elevated shortly after contact with an amoebic trophozoite [27]. Global dephosphorylation of 

tyrosine residues has also been reported to occur in host cells following contact [29].

Putative cell killing effectors

It has been hypothesized that the pore-forming “amoebapore” proteins mediate cell killing 

by acting as secreted toxins [30], though the lack of killing activity in amoebic lysates or 

supernatants is not supportive of the presence of a toxin [19, 20]. The three amoebapores, A, 

B and C, have sequence similarity to the mammalian membrane-permeabilizing proteins 

NK-lysin and granulysin [31]. All three amoebapores induce pore formation in synthetic 
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liposomes [32]. However, there is no experimental evidence to demonstrate secretion and 

transfer of amoebapores to host cells. The amoebapores require pH ~5.2 for pore-forming 

activity [32], due to pH-dependent dimerization [33], therefore a low pH environment would 

be needed for activity on host cell membranes. Amoebapore A has been epigenetically 

silenced, and this led to a decrease in liver abscess diameter in mice [34, 35], but silenced 

trophozoites were not defective in the SCID-hu-int model of intestinal amoebiasis (in which 

human intestinal xenografts are established in severe combined immunodeficident mice) 

[36], and they were not defective in tissue invasion in an ex vivo human intestine model 

[37]. Hence amoebapore A does not appear to be absolutely required for tissue destruction in 

vivo, though it was required for monolayer disruption in vitro [35].

E. histolytica possesses at least 50 cysteine protease genes, some of which are secreted [38]. 

It has been hypothesized that secreted amoebic cysteine proteases are also involved in cell 

killing [39–41], but again the lack of killing activity in amoebic lysates or supernatants is 

not supportive of a role for proteases in cell killing [19, 20]. The assay that was used to 

examine the potential contribution of cysteine proteases to cell killing was a measurement of 

the total dye remaining in a methylene-blue stained monolayer after exposure to trophozoite 

extracts or cysteine protease-overexpressing trophozoites. The assay does not specifically 

measure cell death and is complicated by the monolayer-disrupting activity of amoebic 

cysteine proteases. Amoebic cysteine proteases are capable of acting on a variety of host 

substrates including mucin, collagen, and an extracellular matrix (ECM) from vascular 

smooth muscle [42–46]. Studies employing ex vivo human intestine [37] suggest that 

amoebic cysteine proteases, particularly CP-A5, are likely to play a critical role in tissue 

invasion and damage independent of cell killing [37, 47, 48].

Amoebic trogocytosis

To improve understanding of the mechanisms underlying host cell killing, we recently 

employed live imaging studies to examine cell killing in real time. Unexpectedly, we found 

that following host cell attachment, E. histolytica trophozoites ingested distinct “bites” of 

host cells (Figure 2a), which we termed “amoebic trogocytosis” (Greek, trogo–: nibble) 

[49]. Within one minute of host cell contact, amoebic trogocytosis was initiated. Host cells 

were alive when this process began, but eventually died as evidenced by loss of membrane 

integrity (Figure 2b) [49]. Interestingly, once host cells had been killed, amoebic ingestion 

ceased and trophozoites detached from dead cell corpses [49]. When trophozoites were 

incubated with a combination of living and pre-killed host cells, the live host cells were 

ingested by amoebic trogocytosis, while the pre-killed host cells were ingested whole 

(Figure 2c – 2d). The ingestion of pre-killed cells is consistent with previous studies [23]. It 

is possible that pre-killed host cells have different surface characteristics from cells directly 

killed by the amoebae, and that these surface characteristics determine the type of ingestion 

that occurs (see below).

Combined use of pharmacological, biochemical and genetic approaches demonstrated that 

amoebic trogocytosis requires physiological temperature, amoebic actin rearrangements, 

Gal/GalNAc lectin, EhC2PK and PI3K signaling [49]. Although these proteins also have 

roles in phagocytosis in E. histolytica (Table 1), amoebic trogocytosis is predominant with 
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living host cells. Therefore, interference with actin, Gal/GalNAc lectin, EhC2PK or PI3K 

quantitatively reduced amoebic trogocytosis of living human cells, as measured by imaging 

flow cytometry. In all cases, when amoebic trogocytosis was quantitatively reduced, there 

was a corresponding reduction in host cell death. Cell death following amoebic trogocytosis 

might be due to the accumulation of physical damage in the nibbled cell. Host cells retained 

membrane integrity for an average of ~ 27 minutes [49], suggesting that either numerous 

bites are needed to precipitate cell death, or that following the initial damage, a cell death 

program is initiated that takes some time to complete.

Trogocytosis in other organisms

Morphologically similar processes occur in a variety of amoebae. In some cases, these 

processes have been termed “trogocytosis,” but the extent to which the mechanisms are 

similar is not yet known. The term was first coined in studies of the interactions between the 

pathogenic amoeba Naegleria fowleri and host cells [50]. Prior to this, there were reports of 

“nibbling, piecemeal” ingestion of red blood cells by N. fowleri and Hartmanella [51, 52]. A 

process termed “nibbling” has also been described in Dictyostelium caveatum during 

predation of other Dictyostelium species [53, 54]. Since amoebae do not form a taxonomic 

group, it is notable that nibbling processes have been observed in numerous amoebae from 

at least two eukaryotic supergroups, the Amoebozoa and Excavates.

In addition to the occurrence of nibbling processes in amoebae, a morphologically similar 

process, also termed trogocytosis, occurs in multicellular organisms [55]. This was first 

described at the immunological synapse in mammalian immune cells, where lymphocytes 

obtain plasma membrane fragments and surface molecules from antigen-presenting cells 

[56–59]. Trogocytosis is now recognized to occur between a variety of different immune 

cell types [60]. A key difference between this processes in multicellular organisms and in 

amoebae, is that trogocytosis in multicellular organisms does not appear to result in cell 

death. The reason for this distinction is not yet apparent, but this may be because the 

described examples of trogocytosis in multicellular organisms involve the exchange of fewer 

bites, and these bites are primarily fragments of cell membrane. In contrast, in amoebic 

trogocytosis, ingested bites commonly contain target cell cytoplasm and can also contain 

organelles [49].

Amoebic trogocytosis versus phagocytosis in E. histolytica

An important question is whether amoebic trogocytosis is mechanistically distinct from 

phagocytosis in E. histolytica. Since the underlying mechanistic differences are not yet 

apparent, we will refer here to “trogocytosis” as ingestion in which bites of cellular material 

are internalized, and “phagocytosis” as ingestion in which an entire cell is internalized. In 

other organisms, the mechanistic basis for trogocytosis is not known and specific signaling 

processes have not been well defined. Notably in T cell trogocytosis, two small GTPases 

have been identified that are involved in its regulation, TC21 and RhoG [61]. RhoG has an 

established role in phagocytosis [61]. Additionally, trogocytosis by CD4+ T cells has been 

shown to involve actin rearrangements, PI3K, Src and Syk signaling [61, 62]. Thus the 
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relationship between trogocytosis and phagocytosis in not understood in any organism, 

though it appears that the two processes share some features.

Effect of target cell deformability

In the case of amoebic trogocytosis, the occurrence of this process or phagocytosis appears 

to depend on qualities of the target cell, including its deformability, whether it is viable, and 

its size (Figure 3). Target cell deformability appears to be important during E. histolytica 

ingestion, since cell distortion during phagocytosis by E. histolytica has been previously 

reported [63, 64]. During ingestion of Chinese Hamster Ovary (CHO) cells, a “tunnel” of 

CHO cell material was stretched into the trophozoite, which sometimes preceded ingestion 

of the entire CHO cell, and sometimes persisted indefinitely [64]. A similar tunnel of 

material, referred to as “suction” or “micro-phagocytosis,” occurred during ingestion of 

human red blood cells, where 90% of human red blood cells were ingested in this manner 

and the remaining 10% were directly ingested as a single unit [63]. We have observed 

similar tunnels during amoebic trogocytosis, and have sometimes detected both the 

appearance of a tunnel and bites (e.g., Figure 2a), suggesting that the observed bites may 

potentially fragment off of the stretched tunnel of intracellular material. In the case of red 

blood cells, increasing the rigidity by pre-exposing red blood cells to increasing 

concentrations of fixative prior to co-incubation with trophozoites led to a reduction in 

micro-phagocytosis [65]. Therefore, natural differences in the deformability of different cell 

types could influence the extent of fragmentation that occurs during ingestion, and whether 

phagocytosis or amoebic trogocytosis occurs.

Effect of target cell viability

The viability of the target cell may also be an important determinant for the occurrence of 

amoebic trogocytosis or phagocytosis (Figure 3). When trophozoites were co-incubated with 

a combination of living host cells, and host cells that had been pre-killed, the living cells 

were ingested by amoebic trogocytosis and the pre-killed cells were ingested by 

phagocytosis (Figure 2d) [49]. The dependence of amoebic trogocytosis on living host cell 

targets may again suggest that the deformability of the target cell influences its fate during 

amoebic ingestion, since dead cells are likely to be less deformable than living cells. 

Alternatively, differences in amoebic surface proteins that bind to living vs. dead cells (see 

below) may activate different downstream signaling pathways in the trophozoite leading to 

amoebic trogocytosis of live cell targets, and phagocytosis of dead cell targets. An additional 

possibility is that living host cells actively contribute to amoebic trogocytosis in some way, 

making amoebic trogocytosis only possible with living host cell targets.

Effect of target cell size

Finally, whether amoebic trogocytosis or phagocytosis occurs also depends the size of the 

target cell. With smaller cells, such as human red blood cells (diameter ~ 7 μm, thickness ~ 2 

μm), both micro-phagocytosis and phagocytosis were reported to occur, and we have also 

detected the occurrence of amoebic trogocytosis [49, 63, 65]. Very little red blood cell 

material remains extracellular following ingestion [49, 63, 65], reflecting that either the 

entire red blood cell has been ingested in successive bites, or that phagocytosis has occurred. 
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Slightly larger cells such as human Jurkat T cells (diameter ~ 12 μm, thickness ~ 12 μm) are 

also ingested by both amoebic trogocytosis and phagocytosis, although the balance is shifted 

toward amoebic trogocytosis in this case [49]. We detected up to 20% of Jurkat cells that are 

ingested by phagocytosis, with the remainder ingested by amoebic trogocytosis [49]. 

Significantly more material remains extracellular in this case, including the prominent, 

undigested Jurkat cell nuclei [49].

Common features of amoebic trogocytosis and phagocytosis

Since no unique signaling pathways that define trogocytosis have been defined in any 

organism, it has only been possible to test whether proteins with known roles in 

phagocytosis in E. histolytica also play a role in amoebic trogocytosis. By defining that 

amoebic trogocytosis requires physiological temperature, amoebic actin rearrangements, 

Gal/GalNAc lectin, EhC2PK and PI3K signaling (Figure 3), thus far all tested proteins that 

are required for phagocytosis [23, 66, 67] are also required for amoebic trogocytosis [49]. 

Additionally, it appears that amoebic trogocytosis is under “feed-forward” regulation, as has 

been demonstrated during amoebic phagocytosis of beads [68]. During amoebic 

phagocytosis of beads, trophozoites that had previously been exposed to beads upregulated a 

number of genes and were “primed” to undergo enhanced ingestion of beads relative to 

trophozoites that had not been exposed to beads [68]. Similarly, trophozoites that had 

previously undergone amoebic trogocytosis were primed to undergo more ingestion and 

more cell killing than trophozoites that had not undergone amoebic trogocytosis [49].

Phagocytosis in E. histolytica

As outlined above, there are features that are common to both amoebic trogocytosis and 

phagocytosis. It is not yet clear whether there are also mechanistic distinctions between the 

two processes. Here we summarize the current paradigms for phagocytosis in E. histolytica, 

highlighting aspects that could potentially be relevant to amoebic trogocytosis.

Target cell attachment in phagocytosis

There are a number of E. histolytica surface proteins with roles in attachment to host cells, 

including some with roles in attachment that are specific to live or dead cells, which may be 

relevant to the specificity of amoebic trogocytosis for living cells (Figure 3). Engagement of 

different surface receptors by live and dead host cells could potentially trigger different 

ingestion processes. The amoebic Gal/GalNAc lectin plays a more significant role in 

attachment to living cells than apoptotic cells or calcium ionophore-treated erythrocytes [23, 

69]. The rhomboid protease EhRom1 can cleave the Gal/GalNAc lectin heavy subunit [70] 

and knockdown of EhRom1 reduces attachment [71] as well as cell motility [72]. The 

attachment defect in the EhRom1 knockdown mutant was specific to live host cells, and 

attachment to apoptotic host cells was normal [71]. These data together imply a significant 

role for the Gal/GalNAc lectin in recognition of living cells. There is some evidence that 

suggests signaling downstream of the lectin might regulate amoebic trogocytosis. Blocking 

antibody studies previously suggested that lectin engagement plays a role in initiating the 

cell-killing program [26], and lectin signaling also appears to be critical in regulating 

amoebic trogocytosis, since the same blocking antibody reduced amoebic trogocytosis [49]. 
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Hence it is possible that engagement of the Gal/GalNAc lectin by living cells triggers 

ingestion via amoebic trogocytosis.

In the recognition of dead cells, amoebic binding to host cells that have been chemically 

induced to undergo apoptosis has been the most characterized. The surface metalloprotease 

EhMSP-1 was shown to have a role in attachment to both live and apoptotic cells [73]. A 

blocking antibody directed to the serine-rich E. histolytica protein SREHP, reduced 

attachment to apoptotic host cells, but had a much smaller effect on attachment to live host 

cells [74]. E. histolytica trophozoites can bind to phosphatidylserine (PS) [69]. Opsonization 

of apoptotic cells with C1q or collectin family members enhanced uptake by E. histolytica 

[75], and C1q has been shown to bind to trophozoite surface calreticulin [76]. Together, 

these findings suggest that both PS and additional physiological ligands present on apoptotic 

cells may be important determinants for amoebic attachment.

Additional proteins with roles in attachment include the transmembrane kinase family 

members TMK39 [77], TMKb1-9 [78] and PATMK [79]. There are ~ 90 such TMK genes 

in the E. histolytica genome [80, 81], making it likely that other TMKs are involved in 

recognition and attachment to different ingestion targets. Most of the TMKs await functional 

characterization. Another gene family involved in attachment is the family of predicted 

transmembrane serine-, threonine, and isoleucine rich proteins, known as EhSTIRP [82]. 

Additionally, the 112 kDa cysteine protease and adhesin complex, EhCPADH, contributes 

to attachment [83]. Finally, the amoeba protein KERP1 may also be involved in host cell 

attachment [84, 85]. Notably, the recent cell surface proteome of E. histolytica identified 

693 candidate membrane proteins, but strikingly, 49% of the identified proteins lack 

conserved surface association domains or motifs [86]. Hence there are far more proteins 

present on the trophozoite surface than previously understood, and it is likely that at least 

some of these proteins contribute to attachment.

Initiation of phagocytosis

As in other organisms, phagocytosis in E. histolytica requires actin and myosin [87]. In the 

process of initiating phagocytosis and regulating actin rearrangements, there are roles for a 

family of calcium-binding proteins (CaBPs) unique to Entamoeba (Figure 3) [88]. There are 

27 CaBPs with multiple EF-hand calcium-binding domains in the E. histolytica genome 

[88]. Characterized CaBPs do not have conserved actin binding or lipid binding domains, 

yet many of them functionally interact with actin or lipids, making it possible that along 

with actin remodeling, CaBPs are also involved in initiating membrane deformation, which 

is also a necessary event in initiating ingestion. Some of the CaBPs represent independent 

regulators of ingestion, making it possible that differential triggering of CaBPs could 

influence the ingestion mechanism engaged by different host cell targets. Additional 

complexity to CaBP signaling comes from the fact that some key protein-protein and 

protein-lipid interactions are calcium independent, while others are dependent on calcium.

Calcium-binding protein 1 (EhCaBP1), together with EhC2PK, is part of a signaling 

pathway that initiates ingestion. EhC2PK binds amoebic PS in the presence of calcium and 

recruits EhCaBP1 to the cell membrane [67]. EhCaBP1 binds F-actin and is crucial for F-

actin dynamics, as its loss affects cell proliferation, phagocytosis, and fluid-phase 
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endocytosis [89, 90]. EhCaBP1 also recruits the alpha kinase EhAK1, which was recently 

shown to directly phosphorylate G-actin [91]. The interaction of EhCaBP1 and EhAK1 is 

calcium dependent [91], while the interaction of EhCaBP1 and EhC2PK is calcium 

independent [67]. Such behavior of EhCaBP1 may be responsible for giving rise to 

mechanistic differences in fluid-phase endocytosis versus phagocytosis and spatial 

regulation of actin dynamics. Another calcium-binding protein, EhCaBP3 interacts with 

lipids directly and may function in initiation of phagocytosis independent of the EhCaBP1/

EhC2PK pathway [92]. EhCaBP3 also binds actin directly and influences bundling and 

polymerization, and may regulate closure of phagocytic cups since phagocytosis is slowed 

when EhCaBP3 expression is knocked down [92]. Finally, another calcium-binding protein, 

EhCaBP5, was recently shown to interact with myosin 1B in a calcium independent manner 

and may represent a myosin light chain [93].

Intracellular trafficking in phagocytosis

PI3K signaling is important in the early stages of phagosome formation, and there is a role 

for FYVE-domain proteins [64, 94]. Following initiation of ingestion and the formation of a 

phagosome, intracellular trafficking in E. histolytica appears to be complex. The Rab, Arf, 

Rho and Rac GTPases gene families are all greatly expanded in E. histolytica [81, 95]. 

Many of the small GTPases, and other candidate phagosome proteins, have been identified 

in proteomic analyses of E. histolytica phagosomes and await functional characterization 

[79, 96–98]. It is an intriguing possibility that the expansion of small GTPases reflects the 

complexity of ingestion in E. histolytica, with potentially different intracellular trafficking 

occurring in phagocytosis and amoebic trogocytosis. However, how the small GTPases 

intersect with amoebic trogocytosis is not yet clear.

Small GTPases that have been characterized to have roles in phagocytosis in E. histolytica 

include the Rac protein p21RacA [66]. Among Rab proteins, EhRabB localizes to the 

phagocytic cup during phagocytosis [99–101] and appears to interact with a candidate G-

protein coupled receptor, EhGPCR-1 [102]. EhRab5 does not appear to be involved in 

endocytosis as in other organisms, and together with a Rab7 homologue, EhRab7A, it 

localizes to a pre-phagosomal vacuole [103]. These pre-phagosomal vacuoles appear to arise 

de novo and distinct from phagosomes [103]. Following dissociation of EhRab5, the pre-

phagosomal vacuole fuses with the phagosome, and EhRab7A dissociates [103]. EhRab7B 

appears to play a role in late endosome-lysosome fusion [104]. EhRab7A may also be 

involved in secretion [105]. Finally, additional Rabs with likely roles in the E. histolytica 

secretory pathway include EhRab11B, EhRab8, and EhRabA [40, 106, 107].

Amoebic trogocytosis in tissue invasion and destruction

An important question is how amoebic trogocytosis and/or phagocytosis influence tissue 

invasion and damage in vivo. Amoebic trogocytosis occurs in the context of ex vivo mouse 

intestinal tissue [49]. Perhaps in the context of the intestinal epithelium, with the tight 

intercellular connections between cells, phagocytosis of entire cells is difficult or 

impossible. Amoebic trogocytosis of cells, on the other hand, may allow trophozoites to 

ingest portions of intestinal epithelial cells, with the consequence of ultimately leading to 

cell death and localized tissue damage. This could potentially facilitate a subsequent 
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opportunity for trophozoites to breach the epithelial barrier and invade. Amoebic 

trogocytosis might provide an opportunity for environmental sensing by allowing amoebic 

trophozoites to sample different cell types, or it could serve a nutritional role by providing 

amoebae with macromolecules that are costly to synthesize. Given the finding that amoebic 

trogocytosis occurs during tissue invasion, and that inhibition of amoebic trogocytosis 

quantitatively reduces invasion depth of ex vivo mouse intestinal tissue [49], there appears to 

be a role for this process in invasive pathology. Further suggesting a role for amoebic 

trogocytosis in tissue damage, in a 3-D liver culture model, trophozoites invading the upper 

layer of liver sinusoidal endothelial cells (LSEC) were observed to contain fragments of the 

LSEC, potentially reflecting the occurrence of amoebic trogocytosis [108].

Concluding remarks

Tissue lysis underlies pathogenesis of invasive amoebiasis and is the feature for which the 

pathogen was named. Direct killing of host cells is likely to be a major contributor to tissue 

damage. With the discovery of amoebic trogocytosis, we have a new model for how 

amoebae kill host cells. With this new model, there are many questions about how amoebic 

trogocytosis interplays with phagocytosis, and whether there are distinct pathways for each 

process (Box 1). Given the abundance of amoebic receptors for host cell attachment, and the 

precedence for receptors that are specific for living vs. dead host cells, it is likely that 

engagement of different receptors triggers amoebic trogocytosis or phagocytosis. 

Additionally, with the expansion of genes involved in vesicle trafficking, and the large 

number of calcium-binding proteins that regulate ingestion in this organism, it is possible 

that distinct intracellular machinery is engaged for each process.

Box 1

Outstanding questions

• Does engagement of different amoeba surface receptors by live and dead cells 

dictate whether amoebic trogocytosis or phagocytosis occurs?

• What are the ligands of the large family of TMKs?

• Are there more receptors for host attachment among the large number of 

recently discovered E. histolytica membrane proteins?

• Do distinct mechanisms occur in phagocytosis and amoebic trogocytosis?

• Are there shared mechanisms for cell nibbling processes that are seen in other 

organisms?

• Is trogocytosis a more widespread form of intercellular exchange than we 

currently appreciate?

While amoebic trogocytosis occurs in a tissue model, it will be of interest to better define 

how this process impacts pathogenesis in vivo. Additionally, amoebic trogocytosis in E. 

histolytica may be relevant beyond amoebiasis, as a cell biological process that also appears 

to be relevant to many organisms. “Nibbling” processes occur in a variety of amoebae as 
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well as multicellular organisms. It will be of interest to better understand why trogocytosis 

in multicellular organisms does not appear to result in cell death, but it is associated with 

killing of nibbled cells by microbes. One possibility is that a common pathway for 

intercellular exchange has been taken to the extreme in the case of cytotoxic microbes, 

which appear to ingest more cellular material during nibbling, both in terms of cellular 

contents and sheer amount of ingested material. Studies of amoebic trogocytosis in E. 

histolytica may shed light on a potentially evolutionarily conserved process that can result in 

cellular communication or death. It is certainly “food for thought.”
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Highlights

• Host cell killing is likely to underlie the pathogenesis of amoebiasis.

• Amoebic trogocytosis (trogo-: nibble) by E. histolytica is a recently discovered 

mechanism for host cell killing.

• We place amoebic trogocytosis in the context of previous studies of cell killing 

by E. histolytica.

• Amoebic trogocytosis and phagocytosis are compared, and potential 

mechanistic differences highlighted.

• “Nibbling” processes by other organisms are discussed.
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Figure 1. Amoebiasis in humans
Model for the Entamoeba histolytica life cycle and pathogenesis of disease in humans. 

Infection occurs following the ingestion of E. histolytica cysts that are found in 

contaminated water or food sources. Following excystation, motile amoeboid trophozoites 

colonize the large intestine. Encystation can occur to produce new cysts. Both cysts and 

trophozoites are found in the feces of infected individuals. Colonization with E. histolytica 

trophozoites can be asymptomatic or lead to diarrheal symptoms, and the trophozoites are 

thought to be noninvasive in these situations. Trophozoites can also invade and damage the 

large intestine, resulting in ulceration and dysentery symptoms. Less commonly, 

trophozoites can spread to other tissues in the body, and they most often spread to the liver. 

Trophozoites that have spread outside of the intestine result in abscesses that can be fatal.
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Figure 2. Amoebic trogocytosis is specific to live human cells and occurs prior to human cell 
death
(A) Example of amoebic trogocytosis. Time-lapse confocal microscopy demonstrating the 

ingestion of fluorescently labeled “bites” of human cell material by an amoebic trophozoite. 

Human Jurkat T cells were pre-labeled with 1,1′-Dioctadecyl-3,3,3′,3′-

Tetramethylindodicarbocyanine, 4-Chlorobenzenesulfonate (DiD) and 5-

chloromethylfluorescein diacetate (CMFDA). DiD (shown in pink) labels the plasma 

membrane, while CMFDA (shown in green) labels amines. H, human cell; A, amoeba. 

Arrows, ingested “bites.” Time is indicated in minutes:seconds. Bar, 10 μm. (B) Timing of 

the first occurrence of events as detected by live confocal microscopy, relative to the time 

that trophozoites were combined with human Jurkat T cells. Human Jurkat T cells were pre-

labeled with DiD and pre-loaded with the calcium indicator fluo4. SYTOX blue was present 

in the media during imaging. Amoebic trogocytosis was detected by the appearance of DiD-
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labeled human cell bites with the trophozoites. Calcium elevation was assessed by the 

appearance of a sustained increase in intensity of Fluo4. Cell death was assessed by the 

uptake of SYTOX blue, reflecting loss of membrane integrity. 60 cells from 15 independent 

experiments were quantified; shown are the individual data points, means and standard 

deviations. P-values from statistical analyses are indicated. (C – D) Human Jurkat T cells 

were either alive or pre-killed via heat treatment, and separately labeled. Live human cells 

were labeled with DiD (pink). Heat-killed human cells were labeled with CMFDA (green). 

SYTOX blue was present in the media during imaging. (C) Pre-killed and live human cells 

were combined at an equal ratio in the absence of Entamoeba histolytica. SYTOX blue 

labeling demonstrates that heat-killed human cells are dead. (D) Pre-killed and live human 

cells were combined with E. histolytica at a ratio of 1 amoeba to 5 pre-killed and 5 living 

human cells. Pre-killed cells were ingested whole (arrowheads, ingested pre-killed cells). 

Live cells (asterisks) were ingested by amoebic trogocytosis (arrows, ingested bites of live 

cells). Bar, 10 μm. Reprinted with permission from [49].
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Figure 3. Amoebic trogocytosis and phagocytosis
Model for amoebic attachment to different host cell types, and signal transduction during the 

initiation of amoebic trogocytosis or phagocytosis. (A) Attachment to live host cells is 

mediated by the amoebic Gal/GalNAc lectin that binds to Gal or GalNAc residues on host 

surface proteins. The Gal/GalNAc lectin consists of a heavy chain that binds Gal or 

GalNAc, a covalently associated light chain and a non-covalently associated intermediate 

chain. The rhomboid protease EhRom1 can cleave the Gal/GalNAc lectin heavy chain. 

Other amoebic proteins that are involved in attachment to live cells include the family of 

predicted transmembrane serine-, threonine, and isoleucine rich proteins, known as 

EhSTIRP, the transmembrane kinase family member TMKb1-9, and the 112 kDa cysteine 

protease and adhesin complex CPAdh. KERP1 may also be involved in attachment. (B) 
Attachment to host cells that have been induced to undergo apoptosis involves the serine-

rich Entamoeba histolytica protein SREHP, and the transmembrane kinase family member 

TMK39. Attachment to host cells that have been induced to undergo apoptosis cells and 

have subsequently been opsonized with C1q or collectin family members involves amoebic 

calreticulin. (C) Attachment to calcium ionophore-treated erythrocytes involves the 

transmembrane kinase family member PATMK. Exposed phosphatidyl serine (PS) appears 

to be a ligand for amoebic binding. (D–E) Larger or more deformable cells are more likely 

to be ingested by amoebic trogocytosis, while smaller or less deformable cells are more 

likely to be ingested by phagocytosis. Pre-killed cells that are killed via heat treatment are 

ingested by phagocytosis (Figure 2c), making it likely that host cells that have been induced 

to undergo apoptosis and calcium-treated erythrocytes are also ingested by phagocytosis. 
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Dead cells are also likely to be less deformable. (D) Signal transduction in the initiation of 

amoebic trogocytosis includes PI3K and EhC2PK, both of which influence actin 

polymerization. (E) Signal transduction in the initiation of phagocytosis includes EhCaBP3 

and PI3K, both of which influence actin polymerization. EhC2PK also recruits EhCaBP1, 

which recruits EhAK1. EhAK1 phosphorylates G-actin, and thereby impacts actin dynamics. 

EhCaBP5 appears to be a light chain of myosin.
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Table 1

Amoebic molecules with roles in amoebic trogocytosis and phagocytosis in E. histolytica.a

Amoebic molecule Process Function (or subcellular location) Host cell types Reference

Gal/GalNAc lectin Amoebic 
trogocytosis 
and 
phagocytosis

Attachment to Gal or Gal/NAc, initiation of 
amoebic trogocytosis

Live cells (numerous cell lines 
and cell types)

[4, 23, 26, 
49, 69]

EhRom1 Phagocytosis Attachment, cleavage of Gal/GalNAc lectin and 
unknown substrates

Live CHO cells, apoptotic CHO 
cells, erythrocytes

[70, 71]

EhMSP-1 Phagocytosis Attachment, cleavage of unknown substrates Live Jurkat cells, apoptotic Jurkat 
cells

[73]

SREHP Phagocytosis Attachment Apoptotic Jurkat cells [74]

Calreticulin Phagocytosis Attachment to C1q and unknown substrates Apoptotic Jurkat cells, apoptotic 
Jurkat cells opsonized with C1q, 
ionophore-treated erythrocytes

[76]

TMK39 Phagocytosis Attachment Apoptotic Jurkat cells [77]

TMKb1-9 Phagocytosis Attachment Fixed CHO monolayers [78]

PATMK Phagocytosis Attachment Ionophore-treated erythrocytes [79]

EhSTIRP Phagocytosis Attachment Live CHO cells [82]

EhCPADH Phagocytosis Attachment Erythrocytes [83]

KERP1 Phagocytosis Attachment Fixed Caco2 monolayers, fixed 
CHO monolayers

[84, 85]

EhC2PK Amoebic 
trogocytosis 
and 
phagocytosis

Initiation of ingestion, binding to amoebic PS 
and recruitment of EhCaBP1

Live Jurkat cells, erythrocytes [49, 67]

EhCaBP1 Phagocytosis Initiation of ingestion, recruitment of EhAK1 Erythrocytes [89, 90]

EhAK1 Phagocytosis Phosphorylation of G-actin Erythrocytes [91]

EhCaBP3 Phagocytosis Initiation of ingestion, binding to amoebic 
membrane and actin, actin remodeling

Erythrocytes [92]

EhCaBP5 Phagocytosis Myosin light chain Erythrocytes [93]

Myosin Phagocytosis Generation of force, shape changes in ingestion, 
intracellular trafficking

Likely numerous cell types and 
both live and dead cells

[87]

Actin Amoebic 
trogocytosis 
and 
phagocytosis

Generation of force, shape changes in ingestion, 
intracellular trafficking

Likely numerous cell types and 
both live and dead cells

[49, 87]

PI3K Amoebic 
trogocytosis 
and 
phagocytosis

Generation of phosphoinositides, leading to 
phagosome formation and actin remodeling

Live Jurkat cells, erythrocytes [49, 66, 94]

EhFP4 and other 
FYVE-domain 
proteins

Phagocytosis Phosphatidylionositol 3- phosphate-binding Live CHO cells, erythrocytes [64, 94]

p21RacA Phagocytosis Likely regulates actin remodeling Erythrocytes [66]

EhRabB Phagocytosis (Phagocytic cup) Erythrocytes [99–101]

EhRab5 Phagocytosis (Pre-phagosomal vacuole) Erythrocytes [103]

EhRab7A Phagocytosis Pre-phagosomal vacuole- phagosome fusion Erythrocytes [103]

EhRab7B Phagocytosis Late endosome-lysosome- lysosome fusion Erythrocytes [104]

a
Likely functions of each protein are summarized, or in cases where functional information is not available, subcellular localization is indicated. 

Host cell types that have been characterized are listed.
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Abbreviations as follows: D-galactose/N-acetyl-D-galactosamine-specific lectin, Gal/GalNAc; Chinese hamster ovary cell, CHO; transmembrane 
kinase, TMK; serine-, threonine, and isoleucine rich protein family, EhSTIRP; cysteine protease and adhesin complex, CPADH; phosphatidyl 
serine, PS.
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