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Extracellular vesicles: A new paradigm for cellular
communication in perioperative medicine, critical care and pain
management

Yinggiu K. Zhou, M.D.1, Hemal H. Patel, Ph.D.1, David M. Roth, Ph.D., M.D.1
lveterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of
Anesthesiology, UCSD School of Medicine, San Diego, CA, USA

Abstract

Extracellular vesicles (EVSs) play critical roles in many health and disease states, including
ischemia, inflammation and pain, which are major concerns in the perioperative period and in
critically ill patients. EVs are functionally active, nanometer-sized, membrane-bound vesicles
actively secreted by all cells. Cell signaling is essential to physiological and pathological
processes, and recently, EVs have emerged as key players in intercellular communication. Recent
studies in EV biology improve our mechanistic knowledge of the pathophysiological processes in
perioperative and critical care patients. Studies also show promise in using EVs in novel diagnostic
and therapeutic clinical applications. This review considers the current advances and gaps in
knowledge of EVs in the areas of ischemia, inflammation, pain, and organ systems that are most
relevant to anesthesiology, perioperative medicine, critical care, and pain management. We expect
the reader will better understand the relationship between EVs and perioperative and critical care
pathophysiological states and their potential use as novel diagnostic and therapeutic modalities.

Introduction

Cell signaling is essential to physiological and pathological processes. It has been long
accepted that vesicles secreted by specialized cells carry signaling molecules such as
neurotransmitters and hormones. Recently, extracellular vesicles (EVs) have emerged as
key players in cell-to-cell communication.12 EVs, first observed in the mid-1900s and
considered cellular waste or “dust,”3 are lipid-bilayer bound nanoparticles now known

to be secreted by all cells. Their important signaling functions have been shown in a

wide range of physiological and pathological processes including immune function, cancer,
organ homeostasis, regeneration®, and viral spread®, and are further evidenced by their
evolutionary conservation from lower organisms such as bacteria to plants and humans.
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Anesthesiologists face a wide range of pathophysiological processes, and knowledge of the
current state of EV research is vital given the critical role that EVs play in pathophysiology.
The role of EVs in the perioperative period, critical care and pain management are limited
but studies are ongoing. A recent study shows EVs may reveal previously unknown
physiological impacts of anesthetic agents,® and in the current worldwide coronavirus
disease 2019 (COVID-19) pandemic EVs are studied as a novel therapeutic modality.” In
the rapidly expanding field of EV biology, further research in the perioperative period can
impact the understanding and care of perioperative, critical care and pain patients.

Due to the involvement of EVs in a wide range of physiological and pathological processes,
the field of EV biology is extremely broad, and the breadth and depth of the subject cannot
be covered in one review. This review will focus on the three interconnected areas of
ischemia, inflammation, and pain in the organ systems most relevant to anesthesiology,
perioperative medicine, and pain management. The review addresses advances in the
understanding of EVs in disease mechanisms, potential diagnostic and therapeutic clinical
applications.

Extracellular Vesicles: Overview

EVs are a heterogeneous group of membrane bound vesicles differing in size, cargo,
membrane composition, and biogenesis. Biogenesis is mainly via two mechanisms. The
first mechanism involves fusion of multivesicular bodies (MVBs) with the cell membrane
to form exosomes. The second mechanism involves plasma membrane budding to form
microvesicles (MVs), ectosomes, or microparticles (Figure 1). Apoptotic bodies, vesicles
formed by plasma membrane blebbing during apoptosis, may be co-isolated with EVs but
will not be discussed in this review. Extracellular vesicles can also be sorted by size;
exosomes are reported mainly in the 50-150 nm size range, MVs in the 100-1000 nm range
and apoptotic bodies in the 1000-5000 nm range. Current vesicle isolation and analysis
methods cannot clearly distinguish between vesicle subtypes given their overlapping size,
density, content, membrane orientation, and surface molecules. A standard nomenclature
has yet to be uniformly adopted—we will thus refer to exosomes, MVs, ectosomes, and
microparticles collectively as EVs in this review.

EV cargo has functional effects and includes genetic material, proteins, lipids, and soluble
mediators. A frequently studied cargo is microRNAs (miRNAs)—small strands (~22
nucleotides) of noncoding RNAs that serve as posttranscriptional gene regulators that bind
to target messenger RNAs and impact physiological processes and diseases.8 Since free
miRNAs are degraded in body fluids, EVs function as protective carriers of miRNAs.

We discuss the roles of miRNAs and EVs further below. Other than encapsulated cargo,
EV membrane proteins and lipids also exert functional effects via autocrine, paracrine,
and endocrine signaling. EV surface molecules act as receptors and ligands to target EVs
to specific sites, such as the plasma membrane of recipient cells, where EVs activate
downstream signaling, endocytosis or fusion with the plasma membrane.® The actions of
EVs are of critical importance to many health and disease states including but not limited to
ischemia, inflammation, pain, malignancy, and metabolism.10-14

Anesth Analg. Author manuscript; available in PMC 2022 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhou et al.

Page 3

Extracellular vesicles have been collected and studied in many biofluids including blood,
CSF, urine, saliva, tears, and bronchoalveolar lavage (BAL) fluid. The ease of sampling

EVs from biofluids to obtain a snapshot of pathophysiological states makes EVs exceptional
biomarker candidates.

Compared to soluble mediators, EVs are stable as membrane-bound vesicles and can cross
biological membranes such as the blood brain barrier (BBB).1>-17 Thus, EVs have also
been the focus of therapeutic development (Figure 2). Studies have shown success in
customizing EV cargo and membrane molecules to target and deliver to specific tissues

or cells. Their low immunogenicityl8 compared to whole-cell treatments are also a focus
of recent studies—the efficacy of stem cell therapy, such as mesenchymal stem cell (MSC)
treatments, are mediated by EVs secreted by stem cells.19-21 Recently, with the spread of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19, EVs have
been suggested as both mediators of viral spread® and as a novel therapeutic in the form of
MSC derived EVs,” or delivery vehicles for messenger RNA (MRNA) vaccines.22

Extracellular vesicles and perioperative ischemia

Acute ischemia and ischemia-reperfusion (IR) injury are common among perioperative and
critical care patients. EVs have been shown to play critical roles in ischemia, including
promoting angiogenesis, inhibiting apoptosis and reducing inflammation. EVs have also
been the focus of many investigations into novel therapeutics for acute ischemia. This
section discusses studies in acute ischemia or IR injury in cardiac, CNS and renal systems
with relevance to perioperative medicine and critical care.

Cardiac Ischemia

Acute myocardial ischemia and myocardial IR injury are frequently seen in perioperative
and critical care patients due to increases in sympathetic tone, myocardial oxygen supply
and demand mismatch, and prothrombotic states.23 Within the last decade, there have been
exciting advances in EV research related to the mechanism and treatment of acute cardiac
ischemia and IR injury (Table 1).

Mesenchymal stem cell (MSC)-derived EVs show promise as a cell-free therapy to treat
acute myocardial ischemia. An intravenous bolus of MSC-derived EVs before reperfusion
reduces infarct size in a model of myocardial ischemia-reperfusion injury.24 The effect

is also seen with MSC-derived EVs given intramyocardially in a model of cardiac
ischemia, with improved systolic and diastolic function compared to controls.2> MSC

EVs also enhance the viability of myocardium after ischemia-reperfusion and improve

LV geometry and contractile performance.28 Possible intracellular processes involved in
improving cardiac function with MSC EV administration include increased ATP and NADH
levels, decreased oxidative stress,28 and decreased cellular stress response signaling.2’
MSC EVs are thought to rescue ischemic cells from states of ATP deficit and apoptosis
initiation by supplying an abundance of glycolytic enzymes and CD73, which may increase
survival signaling in cells by activating reperfusion injury salvage kinases.28 MSC-derived
EV treatments also promote functional myocardial recovery after IR injury by actions

on proteins involved in apoptosis and autophagy.2? Analysis of the miRNA cargo of MSC-
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derived EVs revealed that miRNA-181a, which targets a network of inflammation-related
genes, could be an important functional component in IR injury treatment—EVs enriched
in miR-181a derived from viral transfection of MSCs decreased the inflammatory response,
infarct size and improved myocardial function after IR injury compared to non-enriched
MSC EVs.30

Other stem cell-derived EVs also provide therapeutic benefits. EVs derived from

cardiac progenitor cells (CPCs) decreased cardiomyocyte apoptosis by 53% when given
intramyocardially during ischemia in a mouse IR model.3! Surface molecules on EVs

may also have beneficial effects. An active protease on the surface of CPC-derived EVs,
pregnancy-associated plasma protein-A, released insulin-like growth factor-1 by proteolytic
cleavage, reducing myocardial apoptosis. CPC-derived EVs decrease scar size and improve
ventricular function when given /n vivo.32 Despite being non-cardiac in origin, differentiated
neural stem cell (NSC) EVs decreased infarct size after IR.33 However, non-differentiated
NSC EVs did not affect infarct size, indicating not all stem cells possess therapeutic
properties.

EVs in blood also are protective in myocardial IR injury. Surface heat shock protein 27
(HSP70) on plasma EVs bind to toll-like receptor 4 and activates downstream pathways
involving phosphorylation of ERK1 and 2, culminating in phosphorylation of HSP2734,
Infarct size is decreased when EVs enriched from plasma are given intravenously before
ischemia.34 The same pathway is involved in a decrease in myocardial apoptosis mediated
by serum EVs. An exercise-induced increase of circulating EVs further enhances the
protective effects against IR injury.3> However, serum EVs from type 11 diabetic patients and
animals no longer activated the pathway and did not protect cardiomyocytes from simulated
IR in vitro. Serum EVs from non-diabetic animals were protective in diabetic animals.36
The mechanism for the difference between diabetic and non-diabetic EVs is unclear. HSP70
synthesis impairment in hyperglycemic and hyperlipidemic conditions may be a factor,3’
but remains to be experimentally determined. Although cellular and extracellular HSP70
has been known to be a target for cardioprotection and treatment for IR injury,3” successful
delivery to ischemic tissues remains a problem—one that EVs have the potential to solve.
Endothelial cell-derived EVs may be partially responsible for the protective effect of blood
EVs, as endothelial cell EVs alone when given before reperfusion decrease myocardial
damage and apoptosis after IR.38

EVs have been modified to exhibit improved therapeutic properties. Injured myocardium
overexpresses stromal cell-derived factor 1 (SDF-1a), a member of the CXC chemokine
family. SDF1a normally recruits progenitor cells by binding the CXCR4 membrane
receptor. EVs collected from engineered CXCR4-overexpressing CPCs are enriched in
CXCR4, and when injected intravenously, demonstrate significantly improved myocardial
EV uptake and cardiac function after an ischemic insult.3® MSC EVs modified with platelet
membranes better targeted EVs to injured endothelium,*® while EVs derived from anoxia
conditioned MSCs exhibited improved protection against apoptosis in cardiomyocytes due
to an increased load of inflammasome-targeting miRNAs.41
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In addition to developing new therapeutics, EV studies can also elucidate mechanisms

of tissue damage or repair after ischemia. One study showed that myocardial ischemia

might shift cardiomyocytes to produce pro-angiogenic EVs by modifying cargo.42 Serum
EVs from the coronary blood of patients with myocardial ischemia enhanced endothelial
proliferation, migration, and tube formation compared with EVs from healthy patients.

The enhanced angiogenesis may be due to downregulation of miR-939-5p in ischemic

EVs, resulting in improved iNOS expression and endothelial NO production. Proteins
responsible for EV biogenesis were increased in cardiomyocytes after hypoxia but not in
fibroblasts or endothelial cells, suggesting the source of EV's may be cardiomyocytes.*2
However, EVs released after cardiac IR may also increase oxidative stress and inflammatory
cytokines; blockade of small EV release with GW4869 before IR improved cardiac function,
decreased infarct size and myocardial enzyme levels after IR.43 Stimulating calcium-sensing
receptors on polymorphonuclear leukocytes (PMNSs) produced EVs that improved cardiac
function after cardiac IR, but inhibiting the same receptors produced EVs without protective
effects.** Further studies are needed to clarify the origins, characteristics, targets, and effects
of EVs during various cell and pathophysiological states.

Cerebral and Spinal Cord Ischemia

Cerebral and spinal cord ischemia are also significant complications in perioperative

and critical care that lack efficient therapies. EVs are important in communication and
signaling between the cerebral endothelium and cells of the brain parenchyma, including
neurons, neural precursors, and glial cells.1* While the clinical significance of EVs in
pathophysiology and therapeutics in central nervous system (CNS) ischemia continues to be
explored, evidence for the use of EVs as a therapeutic modality has been increasing within
the last decade (Table 2).

Stem cell-derived EVs in CNS ischemia have repeatedly demonstrated therapeutic potential.
After transient global ischemia, intra-ventricular injection MSC EVs restored basal synaptic
transmission, plasticity, and improved learning and memory, possibly due to decreased
pathogenic expression of cyclooxygenase-2.4> MSC EVs also have ability to decrease
infarct area, cerebral edema,*® and apoptosis*’ when given intravenously after cerebral

IR. Intrathecal administration of MSC EVs before transient spinal cord ischemia improved
lower motor neuron deficits and decreased levels of interleukin-1beta (IL-1B) and tumor
necrosis factor alpha (TNFa.).#8 NSC-derived EVs given intravenously after transient middle
cerebral artery occlusion reduced infarct volumes and preserved astrocyte function.® EVs
from MSCs that overexpress pigment epithelium-derived factor, a protein that exhibits anti-
inflammatory and neuroprotective properties, decreases activation of autophagy, suppressed
neuronal apoptosis and ameliorated cerebral IR injury®P.

EVs from sources other than stem cells also mediate positive cerebral responses after
ischemia. Microglia can modulate neuronal cell death and recovery via secretion of

trophic factors.51:52 EVs from M2, anti-inflammatory, type microglia injected intravenously
after cerebral IR reduced infarct volume and attenuated behavioral deficits in mice.53:54
Possible mechanisms for the protective effects include encapsulated miR-124,53 important
in neuronal development and brain function,®® or miR-137, which regulates of adjacent
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cell signaling in the brain.>* Astrocyte derived EVs injected intravenously increased
hippocampal neuron organization and improved behavioral deficits after cerebral IR.56

Remote ischemic preconditioning (RIPC), produced by transient episodes of ischemia at a
remote site, was initially studied in cardiac ischemia but has now demonstrated protective
effects in other organs, including the brain.5” EVs are likely important mediators of RIPC58
and have important implications in patients in whom cerebral ischemic risk is high, such as
those undergoing neurointerventional and neurosurgical procedures. Li et al. showed plasma
EVs collected after RIPC attenuated infarct size in a model of cerebral ischemia, possibly
due to increased levels of hypoxia-inducible transcription factor-1alpha within RIPC EVs.59

EVs can be safe and effective targeted drug delivery vehicles due to their ability to cross
the blood-brain barrier, low immunogenicity, stability, and delivery efficiency.5% They can
be enriched in bioactive material that would otherwise be degraded and targeted to ischemic
CNS tissues.51 Zhang et al. labeled and incorporated miR-210, a miRNA that promotes
angiogenesis, into EVs. The EVs were also conjugated to a peptide with affinity for
integrin a.,PB3, which is expressed in cerebral vascular endothelial cells after ischemia.
EVs delivered intravenously after cerebral IR targeted the lesion, increased miR-210 at the
ischemia site, and when administered over 14 days, improved angiogenesis and improved
survival.61 Others showed that IV administration of EVs loaded with miR-124 can target
ischemic regions in the brain by using genetically engineered vesicles expressing surface
neuron-specific rabies virus glycoprotein, inducing neurogenesis and exerting a protective
effect against cerebral ischemia.52

Renal Ischemia

Acute kidney injury (AKI) is a major concern in the perioperative and critical care setting.
AKI is associated with considerable morbidity and mortality®3 and approximately 30-40%
of all AKI cases occur after surgery.53 Useful biomarkers for AKI are needed in the
clinical setting for early diagnosis and successful treatment.54 Recent work suggests EVs
are important in renal ischemia and have potential as biomarkers for diagnosis and therapy
(Table 2). Urinary EV aquaporin-1 (AQP1) was decreased from six to 96 hours after

renal IR in a rat model.85 Although the sample size was limited, the same study showed
decreased urinary EV AQP1 normalized to creatinine in a renal transplant recipient after
transplantation, during which renal IR injury is inevitable. In contrast, there was no change
in donor creatinine-normalized EV AQP1. A decrease in both EV AQP1 and AQP2 after
IR-induced AKI was also shown in another study.%6 EVs as secreted packets of molecules
may reflect the status of their cells of origin than measures of total urine levels. The amount
of transcriptional repressor activating transcription factor 3 (ATF3) RNA in urinary EVs
were 60 fold greater in patients with AKI, whereas the total ATF3 RNA in urine was not
significantly different.6” Urinary EVs are easily accessible and may serve as biomarkers of
renal IR injury.

Studies have also investigated the therapeutic efficacy of EVs in the treatment of AKI

(Table 2). EVs derived from hypoxic renal tubular cells can reverse renal IR injury.%8 Renal
transcriptome analysis showed a significant deviation post-IR in genes involved in apoptosis,
inflammation, angiogenesis, oxidative stress, and fibrosis—changes almost completely
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reversed by intravenous injection of EVs derived from hypoxia exposed renal tubular cells.68
Other than transcriptome shift reversal, EV administration improved renal function and
histological appearance. Renal function improvement after IR has also been shown using
EVs derived from human renal tubular cells,5% EVs from ischemic preconditioned right
ventricular perfusates, and interestingly, EV's from contralateral kidneys exposed to transient
ischemia.’® Endothelial progenitor cells (EPCs) play roles in endothelial regeneration

and recent unpublished data suggest EPC-derived EVs may limit preeclampsia associated
glomerular injury by attenuating endothelial cell lysis.”! Stem cell-derived EVs also have
renal protective effects. MSC-derived EVs express surface level C-C motif chemokine
receptor-2 (CCR2), which act as decoys to bind to C-C motif chemokine ligand 2

(CCL2), decreasing concentration of free CCL2 and subsequent macrophage recruitment
and activation to protect against renal IR injury.”2 Many studies show protective effects of
cargo within stem cell-derived EVs against renal IR. MiR-199-3p, transferred to renal cells
from MSC EVs, induces functional and histological recovery after renal IR by suppressing
apoptosis.”3 The transfer of miR-199-5p from MSC EVs to renal tubular cells reduced
endoplasmic reticulum stress and was protective against renal IR injury.”* Other MSC EV
cargo protective in IR injury include MiR-30 via modulation of mitochondrial fission and
reduction of apoptosis,’® and specificity protein via inhibiting inflammatory cell death.”®
EVs can deliver many molecules, which in concert have immense therapeutic value in IR
injury. However, the functions of cargo and membrane molecules, differences between EVs
of different origins, or EVs from cells in different states, are still unclear.

Extracellular vesicles and inflammatory states in the perioperative period

and critical care

Inflammation is an important component of many disease states. In the perioperative setting,
inflammation plays a large part in end organ injury, postoperative cognitive dysfunction,
cancer metastasis, infection, and wound healing. Inflammation is a system-wide process

not limited to the site of disease, trauma or infection; it is thus important to understand

the interplay of inflammatory signals, their effects on sites adjacent or distant to the
inflammatory stimulus, and mechanisms of transfer. EVs are increasingly recognized as
critical mediators and modifiers of the inflammatory response.’” EVs exert both pro- or
anti-inflammatory effects’8 depending on origin and pathophysiological state under which
they are secreted. This section focuses on EVs in acute lung injury and sepsis—two
common conditions in perioperative medicine and critical care—and studies on diagnostic or
therapeutic potential of EVs in these areas (Table 3).

Inflammation in Acute Lung Injury

EVs are implicated in acute lung injury (ALI). Under normal conditions, most EVs
isolated from BAL fluid are derived from alveolar macrophages. However, inflammatory
stimuli such as hyperoxia’® or acid exposure8? increase EVs in BAL fluid and change
the proportion of EVs to predominantly epithelial-derived. EV cargo also changes after
inflammatory stimulus—after acid exposure, the amount of RNA per EV was increased
in BAL fluid.89 The RNA cargo of these EVs includes miRNAs, which at least in part
contribute to macrophage activation and recruitment to lung tissue.89 Hyperoxia-induced
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lung epithelium-derived EVs can activate macrophages and increase macrophage and
neutrophil infiltration into lung tissue. Epithelial EVs were also present in serum and
activated systemic macrophages. The effects of hyperoxia-induced lung inflammation
were largely caused by encapsulated caspase-3, as its levels significantly increase post-
hyperoxia, and depletion of caspase-3 from EVs decreases neutrophil infiltration and
lung parenchyma inflammation.”® The EV crosstalk also occurs in the opposite direction,
with an anti-inflammatory effect in ALI. EVs ameliorate ventilator- or infection-induced
injury by transferring miR-223, a modulator of inflammatory responses, from PMNs to
alveolar epithelial cells. The transfer decreases severe lung inflammation by repressing
poly (adenosine diphosphate—ribose) polymerase-1, which is involved in inflammation and
ischemia-reperfusion injury.8 miR-223 is also involved in chronic pain and is further
discussed below.

Circulating EVs play a large role in ALI. Serum EVs from a model of sepsis-induced AL
were taken up into lung parenchyma of naive mice and increased the number of total and
activated alveolar macrophages. The increase in number and activation of macrophages may
be due to delivery of miR-155, a miRNA involved in regulation of inflammatory responses,
to macrophages.82 Plasma EVs from a sepsis model were sufficient to induce endothelial
injury, cytokine production, and lung inflammation, indicated by neutrophil infiltration and
hyaline membrane formation, when injected intravenously or intratracheally.83

EVs are involved in the inflammation and endothelial damage of transfusion-related acute
lung injury (TRALLI). Platelet-derived EVs in apheresis platelet concentrates promote
pulmonary endothelial damage, and their numbers and ability to prime neutrophils’
respiratory bursts increase with storage length.84 Packed red cells (pRBCs) act similarly
—in a model of hemorrhage and resuscitation, prolonged storage of pRBCs increases

EVs that induce human neutrophil activation and superoxide release. The EVs created
during prolonged storage of pRBCs also induced neutrophil accumulation in the lungs of
hemorrhaged mice.8% A proposed mechanism of ALI related to blood product administration
describes a two-hit phenomenon, where critical illness leads to neutrophil recruitment

into the pulmonary endothelium and activation of recruited neutrophils by EVs leads to
destruction of endothelial cells, capillary leakage, and acute respiratory distress syndrome
(ARDS).86 However, ongoing studies are needed to clarify the relative contribution of
damaging EVs versus other factors in blood products. Filtering blood products with a 100
nm filter significantly decreased alveolar and endothelial permeability but decreased PMN
priming by only 20% and had no effect on pulmonary edema.88 Whether this difference

is due purely to contributions from other factors in blood products or possible inadequate
filtering and lingering effects of EVs smaller than 100 nm is unknown. Further studies are
needed to clarify the possible benefits of removing EVs from blood products to decrease the
risk of TRALI in patients.

By modulation of the inflammatory response, EVs can also be therapeutic in lung

injury. One dose of human MSC-derived EVs ameliorates decreased alveolar septation,
pulmonary hypertension, and fibrosis and showed long term benefits of improved pulmonary
function in a hypoxia-induced lung injury model. EV encapsulated mRNAs were found

to contribute via directing pulmonary macrophages toward a more anti-inflammatory, M2-
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like phenotype.8” Other cargo in MSC-derived EVs that play a role in ALI treatment

by modulating inflammation include mitochondria®8 in large EV's and miRNAs, which
improve oxidative stress injury8? or decreases apoptosis.?? EPC-derived EVs have also been
shown to ameliorate ALI by improving endothelial cell function via transfer of encapsulated
miR-126.91 COVID-19 caused by SARS-CoV-2 can present with a dysregulated immune
response and cytokine storm, similar to the effects of other coronaviruses,?2-9 resulting

in lung injury which may progress to severe ARDS and multi-organ failure. Treatment

with MSCs have been shown to ameliorate immune dysregulation,® and given the
immunomodulatory effects of MSC-derived EVs, new studies are investigating the
therapeutic potential of MSC EVs in COVID-19. Clinical trials have been planned or
started—one registered pilot study with will study inhalational aerosolized MSC-derived EVs
in treatment of severe COVID-19 cases.’

Inflammation and Sepsis

EVs play a functional role in the system-wide, multi-organ effects of sepsis. When
blood-derived EVs from septic patients are injected into healthy animals, pleiotropic and
tissue-selective changes were seen in the expression of proinflammatory proteins related to
nitrative and oxidative stresses.%> However, an earlier study showed a protective effect of
circulating EVs against vascular hyporeactivity from patients with septic shock.9¢ These
effects may be due to genetic material within EVs. Plasma EVs from septic patients
contain differentially expressed miRNA and mRNA involved in inflammatory response,
oxidative stress, and cell cycle regulation compared to non-septic patients at both day

0 and day 7 after ICU admission.%’ Similarly, EVs can act in sepsis-related myocardial
depression. Inhibition of small EV biogenesis and release decreased cardiac inflammation
and myocardial depression as well as prolonged survival in a model of sepsis.%® MSC-
derived EVs also show therapeutic immunomodulatory properties by improving survival
when given intravenously in a model of sepsis.??

Peripheral inflammation and CNS lesions greatly increase the transfer of peripheral EVs into
the CNS.17 Genetic material such as miRNA is transferred to and change the miRNA profile
of recipient cells in the CNS. This EV spread is either via direct crossing of the BBB or via
local spread from hematopoietic cells that have crossed the BBB to neurons.1” Thus, EVs
may be detrimental in or potential treatment vehicles for sepsis-induced encephalopathy. 1V
administration of MSC-derived EVs attenuated levels of apoptotic and inflammatory cells in
blood and inflammatory cytokines (TNFa, IL-6) in blood and CSF after cecal ligation and
puncture. Inflammatory cell infiltration in the brain, markers of inflammation, edema, DNA
damage, and apoptosis was attenuated as well.100

Characterization of EVs could allow for early identification of the host response to infection
and early recognition and sepsis management. Pre-clinical biomarker studies have shown
miRNAs in EVs could distinguish between septic and non-septic patients!01 and between
sepsis and SIRS in patients.102103 |_ower EVs levels in plasma were also associated with the
development of ARDS in critically ill and especially septic patients, but not in non-septic
patients.104
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EVs play a wide variety of roles as system-wide signaling particles in sepsis and related
organ dysfunction. However, more information is needed on which EV components exert
beneficial and/or detrimental actions, given the diversity of EV cargo and functional effects.
Ongoing investigations into the cell or tissue-specific release of EVs, time course of release,
composition, uptake, and functional effects will allow us to harness the potential of EVs to
diagnose and treat complex pathophysiological states such as sepsis rapidly.

Extracellular vesicles and pain management

Perioperative pain management is complicated by choosing appropriate anesthetic
modalities, patient history of previous pain syndromes, and subacute or chronic pain
development. Individual patients often exhibit complex pain profiles that cannot be grouped
into simple categories. Given these intricacies, there remains much room in improving our
understanding of pathophysiology, development of novel biomarkers, and new treatment
modalities. EVs have great potential to revolutionize pain management due to their
ubiquitous and functional nature—work in this field is growing (Table 4).

Although currently limited, early investigations into EVs as biomarkers for pain diagnosis19°
or treatment stratification purposes show promise. Circulating EV miRNAs are altered

in patients with complex regional pain syndrome (CRPS).106 Plasmapheresis to remove
autoantibodies and humoral factors can be utilized in combination with other modalities

to treat the etiologically complex and difficult to manage pain in CRPS. To stratify
responders and non-responders, a study looked for markers differentiating the two groups.
Nine miRNAs in plasma EVs were significantly different before plasmapheresis between
responders and non-responders.197 A future study with a larger cohort and next-generation
sequencing to study larger numbers of miRNAs may be able to identify an EV miRNA
panel able to accurately predict response to therapy. To predict development of CRPS after
trauma, Dietz et al. found that patients with a history of a fracture without CRPS had higher
levels of plasma EV miR-223-5p than patients with history of fracture with development
of CRPS type I. MiR-223-5p has potential significance to CRPS given its involvement in
immune barrier breakdown, a hallmark of neuropathy related to leakage of blood-nerve or
blood-spinal cord barrier and reduced expression of tight junction protein.1%8 However, the
specific mechanisms leading to cell barrier disruption remain to be explored. Other studies
of EV cargo are implicating previously unknown mechanisms in the pathophysiology of
chronic pain syndromes. Moen et al. showed that miRNA release in EVs is upregulated in
nucleus pulposis cells, and higher extracellular miR-223, involved in immunomodulation,
in the acute phase after disc herniation is associated with a lower risk of chronic lumbar
radicular pain.109

EVs are therapeutic in pain disease states. The anti-inflammatory effect of EV cargo

in treating pain has recently begun to be explored.}10 When injected intra-articularly in

an animal model of temporomandibular joint OA, MSC-derived EVs reduce pain and
inflammation and promotes joint regeneration and repair.111 Intravenously administered
MSC EVs also improve low back pain and attenuates cartilage degeneration and enabled
subchondral bone remodeling in a lumbar facet osteoarthritis model.112 In an inflammatory
pain model, macrophage-derived EVs can attenuate thermal but not mechanical allodynia
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when injected at the site of inflammation.19% However, the opposite is seen when EVs

are administered intrathecally, but only when EVs are derived from lipopolysaccharide
(LPS) stimulated macrophages.113 LPS-stimulated EVs have higher levels of miRNAs that
inhibit proinflammatory cytokine transcription and translation.196 EVs from both stimulated
and unstimulated macrophages reduce thermal and mechanical hyperalgesia when given
prophylactically, suggesting the possibility of a vaccine-like chronic pain therapy.113
Changes in route and timing of administration and the state of originating cells have
important differing effects. Thus, to fully harness their therapeutic potential, further studies
are needed to improve our understanding of EVs.

Conclusions and future directions

Numerous studies have shown that EVs are important mediators of various
pathophysiological states. The study of EVs in perioperative medicine, critical care, and pain
management is in its infancy, but it is important to be aware of and understand the biology
and potential of EVs to affect the practice of anesthesia. EVs are key players in ischemia-
reperfusion, and the potential of EV based therapeutics is demonstrated in pre-clinical
studies that have successfully modified EVs to target specific ischemic tissues and deliver
customized cargo. EVs are known to play important roles in inflammation, and future
studies to improve understanding of these roles will create new therapies for or prevent
TRALLI, ARDS, aspiration pneumonia, or sepsis-induced organ dysfunction. In contrast to
cell-based therapies such as MSC therapy, the use of EVs are advantageous due to their ease
of storage, low immunogenicity, and low thrombogenic risk. Modified, autologous EVs have
been proposed as non-immunogenic drug vehicles. Despite the physiologically complex and
diverse etiologies in pain disease states, the potential of EV-based biomarkers and therapies
for pain management are emerging.

Mechanistic studies of the release, transport, and effects of EVs and their subtypes

will undoubtedly continue to greatly improve our understanding of physiology,
pathophysiological processes, diagnosis, patient stratification, and development of novel
therapeutics. EV research is not without obstacles, especially given the technical difficulties
of studying nanoparticles of varying and continuously changing composition mixed with
other particles of similar density and size /n vitro.114115 Fortunately, new data, guidelines,
and techniques are standardizing and improving EV research.118 Despite the challenges,
EV research continues to provide exciting new insight into patient care. Perioperative and
anesthesiology sub-specialty based EV research is presently limited compared to more
developed EV fields such as cancer biology. However, Buschmann et al. recently showed
the feasibility of studying EVs in patients in the intraoperative period by correlating the
effects of different anesthetic agents on EV miRNA content. This paradigm shifting-work
used EV’s to reveal previously unknown physiological impacts of commonly used anesthetic
agents.8 Future developments in EV research and integration into perioperative medicine
will likely change management of perioperative disease states and hold significant promise
to improve the perioperative outcomes of patients.

Anesth Analg. Author manuscript; available in PMC 2022 November 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Zhou et al.

Financial Disclosures:

Page 12

This work was supported by National Institutes of Health (T32 Fellowship on GM121318 to YKZ, HL091071
to HHP, and AG058174 to DMR), the Veterans Administration (BX001963 and BX005229 to HHP), and the
Tobacco-Related Disease Research Program (T311P1929 to DMR).

Glossary of Terms
AKI

ALI
AQP1
ARDS
ATF3
BAL
BBB
CCL2
CCR2
CNS
CSF
COVID-19
CPC
CRPS
EPC
EV
IL-1B
IR
LPS
miRNA
mMRNA
MSC
MVB
MV

NSC

acute kidney injury

acute lung injury

aquaporin-1

acute respiratory distress syndrome
activating transcription factor 3
bronchoalveolar lavage

blood brain barrier

C-C motif chemokine ligand 2
C-C motif chemokine receptor-2
central nervous system

cerebral spinal fluid

coronavirus disease 2019
cardiac progenitor cell

complex regional pain syndrome
endothelial progenitor cell
extracellular vesicle

interleukin 1 beta
ischemia-reperfusion
lipopolysaccharide

microRNA

messenger RNA

mesenchymal stem cell
multivesicular body
microvesicle

neural stem cell
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Figure 1:
Left. Extracellular vesicles (EVs) are formed via budding from the plasma membrane,

(microvesicles), or via fusion of multivesicular bodies (MVBSs) with the plasma membrane
(exosomes). MVBs, also termed late endosomes, are part of the endolysosomal pathway.
Right. EV characteristics include transmembrane proteins, key EV markers such as
tetraspanins and membrane trafficking proteins involved in EV biogenesis, proteins, and
nucleic acids such as DNA and RNA (microRNAs, messenger RNAs, small nucleolar RNAsS,
ribosomal RNAs17),
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Unmodified EVs

i Delivery of EVs to target cells

Extracellular vesicles (EVs) can be collected and purified from cells such as mesenchymal
stem cells (MSC), or animals for autologous or allogenic use. After collection and
purification, EVs can be administered in an unmodified form or enriched with cargo or
membrane proteins that exert an improved therapeutic effect. Unmodified or modified EVs
exert therapeutic effects by interacting with cells in the tissues of many organ systems,
including the brain, heart, lungs and kidneys.
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