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Extracellular vesicles: A new paradigm for cellular 
communication in perioperative medicine, critical care and pain 
management

Yingqiu K. Zhou, M.D.1, Hemal H. Patel, Ph.D.1, David M. Roth, Ph.D., M.D.1

1Veterans Administration San Diego Healthcare System, San Diego, CA, USA and Department of 
Anesthesiology, UCSD School of Medicine, San Diego, CA, USA

Abstract

Extracellular vesicles (EVs) play critical roles in many health and disease states, including 

ischemia, inflammation and pain, which are major concerns in the perioperative period and in 

critically ill patients. EVs are functionally active, nanometer-sized, membrane-bound vesicles 

actively secreted by all cells. Cell signaling is essential to physiological and pathological 

processes, and recently, EVs have emerged as key players in intercellular communication. Recent 

studies in EV biology improve our mechanistic knowledge of the pathophysiological processes in 

perioperative and critical care patients. Studies also show promise in using EVs in novel diagnostic 

and therapeutic clinical applications. This review considers the current advances and gaps in 

knowledge of EVs in the areas of ischemia, inflammation, pain, and organ systems that are most 

relevant to anesthesiology, perioperative medicine, critical care, and pain management. We expect 

the reader will better understand the relationship between EVs and perioperative and critical care 

pathophysiological states and their potential use as novel diagnostic and therapeutic modalities.

Introduction

Cell signaling is essential to physiological and pathological processes. It has been long 

accepted that vesicles secreted by specialized cells carry signaling molecules such as 

neurotransmitters and hormones. Recently, extracellular vesicles (EVs) have emerged as 

key players in cell-to-cell communication.1,2 EVs, first observed in the mid-1900s and 

considered cellular waste or “dust,”3 are lipid-bilayer bound nanoparticles now known 

to be secreted by all cells. Their important signaling functions have been shown in a 

wide range of physiological and pathological processes including immune function, cancer, 

organ homeostasis, regeneration4, and viral spread5, and are further evidenced by their 

evolutionary conservation from lower organisms such as bacteria to plants and humans.

Corresponding Author: David M. Roth, Ph.D., M.D., VASDHS (9125), 3350 La Jolla Village Drive, San Diego, California 
92161-5085, droth@ucsd.edu, (858) 552-8585, ext. 1091.
Abbreviated Title: Extracellular vesicles: role in anesthesia
Yingqiu K. Zhou M.D.: This author wrote the manuscript and created the figures and tables
Hemal H. Patel, Ph.D.: This author helped edit the manuscript and provided input
David M. Roth, Ph.D., M.D.: This author helped edit the manuscript and provided input

Conflicts of Interest: None

HHS Public Access
Author manuscript
Anesth Analg. Author manuscript; available in PMC 2022 November 01.

Published in final edited form as:
Anesth Analg. 2021 November 01; 133(5): 1162–1179. doi:10.1213/ANE.0000000000005655.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Anesthesiologists face a wide range of pathophysiological processes, and knowledge of the 

current state of EV research is vital given the critical role that EVs play in pathophysiology. 

The role of EVs in the perioperative period, critical care and pain management are limited 

but studies are ongoing. A recent study shows EVs may reveal previously unknown 

physiological impacts of anesthetic agents,6 and in the current worldwide coronavirus 

disease 2019 (COVID-19) pandemic EVs are studied as a novel therapeutic modality.7 In 

the rapidly expanding field of EV biology, further research in the perioperative period can 

impact the understanding and care of perioperative, critical care and pain patients.

Due to the involvement of EVs in a wide range of physiological and pathological processes, 

the field of EV biology is extremely broad, and the breadth and depth of the subject cannot 

be covered in one review. This review will focus on the three interconnected areas of 

ischemia, inflammation, and pain in the organ systems most relevant to anesthesiology, 

perioperative medicine, and pain management. The review addresses advances in the 

understanding of EVs in disease mechanisms, potential diagnostic and therapeutic clinical 

applications.

Extracellular Vesicles: Overview

EVs are a heterogeneous group of membrane bound vesicles differing in size, cargo, 

membrane composition, and biogenesis. Biogenesis is mainly via two mechanisms. The 

first mechanism involves fusion of multivesicular bodies (MVBs) with the cell membrane 

to form exosomes. The second mechanism involves plasma membrane budding to form 

microvesicles (MVs), ectosomes, or microparticles (Figure 1). Apoptotic bodies, vesicles 

formed by plasma membrane blebbing during apoptosis, may be co-isolated with EVs but 

will not be discussed in this review. Extracellular vesicles can also be sorted by size; 

exosomes are reported mainly in the 50-150 nm size range, MVs in the 100-1000 nm range 

and apoptotic bodies in the 1000-5000 nm range. Current vesicle isolation and analysis 

methods cannot clearly distinguish between vesicle subtypes given their overlapping size, 

density, content, membrane orientation, and surface molecules. A standard nomenclature 

has yet to be uniformly adopted—we will thus refer to exosomes, MVs, ectosomes, and 

microparticles collectively as EVs in this review.

EV cargo has functional effects and includes genetic material, proteins, lipids, and soluble 

mediators. A frequently studied cargo is microRNAs (miRNAs)—small strands (~22 

nucleotides) of noncoding RNAs that serve as posttranscriptional gene regulators that bind 

to target messenger RNAs and impact physiological processes and diseases.8 Since free 

miRNAs are degraded in body fluids, EVs function as protective carriers of miRNAs. 

We discuss the roles of miRNAs and EVs further below. Other than encapsulated cargo, 

EV membrane proteins and lipids also exert functional effects via autocrine, paracrine, 

and endocrine signaling. EV surface molecules act as receptors and ligands to target EVs 

to specific sites, such as the plasma membrane of recipient cells, where EVs activate 

downstream signaling, endocytosis or fusion with the plasma membrane.9 The actions of 

EVs are of critical importance to many health and disease states including but not limited to 

ischemia, inflammation, pain, malignancy, and metabolism.10–14
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Extracellular vesicles have been collected and studied in many biofluids including blood, 

CSF, urine, saliva, tears, and bronchoalveolar lavage (BAL) fluid. The ease of sampling 

EVs from biofluids to obtain a snapshot of pathophysiological states makes EVs exceptional 

biomarker candidates.

Compared to soluble mediators, EVs are stable as membrane-bound vesicles and can cross 

biological membranes such as the blood brain barrier (BBB).15–17 Thus, EVs have also 

been the focus of therapeutic development (Figure 2). Studies have shown success in 

customizing EV cargo and membrane molecules to target and deliver to specific tissues 

or cells. Their low immunogenicity18 compared to whole-cell treatments are also a focus 

of recent studies—the efficacy of stem cell therapy, such as mesenchymal stem cell (MSC) 

treatments, are mediated by EVs secreted by stem cells.19–21 Recently, with the spread of 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19, EVs have 

been suggested as both mediators of viral spread5 and as a novel therapeutic in the form of 

MSC derived EVs,7 or delivery vehicles for messenger RNA (mRNA) vaccines.22

Extracellular vesicles and perioperative ischemia

Acute ischemia and ischemia-reperfusion (IR) injury are common among perioperative and 

critical care patients. EVs have been shown to play critical roles in ischemia, including 

promoting angiogenesis, inhibiting apoptosis and reducing inflammation. EVs have also 

been the focus of many investigations into novel therapeutics for acute ischemia. This 

section discusses studies in acute ischemia or IR injury in cardiac, CNS and renal systems 

with relevance to perioperative medicine and critical care.

Cardiac Ischemia

Acute myocardial ischemia and myocardial IR injury are frequently seen in perioperative 

and critical care patients due to increases in sympathetic tone, myocardial oxygen supply 

and demand mismatch, and prothrombotic states.23 Within the last decade, there have been 

exciting advances in EV research related to the mechanism and treatment of acute cardiac 

ischemia and IR injury (Table 1).

Mesenchymal stem cell (MSC)-derived EVs show promise as a cell-free therapy to treat 

acute myocardial ischemia. An intravenous bolus of MSC-derived EVs before reperfusion 

reduces infarct size in a model of myocardial ischemia-reperfusion injury.24 The effect 

is also seen with MSC-derived EVs given intramyocardially in a model of cardiac 

ischemia, with improved systolic and diastolic function compared to controls.25 MSC 

EVs also enhance the viability of myocardium after ischemia-reperfusion and improve 

LV geometry and contractile performance.26 Possible intracellular processes involved in 

improving cardiac function with MSC EV administration include increased ATP and NADH 

levels, decreased oxidative stress,26 and decreased cellular stress response signaling.27 

MSC EVs are thought to rescue ischemic cells from states of ATP deficit and apoptosis 

initiation by supplying an abundance of glycolytic enzymes and CD73, which may increase 

survival signaling in cells by activating reperfusion injury salvage kinases.28 MSC-derived 

EV treatments also promote functional myocardial recovery after IR injury by actions 

on proteins involved in apoptosis and autophagy.29 Analysis of the miRNA cargo of MSC­
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derived EVs revealed that miRNA-181a, which targets a network of inflammation-related 

genes, could be an important functional component in IR injury treatment—EVs enriched 

in miR-181a derived from viral transfection of MSCs decreased the inflammatory response, 

infarct size and improved myocardial function after IR injury compared to non-enriched 

MSC EVs.30

Other stem cell-derived EVs also provide therapeutic benefits. EVs derived from 

cardiac progenitor cells (CPCs) decreased cardiomyocyte apoptosis by 53% when given 

intramyocardially during ischemia in a mouse IR model.31 Surface molecules on EVs 

may also have beneficial effects. An active protease on the surface of CPC-derived EVs, 

pregnancy-associated plasma protein-A, released insulin-like growth factor-1 by proteolytic 

cleavage, reducing myocardial apoptosis. CPC-derived EVs decrease scar size and improve 

ventricular function when given in vivo.32 Despite being non-cardiac in origin, differentiated 

neural stem cell (NSC) EVs decreased infarct size after IR.33 However, non-differentiated 

NSC EVs did not affect infarct size, indicating not all stem cells possess therapeutic 

properties.

EVs in blood also are protective in myocardial IR injury. Surface heat shock protein 27 

(HSP70) on plasma EVs bind to toll-like receptor 4 and activates downstream pathways 

involving phosphorylation of ERK1 and 2, culminating in phosphorylation of HSP2734. 

Infarct size is decreased when EVs enriched from plasma are given intravenously before 

ischemia.34 The same pathway is involved in a decrease in myocardial apoptosis mediated 

by serum EVs. An exercise-induced increase of circulating EVs further enhances the 

protective effects against IR injury.35 However, serum EVs from type II diabetic patients and 

animals no longer activated the pathway and did not protect cardiomyocytes from simulated 

IR in vitro. Serum EVs from non-diabetic animals were protective in diabetic animals.36 

The mechanism for the difference between diabetic and non-diabetic EVs is unclear. HSP70 

synthesis impairment in hyperglycemic and hyperlipidemic conditions may be a factor,37 

but remains to be experimentally determined. Although cellular and extracellular HSP70 

has been known to be a target for cardioprotection and treatment for IR injury,37 successful 

delivery to ischemic tissues remains a problem—one that EVs have the potential to solve. 

Endothelial cell-derived EVs may be partially responsible for the protective effect of blood 

EVs, as endothelial cell EVs alone when given before reperfusion decrease myocardial 

damage and apoptosis after IR.38

EVs have been modified to exhibit improved therapeutic properties. Injured myocardium 

overexpresses stromal cell-derived factor 1 (SDF-1α), a member of the CXC chemokine 

family. SDF1α normally recruits progenitor cells by binding the CXCR4 membrane 

receptor. EVs collected from engineered CXCR4-overexpressing CPCs are enriched in 

CXCR4, and when injected intravenously, demonstrate significantly improved myocardial 

EV uptake and cardiac function after an ischemic insult.39 MSC EVs modified with platelet 

membranes better targeted EVs to injured endothelium,40 while EVs derived from anoxia 

conditioned MSCs exhibited improved protection against apoptosis in cardiomyocytes due 

to an increased load of inflammasome-targeting miRNAs.41
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In addition to developing new therapeutics, EV studies can also elucidate mechanisms 

of tissue damage or repair after ischemia. One study showed that myocardial ischemia 

might shift cardiomyocytes to produce pro-angiogenic EVs by modifying cargo.42 Serum 

EVs from the coronary blood of patients with myocardial ischemia enhanced endothelial 

proliferation, migration, and tube formation compared with EVs from healthy patients. 

The enhanced angiogenesis may be due to downregulation of miR-939-5p in ischemic 

EVs, resulting in improved iNOS expression and endothelial NO production. Proteins 

responsible for EV biogenesis were increased in cardiomyocytes after hypoxia but not in 

fibroblasts or endothelial cells, suggesting the source of EVs may be cardiomyocytes.42 

However, EVs released after cardiac IR may also increase oxidative stress and inflammatory 

cytokines; blockade of small EV release with GW4869 before IR improved cardiac function, 

decreased infarct size and myocardial enzyme levels after IR.43 Stimulating calcium-sensing 

receptors on polymorphonuclear leukocytes (PMNs) produced EVs that improved cardiac 

function after cardiac IR, but inhibiting the same receptors produced EVs without protective 

effects.44 Further studies are needed to clarify the origins, characteristics, targets, and effects 

of EVs during various cell and pathophysiological states.

Cerebral and Spinal Cord Ischemia

Cerebral and spinal cord ischemia are also significant complications in perioperative 

and critical care that lack efficient therapies. EVs are important in communication and 

signaling between the cerebral endothelium and cells of the brain parenchyma, including 

neurons, neural precursors, and glial cells.14 While the clinical significance of EVs in 

pathophysiology and therapeutics in central nervous system (CNS) ischemia continues to be 

explored, evidence for the use of EVs as a therapeutic modality has been increasing within 

the last decade (Table 2).

Stem cell-derived EVs in CNS ischemia have repeatedly demonstrated therapeutic potential. 

After transient global ischemia, intra-ventricular injection MSC EVs restored basal synaptic 

transmission, plasticity, and improved learning and memory, possibly due to decreased 

pathogenic expression of cyclooxygenase-2.45 MSC EVs also have ability to decrease 

infarct area, cerebral edema,46 and apoptosis47 when given intravenously after cerebral 

IR. Intrathecal administration of MSC EVs before transient spinal cord ischemia improved 

lower motor neuron deficits and decreased levels of interleukin-1beta (IL-1β) and tumor 

necrosis factor alpha (TNFα).48 NSC-derived EVs given intravenously after transient middle 

cerebral artery occlusion reduced infarct volumes and preserved astrocyte function.49 EVs 

from MSCs that overexpress pigment epithelium-derived factor, a protein that exhibits anti­

inflammatory and neuroprotective properties, decreases activation of autophagy, suppressed 

neuronal apoptosis and ameliorated cerebral IR injury50.

EVs from sources other than stem cells also mediate positive cerebral responses after 

ischemia. Microglia can modulate neuronal cell death and recovery via secretion of 

trophic factors.51,52 EVs from M2, anti-inflammatory, type microglia injected intravenously 

after cerebral IR reduced infarct volume and attenuated behavioral deficits in mice.53,54 

Possible mechanisms for the protective effects include encapsulated miR-124,53 important 

in neuronal development and brain function,55 or miR-137, which regulates of adjacent 
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cell signaling in the brain.54 Astrocyte derived EVs injected intravenously increased 

hippocampal neuron organization and improved behavioral deficits after cerebral IR.56

Remote ischemic preconditioning (RIPC), produced by transient episodes of ischemia at a 

remote site, was initially studied in cardiac ischemia but has now demonstrated protective 

effects in other organs, including the brain.57 EVs are likely important mediators of RIPC58 

and have important implications in patients in whom cerebral ischemic risk is high, such as 

those undergoing neurointerventional and neurosurgical procedures. Li et al. showed plasma 

EVs collected after RIPC attenuated infarct size in a model of cerebral ischemia, possibly 

due to increased levels of hypoxia-inducible transcription factor-1alpha within RIPC EVs.59

EVs can be safe and effective targeted drug delivery vehicles due to their ability to cross 

the blood-brain barrier, low immunogenicity, stability, and delivery efficiency.60 They can 

be enriched in bioactive material that would otherwise be degraded and targeted to ischemic 

CNS tissues.61 Zhang et al. labeled and incorporated miR-210, a miRNA that promotes 

angiogenesis, into EVs. The EVs were also conjugated to a peptide with affinity for 

integrin αvβ3, which is expressed in cerebral vascular endothelial cells after ischemia. 

EVs delivered intravenously after cerebral IR targeted the lesion, increased miR-210 at the 

ischemia site, and when administered over 14 days, improved angiogenesis and improved 

survival.61 Others showed that IV administration of EVs loaded with miR-124 can target 

ischemic regions in the brain by using genetically engineered vesicles expressing surface 

neuron-specific rabies virus glycoprotein, inducing neurogenesis and exerting a protective 

effect against cerebral ischemia.62

Renal Ischemia

Acute kidney injury (AKI) is a major concern in the perioperative and critical care setting. 

AKI is associated with considerable morbidity and mortality63 and approximately 30-40% 

of all AKI cases occur after surgery.63 Useful biomarkers for AKI are needed in the 

clinical setting for early diagnosis and successful treatment.64 Recent work suggests EVs 

are important in renal ischemia and have potential as biomarkers for diagnosis and therapy 

(Table 2). Urinary EV aquaporin-1 (AQP1) was decreased from six to 96 hours after 

renal IR in a rat model.65 Although the sample size was limited, the same study showed 

decreased urinary EV AQP1 normalized to creatinine in a renal transplant recipient after 

transplantation, during which renal IR injury is inevitable. In contrast, there was no change 

in donor creatinine-normalized EV AQP1. A decrease in both EV AQP1 and AQP2 after 

IR-induced AKI was also shown in another study.66 EVs as secreted packets of molecules 

may reflect the status of their cells of origin than measures of total urine levels. The amount 

of transcriptional repressor activating transcription factor 3 (ATF3) RNA in urinary EVs 

were 60 fold greater in patients with AKI, whereas the total ATF3 RNA in urine was not 

significantly different.67 Urinary EVs are easily accessible and may serve as biomarkers of 

renal IR injury.

Studies have also investigated the therapeutic efficacy of EVs in the treatment of AKI 

(Table 2). EVs derived from hypoxic renal tubular cells can reverse renal IR injury.68 Renal 

transcriptome analysis showed a significant deviation post-IR in genes involved in apoptosis, 

inflammation, angiogenesis, oxidative stress, and fibrosis—changes almost completely 
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reversed by intravenous injection of EVs derived from hypoxia exposed renal tubular cells.68 

Other than transcriptome shift reversal, EV administration improved renal function and 

histological appearance. Renal function improvement after IR has also been shown using 

EVs derived from human renal tubular cells,69 EVs from ischemic preconditioned right 

ventricular perfusates, and interestingly, EVs from contralateral kidneys exposed to transient 

ischemia.70 Endothelial progenitor cells (EPCs) play roles in endothelial regeneration 

and recent unpublished data suggest EPC-derived EVs may limit preeclampsia associated 

glomerular injury by attenuating endothelial cell lysis.71 Stem cell-derived EVs also have 

renal protective effects. MSC-derived EVs express surface level C-C motif chemokine 

receptor-2 (CCR2), which act as decoys to bind to C-C motif chemokine ligand 2 

(CCL2), decreasing concentration of free CCL2 and subsequent macrophage recruitment 

and activation to protect against renal IR injury.72 Many studies show protective effects of 

cargo within stem cell-derived EVs against renal IR. MiR-199-3p, transferred to renal cells 

from MSC EVs, induces functional and histological recovery after renal IR by suppressing 

apoptosis.73 The transfer of miR-199-5p from MSC EVs to renal tubular cells reduced 

endoplasmic reticulum stress and was protective against renal IR injury.74 Other MSC EV 

cargo protective in IR injury include MiR-30 via modulation of mitochondrial fission and 

reduction of apoptosis,75 and specificity protein via inhibiting inflammatory cell death.76 

EVs can deliver many molecules, which in concert have immense therapeutic value in IR 

injury. However, the functions of cargo and membrane molecules, differences between EVs 

of different origins, or EVs from cells in different states, are still unclear.

Extracellular vesicles and inflammatory states in the perioperative period 

and critical care

Inflammation is an important component of many disease states. In the perioperative setting, 

inflammation plays a large part in end organ injury, postoperative cognitive dysfunction, 

cancer metastasis, infection, and wound healing. Inflammation is a system-wide process 

not limited to the site of disease, trauma or infection; it is thus important to understand 

the interplay of inflammatory signals, their effects on sites adjacent or distant to the 

inflammatory stimulus, and mechanisms of transfer. EVs are increasingly recognized as 

critical mediators and modifiers of the inflammatory response.77 EVs exert both pro- or 

anti-inflammatory effects78 depending on origin and pathophysiological state under which 

they are secreted. This section focuses on EVs in acute lung injury and sepsis—two 

common conditions in perioperative medicine and critical care—and studies on diagnostic or 

therapeutic potential of EVs in these areas (Table 3).

Inflammation in Acute Lung Injury

EVs are implicated in acute lung injury (ALI). Under normal conditions, most EVs 

isolated from BAL fluid are derived from alveolar macrophages. However, inflammatory 

stimuli such as hyperoxia79 or acid exposure80 increase EVs in BAL fluid and change 

the proportion of EVs to predominantly epithelial-derived. EV cargo also changes after 

inflammatory stimulus—after acid exposure, the amount of RNA per EV was increased 

in BAL fluid.80 The RNA cargo of these EVs includes miRNAs, which at least in part 

contribute to macrophage activation and recruitment to lung tissue.80 Hyperoxia-induced 
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lung epithelium-derived EVs can activate macrophages and increase macrophage and 

neutrophil infiltration into lung tissue. Epithelial EVs were also present in serum and 

activated systemic macrophages. The effects of hyperoxia-induced lung inflammation 

were largely caused by encapsulated caspase-3, as its levels significantly increase post­

hyperoxia, and depletion of caspase-3 from EVs decreases neutrophil infiltration and 

lung parenchyma inflammation.79 The EV crosstalk also occurs in the opposite direction, 

with an anti-inflammatory effect in ALI. EVs ameliorate ventilator- or infection-induced 

injury by transferring miR-223, a modulator of inflammatory responses, from PMNs to 

alveolar epithelial cells. The transfer decreases severe lung inflammation by repressing 

poly (adenosine diphosphate–ribose) polymerase–1, which is involved in inflammation and 

ischemia-reperfusion injury.81 miR-223 is also involved in chronic pain and is further 

discussed below.

Circulating EVs play a large role in ALI. Serum EVs from a model of sepsis-induced ALI 

were taken up into lung parenchyma of naïve mice and increased the number of total and 

activated alveolar macrophages. The increase in number and activation of macrophages may 

be due to delivery of miR-155, a miRNA involved in regulation of inflammatory responses, 

to macrophages.82 Plasma EVs from a sepsis model were sufficient to induce endothelial 

injury, cytokine production, and lung inflammation, indicated by neutrophil infiltration and 

hyaline membrane formation, when injected intravenously or intratracheally.83

EVs are involved in the inflammation and endothelial damage of transfusion-related acute 

lung injury (TRALI). Platelet-derived EVs in apheresis platelet concentrates promote 

pulmonary endothelial damage, and their numbers and ability to prime neutrophils’ 

respiratory bursts increase with storage length.84 Packed red cells (pRBCs) act similarly

—in a model of hemorrhage and resuscitation, prolonged storage of pRBCs increases 

EVs that induce human neutrophil activation and superoxide release. The EVs created 

during prolonged storage of pRBCs also induced neutrophil accumulation in the lungs of 

hemorrhaged mice.85 A proposed mechanism of ALI related to blood product administration 

describes a two-hit phenomenon, where critical illness leads to neutrophil recruitment 

into the pulmonary endothelium and activation of recruited neutrophils by EVs leads to 

destruction of endothelial cells, capillary leakage, and acute respiratory distress syndrome 

(ARDS).86 However, ongoing studies are needed to clarify the relative contribution of 

damaging EVs versus other factors in blood products. Filtering blood products with a 100 

nm filter significantly decreased alveolar and endothelial permeability but decreased PMN 

priming by only 20% and had no effect on pulmonary edema.86 Whether this difference 

is due purely to contributions from other factors in blood products or possible inadequate 

filtering and lingering effects of EVs smaller than 100 nm is unknown. Further studies are 

needed to clarify the possible benefits of removing EVs from blood products to decrease the 

risk of TRALI in patients.

By modulation of the inflammatory response, EVs can also be therapeutic in lung 

injury. One dose of human MSC-derived EVs ameliorates decreased alveolar septation, 

pulmonary hypertension, and fibrosis and showed long term benefits of improved pulmonary 

function in a hypoxia-induced lung injury model. EV encapsulated mRNAs were found 

to contribute via directing pulmonary macrophages toward a more anti-inflammatory, M2­
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like phenotype.87 Other cargo in MSC-derived EVs that play a role in ALI treatment 

by modulating inflammation include mitochondria88 in large EVs and miRNAs, which 

improve oxidative stress injury89 or decreases apoptosis.90 EPC-derived EVs have also been 

shown to ameliorate ALI by improving endothelial cell function via transfer of encapsulated 

miR-126.91 COVID-19 caused by SARS-CoV-2 can present with a dysregulated immune 

response and cytokine storm, similar to the effects of other coronaviruses,92,93 resulting 

in lung injury which may progress to severe ARDS and multi-organ failure. Treatment 

with MSCs have been shown to ameliorate immune dysregulation,94 and given the 

immunomodulatory effects of MSC-derived EVs, new studies are investigating the 

therapeutic potential of MSC EVs in COVID-19. Clinical trials have been planned or 

started–one registered pilot study with will study inhalational aerosolized MSC-derived EVs 

in treatment of severe COVID-19 cases.7

Inflammation and Sepsis

EVs play a functional role in the system-wide, multi-organ effects of sepsis. When 

blood-derived EVs from septic patients are injected into healthy animals, pleiotropic and 

tissue-selective changes were seen in the expression of proinflammatory proteins related to 

nitrative and oxidative stresses.95 However, an earlier study showed a protective effect of 

circulating EVs against vascular hyporeactivity from patients with septic shock.96 These 

effects may be due to genetic material within EVs. Plasma EVs from septic patients 

contain differentially expressed miRNA and mRNA involved in inflammatory response, 

oxidative stress, and cell cycle regulation compared to non-septic patients at both day 

0 and day 7 after ICU admission.97 Similarly, EVs can act in sepsis-related myocardial 

depression. Inhibition of small EV biogenesis and release decreased cardiac inflammation 

and myocardial depression as well as prolonged survival in a model of sepsis.98 MSC­

derived EVs also show therapeutic immunomodulatory properties by improving survival 

when given intravenously in a model of sepsis.99

Peripheral inflammation and CNS lesions greatly increase the transfer of peripheral EVs into 

the CNS.17 Genetic material such as miRNA is transferred to and change the miRNA profile 

of recipient cells in the CNS. This EV spread is either via direct crossing of the BBB or via 

local spread from hematopoietic cells that have crossed the BBB to neurons.17 Thus, EVs 

may be detrimental in or potential treatment vehicles for sepsis-induced encephalopathy. IV 

administration of MSC-derived EVs attenuated levels of apoptotic and inflammatory cells in 

blood and inflammatory cytokines (TNFα, IL-6) in blood and CSF after cecal ligation and 

puncture. Inflammatory cell infiltration in the brain, markers of inflammation, edema, DNA 

damage, and apoptosis was attenuated as well.100

Characterization of EVs could allow for early identification of the host response to infection 

and early recognition and sepsis management. Pre-clinical biomarker studies have shown 

miRNAs in EVs could distinguish between septic and non-septic patients101 and between 

sepsis and SIRS in patients.102,103 Lower EVs levels in plasma were also associated with the 

development of ARDS in critically ill and especially septic patients, but not in non-septic 

patients.104
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EVs play a wide variety of roles as system-wide signaling particles in sepsis and related 

organ dysfunction. However, more information is needed on which EV components exert 

beneficial and/or detrimental actions, given the diversity of EV cargo and functional effects. 

Ongoing investigations into the cell or tissue-specific release of EVs, time course of release, 

composition, uptake, and functional effects will allow us to harness the potential of EVs to 

diagnose and treat complex pathophysiological states such as sepsis rapidly.

Extracellular vesicles and pain management

Perioperative pain management is complicated by choosing appropriate anesthetic 

modalities, patient history of previous pain syndromes, and subacute or chronic pain 

development. Individual patients often exhibit complex pain profiles that cannot be grouped 

into simple categories. Given these intricacies, there remains much room in improving our 

understanding of pathophysiology, development of novel biomarkers, and new treatment 

modalities. EVs have great potential to revolutionize pain management due to their 

ubiquitous and functional nature—work in this field is growing (Table 4).

Although currently limited, early investigations into EVs as biomarkers for pain diagnosis105 

or treatment stratification purposes show promise. Circulating EV miRNAs are altered 

in patients with complex regional pain syndrome (CRPS).106 Plasmapheresis to remove 

autoantibodies and humoral factors can be utilized in combination with other modalities 

to treat the etiologically complex and difficult to manage pain in CRPS. To stratify 

responders and non-responders, a study looked for markers differentiating the two groups. 

Nine miRNAs in plasma EVs were significantly different before plasmapheresis between 

responders and non-responders.107 A future study with a larger cohort and next-generation 

sequencing to study larger numbers of miRNAs may be able to identify an EV miRNA 

panel able to accurately predict response to therapy. To predict development of CRPS after 

trauma, Dietz et al. found that patients with a history of a fracture without CRPS had higher 

levels of plasma EV miR-223-5p than patients with history of fracture with development 

of CRPS type I. MiR-223-5p has potential significance to CRPS given its involvement in 

immune barrier breakdown, a hallmark of neuropathy related to leakage of blood-nerve or 

blood-spinal cord barrier and reduced expression of tight junction protein.108 However, the 

specific mechanisms leading to cell barrier disruption remain to be explored. Other studies 

of EV cargo are implicating previously unknown mechanisms in the pathophysiology of 

chronic pain syndromes. Moen et al. showed that miRNA release in EVs is upregulated in 

nucleus pulposis cells, and higher extracellular miR-223, involved in immunomodulation, 

in the acute phase after disc herniation is associated with a lower risk of chronic lumbar 

radicular pain.109

EVs are therapeutic in pain disease states. The anti-inflammatory effect of EV cargo 

in treating pain has recently begun to be explored.110 When injected intra-articularly in 

an animal model of temporomandibular joint OA, MSC-derived EVs reduce pain and 

inflammation and promotes joint regeneration and repair.111 Intravenously administered 

MSC EVs also improve low back pain and attenuates cartilage degeneration and enabled 

subchondral bone remodeling in a lumbar facet osteoarthritis model.112 In an inflammatory 

pain model, macrophage-derived EVs can attenuate thermal but not mechanical allodynia 
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when injected at the site of inflammation.106 However, the opposite is seen when EVs 

are administered intrathecally, but only when EVs are derived from lipopolysaccharide 

(LPS) stimulated macrophages.113 LPS-stimulated EVs have higher levels of miRNAs that 

inhibit proinflammatory cytokine transcription and translation.106 EVs from both stimulated 

and unstimulated macrophages reduce thermal and mechanical hyperalgesia when given 

prophylactically, suggesting the possibility of a vaccine-like chronic pain therapy.113 

Changes in route and timing of administration and the state of originating cells have 

important differing effects. Thus, to fully harness their therapeutic potential, further studies 

are needed to improve our understanding of EVs.

Conclusions and future directions

Numerous studies have shown that EVs are important mediators of various 

pathophysiological states. The study of EVs in perioperative medicine, critical care, and pain 

management is in its infancy, but it is important to be aware of and understand the biology 

and potential of EVs to affect the practice of anesthesia. EVs are key players in ischemia­

reperfusion, and the potential of EV based therapeutics is demonstrated in pre-clinical 

studies that have successfully modified EVs to target specific ischemic tissues and deliver 

customized cargo. EVs are known to play important roles in inflammation, and future 

studies to improve understanding of these roles will create new therapies for or prevent 

TRALI, ARDS, aspiration pneumonia, or sepsis-induced organ dysfunction. In contrast to 

cell-based therapies such as MSC therapy, the use of EVs are advantageous due to their ease 

of storage, low immunogenicity, and low thrombogenic risk. Modified, autologous EVs have 

been proposed as non-immunogenic drug vehicles. Despite the physiologically complex and 

diverse etiologies in pain disease states, the potential of EV-based biomarkers and therapies 

for pain management are emerging.

Mechanistic studies of the release, transport, and effects of EVs and their subtypes 

will undoubtedly continue to greatly improve our understanding of physiology, 

pathophysiological processes, diagnosis, patient stratification, and development of novel 

therapeutics. EV research is not without obstacles, especially given the technical difficulties 

of studying nanoparticles of varying and continuously changing composition mixed with 

other particles of similar density and size in vitro.114,115 Fortunately, new data, guidelines, 

and techniques are standardizing and improving EV research.116 Despite the challenges, 

EV research continues to provide exciting new insight into patient care. Perioperative and 

anesthesiology sub-specialty based EV research is presently limited compared to more 

developed EV fields such as cancer biology. However, Buschmann et al. recently showed 

the feasibility of studying EVs in patients in the intraoperative period by correlating the 

effects of different anesthetic agents on EV miRNA content. This paradigm shifting-work 

used EV’s to reveal previously unknown physiological impacts of commonly used anesthetic 

agents.6 Future developments in EV research and integration into perioperative medicine 

will likely change management of perioperative disease states and hold significant promise 

to improve the perioperative outcomes of patients.
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Glossary of Terms

AKI acute kidney injury

ALI acute lung injury

AQP1 aquaporin-1

ARDS acute respiratory distress syndrome

ATF3 activating transcription factor 3

BAL bronchoalveolar lavage

BBB blood brain barrier

CCL2 C-C motif chemokine ligand 2

CCR2 C-C motif chemokine receptor-2

CNS central nervous system

CSF cerebral spinal fluid

COVID-19 coronavirus disease 2019

CPC cardiac progenitor cell

CRPS complex regional pain syndrome

EPC endothelial progenitor cell

EV extracellular vesicle

IL-1β interleukin 1 beta

IR ischemia-reperfusion

LPS lipopolysaccharide

miRNA microRNA

mRNA messenger RNA

MSC mesenchymal stem cell

MVB multivesicular body

MV microvesicle

NSC neural stem cell
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pRBCs packed red blood cells

RIPC remote ischemic preconditioning

PMN polymorphonuclear leukocytes

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

TNFα tumor necrosis factor alpha

TRALI transfusion-related acute lung injury
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Figure 1: 
Left. Extracellular vesicles (EVs) are formed via budding from the plasma membrane, 

(microvesicles), or via fusion of multivesicular bodies (MVBs) with the plasma membrane 

(exosomes). MVBs, also termed late endosomes, are part of the endolysosomal pathway. 

Right. EV characteristics include transmembrane proteins, key EV markers such as 

tetraspanins and membrane trafficking proteins involved in EV biogenesis, proteins, and 

nucleic acids such as DNA and RNA (microRNAs, messenger RNAs, small nucleolar RNAs, 

ribosomal RNAs117).
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Figure 2: 
Extracellular vesicles (EVs) can be collected and purified from cells such as mesenchymal 

stem cells (MSC), or animals for autologous or allogenic use. After collection and 

purification, EVs can be administered in an unmodified form or enriched with cargo or 

membrane proteins that exert an improved therapeutic effect. Unmodified or modified EVs 

exert therapeutic effects by interacting with cells in the tissues of many organ systems, 

including the brain, heart, lungs and kidneys.
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