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Abstract 

The prudence of utility demand-side management (DSM) investments hinges on their 
performance, yet evaluating performance is complicated because the energy saved by 
DSM programs can never be observed directly but only inferred. This study frames and 
begins to answer the following questions: (1) How well do current evaluation methods 
perform in improving our confidence in the measurement of energy savings produced by 
DSM programs? (2) In view of this performance, how can we best allocate limited 
evaluation resources to maximize the value of the information they provide. We review 
three major classes of methods for estimating annual energy savings: tracking database 
(sometimes called engineering estimates), end-use metering, and billing analysis and 
examine them in light of the uncertainties in current estimates of DSM program measure 
lifetimes. We assess the accuracy and precision of each method and construct trade-off 
curves to examine the costs of increases in accuracy or precision. We demonstrate 
several approaches for improving evaluations for the purpose of assessing program cost 
effectiveness. The methods can be easily generalized to other evaluation objectives, 
such as shared savings incentive payments . 
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Executive Summary 

Executive Summary 

American utilities spent nearly three billion dollars on demand-side management 
(DSM) programs in 1994. 1 The prudence of these investments hinges on their 
performance, yet evaluating performance is complicated because the energy saved 
by DSM programs can never be observed directly but only inferred. Utilities 
currently rely on a variety of methods, drawn from a variety of academic 
disciplines, including engineering, statistics, social psychology, and economics. 
Given the relative newness of utility DSM programs, it is not surprising that no 
consensus has emerged on a single best evaluation method. There are significant 
unanswered questions regarding how much evaluation, and what types, are 
appropriate in view of the expected benefits and costs of the programs. 

The objective of our study is to frame and begin to answer the following questions: 
(1) How well do current evaluation methods perform in improving our confidence 
in the measurement of energy savings produced by DSM programs? (2) In view of 
this performance, how can we best allocate limited evaluation resources to 
maximize the value of the information they provide? We approach the subject 
humbly and do not presume that there is a single best method for conducting a 
DSM evaluation; we acknowledge that all evaluation methods provide some 
information. The quantity and types of information one needs depend on the 
intended use of the evaluation results. Therefore, how much one should spend 
acquiring DSM evaluation information depends on how much the information is 
worth. 

Our study examines current practices in the evaluation of DSM programs that 
target lighting in the commercial sector, both because of their significance as major 
elements of most utility's DSM program portfolios and because they have been the 
subject of extensive evaluations. We examine different evaluation methods from 
the particular objective of improving our knowledge regarding the cost 
effectiveness of these programs. Establishing cost effectiveness is not the only 
objective of an evaluation; establishing shareholder incentives paid to a utility for 
running a DSM program is another. The methods we develop are general and can 
be readily extended to these and other evaluation objectives. 

Although ours is not the first study to recognize that the value of information and 
the cost of acquiring it should be important inputs into decisions about evaluation 
methods, we believe ours is the first comprehensive application of this insight to 
the practice of DSM program evaluations. Moreover, in developing the 
information required to allocate evaluation resources cost-effectively, we have 
uncovered substantial new information on the strengths and limitations of current 
evaluation methods. 

1 EIA. "Annual Energy Outlook 1994." Energy Information Administration, Washington, 1994. 
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EX.l The Performance of Current DSM Program Evaluation Methods 

A major contribution of our study is a detailed assessment of the performance of 
current evaluation methods. We reviewed three major approaches for estimating 
annual energy savings: tracking database (sometimes called engineering estimates), 
end-use metering, and billing analysis. We also examined current estimates of 
DSM program measure lifetimes. The objective of our assessment was two-fold: 
First, we attempted to systematically characterize what is known about the 
accuracy and precision of current methods, based on reviews of recent evaluation 
studies and on our own analyses. Second, we constructed "trade-off' curves to 
examine the costs of increases in accuracy or precision. What follows is a 
summary of key findings on the performance of these methods. 

EX.l.l Tracking Database Estimates of Savings 

Although "engineering estimate" is traditionally defined as a method that does not 
rely on measured consumption data (such as load metering or bills), we believe the· 
term does not adequately describe the range of current methods. Moreover, the 
pejorative implications of the term are inappropriate given the often substantial 
after-the-fact performance data, such as site inspections and spot metering, that are 
routinely incorporated by these approaches. 

Figure EX-1. Comparison of Accuracy and Precision of Tracking Database Estimates of 
Savings. Realization rates for individual components of savings (number of measures, 
hours of operation, changes in installed capacity or delta kW) from tracking databases 
and site inspections are compared to more accurate end-use metering estimates of the 
same quantities. 
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Executive Summary 

Nevertheless, for a small sample of studies in which we could directly compare 
tracking database estimates of savings to end-use metering, we found considerable 
variation in bias and precision (see Figure EX-1). Because ·an evaluator, without 
additional evaluation information, has no means of estimating the bias and 
precision of his/her tracking database estimate, we conclude that tracking database 
estimates alone are not reliable. Among the computational elements used in 
tracking databases (i.e., number installed, change in load per measure, and hours of 
operation), we found hours of operation were the largest contributor to bias and 
imprecision in annual savings estimates. If future studies with a larger sample of 
programs can confirm these findings, it would suggest additional attention should 
be given to inexpensive and accurate methods for improving estimates of hours of 
operation. 

EX.l.2 End-Use Metering Estimates of Savings 

Although end-use metering offers the promise of being the most accurate method 
for estimating lighting energy savings,2 we find that contemporary end-use 
metering studies are often limited. These limitations stem ultimately from the high 
cost of end-use metering, which, because of its cost, is generally implemented for 
only a subset of program participants, for a subset of affected circuits, and for only 
a few weeks at a time. Clearly, rationing these high costs to maximize the value of 
the information produced by this method is an important evaluation objective. 

The imprecision of limited-duration metering and the effects of HV AC/lighting 
interactions were not addressed in the majority of studies we reviewed. We· 
estimate that these uncertainties reduce the precision of end-use metering estimates 
by approximately 20%. This reduction could be tempered by: (1) longer-duration 
metering, or, (2) a better understanding of interaction effects coupled with detailed 
information about each customer's HV AC system. · 

Our sample of office building lighting hours of operation data suggests that hours 
vary seasonally. On average, hours of operation are half an hour longer in the 
winter and half an hour shorter in the summer than during the shoulder months. 
Neglecting to account for the season in which metering is performed could bias the 
estimate of hours of operation and the resulting estimate of annual savings. 

HV AC!lighting interaction effects increase program electricity savings for most 
non-electrically-heated office buildings. Omitting this effect from consideration 
can result in a 5-15% downward bias in annual savings estimates, depending on the 
climate and particular HV AC equipment used. 

Small sample metering studies depend heavily on the representativeness of the 
metered sample. Most evaluators already stratify the population to select a 
representative sample of participants and then select representative equipment 
within each facility. Detailed metering results from evaluations would allow an 

2 It can potentially be most accurate because it measures a quantity that most closely resembles actual energy savings: 
the actual consumption of individual pieces of equipment before and after a efficiency-enhancing retrofit. 
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assessment of differences in equipment operation across participants, facility types, 
and facility zones. Until such detailed reporting is commonplace, which will enable 
analyses of equipment operating differences to be performed, the 
representativeness of current metered samples will remain uncertain. 

EX.l.3 Billing Analysis 

Regression-based analyses of customer billing information are perhaps the most 
widely used post-program evaluation method. We examined a range of methods 
using a simulated data set of 500 buildings where we could precisely control the 
level of savings, influence of weather, and changes in building hours of operation. 
In evaluating the popular Statistically Adjusted Engineering or SAE model, which 
introduces site-specific engineering estimates of savings, we confirmed the 
magnitude of a widely-recognized but underappreciated limitation of the method, 
namely, that its reliability depends strongly on the quality of the initial engineering 
estimate of savings (see Figure EX-2). Based on our earlier findings regarding 
typical levels of imprecision and bias in these estimates, we found that the SAE 
model did not perform as well as simpler time-series regression methods. We 
believe this is a major fmding and, if confirmed by subsequent appli~ation of our 
methods to a wider range of situations, represents a particularly sobering 
conclusion for the evaluation community. 

Figure EX-2. SAE Model Realization Rate Bias Dependent on Engineering Estimates. The 
realization rate for an SAE model depends on both the accuracy and precision of the 
underlying engineering estimate of savings. Even a completely unbiased estimate leads 
to an erroneous realization rate of less than 1.0 when the standard deviation of the 
estimate is greater than, say, 0.25 (see upper curve). 
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We also found that inclusion of comparison groups in time-series regression can 
greatly improve the precision of annual savings estimates, at moderate costs. 
When the DSM program reduces customer consumption by a small amount (4% in 
our simulation), incorporating nonparticipant data improves the precision of 
savings estimates by a factor of three. For programs that save a larg~r proportion 
of customer electricity consumption, the improvement is smaller but still 
significant. 

Table EX-1. Summary of Annual Savings Evaluation Methods Examined. 

Method To Effects Treated/ Primary Accuracy Potential Bias In Potential 
Estimate Accounted For Limitations Annual Savings Imprecision In 
Annual. Estimate Annual Savings 
Savings Estimate 

Tracking Baseline equipment, Over/underestimation Precision not 
database usage patterns, of baseline and estimated 
(engineering equipment program equipment 
estimate) installations not efficiencies, hours of 

verified, efficiencies operation 
from mfr. 
Specifications, 
requires gross 
assumptions 
regarding consistent 
customer behavior 

Site Baseline equipment Still simplifies Over/underestimation Precision not 
inspection (with pre-installation equipment usage of operating hours or estimated 

inspections) and patterns, does not equipment efficiencies 
efficient equipment verify equipment by auditors/ in 
specification errors energy consumption customer surveys 
in tracking at customer sites 
database, hours of 
operation (from 
auditor/ customer 
survey) 

------ ·-------------- - ·--
End-use Variations in Metered sample may Seasonal variations in Limited duration 
metering equipment usage, not accurately equipment usage, metering, 

baseline usage (if represent population, hvac/lighting extrapolation 
pre/post metering) metering of limited interaction effects, from sample to 

time duration, no unrepresentative population 
comparison group sample of 

customers/equipment! 
building zones 
metered 

Customer Changes in Provides little Non-normality of Improper model 
bill-based equipment usage, understanding of data/error term, specification, 
econometric changes in weather, program strengths/ improper model inadequate 
models changes in baseline weaknesses or specification, improper variability in 

energy use (with justification for its comparison group, data, low 
comparison group) savings estimate, inadequate variability signal/noise 

requires one year of in data, low ratio 
post-program data signal/noise ratio 

XV 



Executive Summary 

EX.l.4 From Annual Savings to Lifetime Savings: Economic Measure Lifetime and Its 
Influence on the Cost of Conserved Energy 

The value of DSM programs depends on both annual savings and the economic 
lifetime of the measures. We caution that the current practice of simply estimating 
equipment measure lifetimes based on expert judgment may be highly unreliable. 

We demonstrate that measure lifetimes represent a significant source of uncertainty 
for estimates of energy savings (see Table EX-2). The importance of uncertainties 
in measure lifetime for the cost of energy savings depends on the effect size, and 
the method chosen to estimate annual energy savings. With the exception of 
methods involving time-series analyses of a small effect size, measure lifetime is 
the dominant contributor to uncertainty (i.e., the rank correlation for measure 
lifetime is greater than that for annual savings). In every case, the contribution of 
measure lifetime to uncertainty is comparable to that of the annual savings 
estimates. 

Table EX- 2. Importance of Uncertainty in Cost of Conserved Energy Inputs. 

Top-Down Method 

Time-Series 

Time-Series Cross 
Section 

Time-Series Cross 
Section w/Lagged 
Dependent Variable 

Effect Size 
(savings per 
participant) 
Small 
Medium 
Large 

Small 
Medium 
Large 
Small 
Medium 
Large 

Rank Correlations (1 indicates 
maximum importance) 

Annual Savings Measure Lifetime 
Estimate 

0.88 0.49 
0.61 0.74 
0.46 0.87 
0.50 0.82 
0.39 0.90 
0.37 0.92 
0.44 0.90 
0.23 0.98 
0.22 0.99 

A comparison of the results of recent equipment lifetime studies (we located only 
two complete studies) with measure lifetime estimates from evaluations of 20 
commercial lighting DSM programs suggests that the lifetime estimates commonly 
used today by utilities could be biased upwards, resulting in estimates of the cost 
of conserved energy that are biased downwards. Now that DSM is maturing as an 
energy resource, it is time for additional studies that verify, through surveys of 
participants, estimates of measure lifetime. 

EX.2 Efficient Allocation of Evaluation Resources 

Our objective in examining the performance of current evaluation methods is to 
offer recommendations on how to improve the current practice of conducting 
evaluations by explicitly recognizing the tradeoffs involved in evaluation method 
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performance, costs, and the value of evaluation information. We demonstrate 
several approaches from the particular evaluation objective of assessing program 
cost effectiveness. Our methods can be easily generalized to other evaluation 
objectives, such as shared savings incentive payments. 

We begin by comparing the likely impact of improved evaluation methods on the 
cost-effectiveness findings for 20 recent commercial lighting programs. We find 
relative precisions in the range of 90150 (±50% at a 90% confidence interval) are 
sufficient to confirm the cost effectiveness of the majority of programs from this 
sample of 20. Table EX-3 illustrates, for differing initial levels of program cost 
effectiveness, the effects of different levels of evaluation method precision on 
ultimate program cost effectiveness. Confidence that programs are cost effective 
decreases as the initial TRC ratio approaches 1.0 and as evaluation method 
precision decreases. Thus, we conclude that the 90110 precision standard often 
required of evaluations may only rarely be cost-justified from the standpoint of 
confirming program cost effectiveness. 

Table EX-3. Fraction of Distributions Representing Non-Cost-Effective Programs. 

Mean TRC Savings Estimation Precision Percent of 
Test Ratio Method Distribution Less 

Than 1.0 
Low End-Use Metering Low (±50%) 40% 
(1.1) Medium (25%) 29% 

High (10%) 11% 
Econometric Low (15%) 19% 

Medium (10%) 11% 
High (5%) 3% 

Medium End-Use Metering Low 7% 
(1.8) Medium -

HiQh -
Econometric Low -

Medium -
High -

High End-Use Metering Low 1% 
(4.2) Medium -

High -
Econometric Low -

Medium -
High -

However, biases in measure lifetime estimates can also cause misstatements of cost 
effectiveness. Coupling such biases with imprecise estimates of measure costs and 
annual energy savings can further decrease evaluator confidence in program cost 
effectiveness. The biases we identify in current practice of calculating annual 
savings and measure lifetime estimation are sufficient to mislabel non-cost-effective 
programs as cost effective, even when estimated Total Resource Cost Ratios are as 
high as 2.0. Unfortunately, although we can the identify sources and likely 
magnitudes of bias in current methods, we cannot offer definitive guidance on the 
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bias likely to be present in any particular application of methods. A notable 
exception is our earlier characterization of the bias introduced by the SAE method 
in the presence of bias and imprecision in initial engineering estimates of savings. 

Finally, we consider the issue of evaluation resource allocation directly. For a 
decision to continue funding a program based on cost effectiveness, this requires: 
(1) a subjective estimate of the chances that the program is actually not cost­
effective, in the face of any evaluation results, and (2) an estimate of the resources 
that could be misallocated to the program in the following year. We represent the ' 
decision to fund as being based on (a) a mean evaluation estimate of cost 
effectiveness, or (b) an estimate of cost effectiveness that includes imprecision. 
The difference between (a) and (b) is the value of including uncertainty in the 
program screening decision. The product of ( 1) and (2) is the expected value of 
future misallocated resources. The results for a hypothetical program, with value 
expressed as a percentage of total program cost, are plotted in Figure EX-3. 

Figure EX-3. Expected value of including uncertainty: TRC estimates in the low (mean 
total resource cost ratio =1.1) range. 
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The value of including a measure of evaluation imprecision depends on the mean 
estimate of cost effectiveness and its bias and imprecision. When the imprecision 
is zero, there is no [intuitive] value in considering an estimate of imprecision. As 
imprecision increases, but more importantly as bias increases, the value of taking 
imprecision into account increases. Our analysis leads us to conclude that taking 
estimate imprecision into account can mitigate the effects of estimate bias and 
imprecision, when evaluation information is used to screen ongoing DSM 
programs. Moreover, including imprecision in program screening decision making 
is more valuable when mean program cost-effectiveness ratios are close to one. 

EX.3. Concluding Thoughts 

The introduction of competitive forces in the industry is creating substantial 
. pressures for utilities to control costs. Formal decision-analytic approaches to 

ration DSM program evaluation resources offer the potential to guide cost control 
decisions in a systematic and defensible fashion that maximizes the value of 
evaluation expenditures. Application of these approaches, however, requires 
detailed information on the performance of evaluation methods. This information 
is not yet widely available. Hence, we recommend increased effort by future 
evaluation efforts to report intermediate findings, especially on precision, so that a 
more comprehensive and reliable base of information upon which to ground these 
decisions can be developed. 
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Chapter 1 

Introduction and Overview 

American utilities spent nearly three billion dollars on demand-side management 
(DSM) programs in 1994. 1 The prudence of these investments hinges on their 
performance, yet evaluating performance is complicated because the energy saved by 
DSM programs can never be observed directly, but only inferred. Given the relative 
newness of utility DSM programs, it is unsurprising that consensus has not emerged 
on a single best evaluation method. Utilities currently rely on a variety of methods, 
which in turn are drawn from a variety of academic disciplines, including engineering, 
statistics, social psychology, and economics. There are significant unanswered 
questions of how much evaluation, and what types, are appropriate in view of the 
expected benefits and costs of the programs. 

The objective of our study is to frame and begin to answer the following questions: 
( 1) How well do current evaluation methods perform in improving our confidence in 
the energy savings produced by DSM programs? (2) In view of this performance, how 
can we best allocate limited evaluation· resources to maximize the value of the 
information they provide? We approach the subject humbly in that we do not presume 
there is a single best method for conducting a DSM evaluation. Instead, we start by 
acknowledging that all evaluation methods provide some form of information. The 
quantity and types of information one needs depends on the intended purpose of the 
evaluation result. Therefore, how much one should spend acquiring this information 
depends on how much the information is worth, in view of the cost of obtaining it. 

Our study examines current practices in the evaluation of commercial sector lighting 
energy efficiency DSM rebate programs, both in view of their significance as major 
elements of most utility's DSM program portfolios and because, as a result, they have 
been the subject of extensive evaluations. We examine the value of different 
evaluation methods from the particular objective of improving our knowledge 
regarding the cost-effectiveness of these programs. This, of course, is not the only 
objective of an evaluation; establishing shareholder incentives paid to a utility for 
running a DSM program is another. The methods we develop are general in nature 
and can be readily extended to consider this and other objectives. 

While the method is general, it is important to recognize the constraints we have 
placed on the scope of our investigation. As indicated, we apply our methods to a 
study of only one particular, albeit popular, type of DSM program, namely, those that 
offer rebates to commercial sector customers to retrofit or replace existing lighting 
systems. For these programs, we are concerned only with methods for estimating the 
direct annual energy savings attributable to them. We do not examine evaluation 
methods that attempt to measure the level of free-ridership or spillover from these 

1 EIA. "Annual Energy Outlook 1994". Energy Information Administration, Washington, 1994. 
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programs. Finally, while we explicitly examine the uncertainty in estimates of energy 
savings, we do not consider uncertainty in the cost of these programs or in the 
estimates of the utility supply costs avoided by these programs. 

The remainder of this chapter motivates our study. First, we expand the above 
conception of the DSM program evaluation problem, which illustrates the notion of 
trading-off the cost of conducting one or another evaluation method against the 
anticipated benefits associated with each method. Next, we identify a particular set of 
very important evaluation objectives as one basis for making these trade-offs: the cost 
of conserved energy, and the related, total resource cost net benefit of DSM programs. 
We then differentiate between bias and precision, which are two interrelated, yet very 
distinct features of evaluation results. We then describe a particular type of DSM 
program, commercial sector, lighting energy efficiency rebate programs, which we use 
to illustrate these trade-offs. These programs are of special interest because they often 
account for the largest part of a utility's DSM program portfolio (and, consequently, 
evaluation spending). Finally, we provide a detailed overview of the following 
chapters of the report. 

1.1. Integrating Cost Information with Bias and Precision of Methods 

The basic premise of our study is that a comparison of evaluation methods is of little 
practical use unless the costs of the evaluation methods are also compared. 
Integration of cost information with evaluation method results allows trade-offs 
between cost and the bias/precision of each method. In theory, one could construct a 
curve which explicitly described the tradeoff between evaluation cost and 
bias/precision, with each evaluation method represented by a point (or a range) on the 
curve. A sample of such a graph is given in Figure 1-1. If one also had a measure of 
the value of increases in bias/precision, then one could decide not only which 
evaluation method to choose (i.e., which curve to be on), but also at which point on 
the curve the difference between cost and value is maximized. 

Each curve represents a group of similar evaluation methods (for example, similar 
methods which incorporate data which is more accurate but increasingly more 
expensive to collect). For a given level of accuracy, several methods may be available 
to provide similar results at different costs, as indicated in Figure 1-1 by line C. As 
increased unbiasedness or precision is required, evaluation methods with gentle curves 
would be favored over ones with steeper curves. In order to precisely determine the 
appropriate level of evaluation, information on the use of the resulting savings 
estimates and requirements for bias and precision must also be incorporated into the 
analysis. These are represented hypothetically as a value curve, which decreases in 
marginal value as bias or precision is increased. The optimal level of evaluation is 
found at the point where the distance between the two curves (and the net benefit of 
evaluation) is maximized, as indicated in Figure 1-1 by line D. 
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Figure 1-1. Hypothetical cost vs. accuracy curves 

Cost of 
Evaluation 
Method/ 
Value of 
Evaluation 
Result 

Value of Evaluation Result 

Evaluation Accuracy/Precision 

1.2. Evaluation Objective: The Cost of Conserved Energy 

DSM program evaluations provide valuable information regarding program 
administration, management, costs, and benefits. The appropriate evaluation 
technique is dependent on the evaluation objective. Appendix A provides a summary 
of the most often cited objectives of DSM program evaluation, and the evaluation 
requirements of each objective. 

This study focuses on assessing the ability of evaluation to provide accurate and 
precise estimates of the kilowatt-hour savings of DSM programs and resulting costs to 
society and to the utility. We express the program cost to society using the Cost of 
Conserved Energy (CCE) as a metric. The CCE can be used to express the levelized 
cost (over the life of program equipment) of a DSM program per kilowatt-hour of 
program savings attained. The equation for calculating the CCE is: 

"(I ")" 
Program Cost x 

1 + 1 

Cost of Conserved Energy (¢I kWh)= (I+ W -I · 
Annual Savings 

Using a capital recovery factor with discount rate i, the term in the numerator levelizes 
the total program cost over the number of years n the program equipment is expected 
to operate. Because the CCE allows one to compare results of DSM programs with 
different costs, savings, and lifetimes, and because it enables the comparison of DSM 
programs with supply-side options in an integrated resource plan, the CCE is a 
quantity of interest to utilities, regulators, and DSM program planners .. To evaluate 
cost effectiveness, the cost of conserved energy is often compared to the supply-side 
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costs DSM programs allow the utility to avoid. The ratio (known as the total resource 
cost ratio) of avoided costs to the cost of conserved energy provides one metric of a 
program's cost effectiveness: programs with a ratio greater· than one are considered 
cost-effective. 2 

1.3. Assessing evaluation methods: Bias and Precision 

We use two different metrics to assess how well evaluation methods reveal a 
program's actual energy savings: bias and precision. A biased estimate systematically 
deviates from the true value, under or over estimating savings. For example, if a 
method consistently overestimated actual savings by 20%, that method would be 
considered biased. 

The issue 'Of precision is more esoteric. Many program evaluations omit all discussion 
of estimate precision, and report savings estimates as single values. But because of the 
difficulties associated with calculating program savings, any estimate of program 
savings is subject to some uncertainty. It is this uncertainty that one attempts to 
encapsulate in an expression of precision. An estimate which omits an estimate of 
precision is incomplete and can be misleading. For example, an estimate of annual 
savings of 5,000kilowatt-hours (kWh) with a standard deviation of ±300 kWh is very 
different from an estimate of 5,000 ± 3,000 kWh. The latter estimate is ofless use as a 
gauge of program savings, because it suggests that the actual savings could be 
considerably above or below the mean estimate of 5,000 kWh, while the former 
estimate is more precise, satisfying what is known as a 90/10 criterion; ±10% relative 
precision at a 90% confidence interval. Thus, figures reported without an estimate of 
that uncertainty are not as informative as those which include an estimate of 
uncertainty. 

It is important to consider the relative importance of precision and bias. A precise but 
biased estimate is worth little, unless the magnitude of the bias is known. On the other 
hand, an unbiased but imprecise estimate can still be useful because, on average, it 
provides the correct value. Figure 1-2 illustrates the relationship between bias and 
precision. 

2 When the cost of the program to only the utility, and not society, is included, the ratio is called the utility cost test 
ratio. 
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Figure 1-2. Bias and precision in savings estimates 
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Biased, i.e., under- or over-estimates of savings, have important implications on 
several levels: For the utility, biased estimates of savings misinform about program 
cost-effectiveness. Biased over-estimatesr of savings may cause utilities to retain DSM 
programs which are not, in reality, cost effective. At the state regulatory level, 
overestimates of savings will result in utility overcompensation for lost revenues (for 
lost revenues which, in fact, were never lost) and allowed recovery of excessive shared 
savings incentives. Thus, the utility is allowed to collect additional, unjustified revenue 
from ratepayers. At the national level, plans to reduce national dependence on fossil 
fuels or reduce power plant emissions using DSM activities may fall short of desired 
goals if plans are based on studies which exaggerate potential savings. 

An imprecise estimate of savings has some slightly different implications: Imprecision 
in annual savings or measure lifetimes can affect the mean cost of conserved energy 
estimate, because of the asymmetric nature of the cost of conserved energy 
distribution. (As will be shown in Chapter 6, however, the imprecision must be very 
large in order to significantly bias savings estimates.) Most of the concern regarding 
precision involves a fundamental desire for a precise estimate, but this desire is not 
necessarily based in the requirements of any particular use of the estimate. Regulatory 
agencies in California, among other states, require that precision of evaluation study 
results strive to reach 90110 (or 80/20) criteria: evaluations should strive to attain 
±10% relative precision using a 90% confidence interval (or ±20 relative precision 
using an 80% confidence interval).3 

3 Hanser, P., Violette, D., "DSM program evaluation precision: What can you expect? What do you want?", 
Proceedings of NARUC's 4th annual national conference on IRP, pp. 299-313, 1992. 
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In most cases the 90110 criteria is applied to estimates of annual savings, without a 
similarly rigorous criteria being required for lifetime savings or for the resulting 
estimates of the cost of conserved energy. We demonstrate the difficulty of meeting a 
90/10 criteria for the cost of conserved energy, which is usually of more importance to 
regulators than the annual savings estimate itself. We also show that in many cases 
such a criteria may be excessive because the cost-effectiveness of the program is 
assured at a much lower level of precision. 

In this report, we use simulation techniques and data from past programs and 
evaluations to explore the extent of current methods' biases. For those methods 
where there is currently insufficient information to assess bias, we outline a framework 
which could be implemented with additional evaluation information. We also assess 
the precision associated with annual savings estimates obtained with different 
evaluation methods, and with the resulting cost of conserved energy estimates. 

1.4. Focus on Commercial Buildings and Efficient Lighting 

Rather than attempt to describe appropriate evaluation methods for all types of 
demand-side management programs, this report focuses on efficient lighting retrofits in 
commercial buildings. The analytic approach we use can be used to assess the 
evaluation methods for other sectors (residential, agricultural, and industrial), and for 
other efficient equipment types (heating/cooling equipment, process improvements, 
water heating, etc.). However, we have chosen to focus on commercial lighting 
because of the pervasiveness of utility sponsored commercial lighting programs, and 
the magnitude of electricity consumed by commercial lighting applications. The 
commercial building sector is responsible for about 10% of U.S. energy consumption.4 

Interior lighting is an important use of energy in commercial buildings, representing 
40% of electricity use and 15% of total energy use in the commercial sector.s Interior 
lighting is also widely believed to be among the most cost-effective conservation 
opportunities available. Studies on the theoretical potential (sometimes called 
technical potential) for energy conservation have estimated that an additional 40-70% 
of lighting energy use could be cost-effectively saved in the commercial sector. In 
response to these studies, the vast majority of utilities engaged in DSM activities 
include programs which promote use of efficient lighting equipment in commercial 
buildings. 6 

4 EIA. "Commercial Buildings Energy Consumption and Expenditures 1989". Energy Information Administration, 
Washington, 1992. 

5 EIA. "Annual Energy Outlook 1994". Energy Information Administration, Washington, 1994. 

6 Eto, J., Vine, E., Shown, L., Sonnenblick, R., Payne, C., ''The Cost and Performance of Utility Commercial 
Lighting Programs", Lawrence Berkeley Laboratory, Berkeley, CA, LBL-34967, May 1994. 
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1.5. Summary of Report Organization 

This report consists of seven chapters following this introduction and three 
appendices. A diagram of the report analysis is shown in Figure 1-3. 

Chapter Two contains a detailed description of the evaluation methods examined in 
this report. It is based on a recent examination of evaluation methods used to estimate 
savings for twenty commercial lighting programs. The chapter uses the examination to 
develop formal expressions for each individual savings evaluation method. We 
distinguish between bottom-up and top-down evaluation methods. Bottom-up 
evaluation methods calculate savings from tracking databases (information collected . 
by the utility on program participants), from participant site~inspections, and from end­
use metering. We call these methods 'bottom-up' because they estimate, collect and 
measure consumption information at the individual equipment level, and require 
extrapolation and/or aggregation to construct site and program-wide savings 
estimates. We call methods which rely on customer billing data and econometric 
models 'top-down' methods because they examine monthly or annual consumption 
data, the most aggregate form of customer consumption data, and infer savings from 
comparatively smaller (compared to the size of the bills) 'but systematic changes in 
participant consumption patterns. We also summarize the limitations ofthe different 
evaluations which we quantitatively investigate in subsequent chapters. For those 
well-versed in current DSM practice, this chapter may be skipped. 

The assessment of bottom-up evaluation methods is conducted in two separate 
chapters. Chapter Three uses end-use metering data from a handful of studies where 
highly disaggregated data were reported to evaluate the accuracy of savings estimates 
developed from tracking database estimates of savings and site inspection estimates of 
savings. We also describe a research plan to systematically assess bias and precision of 
tracking database and site inspection estimates of savings, as the data become 
available. 

In Chapter Four, we use disaggregate long and short term metered data to assess bias 
and precision of end-use metering estimates of annual savings. To estimate the 
uncertainty of metered results, we incorporate data on changes in hours of operation 
over time, and differences in hours of operation across different areas of a building. 
These data provide us with enough information to discuss the potential error in shorter 
duration metering studies, and in studies where a sample unrepresentative of the 
participant population is selected. We combine our estimates of method bias and 
precision with information on data collection and analysis costs. 
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Figure 1-3. Overview of Research Plan 
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In Chapter Five, we examine top-down evaluation methods, which rely upon premise­
level energy consumption data. In order to assess the performance of these methods, 
we construct a set of 250 'participant' and 250 'nonparticipant' commercial buildings, 
based on building construction data from EIA and several utilities. We then use DOE-
2 to generate estimates of monthly energy consumption for these buildings for a year 
prior to, and a year after, implementation of a lighting retrofit. We apply the top­
down evaluation methods to this monthly consumption data. The results of this 
application are combined with information regarding the costs of each method. 

In Chapter Six, we combine annual savings estimates with estimates of measure 
lifetime, in order to estimate overall program savings. Using Monte Carlo techniques, 
we estimate the importance of uncertainty in annual savings, measure lifetime, and free 
ridership, and the overall uncertainty of the program savings estimate. Monte Carlo 
techniques are also used to estimate the uncertainty in levelized total resource cost. 

In Chapter Seven, we describe the results of our analysis of estimate bias, precision, 
and the cost of conserved energy. For some programs, increases in savings estimate 
precision can dramatically reduce confidence in the cost effectiveness of the program. 
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For other programs, increased precision may be unnecessary to conclusively show 
cost -effectiveness. 

In Chapter Eight, we review the implications of our analyses for future evaluation 
activities. 

Appendix A contains descriptions of other objectives of DSM program evaluation. 
Appendix B contains a detailed description of the data and methods used to simulate 
the buildings used to assess the relative bias and precision of the top-down evaluation 
methods. In Appendix C, we compare the cost, precision, and bias of top-down and 
bottom-up methods used to estimate annual program savings. In addition to method 
precision and bias, we discuss other important attributes of each method, and discuss 
hybrid methods which incorporate several methods in a single framework. 
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Overview of Evaluation Methods 

Evaluating the effects of a DSM program on energy consumption is a challenging task. 
The goal is to measure how much energy would have been consumed by program 
participants if the program had not occurred. Because energy savings can only be 
deduced and not directly observed, uncovering savings attributable to a program often 
utilizes quasi-experimental methods, which utilize information on both program 
participants and nonparticipants (a comparison group), both before and after program 
implementation. In this chapter we describe bottom.,up and top-down evaluation 
methods in greater detail. We also describe methods used to estimate the lifetimes of 
program . The 20 evaluations scrutinized in a recent LBL report on commercial lighting 
rebate programs provide an opportunity to examine the evaluation methods used in the 
field to estimate these quantities. 1 

2.1. Animal Savings Methods 

As described in the previous chapter, we classify evaluation methods that estimate annual 
program savings into two categories: bottom-up and top-down methods. Other DSM 
researchers focus on the distinction between "engineering" and "measured data" 
evaluation. We find this distinction misleading because all methods of estimating energy 
savings rely on engineering methods to some extent. For example, even end-use metering 
relies upon engineering technologies (meters and data loggers). Moreover, measurement 
does not necessarily imply that the measured value is reality: as we stated above, energy 
savings can only be deduced, not directly observed. Thus, no method elicits the absolute 
truth regarding annual program savings. 

2.1.1. Examining Bottom-Up Energy Savings Models 

For a commercial lighting program, the same basic information is used for all bottom-up 
evaluation methods: the number of measures of each type installed per site, each 
measure's kW consumption and the kW consumption of the measures being replaced, 
and each measure's hours of operation. The basic equation for energy savings which 
incorporates these terms is:2 

measures ( Watts Watts J Energy Savings = . x - x Annual Hours 
szte measureold measurenew 

1 See Eto, J., Vine, E., Shown, L., Sonnenblick, R., Payne, C., "The Cost and Performance of Utility Commercial 
Lighting Programs", LBL, Berkeley, CA, May 1994, for complete information on the set of evaluations and programs in 
this sample. 

2 The equation representing savings from other end uses (e.g .. heating, cooling) could be much more complex, involving 
non-linear relationships and greater numbers of parameters. 
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Bottom-up methods are often divided into three distinct categories: tracking database 
estimates (sometimes called engineering estimates) which rely upon utility database 
records of equipment installations and manufacturer-estimated efficiencies and equipment 
lifetimes; site inspection estimates which employ auditors to verify existence and 
operation of measures and adjust tracking database estimates based on interviews with 
customers; and end-use metering methods which rely upon measured consumption data 
from the efficient equipment installed at customer facilities. However, because these 
methods all utilize the same basic savings equations, it is more congruous to think of 
bottom up methods as a continuum, with each successive method utilizing more 
sophisticated (and costly) techniques to collect increasingly accurate data for the energy 
savings equation. A pictorial representation of this continuum is given in Figure 2-1. 

Figure 2-1. Continuum of Bottom-Up Methods 
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• Increase metering duration 

At the most basic level, simple assumptions are made regarding the hours of operation for 
all buildings, and the equipment installed (and its efficiency) prior to the program 
intervention. The measures installed at each site are taken from program tracking 
database records of participants, often from rebate applications. These estimates are 
inexpensive to obtain but will probably not provide precise, unbiased estimates of 
savings, because these quantities are not based on actual data from the participating 
buildings. 

Augmenting information at the basic level with specific information from surveys of 
program participants regarding their hours of operation .and pre-program equipment is 
more accurate because it incorporates information about the specific participants' sites. 
However, participants' perception of hours of operation may over- or underestimate 
actual hours, and their knowledge of the equipment in place prior to participation may 
also be imperfect. In addition, hours of operation may vary for different parts of a facility 
in ways that are unbeknownst to the building managers or owners of those facilities. 

On-site inspections by utility personnel can provide more consistent, and possibly more 
accurate, estimates of pre-program equipment efficiencies. On-site inspections also allow 
utility personnel to ask more detailed questions and visually verify the hours of operation 
for different areas in a facility. Equipment installed (and still operating) as a result of the 
program can also be verified. Visual inspection falls short of the accuracy associated 
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with actual measurement, but is considered more accurate than customer self-reports of 
operation and equipment description. 

On-site inspections can include some measurement, such as instantaneous measurement 
of kilowatt loads using spot-watt meters. Other metering equipment can be installed 
during on-site surveys, including lighting loggers, which use photocells to measure hours 
of operation for lighting equipment, or current transformers connected to data logging 
equipment, which can be clamped on to circuits of program equipment to meter kilowatt 
loads over time. 

The expense of site inspections and metering usually precludes the use of such methods 
on every piece of e·quipment at every participating site. Thus, a sample of sites, and of 
equipment at each site, is monitored for a limited period of time. The results are then 
extrapolated to the entire population of participants, over the lifetime of the equipment. 
The validity of this extrapolation is dependent on the representativeness of the sample 
and time-period selected for monitoring. Increasing the sample size (both across sites 
and within each site j and the metering duration improves the robustness of the 
extrapolation. 

With explicit information about the initial uncertainty associated with each component of 
the tracking database estimate and information about the improvement in accuracy 
associated with each successive point on the continuum, an evaluator could make 
explicit, justifiable tradeoffs between the cost of additional data collection and the 
resulting anticipated increase in evaluation accuracy and precision. 

Characterizing the uncertainty and variability of the various components of the. bottom-up 
energy savings estimate requires extensive analysis of actual program data. The more 
detailed the available data, the more complete the resulting characterization of the 
variability in savings estimates at each point in the continuum. The difficulty is that the 
highly disaggregated data required to characterize the variability of savings estimates for 
each method is scarce. The costs of long term, large scale end-use metering are 
prohibitive, and not easily justified based on the evaluation needs of the program at 
hand. 3 Furthermore, most end use metering studies do not report (or. even always keep 
on file) the disaggregated, intermediate-level results which one requires to undertake a 
characterization of method accuracy. 

In the following sections, we discuss the factors which may bias tracking database and 
site inspection estimates of fl. Watts/measure and hours of operation. 

2.l.l.l.BaselineEquipment Efficiency and Program Measure Efficiency 

The efficiency of both the program equipment and the equipment being replaced is crucial 
to the estimate of savings: If equipment being replaced is more efficient than originally 
thought, savings will be less than predicted. If new equipment does not perform as well 
as expected, savings will also be reduced. 

3 Other reasons for metering, such as gathering customer load data, and verifying demand, as opposed to energy savings, 
could help justify the added expense. 

13 



Chapter 2 

In many evaluations, program planners make rough, back-of-the envelope estimates of 
the efficiency of existing equipment in participant facilities. However, estimates of the 
efficiency of existing lighting equipment are more accurate when based on some market 
or participant data. In San Diego Gas and Electric's retrofit program, it was originally 
assumed that equipment being replaced consisted of standard coil-core ballasts and F40 
fluorescent lamps. However, site inspections revealed that approximately 50% of all 
ballasts were efficient coil-core ballasts, and 50% of all lamps were F34 watt Miser 
lamps. San Diego Gas and Electric revised its savings figures downwards for various 
measures by 18% to 48% to reflect more efficient base equipment discovered during site 
surveys. 

Program Equipment can also be less efficient than initially thought. Spot watt metering 
by NU found that HID lamps in their retrofit program were 25% less efficient than 
originally estimated. NEES found lower than anticipated (85-95% of tracking database 
estimates) wattage reductions per measure in their commercial lighting programs. Such 
under or over estimates of equipment efficiency can bias subsequent estimates of program 
energy savings. 

2.1.1.2.Hours of Operation 

Tracking database estimates of savings are predicated on consistent use of the equipment. 
If equipment is used less than originally assumed, installing efficient versions of that same 
equipment will have a smaller than anticipated effect on energy consumption. Most of 
the programs that we surveyed required that participants indicate their facilities' hours of 
operation on the rebate application or audit form. However, more rigorous methods of 
obtaining hours of operation used by many of the programs demonstrated that 
participants often over-estimate their own equipment's hours of operation. Table 2-1 
lists the results of hours of operation studies performed by the utilities in our sample. 

Table 2-1. Summary of Hours of Use Studies in Sample 
Utility Ratio of More 

Accurate to Less Source of First Estimate Source of Second Estimate 
Accurate 
Estimate 

CMP 0.70 Customer self-reports 189 fixture hours of use 
metering 

BE Co 0.73 Customer self-reports On-site inspections of 18 
sites 

NEES El 0.78 Customer self-reports 23 site end-use metering 

NEES Sml 1.02 Customer self-reports 21 site end-use metering 
C/1 during on-site survey 

NU 0.81 Customer self-reports 30 site end-use metering 

PG&E 0.85 Customer self-reports 90 site end-use metering 

SDGE 0.93 Assumptions by building Customer self-reports 
type 

SDGE 1.18 Customer self-re orts 88 site hours of use meterin 
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Three methods were used by evaluators to obtain hours of operation information. The 
most sophisticated evaluations relied on data collected by light-sensitive data loggers 
(which record ambient light/darkness) or end-use metering (which record electricity 
consumption on lighting circuits) equipment. Less sophisticated evaluations used 
program employees to conduct on-site visits and collect information from building 
managers and employees. Some programs used mail or telephone surveys to obtain hours 
of operation information from participants. 

A systematic bias in customer reports of hours of operation is suggested by the data in 
our sample. Site inspections, hours of operation metering and end-use metering by CMP, 
NEES, and PG&E found recorded hours were less than customer self-reported hours. In 
only two cases, NEES' Small CII program and SDG&E's Energy Efficient Hardware 
program, did end-use metering uncover that customer self-reports underestimated 
equipment operating hours. 

Our review also indicates that hours of operation used in tracking database estimates of 
savings should be disaggregated, at a minimum, by building type. In the six evaluations 
where hours of operation were logged electronically, annual hours varied by as much as 
50% across building types, a much larger variation than is usually found in buildings of 
the same type (although in two cases, annual hours varied almost as widely across 
buildings of the same type because of vacancy and usage characteristics).4 Finally, the 
differences between customer self-reports and metered estimates of hours of use are fairly 
large; the additional cost of metering or site inspections may be warranted if the accuracy 
of savings estimates is a concern. 

2.1.1.3.Hours of Operation Changes and Takeback 

After an energy efficiency retrofit, consumers may change their behavior so as to vitiate 
part of the efficiency gain (Hirst 1991 ). Such "take back" effects can subvert some or all 
of the energy saved. Consolidated Edison and Central Hudson surveyed program 
participants; neither utility found any evidence of take back in its commercial lighting 
retrofit rebate programs. Seattle City Light surveyed program participants and found that 
operating hours had increased, after measure installation for a small number of 
participants. But because the increase in operating hours was not due to installation of 
efficient equipment, take back was not indicated. Our sample suggests that commercial 
lighting programs have generally not exhibited take back; lighting operation hours are 
unlikely to change simply because of cheaper operating costs. 

2.1.2. Measured Consumption Program Savings Estimates Using End-Use Metering 

Electronic meters and data-loggers to monitor energy use are effective means of 
measuring both energy savings and peak-demand reductions. Metering of equipment is 
performed both before and after measure installation. For the four programs in our 
sample that were metered, at NEES, NU, and PG&E, sample sizes ranged from 21 sites 

4 See also Owashi, L.D., Schiffman, D.A., Sickels, A.D., "Lighting hours of operation: Building type versus space use 
characteristics for the commercial sector", Proceedings of the 1994 ACEEE Summer Study, 8:157-162. 
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to 67 sites. Because all four end-use metering studies were performed by just two 
contractors, it comes as little surprise that similar methods were used. All four studies 
used spot-watt metering in tandem with metered hours of operation to determine kWh 
saved. Demand savings were estimated using data from the metering devices only. All 
four studies had meters installed for at least two weeks before and two weeks after 
program measures were installed. 

All four metering studies were explicit in their measurement and analysis of distinct 
program savings parameters. Evaluation reports compared the number of measures per 
site, annual hours of operation, and watts saved per measure (as described in the tracking 
database, estimated with site inspections, and measured using end-use metering). By 
comparing these parameters among evaluation methods, evaluators uncovered important 
information about the ratio of metered savings estimates to tracking database estimates. 
For example, in NEES' Energy Initiative Program, on-site estimates of measures installed 
were 100% of tracking database estimates, metered estimates of hours of operation were 
77% of tracking database estimates, and spot-watt metered estimates of the change in 
watts consumed per measure were 87% of tracking database estimates. Confidence 
intervals were also calculated around the ratios of these parameters. Parameter level 
information collected in these kinds of studies can be used to improve future tracking 
database estimates of savings. 

The main drawback of end-use metering is its high cost, which usually precludes metering 
at every participant site. Metering is labor intensive, with multiple site visits required to 
install, maintain, and remove the equipment. In none of these programs was every 
measure sampled at every site, so another potential drawback is the biases that may result 
from sampling a nonrepresentative set of measures (e.g., those that are easiest to connect 
to data loggers) at each site. 

Metering is also usually performed for a limited amount of time. Because consumption 
patterns vary with weather and seasons, however, metering over a limited amount of time 
could result in a biased estimate of savings. And because metering studies omit 
comparison groups, downturns or upswings in the economy are not correctly recognized 
as a change in participant baseline consumption, further biasing the savings estimate. 
Finally, metering only the newly installed lighting equipment does not enable calculation 
of interaction effects: changes in heating and cooling loads as a result of cooler­
operating lighting. We explore the magnitude of such biases in subsequent chapters. 

2.1.3. Examining Top-down Models of Annual Savings 

The evaluation community uses a wide range of models which incorporate customer 
billing data. It would be prohibitive to test the simulation datasets on every single model 
ever used to evaluate an energy efficiency program. Based on the most common 
econometric models used in our sample of lighting program evaluations, we have selected 
two different types of models which use billing data to test, comparison models and 
regression models. Within each type, several popular variations are also tested. 
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Quasi-experimental designs are used when study and sample characteristics make locating 
an identical control group difficult. The classic quasi-experimental design types were first 
explicated by Campbell and StanleyS: 

a) "One-group pre-test post-test designs" utilize program participant consumption data 
before and after program intervention. 

b) "Static-group comparison designs" utilize program participant and nonparticipant 
consumption data for the period after program intervention occurred. 

c) "Nonequivalent comparison group designs" utilize program partiCipant and 
nonparticipant consumption data from both pre- and post-program time periods. 

The first type of model is a simple comparison model. This model calculates energy 
savings by taking the difference of pre-program and post-program consumption, or the 
difference of participant and non participant consumption. The second type of model 
pools monthly or annual billing data for a group of participants and non participants, and 
regresses consumption in the current time period against several explanatory variables, 
including building size, hours of operation, and cooling and heating degree days. The 
variations we examine are listed in Table 2-2. 

Table 2-2. Summary of Comparison and Regression Models Using Billing Data 

Model 

Time-series 
comparison 
Cross-section 
comparison 
Time-series, 
cross-section 
comparison 
Time-series 
regression 
Cross-section 
regression 
Time-series, 
cross-section 
regression 
SAE regression 

Pre-program 
Participant 

Data? 

Post-Program 
Participant 

Data? 

Pre-Program 
Non-participant 

Data? 

Post-Program 
Non-participant 

Data? 
Indicator 
Variable 

N/A 

N/A 

N/A 

Post-program 
(011) 

( 

Participant 
(011) 

Participant x 
Post-program 

(011) 
Engineering 
Estimate of 

Savin as 

5 We briefly describe the evaluation models here. For more information see the sources of these descriptions: Campbell, 
D.T., Stanley, J.C., Experimental and Quasi-Experimental Designs for Research, Houghton Mifflin, Palo Alto, 1963., 
and Impact Evaluation of Demand-Side Management Programs, Electric Power Research Institute, Palo Alto, CA, 
EPRI-7179, v.l, February 1991. 
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2.1.3.l.Time-Series Comparison of Consumption Data 

This is a one-group pretest-posttest design, requiring collection of program participants' 
energy consumption data both before and after program participation. As shown below, 
the post-program (t 1) consumption of participants (Qp) is subtracted from their pre­
program consumption (t0) to obtain a savings estimate. Such an analysis can be 

misleading unless the consumption data is normalized for exogenous factors such as 
weather. Use of a normalization method to adjust for different weather conditions can 
improve the accuracy of the resulting estimate. However, changes in energy 
consumption due to price effects and naturally occurring conservation are not controlled. 

NetSavings = QP (t0 )- QP (t1 ) 

2.1.3.2.Cross-Section Comparison of Post-Program Consumption 

This method is a static-group comparison that compares mean consumption of the 
participants to the mean consumption of a control group during the post-program period. 
Collecting post-program consumption data from both participants and non-participants 
(QNP) eliminates difficulties associated with weather and price variations (assuming 
participants and non-participants both experience identical weather and billing 
conditions). However, this method assumes there were no differences in pre-program 
consumption between participants and non-participants and that there are no differences 
in the ways that participants and non-participants respond to changes in weather, fuel 
prices, and other factors. 

2.1.3.3.Time-Series, Cross-Section Comparison of Consumption Data 

This is a two-group pretest-posttest design, using participant and nonpartiCipant 
consumption data from before and after the program intervention. The method attempts 
to control for non-program factors which affect energy consumption by including non 
participant data. This method is usually more accurate than a post-program cross section 
comparison, because it includes information on changes in consumption over time, and 
can therefore adjust for trends in consumption. The method, like other cross-section 
comparison methods, assumes that, aside from program participation, the consumption 
patterns of participants and non-participants are similar. 

NetSavings = [Qp (t0 )- QP (t1 )] - [QNP (t0 )- QNP (tl )] 

2.1.3.4. Time-Series Regression 

A variant of the time-series comparison method involves collecting demographic and 
structural data (such as building square footage sqft, hours of operation hours, cooling 
degtee days cdd, etc.) from participants, and constructing a regression model where a 
dummy variable (prepost) is used to specify the pre-program or post-program time 
period. This method controls for changes in weather when cooling and/or heating degree 
days is used as an explanatory variable, but does not control for selection biases or 
energy price changes. 
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kWh =a + P 1 sqft + P 2 hours+ P 3cdd + P 4 prepost + E 

The importance of using a comparison group in an analysis of consumption records is 
exemplified by the experience of BP A evaluators. The BP A Industrial Lighting Incentive 
program evaluation included a regression of participant characteristics against pre- and 
post-program energy consumption. The model was unsuccessful in detecting a program 
effect, which may have resulted from the model's omission of a comparison group of 
nonparticipants. Using a comparison group to help identify participants' savings is 
especially important when the energy impact is expected to be a small proportion of total 
consumption, as in the case of a lighting program aimed at industrial customers. 

2.1.3.5. Cross-SeCtion Regression 

A regression model constructed to include cross-sectional data and a dummy variable for 
participation (participant) can control for some differences between participants and non 
participants if demographic and dwelling data are provided. In most cases, however, this 
is insufficient to control for free riders, participants who would have installed the 
measures in the absence of the program.6 A logit model assessing the probability of 
adopting the energy conservation measure (among a control group) based on 
demographic and dwelling data can be incorporated into the model to adjust for free 
riders. A lagged dependent variable can be added to this model to include pre-program 
consumption data. 

kWh =a+ P1sqft + P2hours + P3cdd + P4 participant + E 

2.1.3.6.Cross-Section Time-Series Regression 

For this method, a variant of the nonequivalent control group design, separate regressions 
are performed for participants and non-participants before and after program 
intervention. The means of the resulting estimates of energy consumption are then used 
to estimate savings due to the program. The model can include customer demographic 
and socioeconomic data in addition to billing information, so that the analysis can control 
for non program factors which may affect energy consumption. Alternatively, the 
evaluator can use a pooled time-series cross-section regression that includes all groups 
and time periods in one equation, with a dummy variable equal to the product of the time 
period and participation variables of the previous two models: 

kWh =a+ P1sqft + P2hours + P3cdd + P4 (prepost x participant)+£ 

2.1.3. 7.Statistically Adjusted Engineering Analysis 

Using the tracking database estimate or some other, more improved estimate of savings 
in place of a dummy variable has come to be described as a Statistically Adjusted 

6 Train has asserted that a comparison group which properly controls for free ridership among participants is quite 
difficult to construct. See Train, K.E .. "Estimation of net savings from energy-conservation programs", Energy, 
19(4):423-441, 1994. 
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Engineering (SAE) analysis. 7 SAE models also include a lagged dependent variable, 
representing the electricity consumption in the previous period. If nonparticipant data are 
used to construct a cross-section SAE model, the Savings Estimate variable is zero for 
nonparticipants. The coefficient on the explanatory variable representing savings can be 
interpreted as a 'realization rate': the fraction of the savings estimate verified using 
customer and billing data. A possible SAE model specification is given below. 

kWhr=I =a+ ~ 1 sqft + ~ 2hours + ~ 3cdd + ~ 4 (Savings Estimate)+~ 5kWhr=o +£ 

Estimates obtained using SAE models ranged from 0.53 for NEBS' Energy Initiative 
program to 1.05 for ConEdison's CII Efficient Lighting program. A possible reason for 
the variation in SAE-obtained ratios of measured consumption savings to tracking 
database estimates is the differing origins of the elements within the tracking database 
estimates. For example, NEES used a tracking database estimate based only on rated 
equipment efficiencies and estimated hours of use. ConEd adjusted its tracking database 
estimate based on a survey of customers collecting information on hours of operation, 
take back, and free riders. Differences in sample size, duration of pre/post data used, and 
other explanatory variables used in each model also have an impact on each model's 
results .. 

Table 2-3 summarizes the methods used by the evaluations in our sample along with 
some characteristics of each model. Neither tracking estimates nor first-year post­
program estimates of savings can verify the long-term persistence of program savings 
over the manufacturer estimates of measure lifetimes. Renovations, building demolition, 
and equipment failure all reduce the effective measure lifetime. Repeated site visits or 
billing analyses are required to continually verify savings over the lifetime of the efficient 
equipment. Not surprisingly, none of the utilities in our sample have performed studies 
which address the long-term persistence of program savings. s 

Application-specific considerations may also affect the persistence of savings for reasons 
that have little to do with the equipment installed. Several recent studies suggest that 
energy efficiency measures may sometimes be removed from service through remodeling 
or demolition prior to the end of their useful lives (Skumatz 1993, Petersen 1990, 
Velcenbach 1993). The probability of premature retirement of equipment is a function of 
both general economic conditions as well as site-specific considerations (for example, 
building and business type). 

7 Train, K.E., "An assessment of the accuracy of statistically adjusted engineering (SAE) models of end-use load curves", 
Energy, 17(7), pp. 713-723, 1992. 

8 Utility DSM programs and DSM program evaluation are too young to have long-term studies of persistence; measures 
from the earliest large-scale DSM programs (from the early 80's) are just reaching the end of their manufacturers' 
rated lifetimes. 
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Table 2-3. Summary of Evaluation Methods Based on Billing Data 
Utility Type of Difference or Comparison Sample Size Notes (time-series data 

Regression Model Group (total part.) used, sample 
Used stratification, etc.) 

BE Co ~Consumption0art.- Eligible 772 (919) part. 12 mos. pre, 8 mos. 
~Consumptionnonpart. nonparticipants 5826 nonpart. post; 1 0 strata based on 

size and seasonal 
usage 

.• CHG&E SAE, facility type, Eligible 54 (606) part. 4-5 mos. pre, 4-5 mos. 
bldg. characteristics. nonparticipants 116 nonpart. post; verified hours w/ 
vars., 2 tracking customer surveys 
estimate vars. 

Con Edison SAE, facility type Eligible n/a (2,276) part. 4 mos. pre, 4 mos. post; 
vars. nonpart.and n/a nonpart. verified hours w/ 

soon to be customer surveys 
participants 

NEES El SAE, self-selection Eligible 369(4, 114) part. 12 mos. pre, 12 mos. 
var., bldg. char- nonparticipants 611 nonpart. post 
acteristics vars, 1 
tracking estimate var. 

NEES Sml C/1 ~Consumption0art.; Eligible 831 (2,494) part. 12 mos. pre, 12 mos. 
adjusted for nonparticipants 698 nonpart. post 
nonparticipants 

NU SAE, self-selection Eligible 1 '123(5,967) 5 mos. pre, 5 mos. post; 
var., facility type nonparticipants part. 7 strata based on size; 
vars., 1 tracking 1 ,271 nonpart. weather adjusted kWh 
estimate var. 

PEP CO Pooled cross-section Eligible 341 (345) part. 12 mos. pre, 12 mos. 
regression, self- nonparticipants 1 ,452 nonpart. post; 4 strata based on 
selection var. size; weather adjusted 

kWh 

SCL ~Consumption0art.- Eligible 118 (128) part. 12 mos. pre, 12-36 mos. 
~Consumptionnonpart. nonparticipants 229 nonpart. post 

PG&E SAE, self-selection Eligible 724(6,432) part. 12 mos. pre, 12 mos. 
var., bldg. char- nonparticipants 370 nonpart. post 
acteristics vars., 1 
tracking estimate var. 

SDG&E CDA, 12 end-use None 181 (789) part. 12 mos. pre, 12 mos. 
vars. post; adjusted model 

based on end-use 
meterin results 

Notes: facility type vars: dummy variables used to indicate the type of facility (office, retail, school, etc.), building 
characteristics vars: variables used to indicate changes in floor space, participation in other DSM, recent renovation, 
upswing in business, etc., self-selection var.: variable obtained from a Jogit model and used to adjust for self-selection 
bias, tracking estimate var.: variable used to indicate the tracking estimate of savings for each customer, pre/post: refers 
to the numbers of months of billing data compiled before and after program measures were installed. 
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Current estimates of savings are often based on the assumption that equipment will 
operate for the duration of the manufacturers' estimates of the equipment's useful 
life.9 Assumed measure lifetime varied widely for identical measures from program to 
program in our sample. In some programs, lifetimes were based only on 
manufacturers' estimates of product longevity. In a few cases, estimates were 
adjusted downwards to account some for premature retirement resulting from the 
predicted frequency of building renovations. Several utilities (CMP, NEES, SCL) 
used site inspections and bill analyses to estimate savings persistence one, two, and 
three years after installation; in no cases, however, were measure life estimates based 
on a complete lqngitudinal set of data from past program participants. The average 
measure life used to calculate program savings for each program in our sample is 
given in Table 2-4. In cases where our original estimate of measure life did not come 
from the utility, it was subsequently verified by a utility representative. 

Examining billing data over several years can provide an estimate of overall savings 
persistence. NEES evaluators used billing analyses to verify savings persistence over 
a two-year period. SCL evaluators used comparisons of participant and 
nonparticipant billing data to estimate savings persistence over a three-year period. 
While NEES found almost 100% persistence, SCL found a gradual degradation of 
savings: where approximately 95% and 88% of original savings remained after two 
and three years, respectively. The cause of such a degradation, however, is not 
limited to measure removal. Degradation of savings as evidenced by a billing 
comparison could be the result of increases in nonparticipants' equipment efficiency, 
poor maintenance of measures, or increased consumption resulting from take-back. 

9 Alternatively, for the ASHRAE or AHAM estimate of measure life . 
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Table 2-4. Summary of Measure Life Estimates Used to Calculate Lifetime 
Savings 

Utility 

BE Co 

BHEC 

SPA 
CHG&E 
CMP 
Con Edison 
GMP Small 
GMP Large 
IE 
NEES El 

NEES Small C/1 
NMPC 
NU 
NYSEG 
PEPCO 
PG&E 
SCL 
SCE 
SDG&E 
SMUD 

Measure Life Estimate 

15.0 

10.0 

15.0 
10.0 

7.0 
11.0 
14.7 

6.1 
12.0 
18.0 

15.0 
13.0 
17.0 
10.0 

9.5 
15.9 
12.9 
16.0 
15.0 

5.0 

Source of Estimate to 

IRT report11 

utility report12 
utility report 
utility contact 
utility report 
utility contact 
utility report 
utility report 
utility report 

Nordax database 13 
Nordax database 
utility contact 
utility contact 
utility contact 
utility contact 
utility report 
utility report 
utility report 
IRT report 
utility contact 

2.2. Summary of Bias and Precision in DSM Evaluation 

Table 2-5 summarizes the ways in which each evaluation method can introduce bias or 
imprecision into an estimate of· annual savings for a program distributing commercial 
lighting equipment. The forthcoming chapters in this report investigate the magnitude of 
these effects using data from previous evaluation studies as well as simulation techniques. 
The long-term goal of such an analysis is to improve the characterizations of bias and 
precision to such an extent that the evaluation needs of all programs are reduced: only 
those parameters which have been found to induce the worst bias and imprecision are 
investigated in the course of an evaluation. Because the state of current practice limits 
our sample of available evaluations to a few handfuls, we conduct as thorough a 
characterization as the data allows. Ultimately, we hope others will continue these efforts 
as more evaluations with the requisite data are conducted (and reported on) by utilities. 

10 All measure life estimates, regardless of original source, have been verified with utility representatives. 

11 IRT report: program summary sheet from the Results Center Aspen, CO. 

12 Utility report: evaluation report from utility. 

13 Nordax database: data from t'he Northeast Region DSM Data Exchange. 
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Table 2-5. Summary of Annual Savings Evaluation Methods Examined 
Method to Effects Primary accuracy Potential bias in annual Potential 
estimate treated/accounted for limitations savings estimate due to: imprecision in 
annual annual savings 
savings 

. 
estimate due to: 

--·----· 
Tracking baseline equipment, usage over/underestimation of Precision not 
database patterns, equipment baseline and program estimated 
(engineerin installations not verified, equipment efficiencies, 
g estimate) efficiencies from mfr. hours of operation 

specifications, requires 
gross assumptions 
regarding consistent 
customer behavior 

Site baseline equipment still simplifies equipment over/underestimation of Precision not 
inspection (with pre-installation usage patterns, does not operating hours or estimated 

inspections) and verify equipment energy equipment efficiencies by 
efficient equipment consumption at customer auditors/ in customer 
specification errors in sites surveys 
tracking database, 
hours of operation 
(from auditor/ 
customer survey) 

End-use variations in metered sample may not seasonal variations in limited duration 
metering equipment usage, accurately represent equipment usage, metering, 

baseline usage (if population, metering of HV AC/Iighting interaction extrapolation from 
pre/post metering) limited time duration, no effects, unrepresentative sample to 

comparison group sample of population 
customers/equipment/build 
ing zones metered 

Customer changes in provides little non-normality of data/error improper model 
bill-based equipment usage, understanding of program term, improper model specification, 
econometri changes in weather, strengths/weaknesses or specification, improper inadequate 
c models changes in baseline justification for its savings comparison group, variability in data, 

energy use (with estimate, requires one year inadequate variability in low signal/noise 
comparison group) of post-program data data, low signal/noise ratio ratio 
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Using Simulation Techniques to Assess Performance 

of Tracking Database and Site Inspection Evaluation Methods 

In this chapter we examine 'bottom-up' evaluation methods: tracking database and site 
inspection methods which utilize information on the exact types and quantity of equipment 
installed at each participant's site. Using a combination of simulation techniques and actual 
program and customer data, we investigate the importance of the different parameters 
used to estimate energy savings, and the accuracy of current methods. In the following 
chapter, we examine bottom-up methods incorporating end-use metering data. 

-Bottom-up tracking database and site inspection methods are attractive because they 
involve minimal additional data collection, utilizing existing data collected during the 
program's audit and/or application process. However, the correctness of this data, and of 
additional calculations based on equipment manufacturers' estimates of equipment 
operation are not well understood. Knowledge of the uncertainties pertinent to bottom-up 
evaluation will enable evaluators to improve evaluation results, and make better decisions 
regarding the evaluation method selection. 

The chapter begins with an analysis of detailed information from three commercial lighting 
programs. Visual display of the quantitative information is used to characterize the 
uncertainty of tracking database and site inspection estimates of savings. Our limited data 
on tracking database and site inspection methods is combined with estimates of data 
collection and data analysis costs in order to compare the costs and performance of the 
different methods. · 

A flowchart for the analysis described in this chapter is given in Figure 3-1. 

Figure 3-1. Analysis of Bottom-up Evaluation Methods 

Tracking 
Database Data 

Site Inspection 
Data 

Monte Carlo 
Model of 
Savings 

Tracking Database 
Precision/Accuracy and 

Site Inspection 
Precision/ Accuracy 
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3.1 Tracking Database and Site Inspection Estimates: Unbundling the 
Realization Rate 

For this analysis, we use 75 customer sites of end-use metered data from three commercial 
lighting retrofit programs: New England Electric System's (NEES) 1991 Energy Initiative 
and Small C&I programs, and Northeast Utilities' (NU) 1991 Energy Saver Lighting 
Rebate program. 1 All three programs provided rebates for commercial customers in the 
Northeastern United States who replaced less efficient interior lighting equipment with 
more efficient alternatives. Because all three programs were evaluated using end-use 
metering, and because site inspection and tracking database estimates were also available, 
we can use the evaluation data to explicitly compare the accuracy of the different methods. 

However, the conclusions stemming from an analysis of these three programs' data cannot 
necessarily be extrapolated to all commercial lighting DSM programs, let alone all DSM 
programs. Because different populations can have different characteristics which affect 
variability of energy consumption and the accuracy of different evaluation methods, a 
much larger sample of programs would be required before more general conclusions could 
be drawn regarding the accuracy of various evaluation methods. In future research, 
metering information from a much larger sample of programs could be analyzed using the 
framework described here. Such an analysis would produce a more generalizable result 
regarding the accuracy and precision of tracking database, site inspection, and end-use 
metering estimates of annual energy savings, and could correlate program and tracking 
database characteristics with method performance. 

Some evaluation analysts calculate the ratio of their fmal savings estimate based on 
extensive ex post evaluation to their tracking database estimates of savings, and refer to 
this ratio as the "realization rate". In 1991, Nadel and Keating compiled results from more 
than 40 DSM program evaluations, and pointed out that this ratio often diverges 
considerably from one, the tracking database estimate of savings usually being larger than 
the final savings estimate.2 Some DSM analysts have taken this to mean that engineering 
estimates of savings are useless, and should be discarded. Such a conclusion is premature. 
A more thorough characterization of bottom-up evaluation methods is necessary before 
one can dismiss engineering estimates entirely. The realization rates for the three program 
evaluations from the Northeast are given in Table 3-1. 

1 RLW Analytics, Inc. and The Fleming Group. 1992. Energy Saver Lighting Rebate: Results of the 30-Site Short Duration 
Monitoring Test, C&LM Department, Northeast Utilities, Westbrook, CT. 

RLW Analytics, Inc. and The Fleming Group. 1992. Small C/1 Program: Impact Evaluation Using Short-Duration Metering, 
New England Electric System, Westborough, MA. 

RLW Analytics, Inc. and The Fleming Group. 1992. New England Power Service Company Energy Initiative Program: 
Impact Evaluation Using Short-Duration Metering, New England Electric System, Westborough, MA. 

2 Nadel, S.M. and K.M. Keating. 1991. "Engineering Estimates vs. Impact Evaluation Results: How do they Compare and 
Why?" Proceedings from the I991 Energy Program Evaluation Conference, pp. 24-33. Chicago, IL. 
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Table 3-1. Program realization rates for gross annual savings 

Program 
NEES Small C&l 
NEES El 
NU ESLR 

Realization Rate 
.88 
.70 
.87 

The data in Table 3-1 indicates that 70-88% of the tracking database estimates of savings 
were verified by the end-use metering estimate. This is consistent with the assertion that a 
tracking database usually overestimates actual savings. While previous studies consider 
realization rates as an end result, these realization rates are the starting point for this more 
detailed investigation. Forthcoming sections examine the annual savings equation (given 
in 2.1.1) parameter values' uncertainty in order to understand what the realization rates 
represent, and how the tracking database estimate can be cost-effectively improved. 

In order to compare the results of different methods, we unbundle the realization rates in 
several dimensions: 

• We examine not only the realization rates which represent the differences between 
metering and tracking database estimates, but also between metering and site 
inspection estimates of savings. 

• We examine the realization rates for three components of the savings estimate: 

1. Measures per site 

2. Hours of operation 

3. Watts saved per measure 

Table 3-2 provides estimates of measures installed per site, hours of operation, and watts 
per measure, obtained using end-use metering and site inspections, for several programs. 3 

Multiplying the parameter level realization rates yields the aggregate realization rates 
presented in Table 3-1. The numbers presented in Table 3-2 are expressed as a ratio of 
the parameter value obtained using metering to the value in the program's tracking 
database. For example, the tracking database underestimated the number of measures per 
site, on average, by 3% for NEES' Small C&I program. 

3 The data in Table '3-2 are not weighted by the number of measures per site because we did not have access to sufficient 
information to perform such a weighting. Thus, the results we present deviate slightly from the original evaluation studies. 
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Table 3-2. Comparison of parameter values from different evaluation 
methods 

#Sites Measures Watts Saved per 
Metered per Site 

Hours ot'O~eration Measure 

Ratio of Metered Estimate to: Trackin9_ Trackin9_ Site lnse. Trackin9_ Site lnse. 

NEES Small C&l 21 103% 92% 96% 93% 96% 

NEES Energy 23 102% 80% 89% 86% 93% 
Initiative 

NU Energy Saver 30 101% 89% 113% 97% 91% 
Lighting Rebate 

While the number of measures installed per site are underestimated slightly in the tracking 
database, the tracking database overestimates every other parameter. All but one 
parameter (hours of operation in the Energy Saver Lighting Rebate program) is 
overestimated through site inspections. The tracking database overestimates the actual 
savings per site by overestimating the individual parameter values used in the equation to 
calculate savings. The parameter value ratios in Table 3-2 are more informative than the 
aggregate realization rates._ A glance at Table 3-2 can inform the analyst that systematic 
overestimation of hours of operation, and Watts saved/measure, but not measures installed 
per site, are the largest contributors to inflated tracking database estimate of savings .. 

Even though the parameter values in Table 3-2 suggest the existence of a systematic bias 
in the tracking estimates, it is equally important to examine the variability of this bias. 
This is different than simply examining the variability in a single parameter, such as hours 
of operation, across sites. Here we are interested in the variability of the ratio of tracking 
database estimates and metered estimates (or site-inspection estimates) for a parameter. A 
small variability would indicate that a simple adjustment of the parameters in the tracking 
database could dramatically improve tracking database accuracy and subsequent estimates 
of savings. But a large variabi~ty would suggest that important, extraneous factors could 
be missing from the parameter values used in the tracking database, requiring more 
caution than simply using a scalar adjustment to improve the estimate. 

Examining the ratio of savings estimates for the NEES and NU programs in our sample 
reveals significant variability in the realization rates across the three programs' 75 
customer sites. We illustrate this variability in Figure 3-2 by plotting the ratio of metered 
parameter values to tracking parameter values, and of metered parameter values to site 
inspection parameter values, along with each ratio's standard deviation. 
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Figure 3-2. Differences between parameter values 
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For many of the realization rates, the systematic bias described in Table 3-2 is framed by a 
much more significant stochastic component, as illustrated in Figure 3-2. The large 
variability in parameter values obtained with different methods may mean that the 
parameter values used in the tracking database, while fairly accurate on average, are 
inaccurate for a large number of individual sites and/or measures. The greater the 
stochastic component, the more difficult it is to generalize from the metered sites to a 
larger sample of participants, and the more difficult it becomes to systematically correct 
for error by adjusting tracking database estimates. 

The value of expanding the realization rate and presenting the results graphically is 
especially clear when the results of the NU program are examined. In comparison to the 
other two programs, the wide variations between site inspection and metered estimates of 
hours of operation, and between tracking and metered estimates of the change in watts per 
measure indicate problems with the tracking database. Indeed, evaluators found 
inaccuracies in the tracking database algorithms used to calculate the change in watts for 
optical reflector retrofits and metal halide retrofits. These errors in the tracking database 
calculations explain the large standard deviation for the change in watts parameter: 
savings from metal halide retrofits were systematically underestimated and savings from 
optical reflector retrofits were systematically overestimated, creating a wide, bimodal 
distribution for the hours of operation realization rate. However, the evaluators gave no 
reason for the discrepancy between hours of operation estimates based on site inspections, 
and those based on metering. 
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3.1.1 Uncertainty Propagation: Assessing the Accuracy and Precision of Site Inspection and 
Tracking Database Estimates of Savings 

In the previous section, we described the variability of the parameters which comprise the 
realization rate. In this section, we use Monte Carlo techniques to estimate the 
uncertainty of savings estimates based on the uncertainty of the parameters that make up 
each realization rate. This type of analysis, where information regarding the variability of 
the inputs is used to estimate variability in the outputs, is known as uncertainty 
propagation. 4 

For this part of the analysis, we use the site inspection and metering data from NEES 
Small C&I and Energy Initiative programs to construct probability distributions for the 
number of measures per site, hours of operation, and watts per measure for the model.5 

We construct two sets of input distributions: 

I. The first set of input distributions is based on the differences in parameter values 
obtained using end-use metering and those in the tracking database. The resulting 
outcome distribution expresses the extent to which savings estimates obtained using 
end-use metering differ from estimates in the tracking database. If end-use metering 
results are assumed to represent actual savings, then the outcome distribution 
generated here represents the degree to which tracking database savings estimates 
deviate from this reality. 

2. The second set of input distributions is based on the differences in parameter values 
obtained using end-use metering and those obtained with site inspections. The 
outcome distribution estimated using these parameters describes the variation of site 
inspection estimates of savings from end-use metering estimates, and can be 
interpreted as the degree to which site inspection estimates of savings deviate from 
reality. 

As a first approximation, parameters in our sample can be approximated with a normal 
distribution. 6 For example, a histogram of the difference between tracking database 
estimates of hours of operation and metered estimates of hours of operation from the 
NEES programs is plotted in Figure 3-3. 

4 Morgan. M.G., Henrion, M., Uncertainty, Cambridge University Press, 1991. 

5 We excluded the NU program from the following analysis because of unusually large systematic errors in its tracking 
database estimates of savings. 

6 Other distributions, such as a beta distribution, were found to have an improved fit, but did not affect significantly the 
outcome of the analysis. 
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Figure 3-3. Distribution of hours of operation realization rates 
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Rank transformations were performed on each set of parameter data to verify the fit of a 
normal distribution. The Monte Carlo analysis involved random sampling of probability 
distributions to model the uncertainty of errors in tracking database and site inspection 
estimates of savings. Latin Hypercube sampling was used to obtain 1000 sample points 
per set of input distributions. These sample points were then input to the annual savings 
equations to obtain distributions of annual savings and evaluation method error. 

An analysis of the NEES and NU metering study data revealed the correlations described 
in Table 3-3 between the errors of the components of the tracking database. To represent 
this data accurately, the sampled points should also approximate errors induced through 
sampling beta distributions could be adjusted to approximate these correlations. This can 
be accomplished using the decomposition and rank correlation methods discussed by Iman 
and Conover.? However, the effect of these correlations is minor relative to the errors in 
tracking database parameters themselves. Thus no correlation is induced in our analysis 
and we assume the three parameters are uncorrelated. 

Table 3-3. Correlations in errors between components of the tracking 
database 

Correlation Measures per Site Hours of Use Watts per Measure 

Measures per Site 1.00 

Hours of Use 0.28 1.00 

Watts per Measure -0.20 -0.01 1.00 

7 Iman, R.L., Conover, W.J., "A distribution-free approach to inducing rank correlation among input variables", 
Communications in Statistics: Simulation and Computation, 11(3), 311-334 (1982). 
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The average and standard deviations of the outcome distributions from all three sets of 
input distributions are given in Table 3-4. These results are an estimate of the average 
accuracy of the tracking database and site inspection estimates of savings for the 44 NEES 
customer sites. 

Table 3-4. Annual Savings realization rates from Monte Carlo models 

Ratio of: End-Use Metering End-Use Metering 

to: Tracking Estimate Site Inspection 

Average 78% 88% 

Standard Dev. 34% 22% 

If end-use metering most closely approximates the actual energy savings for the sample, 
then tracking estimates of savings overestimate energy savings, on average, by 
approximately 22% and savings estimates based on site inspection data overestimate 
energy savings by approximately 12%. 

While one may be tempted to conclude that the 78% figure in Table 3-4 is a transferable 
'realization rate', an examination of the standard deviation associated with this estimate of 
bias should temper this desire. The standard deviation associated with the model's 
outcome distribution suggest that the tracking estimate, while biased by only 22% on 
average, varies considerably from site to site. The distribution: of tracking estimate bias 
across sites, as computed by the Monte Carlo model of annual savings, is given in Figure 
3-4. 

If the tracking database estimate of savings closely approximated the metered estimate, the 
distribution shown in Figure 3-4 would be sharp and narrow (and centered near 100%), 
with a minimum of spread across the x-axis. But as the large standard deviation in Table 
3-4 suggests, the distribution of realization rates is subject to a significant amount of 
uncertainty. If we assume the distribution is roughly normal, the 90% prediction interval 
for the distribution is between the wide margin of 31% and 122%. If one is interested in 
only the mean value of savings, the 90% confidence interval around the realization rate 
point estimate (78%) is between 70% and 86%.8 

8 The realization rate and its point estimate can be extrapolated to a larger population only when the sampled population is 
similar to it in every respect. As a result, applying an average realization rate, gleaned from a subset of participants in one 
program, to program participants of a subsequent or previous year, should be approached with caution. Even small 
differences in the characteristics of the sample population and other populations could cause relatively large differences in 
the average bias of the tracking estimates. Thus, without additional information it is inadvisable to cross-apply realization 
rates from one program to another, or, in principle, from one program year to another. 
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Figure 3-4. Distribution of annual savings realization rates 
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The smaller standard deviation for the outcome variable representing the difference 
between site inspection estimates of savings and end-use metering estimates indicates that 
site inspection provides savings estimates which are more precise ·than the tracking 
database. The 90% confidence interval around the site inspection point estimate (88%) is 
between 82% and 93%, considerably narrower than the prediction interval itself. 

3.1.2 Uncertainty Analysis: Reducing Uncertainty in Site Inspection and Tracking Database 
Estimates of Savings 

In this section, we compare the importance of the parameter uncertainties in terms of their 
relative contributions to uncertainty in the savings estimate, i.e., uncertainty analysis. 
This type of analysis reveals which parameters' values must be made more accurate in 
order to improve the precision of the savings estimate. 

We perform uncertainty analysis by computing the rank correlation between input 
variables and annual energy savings for each model and examining the results. By 
comparing rank correlations between each input distribution and the outcome distribution, 
we can determine which input parameters contribute the lion's share of the uncertainty to 
the outcome distribution. If we then improve a single parameter's precision and compare 
correlations from different models, we can determine how valuable different evaluation 

33 



Chapter 3 

techniques are in reducing the relative uncertainty of program parameters. This allows 
program evaluators and planners to trade off evaluation method uncertainty with method 
cost. 

If end-use metering estimates of savings are assumed to best approximate reality, then we 
can interpret the rank correlations in Table 3-5 to mean that most of the uncertainty in 
tracking estimates of savings is due to misspecifications of the hours of operation 
parameter, and the same parameter is responsible for most of the uncertainty in site 
inspection estimates of savings. · 

Table 3-5. Correlation of uncertainty in parameters to uncertainty in 
savings 

Importance of Parameter 
Between: 

Measures per Site 

Watts per Measure 

Hours of Operation 

Tracking Estimate and End- Site Inspection and End-
Use Metering Use Metering 

0.26 

0.48 

0.82 

0.59 

0.78 

An important issue for evaluation practice involves the question of whether and when to 
use more rigorous evaluation techniques. In this case, our analysis suggests that for both 
tracking estimates and site inspection estimates of savings, the estimate of hours of 
operation are responsible for much of the uncertainty in the final savings estimates. If data 
loggers, or a similar technique, provides hours of operation parameter estimates that are a 
significant improvement over those used in tracking estimates and site inspection estimates 
of savings, then augmenting tracking estimates or site inspection estimates with this 
improved hours of operation information could result in savings estimates comparable 
with those obtained using end-use metering, but at a potentially lower cost. Alternatively, 
disaggregating hours of operation by measure type or by building usage characteristics 
may improve tracking estimates of hours of operation. 

The results would have been dramatically different if we had included NU' s Energy Saver 
Lighting Rebate data in the uncertainty analysis: the systematic errors in NU' s tracking 
algorithms would have skewed the results; most of the uncertainty in tracking database 
estimates of savings for the three programs would have been due to the change in watts 
per measure parameter. The small sample (of three programs) which we investigate here 
does not enable us to determine if systematic errors in tracking databases, such as those 
uncovered in the Northeast Utilities data, are a common occurrence. 

3.2 Comparing Accuracy to the Costs of Data Collection 

In this section, we integrate the previous analyses of the chapter to compare estimates of 
savings from tracking database and site inspection methods with their data collection 
costs. Our estimates of the precision and accuracy of each method's results are subject to 
several qualifications: 
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We only examine a handful of programs in this analysis. Thus, we describe each method's 
accuracy and precision in the context of these programs; we cannot definitively determine 
the accuracy and precision of each evaluation method. With a large sample of programs 
and the use of methods which aggregate information (including Bayesian and meta­
analytic methods) one could produce a more definitive estimate of each method's abilities. 

Our estimates of each method's precision are based on a finite set of recognized 
variabilities in the program data and methodological limitations. Other factors may affect 

. the estimate precision which are not covered in this analysis. 

Our estimates of the accuracy of tracking database and site inspection estimates of savings 
are based on a comparison of metered.results with the results from tracking database and 
site inspections. Our assessment of tracking database and site inspection estimates will be 
affected if metered results suffer from systematic bias due to omission of interaction 
effects, and overestimate precision due to limited duration metering. 

In order to obtain estimates of evaluation data collection and data analysis costs, we 
reviewed the DSM literature, and we sent a short questionnaire to five DSM evaluation 
practitioners .. Table 3-6 lists the resulting estimates for the cost of bottom-up evaluation 
methods. 

Table 3-6. Estimates of data collection and analysis costs for bottom-up 
evaluations 

Estimate Type Data Collection Data Analysis Economies of Scale 
Costs/Site Costs/Site 

Tracking Database $0 (collected from $25 No 
program records) 

Site Inspection 300-750 300-750 Some (1.5% reduction 
I 10 sites) 

Site Inspection with 700-750 700-750 Some (1.5% reduction 
Pre-Post Spot Watt I 10 sites) 
Metering 

The costs given in Table 3-6 are only rough approximations, based on the judgment of 
several consultants who regularly conduct these evaluations. The actual costs for a 
specific evaluation are dependent on the types and sizes of customer buildings, the variety 
of measures installed by the program, and the specific monitoring equipment used. There 
are some economies of scale for projects which include large numbers of site visits. Other 
methods do not provide significant cost reductions with larger sample sizes. For the 
following cost/precision comparisons, we use the middle value of each range of costs in 
Table 3-6. 

3 .2.1 Costs, Accuracy, and Precision of Tracking Database and Site Inspection estimates of 
Savings 

The first comparison of evaluation cost and accuracy we examine is for tracking database 
and site inspection estimates of savings. In section 3.3 we used the data from NU and 
NEES to estimate the accuracy (relative to metered estimates of savings) .and precision of 
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these evaluation methods. In Figure 3-5 we display the cost and accuracy/precision of 
tracking database and site inspection estimates for the programs from NU and NEES. As 
before, accuracy is expressed as the ratio of each program's metered estimate of savings 
to the estimate of savings from the tracking database or site Inspections (i.e., it is assumed 
that metering provides the actual savings). Precision is expressed as the 90% confidence 
interval around the mean estimate of the ratio. The graphs also include a third data point 
indicating the cost and accuracy/precision of an estimate of savings obtained through site 
inspections that include spot watt metering to verify consumption of pre-installation and 
efficient program equipment. Because all evaluations require a tracking database, the cost 
of the program tracking database is included in each evaluation methods' cost. Cost 
estimates vary for the thr~e programs because sample sizes and total program size varies. 

Figure 3-5. Tracking Database and Site Inspection Cost, Accuracy, and 
Precision 
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While the data in Figure 3-5 illustrate that tracking database and site inspection estimates 
generally do not differ from metered results by more than 40%, an evaluator calculating 
savings using tracking database or site inspection data has no way of knowing precisely 
where in this (relatively wide) range their estimate of savings falls. If we had access to a 
larger sample of results from other end-use metering studies, we could attempt to 
characterize the uncertainty in tracking database and site inspection estimates more 
completely, which could aid evaluators in estimating the accuracy and precision of their 
tracking database estimates without the use of additional evaluation. Without such a 
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characterization, evaluators must rely upon metered results and top-down estimates of 
savings to locate their tracking database and site inspection estimates in this.range. 

Earlier in the chapter we used importance analysis to deduce that uncertainty in hours of 
operation contributed the largest component to the uncertainty in the tracking database 
and site inspection estimates of savings. The marginal cost of adding spot-watt metering 
to site-inspection estimates of savings is a small fraction of the marginal cost of adding 
run-time data loggers, which require significant additional capital and labor-related 
expenses. Thus, we estimate the savings associated with adding spot watt meters in this 
section, and reserve improved hours of operation estimates for the next chapter which 
focuses broadly on metering cost, accuracy and precision,. 

The third data point in on each graph signifies the additional cost, accuracy, and precision 
when site inspection estimates are augmented with improved estimates of watts saved per 
measure using spot watt metering equipment. Figure 3-5 indicates that for the two NEES 
programs, such metering appreciably improves the site inspection accuracy and precision. 
However, the NU program's site inspection estimate of savings did not improve. This was 
due to a slight negative correlation between the errors in watts saved per measure and 
hours of operation. In this case, substituting spot watt-verified estimates of watts saved 
per measure actually increased the imprecision of the savings estimate. For the two NEES 
programs, we can state that augmenting site inspections with spot watt measures can 
increase site inspection estimate precision by 10%-50%, with an additional cost of around 
10%. However, this small sample does not allow us to make broad characterizations of 
tracking database and site inspection information value in general. 

3.3 Conclusions 

Within our small sample, tracking database estimates of savings vary dramatically in their 
accuracy and precision. We find imprecision in hours of operation to have the largest 
effect on the uncertainty of the resulting annual savings estimate. We also find, in our 
small sample, that hours of operation estimates contribute the lion's share of bias to annual 
savings estimates. If future studies with a larger sample of programs can confirm these 
findings, it would suggest additional attention should be given to inexpensive and accurate 
methods for improving tracking database estimates of hours of operation. 

Because the precision and bias of tracking database and site inspection estimates of 
savings seem to vary considerably, and because an evaluator, absent additional evaluation 
information, has no means of estimating the accuracy and precision of their tracking 
database estimate, it is dubious to rely upon tracking database estimates of savings alone. 
A benefit of the type of analysis performed here, and of the detailed site inspection and 
metering work performed and reported in the evaluations of the programs we studied in 
Chapter Two, is that it allows tracking database accuracy and precision to be assessed and 
improved by program implementation and evaluation staff. Using the framework outlined 
in this chapter, analysis of a larger number of metering studies than was available to us 
would permit a more complete characterization of tracking database and site inspection 
estimates. 
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Using Simulation Techniques to Assess Performance 

of Bottom-Up Evaluation Methods 

In this chapter we examine 'bottom-up' evaluation methods: metering methods which 
utilize measured information on the actual consumption and operation of equipment 
installed at participant sites. Using a combination of simulation techniques and actual 
program and customer data, we investigate the importance of the different parameters 
used to estimate energy savings, and the performance of current methods. 

Bottom-up metering methods are useful because they involve detailed data collection on 
equipment installed at participant sites. However, the costs of bottom-up methods that 
collect extensive data are usually prohibitive, so that evaluators implement the analysis on 
a sample of the population. Knowledge of the uncertainties pertinent to bottom-up 
evaluation will enable evaluators to make better decisions about evaluation method 
selection. 

A flowchart for the analysis described in this chapter is given in Figure 4-1. A 
combination of metered data, long-term hours of operation data, and simulated 
commercial building consumption data are used to assess the performance of annual 
savings estimates obtained from end-use metering data. These data are combined with 
estimates of data collection and data analysis costs in order to compare the costs and 
accuracy of the different methods. 

Figure 4-1. Analysis of Bottom-up Evaluation Methods 
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Most metering studies incorporate information from both metering activities and tracking 
database or site inspection activities. The most common method in current metering 
studies is to express annual program savings as a ratio of the metered estimate for each 
site and the tracking database estimate for each site. These ratios can be averaged across 

39 



Chapter 4 

all metered sites, and .the resulting average ratio is multiplied by the tracking database 
estimate of savings for the entire participant population to estimate total program savings. 

Integrating the tracking database information with metered results reduces the annual 
savings estimates' tendency to be biased. Without using tracking database information, 
the evaluator simply assumes that the metered sample is representative of the entire sample 
(e.g., by stratifying and randomly selecting sites to meter from the participant population 
in each stratum) and can therefore apply metered results to the entire population. Instead, 
the evaluator uses information about the population (the tracking database estimates of 
savings) and information about the metered sample (the ratio of metered estimates to 
tracking database estimates of savings) to extrapolate the estimate of savings from the 
metered sample to the entire population. 

A recent EPRI Report describes a related method where the average difference, rather 
than the ratio, of metered estimates and tracking database estimates is used to adjust the 
estimates of savings for every program participant. 1 One should expect a ratio approach 
to be appropriate when a systematic bias in the tracking database over or underestimates 
actual savings by a certain percentage. A difference approach would be appropriate when 
the tracking database values are expected to over or underestimate actual savings by a 
certain value. We focus on the ratio approach in our analysis because the biases we 
observe in hours of operation, watts saved per measure, and the number of measures 
installed suggest that tracking databases proportionally overestimate savings; the larger 
the tracking database estimate of savings, the larger the discrepancy between tracking 
database estimates and actual annual savings. 

4.1.1 How large a population must you sample for a given level of accuracy? 

Because of the relatively large per-site expense associated with end-use metering, DSM 
program evaluations almost never perform end-use metering on all participating customer 
sites. Thus, the submetering of sites is performed, and sub-subsample of measures at each 
selected site is metered. If one assumes optimal sample selection and stratification and a 
normal distribution for the population's savings, the 90% two-sided confidence interval 
around the mean estimate of the metered sample savings can be used to estimate savings 
for the entire population. The confidence interval is calculated using: 

Precision = 1.645 x 
2 

(}sample 

n.vample 

Where <Jsampte is the standard deviation of savings among metered sites and n.wmple is the 
number of sites metered. If one is using an average ratio of metered estimates to tracking 
database estimates, the standard deviation of the ratio can used in the equation to calculate 
the precision. If the variation in the sample, or in the ratios, is known in advance, it is 
possible to back -calculate the sample size required to achieve the desired precision. 
However, it is difficult to assume a sample variability a priori; extensive knowledge of the 

1 RCG/Hagler, Bailly, Impact Evaluation of Demand-Side Management Programs, Vol 1, Electric Power Research Institute, 
CU-7179s, September, 1991. 
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population and the program is required. Given a large enough sample of cr.wmpte' s from 
past programs and populations, Bayesian updating, or other techniques incorporating prior 
information could be used to improve initial estimates of sample variability and estimate 
appropriate sample sizes. 2 

Another method to extrapolate to the entire program population takes advantage of 
tracking database estimates of savings for all participants as well as the metered data for a 
smaller segment. This method calculates the ratio of metered estimates of savings to 
tracking database estimates for the metered sample of participants, and then extrapolates 
to the larger participant population using this ratio and the tracking database estimates for 
all participants.3 If one assumes that the metered results are unbiased, this method can be 
used to correct for bias in the tracking database estimates. In the next section, the 
tendency for bias to exist in the metered results is investigated. 

4.1.2 Within-Site Sampling Representativeness Issues 

There are profound difficulties in selecting a representative sample of sites, and of 
equipment at each sampled sit~. Convenience sampling, where the most accessible sites 
are selected for metering, and the most accessible equipment at each site are metered, can 
invalidate the ability to extrapolate from the sample to the program population using the 
equation presented in preceding section. How much of a threat is convenience sampling 
to statistical validity? One means of answering this question is to examine differences in 
equipment usage by building type and by different areas within buildings. A recent study 
performed by the consulting firm Xenergy for San Diego Gas and Electric presents 
detailed information on the measures selected for metering.4 

In the Xenergy study, space in commercial buildings was partitioned into eight space use 
categories, called zones. Lighting loggers for measuring lighting equipment hours of 
operation were installed in 3,900 zones in 88 buildings. The results of these 
measurements, by zone, are given in Figure 4-2. In addition to hours of operation 
estimates obtained using lighting loggers, Figure 4-2 also includes customer estimates of 
hours of operation for each building zone. 

Two observations can be made regarding the data summarized in Figure 4-2. First, there 
appears to be a significant range in metered hours of operation, which is at least partially 
dependent on the location of the equipment in the building. Therefore, an evaluation that 
only meters equipment installed in accessible locations (such as hallways) will generate an 
estimate of hours of operation (and consequently savings) that is biased towards 
equipment installed in that zone. Second, there appears to be a range of systematic biases 
in customer reports of hours of operation: from equipment installed in halls, where 

2 See DeGroot, M.H., Optimal Statistical Decisions, McGraw-Hill, New York, 1970. 
' 

3 Such a method was used by RLW Analytics in preparing the evaluation of Pacific Gas and Electric's 1992 Commercial 
Lighting Express Rebate Program. See PG&E, Double Ratio Analysis Final Report, September 1993, CIA-93-X01 B. 

4 Owashi, L.D., Schiffman, D.A., Sickels, A.D., "Lighting hours of operation: Building type versus space use characteristics 
for the commercial sector", Proceedings of the 1994 A CEEE Summer Study, 8: 157-162. 
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customers systematically underestimate hours of operation, to equipment installed in 
conference rooms, where customers systematically overestimate hours of operation. 
Thus, an evaluation that meters equipment installed in only one or two zones will generate 
an estimate of the ratio between reported and metered estimates of hours of operation that 
is probably not accurate for equipment installed in other parts of the building. A fmal 
thought regarding customer reports: customers seem to report very similar hours of 
operation for all zones within a building. Customers, like some evaluators, may not be 
aware of the differences in hours of operation in different areas of a building. 

Figure 4-2. Hours of Operation Estimates by Building Zone 
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The hours of operation estimates in Figure 4-2 underscore the difficulty of selecting a 
sample to meter which adequately represents an entire population of program participants 
and the measures they install in different zones. Conference rooms and hallways are the 
most deviant, with hallways logging more than 200% more hours of operation than 
conference rooms. Private offices and storage areas are the most similar, with private 
offices' hours being approximately 10% longer than hours in storage areas. The sample 
must be selected to adequately represent a cross-section of participant building types, 
measures, and locations with buildings of measure installations. Unless the sample is 
representative of the entire population, the data in Figure 4-2 suggest that the resulting 
estimate of savings for the population could be biased by between 10% and 200%. 
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Similar biases could be incurred based on differences between different commercial 
building types (offices, hospitals, retail, etc.). Some stratification is already performed by 
evaluators based on building size, building type, and even space surveys of particular 
buildings. However, these techniques are not widespread. 

4.1.3 How long should one sample for a given level of accuracy? 

While sample sizes have been discussed at length in the evaluation literature, sample 
duration has not received similar attention. Yet the issue of how long to sample hours of 
operation and watts consumed (or saved) per measure should be of similar concern: In 
the same way that different sites are expected to have different consumption 
characteristics, necessitating statistical extrapolations from sampled groups to entire 
populations, energy consumption characteristics can also change over time, necessitating 
statistical adjustments based on the duration of the sampling for each site. Calculating the 
accuracy of varying durations of metering requires many assumptions regarding the 
variability of electricity consumption over time, or actual, long-term, metered data which 
can be used to characterize the variability in electricity consumption over time. 

The Energy Edge project, a research-oriented demonstration of energy efficiency in the 
Pacific Northwest, provides us with a unique data set with almost all of the required 
characteristics: 29 commercial buildings, with hourly metering of all lighting fixtures (as 
well all other energy consuming equipment) for up to four years. From the total dataset, 
there are five small and three large office buildings. The Energy Edge office buildings for 
which metered data are available are described briefly in Table 4-1. 

Table 4-1. Energy Edge Commercial Office Buildings 

Building Location Size (kft2) Comments 

Siskiyou Ashland, OR 3.0 meters were disconnected by 
building manager for six months 

STS Ellensburg, WA 4.3 

East Idaho Credit Union Idaho Falls, ID 5.3 

DubaiBeck Portland, OR 8.5 

West Yakima Yakima, WA 16.2 

Eastgate Bellevue, WA 25.1 multiple tenants 

Director Portland, OR 79.7 multiple tenants 

Bellevue Place Bellevue, WA 389.0 multiple tenants 

There are several methods available for computing hours of operation from hourly kW 
data: we could estimate the hour each day at which most of the lights turn 'on', and the 
hours at which most of the lights turn 'off. Instead we have opted to estimate full load 
hours, which normalize lighting kW by the maximum lighting load. Thus, the full load 
hours calculation incorporates both lighting load and lighting duration information. The 
equation for daily full load hours is: 
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24 

I/k~) 
daily full load hours = ....:.;r==1 

-­

kWmax 

Where kW1 is the lighting kilowatt load in hour t, and kW max is the maximum kW load for 
the building over the entire metered period. Weekly full load hours are the sum of 7 days' 
full load hours. Figure 4-3 illustrates the average full load hours over time for the eight 
Energy Edge buildings. 

Figure 4-3. Weekday full load hours over time for Energy Edge Office 
Buildings 
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The lighting full load hours vary from site to site, as well as over time. The largest offices, 
Bellevue Place, Director, and Eastgate, show considerable variation over time, this 
variation could reflect changes in building occupancy. The buildings were all new, or 
recently commissioned, at the time the metering began. The majority of buildings, large 
and small, begin the metered period (which began on different dates for each site) with a 
one to three month ramp-up of average full load hours. This may be due to tenants 
gradually moving in over a period of several months after commissioning. Because the 
meters connected to the lighting circuits in the Siskiyou office building were turned off for 
six months, we omit this building from the analysis. 
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The data in Figure 4-3 suggest that hours of operation vary over time in commercial 
buildings. The metering activities for these buildings begun just after the buildings were 
commissioned, so an initial ramping-up of hours of operation can be seen for some of the 
buildings. Part of this variation is also seasonal, as described in section 4.1.4. 

The method used to estimate the precision associated with metering the kW lighting load 
for a building involves subsampling from the data used to construct Figure 4-4. The 
subsampling strategy subsampled the full load data in continuous segments, varying in 
duration from two weeks to six months. By overlapping the samples, the maximum 
number of subsamples are taken for each duration. 

To estimate the change in subsample precision, the average full load hours estimate for 
each subsample is compared to the long-term (utilizing all available data) full load average. 
For all subsamples of a given duration, the standard deviation of the difference between 
the subsample estimates of full load hours and the long term estimate of full load hours 
provides us with an estimate of the error associated with limited term metering. The 
standard deviation of this difference for each subsample was used to calculate the 90% 
upper and lower confidence levels for the range of metering durations. In order to utilize 
all available full load hours data, subsampling was performed on all seven of the Energy 
Edge office buildings, and the results were combined using a simple average. 

Figure 4-4 illustrates the improvement in the precision of the short-term estimate as 
metering duration increases. 

Because an equal number of subsamples under and over-estimate average long-term full 
load hours, the error across all subsamples averages about to about zero. Clearly, there is 
a substantial increase in precision as metering duration increases from two to four weeks. 
Metering longer than four weeks, however, reaps only linear increases in precision. 

If this Energy Edge data are even partially representative of hours of operation changes 
over time for most buildings, then an important component of the uncertainty in most 
metering studies has not been given appropriate weight in past studies. Many DSM 
metering studies assume the hours of operation are constant, i.e., that the hours of 
operation measurements taken during sampling have zero variance over time. The only 
imprecision in metering quantified in a traditional analysis is the imprecision of 
extrapolating from a metered sample to the entire population of participants. 

The inherent imprecision of short term metering, as expressed in Figure 4-4, directly 
affects the precision of any annual savings estimate based on short term metering. If the 
hours of operation data exhibited in Figure 4-3 are typical of commercial office buildings, 
then any short term metering study that omits a correction factor for metering duration 
will overestimate the precision of the annual savings estimate. 

A correction factor can be read off the plot in Figure 4-4, based on the duration of the 
metering activity. This factor can be combined with the estimated precision of the 
metered estimate of savings. By acknowledging that the hours of operation vary over 
time, the actual precision of end-use metering estimates of savings are reduced. However, 
by estimating the increase in overall precision as the duration of subsample metering is 
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increased, one could explicitly tradeoff the expense and increased precision of longer 
metering. 

Figure 4-4. Precision of estimate improves with increase in duration of 
metering 
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4.1.4 Bias in Metered Results: Seasonality of Hours of Operation 

Another important implication of the results in this section involves an evaluator's ability 
to 'game' the evaluation results: If periods of greater or lesser hours of operation can be 
anticipated, metering can be performed during those periods when the resulting estimates 
of savings can be higher or lower than actual average savings. Thus, shorter duration 
metering can be used to generate estimates of annual savings that increase utility 
shareholder incentive payments or justify a program that, in reality, is not cost-effective. 

We performed some simple time-series analysis of the Energy Edge hours of operation 
data in order to estimate the average change in mean daily hours of operation from season 
to season. A time-series plot of the average annual cycle of hours of operation for all the 
Energy Edge office buildings is given in Figure 4-5. Hours of operation are expressed as a 
change from the annual average. 
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Figure 4-5. Seasonal Variability in Hours of Operation 
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From Figure 4-5 it is apparent that a seasonal variation in average hours exists, but it is 
difficult to conclusively quantify because of the effects of holidays. Independence Day, 
Thanksgiving, Christmas, and other business holidays influence the average daily hours of 
operation of numerous work weeks each year. Filtering out these holidays results in a 
seasonal pattern of hours of operation where winter hours are 30 minutes longer and 
summer hours are 30 minutes shorter than the annual average. 

In order to provide an accurate annual average hours of operation for a building or group 
of buildings, this seasonal bias, as well as the bias apparent in Figure 4-5 due to holidays 
and other disruptions to the work week, an evaluator must identify the extent of the bias 
and adjust annual hours of operation estimates accordingly. 

4.1.5 Bias in Metered Results: Interaction of Lighting with Heating and Cooling Loads 

In addition to reducing lighting energy consumption, programs which install efficient 
lighting equipment can also affect a building's heating and cooling requirements. More 
efficient lighting systems generate less waste heat than standard lighting systems. In an 
office building, this reduction in waste heat can reduce cooling and increase heating loads. 
In most cases, the reduced cooling loads save more electricity than consumed by the 
increased heating loads (most commercial buildings do not use electricity to generate 
space heat). End-use metering studies for lighting programs do not typically measure 
changes in heating and cooling loads to supplement primary lighting savings. This 
omission biases metering results so that they generally underestimate program savings. In 
some cases, an adjustment to program savings is made across all sites to account for 
interaction effects. This adjustment is usually linear, and usually adds an additional 5% to 
15% savings to each buildings' annual estimate. Unless based on some engineering or 
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metering data, such an adjustment may under or overstate actual savings due to 
heating/cooling-lighting interactions. 

Past studies have estimated this additional energy savings, called an HV AC/Lighting 
interaction effect, and noted that the magnitude of the effect is dependent on building 
characteristics, weather, and heating and cooling equipment.5 Thus, it is difficult to 
assume a priori a 5 or 10% increase in electricity savings, and add this to metered 
estimates of savings, to include interaction effects. The savings may be larger or smaller 
than this, depending on the location and characteristics of the participating buildings. The 
simulation exercise described in the next chapter uses bOE2-1E to estimate the effects of 
a lighting rebate program on 250 commercial buildings. We present one of those results 
here because it illuminates the issue of the size of the interaction effect, as determined by 
building size and choice of heating and cooling systems. The results are summarized in 
Figure 4-6. 

For each heating and cooling system modeled, a definite range exists for the magnitude of 
the interaction effect. The widest range exists for the electrically heated buildings, while 
the other buildings experience increases in gas or oil consumption due to increased heating 

Figure 4-6. HVAC System Determines Magnitude of Interaction Effect 
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loads which are not reflected in this graph. A few of the buildings incorporating electric 
heating experienced net increases in electricity use. Because each heating and cooling 
system demonstrates a different range of interaction effects, increasing total savings by 

5 Sezgen. O.A., Huang, Y.J., "Lighting/HVAC interactions and their effects on annual and peak HVAC Requirements in 
Commercial Buildings", Proceedings from the 1994 ACEEE Summer Study, 3:229-239 
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say, 10%, may over or underestimate the interaction effect, depending on the distribution 
of heating and cooling systems among participants. In the simulation, a cutoff of 40,000 
square feet was used to distinguish small and large buildings, which determined available 
HV AC systems, and building materials and characteristics. 

The limited simulation results presented here suggest that the HV AC systems used in 
larger buildings experience interaction effects on the order of 10%, and HVAC systems in 
smaller buildings experience interaction effects on the order of 20%. A comprehensive 
characterization of these effects would include data on the more prominent heating fuels 
of oil and natural gas, and compare the costs of increased heating to the savings from 
reduced cooling. The analysis here is meant only to illustrate that interaction effects can 
introduce a bias into metering results, and that the potential exists to reduce this bias using 
information about participating buildings and building energy consumption simulation 
results. If the simulation results described in Figure 4-6 are similar to the actual 
interaction effects, it seems that omission of all interaction effects can result in 
underestimating annual savings by as much as 20% and inclusion of a flat estimate of 
interaction effects of 16% (the average in our simulated sample of buildings) can under or 
overestimate actual savings by around 10%. Furthermore, this over or under estimation 
seems dependent on the characteristics of participating buildings. If HV AC system 
information were collected for each building, it may be possible to reduce the uncertainty 
around the size of the interaction effect. 

4.1.6 Assessing the Bias and Precision of End-Use Metered Estimates of Savings 

The previous sections identified three factors that affect the precision and bias of annual 
savings estimates obtained using end-use metering: sample representativeness, metering 
duration, and HV AC/lighting interaction effects. In this section we integrate these 
uncertainties to estimate the overall precision and bias for a number of past metering 
studies. 

We summarize the uncertainties from each of these factors in Table 4-2. The three factors 
involve a combination of systematic and stochastic uncertainties, which are difficult to 
combine. Combining these factors is subject to some qualification because of the 
relatively limited sources of information on which we can base our characterization. Our 
limited sample prohibits a thorough assessment of each uncertainty. We also assume that 
the factors shaping the uncertainties are independent. If the uncertainties were correlated, 
the actual precision could be significantly less or more than estimated here. 

We first present the results that integrate the stochastic biases into estimate of end-use 
metering results. Then we present the range of possible results using the information on 
systematic biases. 

49 



Chapter4 

Table 4-2. Uncertainties in End-Use Metering 

Uncertainty Systematic or Stochastic Error Potential 

---------------------·····-···-·-·····-·····-························-.. ····-·····-····---···-····--··--······------------·-· .. -·-···--··-··-·--·-······-·--·······-····-·······--···-·-···············-·······-··----·--··-·········~-~-g-~_i_!!:l.9.~ ........................ . 
Lack of sample 
representativeness 

Limited metering duration 

HVAC/Iighting interactions 

Systematic; metered equipment may save 1 0%-300% 
more or less than equipment in population 

Stochastic; due to nonseasonal factors, 1 0%-20% 

Systematic; due to seasonal factors 

Systematic error with surrounding 
uncertainty, dependent on building 
characteristics 

-5%-+5% 

116% of metered 
savings estimate 
±9% 

The basic results from the metering studies are given in Table 4-3. We are able only to 
present the precision and estimated mean value for each study; an estimate of the bias is 
incalculable without further information on the actual savings for program participants. 

Table 4-3. Summary of Metering Results 

Study Sample Population Duration of Mean Precision Std. Estimate description 
Size Size Metering estimate est. by Dev. of (alternative 

of savings eval. report Metered estimate) 
{alt. est.) {alt. est.) SamQie 

30 6,100 2 weeks 0.79 of ±54% ± 1.37 Single Ratio estimate 

pre, 2 track. db. using tracking database 

weeks post 
90% Cl around std. dev. of 
mean 

NEES 21 2,483 2-3 weeks, 0.96 of ± 16.7% ±0.44 Single ratio estimate using 

Small C&l pre, 2-3 track. db. tracking database 90% Cl 

{1991) weeks QOSt 
based on std. dev. of mean 

23 4114 2-3 weeks 0.677 of ± 14.5% ±0.28 Single ratio estimate using 

pre, 2-3 track. db. tracking database 90% Cl 

weeks post 
based on std. dev. of mean 

PG&E 16 4,454 0-15 weeks 1.31 of ±65% ±2.0 Single ratio estimate using 

Express pre, 1-15 track. db. (± 39%) tracking database 90% Cl 

(1992) weeks post (1.07 of 
based on std. dev. of mean 
(Obi ratio estimate using 

(usu. 2-4 track. db.) engineering models, 
weeks) tracking database) 

PG&E 36 1,509 0-15 weeks 0.66 of ± 11% ±0.25 Single ratio estimate using 

Customized pre, 1-15 track. db. (± 12%) tracking database 90% Cl 

(1992) weeks post (0.75 of 
based on std. dev. of mean 
(Obi ratio estimate using 

(usu. 2-4 track. db.) engineering models, 
weeks} tracking database) 
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All five programs install efficient lighting equipment in commercial buildings, and were 
evaluated using both tracking database information and end-use metering with spot-watt 
meters and data loggers to collect run-time data. The studies described in Table 4-3 
express program savings as a ratio of metered results to tracking database estimates for 
the same sites. The precision of each estimate is based on a 90% confidence interval 
around the standard deviation of the mean ratio values. Mean estimates of savings show 
that metered estimates of savings range from 66% to 131% of tracking database estimates. 
The precision around these mean estimates varies widely, from 11% to 65%. While the 
precision is affected slightly by sample size differences across the programs, the wide 
variations in precision are due mainly to the differences in standard deviations for the 
samples. The PG&E programs supplemented the evaluations with engineering models of a 
superset of the metered buildings, and then used this information to adjust the fmal 
estimates of savings. 

Using the results of our analysis on metering duration and precision, we can adjust the 
estimated precision of the metered estimates to account for variability in hours of 
operation over time. As demonstrated in Figure 4-4, if we know the duration of the run­
time metering, then we can estimate the imprecision inherent in the resulting estimate of 
hours of operation. We make use of addition in quadrature topropagate an estimate of 
the error from limited duration metering into the existing, metered estimates of savings in 
Table 4-3. The sum of all pre and post-installation metering in each program is used to 
determine the size of the adjustment in precision. The equation which we will use to 
combine the precisions (known as addition in quadrature) is: 

Where q is the product of x, ... ,z, 8q is the uncertainty in q (expressed here as a standard 
deviation), and 8x is the uncertainty in x. Combining the standard deviation of the metered 
estimate with the average standard deviation for a hours of operation estimate of a given 
duration, we obtain the results in Table 4-4. 

We can also incorporate our estimate of potential bias due to HVAC interaction effects 
into the metered estimates. Data from our simulation of commercial office buildings 
indicate that interaction effects increase electricity savings so that total savings are 116% ± 

9% of metered savings. To adjust metered estimates, then, we need only to multiply the 
metered estimate of savings by this 116% ± 9% adjustment factor. We again use 
quadrature to estimate the propagation of error through products. The results for the 
estimates of savings and precision adjusted for limited duration hours of operation and 
interaction effects are given in the final two columns of Table 4-4. 
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Table 4-4. Adjustments and results of adjustments to metered estimates 
' 

Mean Std. Mean Std. dev Std. dev of Mean of Std. dev. Mean of Std. dev Increase in 

Study 
estimate dev. of estimate of hours sample inter- of inter- adjusted of standard 
of metered of hours bias with hours action action estimate adjusted deviation 
metered sample bias adjustment effect effect estimate 
sample 

NU Energy 0.79 ± 1.37 1.03 ± 0.12 1.41 1.16 ±0.09 0.94 ± 1.64 20% 
Saver Lighting 
Rebate (1991) 

NEESSmall 0.96 ±0.44 1.03 ± 0.11 0.47 1.16 ±0.09 1.15 ±0.55 24% 
C&l (1991) 

NEES Energy 0.68 ±0.28 1.03 ± 0.11 0.30 1.16 ±0.09 0.81 ±0.35 25% 
Initiative (1991) 

PG&E Express 1.31 ±2.00 1.04 ± 0.10 2.08 1.16 ±0.09 1.58 ±2.42 21% 
(1992) 

PG&E 0.66 ±0.25 1.04 ± 0.10 0.27 1.16 ±0.09 0.80 ±0.32 27% 
Customized 
(1992) 

The combined effect of the imprecision of limited duration metering and imprecision of the 
interaction effect increase the standard deviation of metering estimates by 23%, on 
average. This increase in standard deviation corresponds to an increase of the 90% 
confidence interval around the mean estimate as well. A comparison of the original 
estimates of metering savings and precision to the adjusted estimates is given in Figure 4-
7. Note that we cannot present an absolute measure of bias because we do not know the 
actual savings for each program. The mean savings in Figure 4-7 for each program is 
again presented as a ratio of the metered estimate to the tracking database estimate. The 
HV AC interaction effect increases the value of this ratio for the each program. 

The preceding discussion has centered mainly on the precision of the metered estimates. 
Now we turn to the issue of metering susceptibility to sampling bias. As described in 
earlier in this chapter, selection of an unrepresentative sample, both in terms of site 
selection as well as equipment selected for monitoring at each site, can result in a biased 
estimate of savings. The size of the bias introduced depends on the characteristics of 
installations for all customers, and the particular sites, building zones, and equipment 
metered in the evaluation. 

Most metering studies use stratified sampling techniques to develop a sample of buildings 
representative of the population of participants by both size and type. However, the 
majority of metering studies only sample a few lighting circuits within each building. Thus 
the typical metering study could introduce bias by not metering a representative sample of 
zones within each building. It has been suggested by some critics of evaluation that 
"convenience sampling", where meters are installed on equipment in the most accessible 
locations in a building, often occurs. We can estimate the probable effect of convenience 
sampling with a brief thought experiment. 
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Figure 4-7. Comparison of adjusted and unadjusted metering results 
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Let us assume that a program is composed of identical lighting systems, installed in a 
variety of building zones. Due to convenience sampling, a nonrepresentative sample of 
these measures is metered to obtain estimates of hours of operation. The 
nonrepresentative sampling results in a bias in the estimate of hours of operation. The 
equipment and sampling distributions, and the resulting bias in hours of operation are 
displayed in Table 4-5. 

Table 4-5. Example of potential bias in hours of operation from 
nonrepresentative sample 

Building Zone Mean Hours of % of Measures %of Metered 
Operation Installed in Zone Sample in Zone 

Hall 6,522 15% 20% 

Lobby 4.645 10% 15% 

Sales Areas 5,388 15% 20% 

Open Office 4,067 20% 30% 

Other 3,706 10% 5% 

Private Office 2,551 20% 10% 

Storage Areas 2,282 5% 0% 

Conference 1,946 5% 0% 

Weighted Mean Hours 3,308 3,693 4,043 
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The average annual hours of operation across all zones is 3,300 hours. The effective 
average hours of operation for installed equipment is slightly higher, 3,693 hours per year. 
The hypothesized effect of convenience sampling is to inflate the estimate of program 
equipment hours of operation by about 10%, to 4,043 hours. This causes an concomitant 
10% increase in the annual savings estimate. 

This example does not suggest that all metering studies are subject to a bias of 10%. As 
stated earlier, the bias can vary considerably. If the metered sample is not representative 
of the program equipment in every respect, a bias may exist. Additional data on the 
sampling schemes used and on the resulting metered data would be required to estimate 
the true extent of this bias in metering studies. 

4.2 Comparing Accuracy to the Costs of Data Collection 

In this section, we integrate the previous analyses of the chapter to compare estimates of 
savings from different metering methods with their data collection costs. Our estimates of 
the performance of each method's results are subject to several qualifications: 

We only examine a handful of programs in this analysis. Thus, we describe each method's 
bias and precision in the context of these programs; we cannot definitively determine the 
bias and precision of each evaluation method under all conditions. With a larger sample of 
programs one could produce a more definitive estimate of each method's abilities. 

Our estimates of each method's precision are based on variabilities in the program data 
and ways in which the evaluation methods are used to calculate estimate precision. Our 
estimates of the bias of metering results are dependent on the factors just mentioned, and 
most importantly, on the representativeness of the metered Sample. We have estimated 
the range of the potential bias stemming from a nonrepresentative sample, but extensive 
data on all participants and metered sites and equipment would be required to precisely 
estimate the bias induced by a specific nonrepresentative sample. 

In order to obtain estimates of evaluation data collection and data analysis costs, we 
reviewed the DSM literature, and we sent a short questionnaire to five DSM evaluation 
practitioners. Table 4-6lists the resulting estimates for the cost of metering-based bottom­
up evaluation methods. 

Table 4-6. Estimates of data collection and analysis costs for bottom-up 
evaluations 

Estimate Type Data Collection Data Analysis Economies of Scale 
Costs/Site Costs/Site 

Lighting Loggers I $1 ,300-$1 ,500 $1 ,300-$1 ,500 No 
Hours of Use Logging 

Pre-Post Run-Time $1 ,300-$4,000 $1 ,300-$4,000 No 
Logger (load meter) 
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The costs given in Table 4-6 are only rough approximations, based on the judgment of 
several consultants who regularly conduct these evaluations. The actual costs for a 
specific evaluation are dependent on the types and sizes of customer buildings, the variety 
of measures installed by the program, and the specific monitoring equipment used. There 
are some economies of scale for projects which include large numbers of site visits. Other 
methods do not provide significant cost reductions with larger sample sizes. For the 
following cost/precision comparisons, we use the middle value of each range of costs in 
Table 4-6. 

4.2.1 Costs, Bias, and Precision of Metering estimates of Savings 

Figure 4-8 presents a comparison of precision and bias of metered savings estimates with 
evaluation cost. Here again, cost estimates for each evaluation vary due to differences in 
program size; much of each evaluation's cost is the cost of the tracking database. The 
absolute bias of these evaluations is unknown, since we have no better estimate of savings 
for these programs than the metered estimates, adjusted for interaction effects and limited­
duration hours of operation logging. Assuming that there are no significant problems with 
metered sample representativeness, these estimates are unbiased. The position on the x­
axis only indicates the ratio of the adjusted, metered estimates to original tracking 
database estimates. The precision of each estimate has also been adjusted to account for 
limited duration metering and HV AC/lighting interaction effects, and is expressed in 
Figure 4-8 as the 90% confidence interval around the mean estimate of savings for each 
program. 

There is a wide range of precisions represented in Figure 4-8. The differences between 
programs are due to differences in participant characteristics, the variety of program 
equipment installed, and tracking database accuracy.6 For example, if all participants 
installed exactly the same type and quantity of measures, and used them in an identical 
fashion, the precision on the ratio of metered estimates of savings to tracking database 
estimates of savings would be much tighter. 

In Appendix C, we compare the precision of the evaluations incorporating metering in 
Figure 4-8 with evaluations utilizing customer billing data and econometric methods. The 
next chapter investigates the bias and precision of methods which use whole-premises 
customer billing data. 

6 For the PG&E Express program, the tracking database estimates of savings were imprecise because they were based on 
standard equipment usage and baseline equipment assumptions rather than participant-specific data. The imprecision in the 
tracking database estimates of savings propagated to the population-level savings estimate described in Figure 4-8. 
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Figure 4-8. Cost, Precision and Bias of Metered Estimates of Savings 
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Contemporary end-use metering studies omit potentially important uncertainties from their 
estimates of savings: the imprecision of limited duration metering and the effects of 
HV AC/lighting interactions reduce the actual precision of metered results, regardless of 
whether these uncertainties are explicitly acknowledged. We find that these uncertainties 
reduce the precision of end-use metering estimates by approximately 20%. This reduction 
could be tempered by 1) longer-duration metering, .or 2) a better understanding of 
interaction effects coupled with detailed information about each customer's HV AC 
system. 

Additional issues arise when bias in metering studies is examined. Bias can result from 
limited duration metering, ignoring HV AC/lighting interaction effects, and from 
nonrepresentative metered sample selection. 

Our sample of office building hours of operation data suggest that hours vary seasonally. 
On average, hours of operation are half an hour longer in the winter, and half an hour 
shorter in the summer than the shoulder months. Neglecting to account for the season 
metering is performed could bias the estimate of hours of operation, and the resulting 
estimate of annual savings. Hours of operation are similarly biased by metering occurring 
during holidays or other days during which the normal work schedule is disrupted. 

HV AC/lighting interaction effects increase program savings for most office buildings. 
Omitting this effect from consideration can result in a 5-15% downward bias in annual 
savings estimates. 
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Small sample metering studies depend heavily on the representativeness of the metered 
sample and proper stratification. Most evaluators already stratify the population to select a 
representative sample of participants, and then select representative equipment within each 
facility. Detailed metering results from evaluations would allow an assessment of 
differences in equipment operation across participants, facility types, and facility zones. 
Until such detailed reporting is commonplace, enabling analyses of equipment operating 
differences to be performed, the representativeness of current metered samples will remain 

. in question. 
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Using Simulation Techniques to Assess Performance 

of Top-Down Evaluation Methods 

A fundamental problem in assessing the bias and precision of evaluation methods 
which use customer billing data is that the actual savings are never known, so there 
is no point of comparison from which to contrast different methods. In this 
chapter, we employ a technique which uses Monte Carlo and building simulation 
methods to generate a set of buildings and building electricity consumption data 
for which energy savings are known in advance. Knowing the savings from our 
sample in advance provides a baseline for each evaluation method's performance. 
Thus, both bottom-up and top-down evaluation methods can be used to estimate 
program-related energy savings for these (imaginary) buildings. The results of the 
evaluation methods can then be compared to the 'true' savings for each building or 
group of buildings. Varying characteristics of our simulated buildings, resulting in 
changes in electricity consumption over time or across the sample of buildings, can 
reveal strengths and limitations of particular evaluation methods. Parametrically or 
probabilistically varying characteristics to represent a range of real-world buildings 
will allow us to estimate the bias and precision of each method. 1 

A schematic of the analysis described in this chapter is given in Figure 5-1. 

5.1 Creation of Buildings and Building Consumption Data 

Examining the top-down evaluation methods requires a set of billing data for 
which the participants' electricity savings are known. We use Monte Carlo 
techniques with normal, uniform, and beta (similar to a log-normal, a beta 
distribution is asymmetric with a long tail) distributions, based on a combination of 
industry data and expert judgment, to create 500 simulated commercial buildings 
(250 buildings participate in the program, and 250 do not). Using DOE2,2 a 
building energy consumption simulation based on heat -transfer principles, we 
generate two years worth of monthly electricity consumption records for these 500 
buildings. 

1 It is important to note that our simulation techniques deal only with gross savings issues; we do not assess bias in 
the results of billing analyses that estimate annual savings net of free riders. Our analysis also sets aside the 
problems of self-selection bias in regression models. Our focus allows us to concentrate on the basic regression 
forms used and their susceptibility to errors in variables issues. 

2 B. Birdsall, W.F. Buhl, K.L. Ellington, Erdem, A.E., Winkelman, F.C., "Overview of the DOE-2 Building Energy 
Analysis Program", Simulation Research Group, Lawrence Berkeley Laboratory, Berkeley, CA, LBL-19735, Feb. 
1990. 
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Figure 5-1. Overview of Top-Down Analysis 
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To simulate the intervention of a lighting retrofit program, participants' lighting 
intensity (in W/sqft) is reduced by some amount after the final month of the first 
year. The savings induced by the model varies for each building and is sampled 
from a beta distribution. 

Building materials and construction characteristics were modeled after information 
from several national and utility building surveys. Appendix B contains a full 
explanation of the distributions used to represent building characteristics and their 
sources. 

5.2 Varying Building and Consumption Characteristics 

Evaluation of energy conservation programs is complicated by the dynamic nature 
of energy consumption: consumption changes based on business decisions, 
personal decisions, weather, and other difficult to predict factors. These factors 
affect savings and the ability of evaluation methods to estimate savings. In order 
to test the capabilities of different evaluation methods, we vary three factors which 
affect program savings and overall consumption patterns: the size of the DSM 
program's kWh savings (by varying the number of measures retrofit and the kW 
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savings per measure), weather conditions over time, and building hours of 
operation over time. 

Varying the size of kWh savings allows us to determine if the ability of certain 
evaluation methods to estimate savings is dependent on the size of savings relative 
to other factors that vary in the simulation. For example, it may be true that 
regression of monthly billing data may be unable to detect savings in programs that 
save less than a certain percentage of total consumption. 

Weather is arguably the most significant factor affecting energy consumption over 
time. Heating and cooling demands can double during the winter and summer, 
respectively. Heating and cooling loads vary not only with each season but also 
stochastically within seasons. Lighting hours of operation is also affected by 
changes in ambient (solar) light and by seasonal changes in the length of days. 

There are many business-related factors that affect a building's energy 
consumption: changes in occupancy, changes in business or economic climate, and 
building renovations can all affect building energy consumption. Rather than 
attempting to gather data on the frequency and possible effects of all these factors, 
we have chosen to use changes in hours of operation as a proxy for a wide variety 
of possible factors which affect energy use. We base our estimates of changes in 
hours of operation on data from the Energy Edge project described in the previous 
chapter. 

5 .2.1 The Size of Program kWh Savings 

The distributions being sampled to determine each building's energy savings can be 
adjusted so that the average effect size of the DSM program can be specified. For 
example, a bulb rebate program may result in a 5% reduction in total electricity 
consumption, but a more comprehensive direct install program may result in a 20% 
reduction in total electricity consumption. For this analysis, three effect sizes have 
been selected based on a survey of estimated effect sizes from utility commercial 
lighting programs. These average effect sizes, based on the distributions of 
measures installed and lighting intensity reductions in Table 5-1 of Appendix B, are 
given in Table 5-1. 

Table 5-1. Average Program Effect Sizes for Participating Buildings 
Effect Size 
Small 
Medium 
Large 

Lighting Electricity Saved 
7% 

16 
25 

Total Electricity Saved 
4% 
9 

14 

The actual reduction for each participant is determined by the product of two 
random variables sampled from a beta distribution: % of measures retrofit, and % 
of watts saved per measure. The post-installation lighting energy intensity m 
watts per square foot after the retrofit are calculated as: 
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Watts Saved I 
New Watts/ = . . /Measure x #Measures Changed X Original Watts/ . 

/ Sqft Ongznal Watts I Total Measures inBuilding / Sqft 
/Measure 

Representing a lighting retrofit by specifying a reduction in lighting energy 
intensity has the added benefit of allowing DOE2 to compute interactions between 
lighting, heating and cooling loads. For a double peaking utility (i.e., having both a 
substantial summer and winter peak demand period), these interactions can affect 
total building energy savings significantly, increasing individual building electricity 
savings.3 

5.2.2 Changes in Weather over Time 

We have run two simulation cases: (1) Identical weather for pre- and post­
program years, and (2) dramatic changes in weather for pre- and post-program 
years. The 'dramatic changes' case uses weather (so~ar radiation and temperature) 
data from Chicago for the pre-program year, and data from Washington DC for 
the post-program year. The difference in average weather conditions between 
these two sites is more varied than the difference in weather across adjacent years 
for any single city. 

As an improvement to the simulation, more realistic (and less severe) changes in 
weather could be simulated using the following method: use different historical 
years of weather data from a single city to simulate more probable weather 
changes over time. Then identify the warmest and coolest years on record for the 
city, as well as the years with an 'average' change in weather conditions. The 
warmest and coolest years could be used to simulate a severe change in weather 
conditions from pre to post-program years, while the more similar weather years 
could be used to represent more average conditions. Using both the average and 
severe weather data would enable us to assess each evaluation method's ability to 
control for changes in energy use due to weather. 

5.2.3 Changes in Building Hours of Operation Over Time 

Changes in hours of operation acts as a proxy for a wide variety of human­
technology interactions which can affect consumption and thus the size of energy 
savings, as well as an evaluation method's ability to detect savings. Changes in 
productivity or output, changes in staffing, and changes in office schedules can all 
be approximated by changes in operating hours. A description of the development 
of an set of simulated hours of operation data is in Appendix B. 

There are myriad other parameters which reasonably could vary over time or 
across the customers. Hours of operation and weather are two parameters for 

3 Sezgen, O.A., Huang, Y.J., "Lighting/HVAC interactions and their effects on annual and peak HVAC 
Requirements in Commercial Buildings", Proceedings from the 1994 ACEEE Summer Study, 3:229-239 
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which substantial data exists, and are known to have a significant effect on 
customer consumption patterns. Future studies could, using the framework 
outlined and implemented here, proceed to investigate the effects of other sources 
of variability on evaluation accuracy, including changes in building occupancy, 
changes in building operation, and changes in energy costs. 

5.2.4 Engineering Estimate of Savings in SAE Regression 

As discussed in Chapter Two, an SAE regression incorporates an estimate of 
annual savings as an explanatory variable in the regression model. If a tracking 
database estimate of savings is used, the variable would equal the product of 
annual hours of operation, watts saved per measure installed, and the number of 
efficient measures installed. The building simulation uses these values as inputs, so 
we have an 'exact' representation of the tracking database. The end-use metering 
studies from Northeast Utilities and New England Electric System (described in 
Chapter Three), however, suggests that tracking databases do not consistently 
provide the actual values for these parameters. Using the data from NU and 
NEES, the discrepancies between tracking database estimates, site survey 
estimates, and 'actual savings' (metered estimates) shown in Table· 5-2 were 
compiled. Using the distributions characterized in Table 5-2 to adjust the tracking 
database information in the building simulation dataset, we construct savings 
estimates which mimic the bias and precision of actual tracking database and site 
. inspection estimates of savings. In this way, we can simulate tracking database 
and site survey estimates of savings, and use these as independent variables in the 
SAE models. The 'exact' tracking database estimate, taken directly from the 
building simulation dataset, will also be used in one version of the SAE model to 
assess the accuracy of the SAE model with perfect savings information. 

Table 5-2. Errors associated with tracking database and site survey 
estimates of savings. 

Ratio of: 
to: 
Average 
Standard Dev. 

End-Use Metering Tracking End-Use Metering 
Estimate Site Inspection 

80% 88% 
40% 22% 

5.3 Adjustments to the Regression Models 

All regression models include explanatory variables representing building size 
(sqft) and annual hours of operation. The values of these values are taken directly 
from the building simulation. This amounts to an assumption that auditors and 
building managers provide perfect information regarding building size and hours to 
program auditors and evaluators. Specifying exact values for these variables 
allows us to more clearly observe the effects of varying weather, hours of 
operation, program effect size, and tracking database estimates of savings in the 
models and consumption datasets. While other variables are used in practice, 
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including variables representing facility type, business and economic conditions, 
and recent renovations, we only included explanatory variables relevant to the 
building simulation output. 

\ 

Some of the regression models required adjustments in order to derive robust 
estimates of savings. In this section we describe the adjustments which were 
examined, including corrections for multicolinearity, autocorrelation, and 
heteroskedasticity. 

Both monthly and annual billing data were available for use with each regression 
model. The time-series, time-series cross-section, and lagged dependent variable 
models were more accurate using monthly data together with an explanatory 
variable representing cooling degree days, rather than annual data. The lack of 
variation in annual cooling degree days prevented use of weather-related 
explanatory variables in the models with annual consumption data. Identification 
of the relationship between each explanatory variable and the dependent variable, 
energy consumption, as separate from noise or other anomalies in the data, 
requires sufficient variation in the dataset for each explanatory variable. 

Inclusion of an explanatory variable representing heating degree days resulted in 
multicolinearity due to the strong negative correlation (0.85) between heating and 
cooling degree days. Used separately, the heating degree day coefficient was 
found to be less significant than the cooling degree day coefficient. The. minor 
significance of the heating degree day coefficient is not surprising since a minority 
of the buildings were heated with electricity. As a result, the heating degree day 
coefficient was dropped from the regression models. 

5.3.1 Autocorrelation 

The cross-section time-series model had a Durbin-Watson statistic near zero, 
suggesting significant autocorrelation. The pre and post equations were 
differences in an attempt to remove the autocorrelated error structure. The 
differencing approach substantially improved the standard errors of the explanatory 
variables for the cross-section, time-series model, and the results of the 
differencing equation were used for the cross-section time series regression model 
reported in Table 5-4. 

Durbin-Watson test statistics on the time-series models suggest significant (at the 
alpha = 5% level for models using monthly data and at the alpha=l% level for 
models using annual data) autocorrelation errors. The first order correlation 
estimate given by SAS4 is consistently positive (ranging from 0.2 for models 
incorporating annual data to 0.9 for models incorporating monthly data). 
However, the results of the simple time-series regression model were not 
significantly different from the corresponding difference model, which corrected 
for autocorrelation. 

4 The SAS statistics package, by the SAS Institute, Inc. of Cary, NC was used to calibrate all regression models. 

64 



Chapter 5 

The Durbin-Watson test statistic is not suitable for use with time-series models 
that include a lagged dependent variable. For these models Durbin's h-test was 
used to investigate autocorrelation. The h-test gives a value based on a standard 
normal variable, when the result is significantly different from one, autocorrelation 
may be present in the model. The h-test result was not significantly different from 
zero for any of the lagged dependent variable models, including the SAE models. 

5.3. 2 Heteroskedasticity 

The effect of heteroskedasticity is usually to bias the standard errors upwards. 
Stratification of the sample was performed based on building size, with a new 
stratum defined for each 20;000 sq. ft. interval. In no case did·stratification of the 
sample measurably improve the standard errors of the estimates. In the case of the 
pooled time-series cross-section model, several strata had statistically insignificant 
coefficients on the participation indicator variables. The reduced explanatory 
power of the stratified model could be a result of the reduced sample size and 
variability in model data. Two stage, weighted least squares methods were also 
employed as a correction for possible heteroskedasticity. The weighted least­
squares models only improved precision by 3%, on average. 

5.4 Results 

The results of implementing the evaluation methods on the simulated datasets are 
summarized in Table 5-4. When possible, simulations were run in with nine 
different datasets: a baseline condition where only the program reduction in 
lighting intensity affects electricity consumption, a semi-baseline condition where 
hours of operation also vary on a monthly basis, and a full-variation condition 
where both weather and hours of operation vary. No static or constant-weather 
simulations have been run for the comparison group of nonparticipants, so cross 
sectional models were not implemented for those datasets. Table 5-3 summarizes 
the average annual kWh savings per building for each program effect size under 
the full-variation condition. 

Table 5-3. Average annual kWh savings for each program effect size 

..... ~t.!ec:! .. -~~~---····--··-······-·····LightinQ_§.~~!.~9_S. ________________ ~r:'~.~~~!i9..!:l ... ~~Y.Ln..9..S. ........... T<?.!...~.~---·-···················································· 
Small 30,814 3,866 34,680 
Medium 67,799 8,395 76,194 
Large 105,686 12,900 118,586 

Baseline savings are calculated by examining results from the baseline simulation 
which only varies lighting intensity for the participating buildings. All other 
variables, including weather and hours of operation, remain constant. The average 
of the difference in consumption for participating buildings in these two years is 
defined as true savings. Note that this quantity is not a measure of actual savings 
in any given year: weather, hours of operation, etc., legitimately affect actual 
savings amassed in any particular year. However, by defining savings as a 
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reduction in consumption occurring under static conditions, we o]?tain a concrete 
estimate against which the other model results can be compared. 

Each cell in Table 5-4 presents the savings estimate as a fraction of the true 
savings and the precision of the estimate based on a 90% confidence interval. The 
closer the ratio is to 1.0, the more accurate the evaluation method. The smaller the 
precision, the more precise the evaluation method. For example, for a program 
with a small effect size (saving 4% of each building's electricity use), with both 
weather and hours of use variations incorporated into the dataset, the time-series 
cross-section regression model overestimated energy savings by 5% (i.e., a ratio of 
1.05) with a precision of +1- 38% at a 90% confidence interval. 

0.82 0.90 

1.02 1.02 

1.04 ± 1.03± 
17% 11% 
1.02 ± 1.02 ± 
10% 9% 

1.00 ± 1.01 ± 
5% 3% 

0.01 ± 0.01 ± 
66% 66% 

0.05 ± 0.04± 
25% 25% 

0.62± 0.58 ± 
10% 9% 

0.85 ± 0.84± 
4% 4% 

0.91 ± 0.94± 
7% 5% 

0.99 ± 1.01 ± 
3% 2% 

Because there are no other factors besides the lighting retrofit program and 
weather which affect average savings (hours of operation vary monthly, but are 
equal, on average, for the pre- and post-program years), the evaluation methods 
which incorporate both participant and non-participant data, or which incorporate 
participant data and weather data, perform well. In most cases these methods 
verify savings almost exactly, with good precision. 
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When hours of operation and weather conditions vary over time, larger program 
effect sizes allow most methods to more accurately and precisely estimate savings. 
This can be explained intuitively by recognizing that the larger the effect size, the 
smaller the other sources of variability by comparison. Increasing the effect size 
had the most beneficial effect on simple time-series and cross-sectional 
comparisons. For these methods, the larger effect size improved the estimate of 
savings from 41 % to 85% of actual savings for the time-series comparison and 
from 53% to 90% of actual savings for the cross-section comparison. 

Of the regression-based methods, the least successful are those which include a 
tracking database or site-inspection estimate of savings as an explanatory variable 
in the regression equation. Unless a perfect engineering estimate of savings is used 
as the explanatory variable, these models perform worse than the regression 
methods which use binary variables to indicate program participation and/or post­
program year consumption. This finding has important implications for the current 
practice in DSM evaluation, where because of the straightforward interpretation of 
an SAE coefficient,5 SAE models are a popular alternative to regression models 
using a binary indicator variable. 

While the SAE models which include the least accurate ex ante estimate of savings 
(with a 40% standard deviation) are clearly unable to provide a reasonable estimate 
of annual savings, the models which include a more accurate, but not exact, ex 
ante estimate of savings (with a 20% standard deviation) consistently 
underestimate actual savings. The results of the SAE models which incorporate 
site inspection estimates are also deceiving because of the relatively narrow. 
precisions estimated around the ratios of model-estimated savings to ex-ante 
savings. Actual program savings are not within a 90% confidence interval around 
the models' estimates of savings. The SAE model incorporating a 'perfect' ex 
ante estimate of savings provide an unbiased estimate savings, when interaction 
effects (which are not included in the ex ante estimate) are taken into account. 

The SAE model results strongly suggest a general conclusion about SAE models: 
the accuracy of the model is limited by the accuracy of the savings estimate used as 
an explanatory variable (i.e., an extension of the univariate regression, classical 
errors-in-variables problem). Given the accuracy of the tracking database and site 
inspection estimates of savings from the NEES and NU programs, SAE models are 
not as robust as regression models that use binary indicator variables to estimate 
program savings. More accurate bottom-up estimates of savings are needed 
before inclusion in the regression models can improve savings estimates. In order 
to explore the dependence of SAE model accuracy on engineering estimate bias 
and precision, we calibrated the SAE regression model with engineering estimates 
(used as the SAE variable in the regression model) possessing a range of precisions 
and two accuracies (no bias and 20% bias). The results of this investigation are 

5 As explained in Chapter Two, the SAE coefficient describes the fraction of the engineering estimate of site-level 
savings which is verified by the econometric model. A ratio of ex post and ex ante savings estimates, such as the 
one provided by an SAE model, i.s referred to as a realization rate by DSM evaluators. 
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displayed graphically in Figure 5-2, which plots SAE model result bias as a 
function of engineering estimate precision. Recall that in Chapter 3 we estimated 
the error in tracking database and site inspection estimates of annual savings to 
have a standard deviation of±40% and ±20%, respectively. 

Figure 5-2. SAE Model Bias Reduced with Precision of Engineering 
Estimate 
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As the engineering estimate of savings becomes more precise (indicated by moving 
right along the x-axis) the bias of the SAE model is reduced, until the model, using 
our simulated data, is perfectly accurate when using a perfectly accurate 
engineering estimate of savings for each site. A biased engineering estimate of 
savings results in a significantly less accurate model result when compared to a 
unbiased, but similarly imprecise, engineering estimate. When the engineering 
estimate is fairly precise (i.e., when the engineering estimate's error has a standard 
deviation of less than ±10% ), the biased and unbiased engineering estimates 
provide similarly accurate estimates of savings when used in the SAE regression 
model. 

Comparisons of SAE analyses from several Northeastern utilities (discussed in 
Chapter 2) with their corresponding metering studies suggest that SAE models 
with imprecise engineering estimates may underestimate actual savings as 
suggested by our regression results. While the metering studies estimate 
realization rates between 80-100%, the SAE models estimate realization rates of 
only 50-70%. 

The source of the errors in variables problem in SAE models is that the SAE 
variable is measured with error. Because the true value of the SAE variable 
(representing participant savings) is not precisely known, the variable used in the 
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regression is an imperfect measure, known as a "proxy" variable. 6 In the classical 
error of variables model, the direction of the bias in the variable measured with 
error (here, the SAE variable) is downward (towards zero). The magnitude of the 
bias is dependent on the ratio of the variance of the error in the SAE variable to 
the variance of the SAE variable itself. A basic result of the errors in variable 
model is that the bias is equal to: 7 

2 

Bias in SAE Coefficient = -~ cr u 

Var(SAE) 

Where ~ is the estimated SAE coefficient, O"u, is the standard deviation of the error 
in the measured SAE variable, and var(SAE) is the variance in the SAE variable 
itself (not the SAE variable error). 

In our simulations, we implemented three effect sizes, small, medium, and large 
savings per participant, based on three different normal distributions (described in 
Appendix B). Each effect size has a different value for the variance of the SAE 
variable. To illustrate these variances, the histograms for the three distributions of 
SAE variables, one for each effect size, are shown in Figure 5-3. 

Despite the significant differences in SAE variable variance across effect sizes, 
SAE models perform equally regardless of effect size. 

5.5 Costs of Improving SAE and Time-Series Models 

Given the simulation and evaluation results described in the preceding section, it is 
straightforward to construct a curve which approximates the cost of reducing the 
bias of an SAE model. For this exercise, we assume that the accuracy of the SAE 
model is dependent primarily on the precision of the SAE estimate, and that the 
cost of increasing the precision of the SAE estimate can be approximated roughly 
by estimates of data collection costs. Table 5-5 provides the per site cost estimates 
(in $1994) for data collection activities in a commercial lighting retrofit program 
from a San Francisco Bay Area consulting firm. 

6For a formal explanation of errors in variables resulting in biased coefficients, see Maddala, G.S., Introduction to 
Econometrics, Macmillan, New York, NY, 1988, pp.383-391. The authors are indebted to Roger L. Wright, Mimi 
Goldberg, and Jeff Schlegel for categorizing the simulation results as an errors in variables problem. We also wish 
to thank Dan Violette and Greg Rodd, who searched our simulated dataset for anomalous entries that might 
invalidate our conclusions. 

7This assumes that the other explanatory variables are measured with little error (relative to each variable's variance) 
or, if other variables are measured with significant error, there is little or no correlation between the value of the 
other variables and the SAE variable. Maddala, G.S., Introduction to Econometrics, Macmillan, New York. NY, 
1988, p.383 
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Figure 5-3. Distribution of SAE Variable for the Three Effect Sizes 
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Table 5-5 also shows the cost for 250 sites for each method. While there may in 
fact be economies of scale associated with a larger number of sites, the information 
we have collected on DSM consulting firms' pricing policies do not reflect them. 
Using the data in Table 5-5 we can compare the cost and accuracy of regression 
models with time-series data, and models with time-series and cross sectional data. 
The cost/accuracy curves for these models are displayed in Figure 5-4. 

Table 5-5. Estimates of Data Collection Costs 

_____ g_<?J!~.E!L~~- Activity 
Follow up surveys 
Participation surveys 
On site surveys 

····-···--·-·-······-·······-·fo~! .. P~-~-!~~----·-·-····-··-·--·-·-··-·.f9~!!~r 50Q_~_~t-~-~----··········-·····-········ 

On site survey with spot 
metering 
End-Use Metering 

$25 $12,500 
$50 $25,000 
$1 ,500 $750,000 
$3,000 $1 ,500,000 

$5,500 $2,750,000 
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Figure 5-4. Regression Model Accuracy vs. Data Collection Costs 
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While total evaluation costs remain relatively small, incorporating nonparticipant 
data in the regression does double the data collection costs. 8 The additional data 
collected improves the precision of the savings estimate considerably, narrowing 
the 90% confidence interval by more than two-thirds, in the case of the lagged 
dependent variable modeL The lagged dependent variable model, in this instance, 
provides a more precise and more accurate·result than the time-series cross-section 
model utilizing the same data. Both of the models which incorporate 
nonparticipant data perform better than the participant-only model. If the 
increased accuracy of the result is of sufficient value to the evaluator (the value of 
increased accuracy being determined by the desired use of the savings estimate 
information), it can be worthwhile to incorporate nonparticipant data in the 
regression model. 

As mentioned in the previous section, the regression models that utilize binary 
indicator variables perform better than most of the models which use site-specific 
estimates of customer energy savings in place of the binary variables. Using the 
data in Table 5-5 we can plot the costs of data collection against the accuracy of 

' / 8 For this analysis we assume that a data collection activity must be undertaken to collect nonparticipant data. Some 
utilities may have the requisite customer data, including building size and hours of operation estimates, as well as 
monthly billing and weather data, without the need for additional collection activities. 
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the corresponding SAE models. Such a plot is shown in Figure 5-5 for a program 
with a medium effect size. Two variations on the SAE model are shown, one 
which includes data from non-participants (a cross-sectional model) and one which 
does not. The cross-sectional model requires nonparticipant site hours of 
operation and square footage data in addition to billing records. Data collection 
costs for nonparticipant sites are assumed to be similar to the cost of a 
participation survey. Model accuracy is expressed as the ratio of the model result 
to the actual savings. The brackets represent 90% confidence intervals around 
each model's savings estimate. 

Comparing the standard and cross-sectional models results in an insightful 
conclusion: For a small increase in cost, including nonparticipant data significantly 
increased the accuracy of the resulting savings estimate (from point A to point B). 
This is not the case for increases in spending on the data collection for the SAE 
variable (from point A to point C): If site inspection data has already been 
compiled, three fold increases in evaluation spending are required to increase 
model accuracy another 20-30%. Of course, no evaluator would use end-use 
metering on every building just to use this information in a regression of customer 
billing data; end-use metering is too costly and metering every site would in itself 
produce an extremely accurate estimate of savings. Rather, we use this data point 
to illustrate the stringent requirements on SAE variable precision to enable the 
SAE model to produce more, yet still not completely unbiased results. 

Figure 5-5. SAE Model Accuracy vs. Model Data Collection Costs 
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This suggests that before an evaluator considers metering or other resource­
intensive activities to improve SAE explanatory variable accuracy, it is more cost 
effective to add comparison data from a group of nonparticipants to the model. 

Furthermore, the results in the previous section suggest that a more appropriate 
technique would be to utilize a simpler econometric model using a binary variable 
to indicate program participation. Because such a model does not incorporate 
site-level or tracking database estimates of savings with their inherent imprecision 
and bias, the resulting model would provide a more accurate estimate of mean 
savings (across all participants) than the SAE model. For comparison, a time­
series, cross-section regression with a binary indicator variable and lagged 
dependent variable is plotted as point D. 

Any conclusions regarding evaluation method superiority and cost-efficiency made 
using the simulated datasets and evaluation method exercises must be couched in 
an understanding of the limitations of this analysis. The building consumption 
datasets' realism is dependent upon the ability of DOE2 to realistically model 
energy consumption, which has been the subject of extensive research at LBL, as 
well as at other institutions, and upon the authenticity of the static and varying 
input parameters input into the DOE2 simulation. To the extent that either DOE2 
or the input conditions we have created deviate from real-world conditions, our 
evaluation model results cannot be generalized to real-world DSM programs. 

5.6 Conclusions 

In this chapter, we examined several time-series and cross-sectional comparison 
and regression models, including SAE models. Despite its . popularity in the 
evaluation community, we found that the Statistically Adjusted Engineering 
Method has dubious value unless the tracking database estimate used in the 
regression is very precise and reasonably unbiased. Yet, knowing this a priori is 
difficult, if not impossible. While the SAE models' result may provide a convenient 
metric for expressing savings, the inaccuracies common in tracking databases 
threaten to hinder, rather than help, time-series regression of customer billing data. 

Inclusion of comparison groups in time-series regression can greatly improve the 
precision of annual savings estimates, at moderate costs. When the DSM program 
reduces customer consumption by a small amount (4% in our simulation), 
incorporating nonparticipant data improves the precision of savings estimates by a 
factor of three. For programs which save a larger proportion of customer 
electricity consumption, the improvement is smaller, but still significant. 

Our simulation, by design, has not allowed us to investigate other, important 
problems associated with regression models which examine energy savings: 
namely self-selection and savings net of free riders. By setting these issues aside, 
we have been able to look at more fundamental issues in regression model 
specification and savings estimate bias and imprecision. 
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Integrating Annual Savings Results 

with Measure Lifetime Estimates 

Top-down and bottom-up methods estimate a single year of savings, while the 
success (defined here as cost-effectiveness) of most DSM programs is dependent 
on the program-installed equipment operating efficiently at participant sites for 5-
20 years. One measure of program costs and savings can be obtained by levelizing 
the total cost of a DSM program over the number of years the equipment operates, 
and dividing the result by the annual program savings. The resulting figure has 
units of ¢/kWh electricity saved and can be compared to other DSM programs 
when planning future DSM programs, to specific supply-side options when 
comparing DSM activities as an alternative to power plant construction, and to the 
average cost of electricity1 for a utility when assessing the overall cost­
effectiveness of a program. 

In this chapter we integrate ·annual savings estimates into a model for estimating 
savings over the lifetime of the efficient equip.IJ?.ent. These results will be used to 
describe the uncertainty surrounding estimates of a program's cost of conserved 
energy. 

An importance analysis is undertaken to determine the contributions of annual 
(bottom-up and top-down) savings estimates, measure lifetime estimates, and free 
ridership estimates to the overall uncertainty in the lifetime savings estimate. The 
results of the importance analysis, in tandem with met~od cost information, allows 
us to identify cost-minimizing methods to improve the precision of savings 
estimates. 

6.1 Characterizing Measure Lifetimes 

Manufacturers provide estimates of the usable life of their equipment, but these 
estimates do not account for variations in real-world use, or for premature 
retirement due to building remodeling and renovation. Lacking more accurate data 
on which to base estimates of lifetime, most evaluations use manufacturers' 
estimates of equipment life. Only a handful of studies shed light on the actual 
lifetimes of efficient equipment in the field. In this section, we describe the results 
of two of the most significant studies and use them to develop estimates of 
measure lifetimes that can be integrated into a model to calculate lifetime energy 
savings. 

1 Decision analytic calculations can trade off both kWh (energy savings) and kW (load reductions) against avoided 
costs of both generation and peak capacity. In this paper, we concern ourselves with generation only. The 
framework can be extended to include avoided kW and capacity charges. 
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A Long Island Lighting Company (LILCO) persistence study in 1993 examined 
program measures at 600 participant sites two, three, four, five, and six years after 
measure installation. 2 This study provides us with good estimates of short -term 
persistence for a variety of lighting measures used in commercial buildings. For 
the LILCO study, Table 6-1 lists the percentage of measures that, as of 1993, were 
still functioning or had functioned for their estimated lifetime (if the utility estimate 
of average lifetime had already been exceeded) and then had been replaced with 
efficient or inefficient equipment. The averages given in the table are weighted by 
the expected lifetime kWh savings. Thus, the average value represents the 
persistence of savings, rather than the persistence of measures. 

Table 6-1. Results of LILCO persistence study 
Year Installed: 
{percentages are measures 
persisting as of 1993) 

Technology Expected lifetime kWh 1987 1988 1989 1990 1991 
Lifetime3 savings/ 

unit 
Efficient Ballasts 15 years 56 99% 97% 95% 99% 81% 
Fl. Current Limiters 12.5 N/A 95% 99% 100% 93% 100% 
Fl. Fixture 10 1253 95% 100% 99% 100% 100% 
High Int. Dis. < 200W 2 866 85% 92% 98% 100% 100% 
High Int. Dis. > 200W 4 810 100% 100% 98% 98% 100% 
Optical Reflector 12.5 223 100% 100% 100% 100% 100% 
CFL 2 223 100% 99% 94% 98% 99% 
34W Fl. Tubes 4 21 100% 96% 95% 93% 86% 
60W Fl. Tubes 2.4 55 100% 98% 92% 78% 93% 
Weighted Average 94.5% 97.9% 98.1% 99.0% 99.4% 
Standard Deviation 5.0% 2.6% 2.9% 7.1% 7.2% 

Since the LILCO data represent four separate program years, we cannot make 
explicit time series comparisons (e.g., logically, persistence after five years cannot 
be higher than persistence after two years). However the data suggest that for this 
sample of five years worth of participants, overall savings persistence in the first 
six years is probably around 95%. It is important to note that high persistence for 
participants in any given year does not seem to guarantee commensurate 
persistence for participants in previous or subsequent years. For example, 1991 
participants who installed efficient ballasts experienced a lower persistence than 
participants in any previous year. This variability suggests that, until the reasons 
for such variability are understood, it may be useful to monitor persistence for all 

2 Applied Energy Group. 1993. Persistence Study of Energy Conservation Measures Implemented in LILCO's 
Commercial Audit and Dollars & Sense Programs, Long Island Lighting Company, Woodbury, NY. 

3 Expected lifetime and lifetime kWh savings/unit values are from Directory of Commercial Lamps, The New York 
State Energy Office, December 1992. 
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program years, rather than simply extrapolating from those years where persistence 
studies have been performed.4 

If we assume, based on the LILCO study, that short-term persistence does not 
generally appear to be a problem for DSM programs in commercial buildings, we 
move to the issue of long-term persistence: Do the measures remain installed and 
operational for their entire assumed lifetimes? A study performed in the Pacific 
Northwest by Bonneville Power Administration examined the distribution of 
equipment ages within 600 buildings.5 The Bonneville study used two different 
methods to analyze the on-site data and estimate measure lifetimes: A method 
based on the distribution of ages of existing equipment, and a method based on the 
reported rates of change of equipment (which was not as successful, due to data 
limitations). 

The method based on the age distribution of existing equipment assumes that the 
mean of the current age distribution approximates the average measure lifetime. 
This method assumes that the equipment has been in the marketplace long enough 
for the age distribution to be in a steady state, and that when equipment is retired, 
it is replaced with an identical piece of equipment. 

Unfortunately, calculating lifetime estimates of some efficient equipment was 
hindered by the first assumption above; some efficient equipment has not been on 
the market long enough to possess a steady state distribution of ages. Among 
lighting-related equipment, the distribution of ages for electronic ballasts was very 
low, suggesting that this technology has not been in use long enough to consider it 
in steady state. Because of this shortcoming for some efficient technologies, we 
use the aggregated results from the Bonneville study, which combine efficient and 
less efficient versions of different lighting technologies. The estimates of measure 
lifetime for lighting equipment in commercial buildings, along with 90% confidence 
intervals for each estimate, are given in Table 6-2. 

The confidence intervals, based on the sample size and standard deviation of 
observed estimates, range from ±5% to ±36%. While the BPA study was the 
largest of its kind, the results utilize data from only two DSM programs, both of 
which were implemented in the Pacific Northwest. Ideally, the BPA data could be 
used with data from other evaluations in other parts of the country to more 
completely characterize equipment lifetimes. Each evaluation's fmal estimate of an 
equipment's lifetime could be considered a single data point, and the standard 
deviation for this group of data points could be used as a rough characterization of 

4 It should also be noted that these site inspections do not investigate the possibility of degradation of savings over 
time. 

5 Skumatz, L.S., Hickman, C.H .• "Effect Energy Conservation Measures and Equipment Lifetimes in Commercial 
Buildings: Calculation and Analysis", Proceedings from the 1994 ACEEE Summer Study, Asilomar, CA, 1994, 
v.8, p.l93-204. 
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Table 6-2. Measure Lifetime Estimates from BPA Study 
Mean of Utility Mean Observed 90% Confidence Standard Deviation 

Equipmenf5 Estimates Lifetime (years) Interval Implied by 90% Cl 

Ballast 13.3 10.0 ±17% ± 1.0 
Bulb 4.9 4.2 ±10% ±0.25 
Control 22.9 ±5% ±0.70 
Fixture 20.0 21.0 ±5% ±0.58 
Reflector 6.2 ±36% ± 0.4 

the uncertainty in actual lifetimes for each piece of equipment. Because no other 
studies as thorough as BPA's exist, we rely upon the BPA study for a rough 
estimate of lifetime variability. 

Measure life estimates based on expert judgment from five utilities were averaged 
to obtain the values in the first column of Table 6-2. While the mean utility 
estimates are similar to the observed results, the range of utility estimates for many 
of the technologies was wide, ranging from 50-150% of the observed lifetimes. 
This suggests that some of the utilities may be significantly under- or 
overestimating measure lifetimes, and thus lifetime savings. Because we only have 
observed lifetime data for a small group of measures in a single region, however, it 
is dubious to assume that the utility estimates which deviate from the observed 
data are wrong. Thus, this analysis focuses on the precision of measure lifetime 
estimates rather than the bias created by the use of under- or overestimates of 
measure lifetimes. 

Because the BP A study investigated equipment longevity in only one part of the 
country, for equipment installed in two, fairly similar, DSM rebate programs, we 
believe that the BP A equipment lifetime estimates probably underestimate the true 
variability in measure lifetimes which occurs in commercial lighting DSM programs 
generally. But since so little attention has been given to careful measurement and 
estimation of measure lifetimes thus far in DSM program evaluation, we present 
the analysis in this chapter as a conservative estimate of the importance of robust 
estimation of equipment lifetimes in future evaluation efforts. 

In the next section we use these lifetime estimates to calculate the uncertainty in 
estimates of program costs per kWh of electricity saved over the lifetime of 
program equipment. 

6.2 Cost to Society: Calculating the Cost of Conserved Energy 

Unlike the equation used to calculate annual savings, the cost of conserved energy 
is not a simple product of its components. The cost of conserved energy is 

6 Ballasts include standard and magnetic efficient ballasts, and electronic ballasts. Bulbs include incandescent, 
compact fluorescent, and fluorescent. Controls include mechanical on/off, multiswitch, and timer switching. 
Fixtures include floods, can lighting, spot lighting, and strip lighting. 
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obtained by levelizing a program's cost across the years the program equipment 
saves electricity, and then dividing the levelized cost by the annual electricity 
savings of the program. The equation is shown below. 

«1+ir . Cost I kWh saved = Cost x -:- Annual Savzngs o + ir -1 

Where i is the discount rate and n is the lifetime of the program equipment. The 
term used to levelize program costs over the life of the equipment is known as the 
capital recovery factor. Cost in the equation is the sum of all costs of installation, 
maintenance, and evaluation, borne by either the utility or by program participants. 
Annual savings include electricity savings of all participants, regardless of whether 
they would have installed identical equipment in the absence of the program. In 
this way, the cost of conserved energy can be thought of as the cost to society of 
saving energy through DSM. In this framework, it is unimportant who pays for 
the program and who saves electricity; so long as the costs and benefits can be 
tallied comprehensively and consistently. 

The relation between the equipment life n and the cost of conserved energy is 
exponential, as demonstrated in Figure 6-1 for a sample DSM program (based on 
actual program data from a eastern utility). The cost of conserved energy is shown 

. for three discount rates: 5, 10, and 15% real. 

Figure 6-1. The Cost of Conserved Energy for a range of measure 
lifetimes 
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As one would expect, the longer the equipment is used, the lower the overall 
cost/kWh of electricity savings. The cost of conserved energy decreases 
dramatically as the equipment lifetime increases from 2 to 10 years. After 10 
years, however~ longer equipment lifetimes have a less dramatic effect on the cost 
of conserved energy because electricity savings garnered 10-20 years in the future 
have little value ·today, and because the percentage increase in savings from an 
additional year decreases as the equipment lifetime increases. For equipment 
which lasts longer than 10 years, each additional year of program savings reduces 
the cost per kWh of electricity by about half a cent. The non-linear relation 
between the equipment lifetime and the cost of conserved energy has important 
implications for the uncertainty of the cost of conserved energy. These 
implications are explored using a Monte Carlo model in the next section. 

6.2.1 A Monte Carlo Model of the Cost of Conserved Energy 

A Monte Carlo model allows us to characterize the uncertainty of the cost of 
conserved energy for commercial lighting programs. We can also estimate the 
importance of annual savings and measure lifetime estimates to the total 
uncertainty. The model we use possesses two main inputs, the measure lifetime 
and annual program savings. The measure lifetime estimates were described in the 
previous section in this chapter. The program savings estimates are based on 
econometric regression models and end-use metering analyses undertaken in 
previous chapters. We can also vary the discount rate, an important input to the 
cost of conserved energy, and the program effect size, which affects the precision 
of regression-based estimates of annual savings. A schematic of the model is given 
in Figure 6-2. 

In the previous chapter we compared annual savings estimates generated using 
top-down and bottom-up methods. While top-down methods appear to perform 
better than bottom-up methods, and at a lower cost, our estimation of top-down 
methods' precision and bias relied upon a synthetic data set which only partially 
mimics the complexity of real-world, top-down analyses. In addition, other factors 
besides bias and precision guide the decision to use top-down or bottom-up 
methods in an evaluation. Thus, we do not exclude the results of bottom-up 
methods in this chapter's uncertainty analysis, and instead present our results here 
using a variety of top-down and bottom up methods. We incorporate savings and 
cost information from actual utility DSM programs into the model. We will then 
compare the results for different methods and summarize the quantitative 
differences in precision of the cost of conserved energy when different methods are 
used to estimate the annual savings. 
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Figure 6-2. The Monte Carlo model for the cost of conserved energy 
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6.2.2 Cost of Conserved Energy Estimates using Top-Down Methods 

In this section we review the results of the Monte Carlo models using top-down 
methods' estimates of annual savings. We use results from the time-series model, 
the time-series cross-sectional model, and the time-series cross-sectional model 
with a lagged dependent variable. We discuss two results obtained with the Monte 
Carlo model: estimation of the uncertainty in the cost of conserved energy and the 
importance of annual savings and measure lifetime estimates' contributions to that 
uncertainty. 

Table 6-3 presents the cost of conserved energy results of the Monte Carlo 
analysis using uncertain estimates of measure lifetime (based on BPA data) and 
annual savings (based on the building simulation in Chapter 5). Because the top­
down methods' performance is dependent on the program effect size, we describe 
the cost of conserved energy results for each effect size in Table 6-3. The 
nonlinear nature of the cost of conserved energy function results in asymmetric 
distributions, thus, we present both the mean and median cost of conserved energy 
estimates. 
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Table 6-3. Cost of Conserved Energy for a Hypothetical Commercial 
Lighting Program 
Top-Down Method Effect Size Mean Median Standard 90% 

(savings (¢/kWh) (¢/kWh) Deviation Prediction 
per Interval 
participant) 

Time-Series Small 4.3 4.0 ±1.4 ±57% 
Medium 4.1 4.0 ±0.64 ±26% 
Large 4.0 4.0 ±0.57 ±23% 

Time-Series Cross Small 4.1 4.0 ±0.62 ±25% 
Section Medium 4.0 4.0 ±0.55 ±23% 

Large 4.0 4.0 ±0.54 ±22% 

Time-Series Cross Small 4.0 4.0 ±0.58 ±24% 
Section w/Lagged Medium 4.0 3.9 ±0.52 ±21% 
Dependent Variable Large 4.0 3.9 ±0.52 ±21% 

If point estimates of annual savings and measure lifetime were used to generate an 
estimate of the cost of conserved energy, we would obtain a result of 4 ¢/kWh. 
Using the Monte Carlo model with probabilistic estimates of annual savings and 
measure lifetime results in a comparable mean estimate, but augments the point 
estimate with additional information about the precision. 

When the uncertainty surrounding measure lifetime estimates is combined with 
annual savings uncertainties, the resulting cost of conserved energy estimate, even 
in the best case, does not meet the 90/10 criteria7: a 90% confidence interval with 
10% precision. Only the time-series model is affected by changes in effect size: 
smaller effect sizes reduce the ability of the model to estimate savings precisely. 

Table 6-4 presents the rank correlations between the uncertainty in· model inputs 
and the uncertainty in the resulting cost of conserved energy for each top-down 
method. The rank correlation takes a value between zero and one; the closer to 
one, the higher the correlation between input uncertainty and result uncertainty and 
the larger the contribution of that input to overall uncertainty in the result. For 
each model, the input with the larger rank correlation with the result is responsible 
for more of the uncertainty in the result. 

7 The 90110 criteria is used as a measure of appropriate evaluation by some regulatory bodies, such as the California 
PUC. / 
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Table 6-4. Importance of Uncertainty in Cost of Conserved Energy 
Inputs 

Top-Down 
Method 
Time-Series 

Time-Series Cross 
Section 

Time-Series Cross 
Section w/Lagged 
Dependent 
Variable 

Effect Size (savings 
per participant) 

Small 
Medium 
Large 

Small 
Medium 
Large 

Small 
Medium 
Large 

Rank Correlations 

Annual Savings Measure 
Estimate Lifetime 

0.88 0.49 
0.61 0.74 
0.46 0.87 
0.50 0.82 
0.39 0.90 
0.37 0.92 
0.44 0.90 
0.23 0.98 
0.22 0.99 

When the simple time-series model is used to calculate annual savings and the 
program has a small effect size (defined as a program which saves only 4% of a 
customer's total electricity consumption) the uncertainty in the annual savings 
estimate overwhelms the result. However, when the time-series model is used 
with programs with medium or large effect sizes, the uncertainties are comparable, 
and when the time-series model is used with a program with a large effect size, the 
measure lifetime uncertainty overwhelms the result. 

With the exception of the simple time-series model, the uncertainty associated with 
annual savings estimates is consistently less important than the uncertainty 
associated with the measure lifetime estimate. In most cases the correlation 
between measure lifetime uncertainty and the cost of conserved energy uncertainty 
is more than twice as large as the correlation between annual savings uncertainty 
and the cost of conserved energy uncertainty. The implication for evaluation 
activities is that more resources should be devoted to reducing the uncertainty in 
measure lifetime estimates. 

Cost of Conserved Energy Estimates using Bottom-Up Methods 

The results of the analysis of bottom-up methods in Chapter 4 demonstrated that 
the precision of end-use metering can vary dramatically. Because the variation is 
based on the quality of the tracking database and the variability of measure types 
and customer consumption, no single precision could represent the outcome of all 
end-use metering studies. Moreover, we have inadequate data to characterize a 
distribution for end-use metering study precision. 

Rather than attempt to represent end-use metering method precision with a single 
value, we use three estimates of precision to represent good, average, and poor 
precision which can result from end-use metering. The three estimates are based 
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on the precision of the end-use metering studies examined in Chapter 4, and are 
presented in Table 6-5. 

Table 6-5. Parametric estimates of end-use metering precision 
Poor Precision 

Average Precision 

Good Precision 

±50% 

±25% 

±10% 

Use of these precisions in the Monte Carlo model of the cost of conserved energy 
results in the cost of conserved energy estimates presented in Table 6-6. Only the 
model using the 'good' end-use metering precision results in a cost of conserved 
energy estimate with precision comparable to the estimates obtained using top­
down methods. 

Table 6-6. Cost of Conserved Energy for a Hypothetical Commercial 
Lighting Program 
Bottom-Up Mean Median Standard 90% Prediction 
Precision (¢/kWh) . (¢/kWh) Deviation Interval 
Poor 2.5 4.0 ±86. 
Average 4.4 4.0 ± 1.7 ±70% 
Good 4.1 4.0 ±0.65 ±27% 

Unless an evaluator can be sure that a metering evaluation can provide results in 
the range of our 'good' precision estimate, the resulting estimates of savings will 
be much less precise than the results of less expensive top-down studies. 

Table 6-7. Importance of Uncertainty in Cost of Conserved Energy 
Inputs 

Rank Correlations 

Bottom-Up Precision Annual Savings Estimate 
Poor 0.83 
Average 0.90 
Good 0.59 

Measure Lifetime 
0.20 
0.46 
0.76 

As one would expect, the uncertainty in annual savings estimates from metering 
overwhelm the uncertainty in measure lifetime estimates for poor and average 
estimates of metering data precision. Only when precision is in the 'good' range, 
does measure lifetime uncertainty dominate the resulting lifetime savings. Thus, 
the majority of the uncertainty in the cost of conserved energy originates in the 
metered estimate of annual savings. 
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Figure 6-3 illustrates the probability distributions for the cost of conserved energy 
estimates calculated using metered estimates of annual savings. As the precision of 
the meter estimate of annual savings decreases, the distribution widens and 
becomes asymmetrical, with an elongated tail on the right-hand side. 

Figure 6-3. Distribution of CCE Estimates calculated with metered 
estimates of annual savings 
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6.3 Conclusions 

Integrating the annual savings estimates with measure lifetime data has allowed us 
to estimate the overall uncertainty in the cost of conserved energy. This study is 
unique because of its treatment of both annual savings and measure lifetime as 
uncertain quantities. 

Acknowledging that measure lifetime estimates are uncertain quantities increases 
the overall uncertainty of cost of conserved energy estimates. When even the most 
precise estimates of annual savings are used, the cost of conserved energy does not 
meet a 90110 criterion of precision. By using point estimates of measure lifetimes 
in their calculations ~f lifetime savings and the cost of conserved energy, utilities 
overstate the precision of their findings . 

Despite our use of a conservative estimate of measure lifetime uncertainty, we 
observe that in many cases the measure lifetime estimate is responsible for the 
lion's share of uncertainty in the cost of conserved energy estimate. An analysis of 
the cost of reducing measure lifetime uncertainty should be undertaken to 
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determine if it is cost effective to concentrate more resources on measure lifetime 
uncertainty and less on annual savings estimates. 8 Only when annual savings 
estimates based on end-use metering are incorporated into the calculation of the 
cost of conserved energy is the measure lifetime uncertainty responsible for a 
minority of the uncertainty in the result. 

The nonlinear nature of the cost of conserved energy equation affects the shape of 
the resulting probability density function. The cost of conserved energy is 
asymmetric with an elongated right-hand tail. This asymmetric distribution 
underscores the importance of precise estimation of the components of the cost of 
conserved energy: Higher cost of conserved energy estimates cannot be ruled out 
by the analyst unless inputs to the equation are of sufficiently high precision. 

8 A future iteration of this analysis could incorporate these. 
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Calculating the Uncertainty in Program Cost-Effectiveness 
Estimates 

Past discussions of DSM program evaluation have suggested that the appropriate 
level of evaluation is dependent on the cost and performance of each evaluation 
technique, and the value of the resulting information to the evaluator, regulator, or 
program planner. 1 We agree, and in this chapter present a case study exploring 
the appropriate level of evaluation for a particular objective. In this chapter, we 
relate the precision and bias of evaluation methods to estimates of a program's 
cost-effectiveness, and consequently to a program screening exercise which uses 
evaluation results to determine the programs that will receive funding to operate 
for another year. 

We use Monte Carlo techniques to estimate the effects of imprecision and bias in 
DSM program savings estimates and in the resulting program cost-effectiveness 
estimates. We review the potential biases of the evaluation methods described in 
previous chapters. The results of these calculations enable us to discuss the 
appropriate levels of DSM program evaluation with the objective of ensuring cost­
effectiveness. Stated differently, we examine the level of permissible bias and 
imprecision in evaluation when evaluation results are used to verify program cost­
effectiveness. 

7 .1. Introduction 

Estimates of the cost-effectiveness of DSM are based on evaluations of program 
impacts. The evaluation methods used are, to an extent not well understood, 
subject to errors of imprecision and bias. . Evaluation imprecision can reduce 
evaluator confidence in estimates of program cost-effectiveness, and evaluation 
bias can result in non-cost-effective programs being mislabeled as cost-effective. 
We assess the uncertainty in estimates of DSM program cost-effectiveness for 
evaluation methods of varying precision and accuracy. By first examining the 
effects of imprecision and bias, we can then assess the impact of evaluation method 
choice on our confidence in the cost-effectiveness of a program. The results of 
these calculations enable us to discuss the appropriate levels of DSM program 
evaluation with the objective of confidently assessing cost-effectiveness. 

In this chapter, we begin with a review of the implications of bias and imprecision 
in evaluation results. We then discuss the range of cost-effectiveness estimates 
observed in recent commercial lighting rebate programs. Based on this range of 

1 Hummel. Phillip E. (1993), "Resource Allocation and DSM Program Evaluation Planning", Proceedings of the 
1993 Energy Program Evaluation Conference, Chicago, IL, pp. 637-642, August and Wirtshafter, Robert, Les 
Baxter (1991), "Establishing Priorities for Future Evaluation Efforts", Proceedings of the 1991 Energy Program 
Evaluation Conference, Chicago, IL, pp. 137-142. August. 
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cost-effectiveness estimates we assess the effects of imprecision and bias on 
evaluator confidence in program cost-effectiveness, an~ discuss the implications of 
these findings for future evaluations. 

7 .2. The Implications of Biased and Imprecise Evaluation Results 

Biased, i.e., under- or over-estimates of savings, have important implications on 
several levels: For the utility, biased estimates of savings misinform about program 
cost-effectiveness. Biased over-estimates of savings may cause utilities to retain 
DSM programs which are not, in reality, cost-effective. At the state regulatory 
level, overestimates of savings will result in utility overcompensation for lost 
revenues (for lost revenues which, in fact, were never lost) and payment of 
excessive shared savings ·incentives. Thus, the utility is allowed to collect 
additional, unjustified revenue from ratepayers. At the national level, plans to 
reduce national dependence on fossil fuels or reduce power plant emissions using 
DSM activities may fall short of desired goals if plans are based on studies which 
exaggerate actual savings. 

An imprecise estimate of savings has some slightly different implications: 
Imprecision in annual savings or measure lifetimes can affect the mean cost of 
conserved energy estimate, and reduce confidence that a marginally cost-effective 
program is really cost-effective. Most of the regulatory concern regarding 
precision suggests a fundamental desire for a precise estimate, but this desire is not 
necessarily based in the requirements of any particular use of the evaluation results. 
In many cases the 90/10 criteria is applied to estimates of annual savings, without a 
similarly rigorous criteria being required for lifetime savings or for the resulting 
estimates of the cost of conserved energy. Vine and Kushler discuss the history of 
regulatory mandates for evaluation precision.2 

We suggest that a precision criteria of 90110 is usually unnecessary for confidently 
verifying cost-effectiveness. Bias in evaluation results, depending on the 
evaluation methods used, appears to be a greater threat to accurate cost­
effectiveness calculations. The importance of bias is compounded by the necessity 
of considering imprecision around the true (unbiased) mean, not the biased mean, 
which is usually all that is contemplated in evaluation practice today. In the 
following sections we consider the implications of precision and bias separately for 
clarity, although the two must be addressed concurrently in evaluation practice. 

7.3. Assessing Cost-Effectiveness 

The cost-effectiveness of utility DSM programs is gauged by comparing a 
program's cost of conserved energy, the levelized cost of the program over the 
installed equipment's anticipated lifetime, to the sponsoring utilities' avoided 

2 Vine, Edward L., Martin Kushler (1995), "The Reliability of DSM Impact Estimates", Proceedings of the 1995 
Energy Program Evaluation Conference, Chicago, IL. 

88 

• 



.. 

• 

Chapter 7 

costs.3 A program that provides kWh savings at a levelized cost equal to or less 
than the levelized avoided costs is considered cost-effective, and has a total 
resource cost (TRC) test ratio greater than one.4 

Even if an estimate of savings results in a TRC test ratio greater than one, the 
evaluator cannot rule out the possibility of the program not being cost-effective 
without some estimate of the savings, cost, and avoided cost estimates' precision. 
Due to the nature of the cost of conserved energy calculation, a more imprecise 
savings estimate increases the probability that a program's cost of conserved 
energy is larger than anticipated, which can shift the mean TRC test ratio to less 
than one. Under certain circumstances, an imprecise estimate of savings can 
dramatically reduce confidence in program cost-effectiveness. 

While an imprecise estimate of savings can reduce confidence in a program's cost­
effectiveness, a biased estimate of savings can misrepresent a non-cost-effective 
program as cost-effective. Because assessment of bias requires an independent 
estimate of the 'true' savings for comparison, our characterization of bias is 
understandably less complete, but not necessarily less important, than our 
characterization of savings estimate imprecision. 

7.4. Cost-Effectiveness Estimates for Commercial Lighting DSM 

The recent DEEP Commercial Lighting Report estimated the cost of conserved 
energy and reported utility-estimated avoided costs for 20 commercial lighting 
programs. 5 Examining the ratios between the estimates of avoided costs and total 
resource costs for these 20 programs provides some insight regarding the 
distribution of typical (but probably biased) cost-effectiveness estimates. The 
distribution of reported cost -effectiveness estimates allows us to impute the bias 
and imprecision conditions under which the cost-effectiveness of these programs 
would be erroneously reported. Table 7-1 lists the utility estimated avoided costs, 
the cost of conserved energy, and the TRC test ratio for the 20 commercial-sector 
lighting programs examined in the DEEP report. 

When point estimates of the cost of conserved energy were compared to each 
utilities' estimate of their avoided costs, all of the programs examined in the DEEP 
report were cost-effective, i.e., had TRC test ratios greater than or equal to one. 
A few (15%, but only 1% by energy savings) were only marginally cost-effective, 
with ratios less than 1.5. The majority (55%, 50% by energy savings) had cost-

3 A voided costs are also levelized over the life of the efficiency measures using a discount rate equivalent 
to the utilities' cost of capital. 

4 California Public Utilities Commission and California Energy Commission (1987), "Economic Analysis of Demand­
Side Management Programs." Standard Practice Manual, P400-87-006, December. 

5 Eto, Joseph, Ed Vine, Leslie Shown, Richard Sonnenblick, Chris Payne (1994), "The Cost and Performance of 
Utility Commercial Lighting Programs", Lawrence Berkeley Laboratory, LBL-34697, May. 
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Table 7-1. Total Resource Costs and Avoided Costs from 20 
Commercial Lighting Programs 

Sponsoring Utility Annual Cost of Avoided Total Resource 
Savings Conserved Costs Cost Test Ratio 
(GWh) Energy {¢/kWh) {¢/kWh) 

BPA 2.4 4.5¢ 4.7¢ 1.0 
BHEC 2.1 4.7¢ 5.0¢ 1.1 
IE 1.1 4.4¢ 4.8¢ 1.1 
NMPC 101.4 6.0¢ 9.0¢ 1.5 
BE Co 8.3 7.2¢ 11.2¢ 1.6 
GMP - Small C/1 3.0 7.6¢ 12.1¢ 1.6 
PG&E 115.7 5.0¢ 8.5¢ 1.7 
SDG&E 2.0 4.1¢ 7.2¢ 1.7 
SMUD 43.7 6.5¢ 11.2¢ 1.7 
CHG&E 16.1 3.7¢ 6.8¢ 1.9 
GMP- Large C/1 16.3 6.3¢ 12.1¢ 1.9 
SCL (Pilot) 1.1 2.5¢ 4.7¢ 1.9 
Con Edison 91.9 6.8¢ 14.0¢ 2.1 
NEES - Small C/1 23.5 5.2¢ 10.8¢ 2.1 
CMP 15.7 1.8¢ 4.6¢ 2.5 
NEES- El 104.3 3.7¢ 10.0¢ 2.7 
NU- ESLR 149.8 2.5¢ 8.1¢ 3.2 
NYSEG 53.9 2.3¢ 10.0¢ 4.3 
SCE 72.8 1.2¢ 7.2¢ 5.8 
PEPCO 40.5 1.2¢ 7.5¢ 6.4 

effectiveness ratios ranging from 1.5 to 2.1. A fmal group (30%, 50% by energy 
savings) had cost-effectiveness ratios ranging from 2.5 to 6.4. These three groups 
form the basis for our parameterization of cost-effectiveness estimates. We can 
simulate three programs with mean cost-effectiveness equal to the mean from each 
of the three groups.6 We can then estimate the effects of an imprecise estimate of 
savings on the cost-effectiveness estimate for each program. Table 7-2 
summarizes our parameterization of cost-effectiveness estimates. 

6 A voided cost calculation is a complicated matter. A complete accounting involves estimation of a 
utilities' fixed and variable costs per kWh and per kW supplied. These costs will vary over the life of 
program measures, and a thorough understanding of the utilities' resource acquisition plans is required 
to estimate future changes in avoided kWh and kW costs. Finally, DSM program characteristics also 
affect the calculation of pertinent avoided costs: A program that saves energy on-peak will have a 
larger avoided kW cost component than a program that only saves energy during off-peak hours. 

With this in mind, it is clear that avoided cost estimation is itself subject to considerable uncertainty. 
While we recognize the importance of correct avoided costs calculation, an in-depth discussion of the 
uncertainties associated with avoided cost estimation, or of the utility and customer-borne cost elements 
in the cost of conserved energy, is beyond the scope of this paper. 
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Table 7-2. Parameterization of TRC test ratios 

Range Mean Total Range of % of the 20 DEEP %of Annual 
Resource Cost TRC Test Sample Programs Savings in Range 
Test Ratio Ratios in Range 

Low 1.1 1.0- 1.1 15% 1% 
Medium 1.8 1.5-2.1 55% 50% 
High 4.2 2.5-6.4 30% 49% 

7.5. Precision of Bottom-Up and Top-Down Evaluation Methods 

This section summarizes estimates of evaluation precision from our analyses of 
both top-down (econometric methods based on whole-premise billing data) and 
bottom-up (metering methods utilizing information on specific equipment installed) 
estimates. Myriad factors can affect . the precision of both methods, and the 
estimates of precision given here are based on limited program data and a subset of 
all available evaluation methods. Thus, these estimates of precision do not 
universally apply to every econometric or metering study one could conduct, but 
rather provide a rough estimate of the range of precisions one could expect using a 
variety of methods. 

It is also important to note that estimates of precision obtained with different 
evaluation methods are not strictly comparable. A value's precision is entirely 
dependent on the implicit assumptions that govern which aspects of a quantity are 
thought to be imprecise. The precision of an end-use metering- derived savings 
estimate is typically based on information on the sample size and sample 
homogeneity when compared to the participant population. The precision of an 
econometrically derived savings estimate is based on the capacity of the 
econometric model to systematically explain variability in the participant billing 
data. The statistical assumptions inherent in multivariate regression (e.g., 
normality and independence) also implicitly affect the calculation of estimate 
precision. 

In order to create these rough estimates of the precision (and rough estimates of 
bias, which we discuss later in the chapter) associated with different evaluation 
methods for commercial lighting programs, we have performed a number of 
detailed analyses based on both actual program and simulated program data, as 
described in previous chapters. To estimate the bias and precision of end-use 
metering methods, we compared results from a handful of short and long-term 
metering studies, investigating hours of operation, sample size and selection, and 
interaction effects between heating cooling, and lighting equipment. To investigate 
the bias and precision of econometric methods we used the building energy 
modeling program DOE2 to simulate a set of participant and nonparticipant 
buildings' monthly energy consumption, and estimated econometric models using 
the results. 

Table 7-3 presents the range of relative precisions (at the 90% confidence level) 
we obtained in the aforementioned analyses. To represent a diversity of evaluation 
methods, we parameterize the precision of these evaluation methods with low, 

91 



Chapter 7 

Table 7-3. Parameterizations of Annual Savings Estimate Precision 

Range 

Low 
Medium 
High 

Precision from Econometric 
Analysis with Simulated Data 

15% 
10% 
5% 

Precision from Analysis of End-Use 
Metering Data 

50% 
25% 
10% 

medium, and high precision estimates. One should not deduce from Table 7-3 that 
econometric methods are inherently superior to metering methods. Our method of 
obtaining estimates of econometric precision used simulated consumption data 
which probably understated the variability in an actual set of monthly billing data. 
As mentioned earlier, estimates of precision from different methods are based on 
different statistical assumptions, and are therefore not strictly comparable. Finally, 
end-use metering provides a wealth of additional evaluation information above and 
beyond simple estimates of annual program savings. 

7.6. The Effect of Imprecision on Cost-Effectiveness Estimates 

In this section, we use the previous sections' information on the imprecision of 
evaluation method results and the parameterization of cost-effectiveness to 
estimate the effects of imprecision on confidence in program cost-effectiveness 
estimates. We utilize a Monte Carlo model to propagate uncertainties because the 
method and results are easily grasped without a detailed understanding of calculus 
or other analytic propagation of error techniques, and because Monte Carlo 
techniques allow more freedom in specification of uncertain quantities and 
functional relationships. 

Additional uncertainty is incorporated into the cost-effectiveness calculation with 
the incorporation of an uncertain measure lifetime estimate, based on inventories of 
efficient equipment installed in lighting programs in the Pacific Northwest.? Most 
regulators focus on the precision of annual savings. By incorporating an uncertain ' 
estimate of measure lifetime, we can estimate the precision of lifetime savings and 
program cost-effectiveness. 

7 .6.1. Monte Carlo Model Results 

Three examples of the resulting distributions of the TRC test ratio from the Monte 
Carlo model are given in Figure 7-2.8 The distributions displayed reflect annual 
savings estimates of average precision obtained through end-use metering. Each 

7 Skumatz, Lisa S., Curtis Hickman (1994), "Effect of Energy Conservation Measures and Equipment Lifetimes in 
Commercial Buildings: Calculation and Analysis", Proceedings from the 1994 ACEEE Summer Study, Asilomar, 
CA, v .8, pp. 193-204. 

8 The Monte Carlo model sampled 1000 points from each distribution, obtained using median hypercube 
sampling. 
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of the three distributions represents a different mean estimate of the TRC test 
ratio, representing the three parameterizations described in Table 7-2. 

The distributions with some portion of their area to the left of 1.0 represent 
programs which, given the precision of the evaluation methods used, could be non­
cost-effective even though the mean estimate, which might be submitted alone as 
an estimate of cost-effectiveness in a regulatory hearing, is greater than 1.0. 

Table 7-4 lists the fraction of each distribution that lies below 1.0, indicating the 
likelihood of non-cost-effectiveness. Only the distributions for programs with low 
mean total resource costs have a significant portion of their area below 1.0. Thus, 
the risk of mistakenly labeling a program cost-effective when it actually is not is 
highest for programs whose mean estimates of the TRC test ratio are close to 1.0. 
This result is intuitive: imprecise measurement which results in a ratio close to one 
has a greater chance of actually being below one than a similarly imprecise 
measurement which results in a ratio much larger than one. 

Figure 7-1. Distributions of the Total Resource Cost Test Ratio for 
Medium Precision Metering 
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Table 7-4. Fraction of Distributions Representing Non-Cost-Effective 
Programs 

Mean TRC Savings Estimation Precision Percent of Distribution 
Test Ratio Method Less Than 1.0 
Low End-Use Metering Low (±50%} 40% 
(1.1) Medium (25%) 29% 

High (10%) 11% 
Econometric Low (15%) 19% 

Medium (10%) 11% 
High (5%) 3% 

Medium End-Use Metering Low 7% 
(1.8) Medium -

HiQh -
Econometric Low -

Medium -
High -

High End-Use Metering Low 1% 
(4.2) Medium -

High -
Econometric Low -

Medium -
High -

7 .6.2. Implications of Estimate Imprecision 

The Monte Carlo results summarized in Table 7-4 have important implications for 
the level of precision required to confidently assess DSM program cost­
effectiveness. The answer to the question, "Is a 90110 criterion necessary to 
confidently assess the cost-effectiveness of a DSM program?" is "No". Only for 
programs with mean TRC test ratios near 1.0 is a level of precision approaching 
90/10 necessary to confidently determine whether the program is truly cost­
effective. Even for the lowest precision evaluation, a program with a 'medium' 
mean TRC test ratio is cost-effective at the 90% confidence level. 

Should these results change the way in which evaluations are conducted? We see 
two ways to proceed from this analysis: In the distribution of TRC test ratios from 
the DEEP sample of 20 commercial lighting programs, we observe that the 
majority of programs fall into the 'medium' category. Thus, in the majority of 
cases, a 90/10 criterion would be excessive for the determination of cost­
effectiveness. It follows that a less stringent precision requirement should be 
adopted. 

Alternatively, program planners and evaluators may have some previous estimate 
of the mean TRC test ratio associated with the program, perhaps based on a 
previous year's evaluation, or on program planning estimates. A determination of 
evaluation requirements could be made based on this estimate of cost­
effectiveness: programs with preliminary cost-effectiveness ratios near 1.0 would 
be allocated additional evaluation resources to ensure a confident assessment of ex 
ante cost-effectiveness. 
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If cost-effectiveness verification were the primary goal of an evaluation, we would 
advocate a combined approach, whereby programs without preliminary or planning 
estimates of cost-effectiveness are allocated enough evaluation resources to assess 
cost-effectiveness for a program with a TRC test ratio in the 'medium' range, 
while programs with some cosf-effectiveness information would be evaluated as 
dictated by these ratios. 

A fundamental hurdle in this type of evaluation planning is our inability to estimate 
the cost of attaining a given level of evaluation precision. The programs for which 
we have been able to collect detailed evaluation data in our research represents too 
limited a sample to conclusively characterize the program attributes, participant 
characteristics, and evaluation method uncertainties required to understand the 
precision-evaluation tradeoff. Thus, the most practical and immediately applicable 
result of our analysis here is that a 90110 criterion for relative precision of annual· 
savings estimates is almost always excessive for determining cost-effectiveness .. 

The Effect of Bias on Cost-Effectiveness Estimates 

Thus far, we have focused on the importance of precision in assessing cost­
effectiveness. However, it is crucial, and potentially more important, to consider 
the role of bias as well. Despite the importance of estimate accuracy, our 
understanding of evaluation bias is less developed than our characterization of 
precision due to the difficulty of characterizing bias, which requires an 
independently estimated, unbiased estimate for comparison (i.e., the true, actual 
program savings). Our limited sample of program evaluations also hindered a 
more thorough characterization of evaluation method bias. 

Just as imprecise savings estimates pose the greatest threat to programs with mean 
cost-effectiveness near one, those same programs may actually be non-cost­
effective programs with biased estimates of savings. Table 7-5 reviews the biases 
identified in our research. The biases in Table 7-5 are given as percentage 
deviations from the unbiased value. A negative bias ineans that the cost of 
conserved energy is underestimated and a positive bias means that the cost of 
conserved energy is overestimated. 

The effect of these biases is cumulative; a cost of conserved energy estimate based 
on limited duration metering and manufacturer estimates of measure lifetimes 
would be subject to multiple biases which could double or halve the cost of 
conserved energy. Some utilities implicitly acknowledge the bias inherent in their 
cost-effectiveness estimates by only implementing and continuing programs with a 
TRC test ratio significantly above 1.0, using, for example, a threshold of 2.0 or 
higher to screen programs. 
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Table 7-5. Sources of Bias in Cost of Conserved Energy Estimates 

Parameter 

Bottom-Up Savings 
Estimates 

Top-Down Savings 
Estimates 
Measure Lifetime 
Free Riders* 
Free Drivers 

Source of Bias 

Seasonality of Hours of 
Operation 
HVAC/Lighting Interactions 
Nonrepresentative Metered 
Sample 
Engineering Estimate 
Uncertainty in SAE Models 
Use of. Mfr. Estimates 
Free Riders Over Time 
Omission of Free Driver 
Savin s 

Magnitude of Bias in the 
Cost of Conserved 
Ener 
-5% to +5% 

+5% to +15% 
unknown 

+5%to +50% 

-40% to -5% 
at least -11% 
positive, but unknown 

*Free riders are relevant only for utility cost test ratios, not TRC test ratios. 

For TRC test ratios close to one, even a bias of a few percent could result in a 
non-cost-effective program being erroneously labeled cost-effective (or vice-versa, 
labeling a cost-effective program as non-cost-effective). However, by considering 
bias and precision together, the effect of bias is even more pervasive. A negative 
bias in the cost of conserved energy means that the distribution of the true TRC 
test ratio in Figure 7-2 is further to the left and closer to 1.0 than the supposed 
distribution. For programs with mean TRC test ratios close to one, a larger 
fraction of the distribution would move below the cost-effectiveness threshold of 
1.0, revealing an increased probability that the program is not cost-effective. 

If these biases are large enough or several negative biases are applicable, even a 
program with a mean TRC test ratio in the 'medium' range could, in actuality, be 
non-cost-effective. For example, a bottom-up metering study could meter 
equipment in the winter, overestimating annual hours of operation by 
approximately 5%, and savings could be coupled with biased manufacturer 
estimates of equipment lifetimes, overestimating lifetimes by as much as 40%. In 
the worst case, the combined bias could overestimate lifetime program savings by 
45%, which would cause a marginally non-cost-effective program to appear to 
have a (biased) TRC test ratio approximately equal to 1.6. 

Most of the evaluations for the 20 programs reviewed in Table 7-1 are subject to 
at least one of the biases listed in Table 7-5: (1) Metering studies that did not 
adjust for seasonality or interaction effects; (2) SAE models that used imprecise 
tracking database estimates of savings; (3) Measure lifetime estimates based on 
manufacturers' estimates of equipment operation, and; ( 4) Free ridership estimates 
which only discuss free riders in the first program year (relevant only for utility 
cost test ratio estimation). 1 

Given the potential importance and pervasiveness of these biases in the current 
practice of evaluation, it seems prudent that some evaluation resources shoulq be 
allocated to reduce bias, and not only imprecision, in the cost of conserved energy. 
In the next section, we discuss the potential costs of reducing these biases. 
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7. 7 .1. Implications of Estimate Bias 

The preceding discussion demonstrates the significance of evaluation bias when 
assessing program cost-effectiveness. How can these biases be handled in the 
program evaluation? Ideally, the costs and potential impacts of each bias would be 
compared, and resources would be spent to identify and reduce the largest biases 
at the least cost. Because of the variability associated with the impacts of the 
biases, it is difficult to definitively prioritize the biases in order of their importance 
so that they can be addressed effectively given available resources. A larger 
sample of program evaluation data than is presently available is required to better 
characterize each evaluation method's biases. To begin to prioritize the treatment 
of the biases in evaluation, we present some qualitative estimates of the evaluation 
costs associated with reducing the biases. 

Table 7-6. Estimates of the Cost of Addressing Biases in Commercial 
Lighting Evaluation 

Source of Bias 

Seasonality of Hours 
of Operation 
HVAC/Lighting 
Interactions 

Nonrepresentative 
Metered Sample 
Eng. Est. Uncertainty 
in SAE Models 
Use of Mfr. 
Estimates of 
Lifetimes 
Free Riders Over 
Time 

Omission of Free 
Driver Savings 

Method Used to Reduce Bias 

Seasonality Adjustment 
Longer Term Metering 
Metering of HVAC Equipment 
Modeling of HVAC/Lighting in Prototypical 
Buildings 
Proper Participant Stratification and 
Selection of Equipment to Meter 
Switch to non-SAE model 

Verify Continued Operation with Site 
Surveys 

Analyze Equipment Sales to 
Nonparticipants During Life of Program 
Equipment 
Customer and Vendor Surveys 
Analyze Equipment Sales in Diffusion 
Framework 

Approximate 
Marginal Cost 
Low 
Med/High* 
High 
Low/Med 

Med 
Low 
Low 

Med* 

Med* 

Low 
Med/High* 

*These methods require considerable additional time for the compilation of sufficient 
data. 

Even with only rough guidelines regarding evaluation costs, we can draw some 
conclusions. Many of these biases can be at least partially addressed with minimal 
additional evaluation resources: Metered samples can be adjusted to control for 
seasonal effects and carefully stratified based on equipment, facility, and building 
zone characteristics; SAE models can be used only when tracking database 
estimates are of sufficient precision; and customer and vendor surveys can be used 
to obtain first-order estimates of free driver and spillover effects. Incorporating 
these changes into evaluation practice would improve the accuracy of estimates of 
cost-effectiveness of lighting programs at minimal additional cost. For those 
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evaluation improvements which require substantial commitments of time and 
money, a decision analytic framework, delineated in the next section, could be used 
to determine if the preliminary estimate of the TRC test ratio warranted additional 
efforts to reduce estimate bias. 

The generalizability of information regarding these biases may also represent a 
justification for additional evaluation: If information regarding a bias from a 
particular evaluation can be used to estimate the magnitude of the same bias for 
other programs and evaluations, the cost of the additional evaluation is effectively 
spread among multiple programs. 

As with estimate imprecision, we find that evaluation biases threaten the cost­
effectiveness of programs with TRC test ratios closer to 1.0. Unlike imprecision, 
however, biases could threaten claims of cost-effectiveness for programs with TRC 
test ratios in the medium range ( -1.8) as well. When imprecision is considered in 
addition to bias, reduced statistical confidence in even higher TRC test ratios may 
result. If the TRC ratios of our sample of 20 commercial lighting programs are 
representative of DSM in general, and all program evaluations are subject to biases 
and imprecision on the order of those described here, then as many as 55% of 
recently implemented programs, representing 50% of energy savings, could be 
erroneously labeled cost-effective as a result of ignorance of evaluation biases and 
incognizance of estimate imprecision. 

7.8. The Value of Correctly Assessing Cost-Effectiveness 

In this chapter, we've discussed the role of precision and bias in assessing cost­
effectiveness. The next logical step is to devise a method for the optimal allocation 
of evaluation resources. Ultimately, the cost of improving the precision and 
accuracy of evaluation method results should be traded-off against the value of 
obtaining increasingly accurate and precise estimates of program cost­
effectiveness. A common use of cost-effectiveness information is program 
screening: ongoing programs are screened to determine if they should be funded 
for the next program year. In the following paragraphs, we briefly illustrate a 
procedure for estimating evaluation value and comparing it to evaluation cost. We 
present this decision analytic approach as an intriguing topic for future research, to 
demonstrate the applicability of these methods even when information on 
evaluation costs and evaluation results are not known with certainty. 

A decision analytic approach to determining the appropriate level of additional 
evaluation to reduce imprecision and bias requires: ( 1) a subjective estimate of the 
chances that the program is actually non-cost-effective given any initial evaluation 
results, and (2) an estimate of the resources that would be (potentially) 
misallocated to the program in the following year (i.e., next year's program 
budget), when the decision to fund a program in the coming year is based on a) a 
mean evaluation estimate of cost-effectiveness, or b) an estimate of cost-
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effectiveness that includes imprecision.9 The difference of the benefits accrued 
between 2a) and 2b) is the value of including uncertainty of evaluation estimates in 
the program screening decision. The product of 1) and 2) is the expected value of 
future misallocated resources (also known as the expected value of perfect 
information), and would represent the maximum marginal evaluation expenditure 
justified if the resulting evaluation provided an estimate of cost-effectiveness with 
100% certainty. A flow diagram for this analysis is presented in Figure 7-2. 

Figure 7-2. Flow Diagram for Evaluation of Cost-Effectiveness for 
Program Screening 

/ 

Expected Value 
of Perfect 
Information 

Expected Value 
of Including 
Uncertainty 

We have implemented a Monte Carlo model to estimate the expected value of 
including uncertainty and the value of perfect information while assuming a range 
of biases and imprecisions for the evaluation estimate. We have also 
parameterized our analysis into three ranges of evaluation-derived TRCs, shown in 
Table 7-2, representing the reported TRC ratios given in Table 7-1. We assume 
the program in question requires a $2,000,000 annual expenditure. If the 
evaluation estimate of cost-effectiveness is greater than one, the program will be 
funded in the next year. When imprecision is considered, if the program has a 
greater than 90% chance of being cost-effective, the program will funded in the 
next year. 

7.8.1. The Expected Value of Including Uncertainty 

In this section, we present the value of including uncertainty (i.e., the imprecision 
around the evaluation estimate of cost-effectiveness) as a factor in the decision to 

9 A similar method is used to investigate utility planning uncertainties by Hobbs, Benjamin, & Prakesh 
Maheshwari (1990), "A Decision Analysis of the Effect of Uncertainty upon Electric Utility Planning", Energy, 
15:9, pp. 785-801 
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rerun the program for another year. Results are given for a range of evaluation 
imprecisions and biases. Figure 7-3 illustrates the value of including uncertainty, 
as a function of total program cost, for the case of a 'Low' mean cost­
effectiveness estimate. 

Figure 7-3. Expected value of including uncertainty: TRC estimates 
in the low {mean=1.1) range 
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This value can be interpreted to be the additional evaluation expenditure justified, 
given the initial evaluation result is of the specified imprecision and bias, in order 
to obtain an estimate of the imprecision of the cost-effectiveness estimate. The 
value of including the evaluation result imprecision in the decision to continue 
program funding increases with increasing imprecision and increasing bias. When 
the imprecision is 0, as expected, the two decisions are equivalent and the value of 
including uncertainty is zero. 
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Because the evaluation cost-effectiveness estimates are in the low range, with a 
mean of 1.1., there is considerable value in estimating the imprecision of the 
evaluation estimate: an imprecise estimate can suggest the program has a high 
probability of not being cost-effective, even though the evaluation's point estimate 
is greater than 1. Also, imprecision without bias results in a negative benefit; this 
is due to the opportunity cost of cost-effective programs being canceled. 

the value of including uncertainty for 'Medium' and 'High' mean cost­
effectiveness estimates is negligible (with a maximum of 6% for 'Medium' and 0% 
for 'High'). As the reported TRC mean estimates increase in cost-effectiveness, 
the imprecision and bias must be greater to require the incorporation of 
imprecision into the program screening decision. In the high range of estimated 
cost-effectiveness ratios, adding imprecision information to the screening decision, 
regardless of the initial estimate's bias and imprecision, does nothing to improve 
the decision to rerun the program; no bad decisions are made even when estimate 
imprecision is ignored. 

Calculating the expected value of including uncertainty allows the evaluator and 
program planner to place a rough estimate of value on one use of the evaluation 
imprecision information. Stated differently; we assert that evaluators who ignqre 
the imprecision of their evaluation results pay a price that is dependent on the 
magnitude of estimate imprecision and bias, and can be quantified. Evaluators 
who underestimate imprecision, incur a smaller, but potentially large net cost. 

7.8.2. The Expected Value ofPerfect Information 

The following three figures illustrate the expected difference in net benefits from a 
program when the screening decision uses an evaluation-derived estimate (which 
can be biased and imprecise) vs. when the true cost-effectiveness is used. If 
subsequent evaluation could inform the screening decision with perfect 
information, the evaluation would be worth the expected value of perfect 
information . 
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Figure 7-4. Expected value of perfect information: TRC estimates in 
the low (mean=1.1) range 
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Figure 7-5. Expected value of perfect information: TRC estimates in 
the medium (mean=1.8) range 
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Figures 7-4, 7-5, and 7-6 illustrate the value of a perfect evaluation; however, it is 
unlikely that any evaluation techniques could provide a result utterly free of bias 
and imprecision. Thus, the net benefits in these figures represent an upper bound 
that could justifiably be spent on evaluation. An evaluation which reduced the bias 
by 50% could, roughly speaking, be allocated about half of the resources indicated 
in the above figures. 

These figures make it clear just how critical the size of the initial, mean cost­
effectiveness estimate is in determining the value of additional evaluation. While a 
screening decision based on a low cost-effectiveness estimate could be improved 
even if its bias and imprecision are minor, at higher cost-effectiveness levels the 
benefit of additional evaluation, even when bias and imprecision are significant, is 
slight. 
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Figure 7-6. Expected value of perfect information: TRC estimates in 
the high (mean=4.2) range 
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Using cost-effectiveness estimates for program screening and budgeting is just one 
example of how savings estimates are used and evaluation resources should be 
apportioned. Additional applications of evaluation information such as shared 
savings calculation, lost revenue recovery hearings, and load forecasting may 
justify more accurate and precise evaluation results, and may require a different 
selection framework. For example, when considering shared savings incentives 
earned by the utility, evaluation expenditures may be justifiably apportioned to 
programs with high TRC test ratios, because these programs can potentially 
provide the utility with the largest monetary rewards 10, as opposed to cost­
effectiveness screening, where programs with lower TRC test ratios would justify 
increased evaluation resources. The appropriate level of evaluation expenditures 
could be set and justified by considering the value of evaluation using one, several, 
or all, of these applications of evaluation results. 

10High TRC test ratios result in larger incentive awards with all other things (e.g., program size) being 
equal. A secondary effect, where larger programs usually have higher TRC test ratios and therefore 
larger shared savings incentives, also exists. 
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7.9. Chapter Summary 

) 

In this chapter we describe and implement a framework to assess the effects of bias 
and imprecision on estimates of program cost-effectiveness. The framework 
allows program evaluators and program planners to explicitly handle the 
uncertainties inherent in the complex evaluation of a DSM program. By estimating 
the effects of these uncertainties on estimates of program cost-effectiveness, 
program planners can ascribe confidence to their results and adopt levels of 
evaluation expenditures which are justified by the uses of the evaluation results. 
This is superior to the current practice in the industry, which overemphasizes the 
importance of method precision, ignores method bias, and does not base evaluation 
needs on information value. 

Our implementation of this framework suggests that imprecision in the cost of 
conserved energy is significant for programs with mean TRC test ratios close to 
one, while higher ratios guarantee cost-effectiveness even with considerable 
estimate imprecision. A 90110 criteria for precision seems excessive for most 
programs when screening for cost-effectiveness, in light of these findings. 

However, bias in savings estimates can threaten the confidence of cost­
effectiveness estimates for programs with ratios approaching 2.0, especially when 
estimate imprecision is also considered. Much of the contemporary concern with 
precision should be redirected to examine bias in evaluation estimates, given the 
results we present here. 

Savings estimate biases and imprecision stem from a multiplicity of factors, some 
of which require expensive additions to evaluation procedures, and some of which 
require only slight changes in evaluation methods. While we recommend that all 
evaluations should include the least-cost methods to reduce estimate bias, 
additional expenditures should be traded off against the value of accurately 
assessing cost-effectiveness. The value of other evaluation information 
applications, such as demand forecasting and program improvement, require 
additional, explicit tradeoffs between information value and evaluation costs . 
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Implications for Future DSM Program Evaluations 

As for me, all I know is I know nothing. Socrates, Phaedrus, sect 235 

We began our study by suggesting that there is no single best evaluation method. 
Instead, we argued that what is best depends on a host of situation-specific 
circumstances that are independent of any particular method: What is the 
objective of the evaluation? How much money rides on the outcome of an 
evaluation? What is our level of confidence in the information we already have, 
prior to conducting an evaluation? We believe that formally addressing these 
questions is essential for choosing a best method and efficiently allocating 
evaluation resources. 

Our thinking is based on two basic observations: First, evaluation methods vary 
greatly in cost, primarily due to the cost of various data collection strategies. 
Second, all evaluation methods are susceptible to error. Given that budgets are 
finite and methods are not equal, a utility must ration evaluation resources. We 
have developed and demonstrated a framework, drawn from decision analysis, for 
making these decisions systematically, based on the uses of evaluation information. 

Implementing this framework requires explicit recognition of the errors associated 
· with every evaluation method. Generally, this error is characterized as an 

imprecision around an evaluation result and, by assuming the error is normally 
distributed (i.e., with a bell-shaped curve), reported as a symmetric confidence 
interval around the point estimate, Unfortunately, we observe that reporting errors 
associated with evaluation methods is not common practice. Without this basic 
level of reporting, we believe it is difficult, if not impossible, to judge the value of 
the information actually obtained by an evaluation. 

We strongly recommend future evaluations explicitly report and discuss the 
imprecision of their findings. 

Imprecision should describe the uncertainty of the result based on the practical and 
theoretical limitations of the evaluation technique(s) used. For example, 
techniques that sample only a segment of the participant population are subject to 
some uncertainty based on the size and variability of the sample relative to the 
entire population. Calculation of imprecision can also involve subjective 
judgments, as in the case of persistence of savings throughout a measure's 
assumed measure lifetime: A subjective estimate of imprecision, based on program 
designer and evaluator expert judgment regarding persistence of savings over time, 
could be used to bound the annual savings estimate. What is important is that an 
effort be made to quantitatively estimate and communicate the limitations of the 
evaluation methods used. Assuming an estimate is thought to be accurate to +1-
5% is very different from thinking the same estimate is accurate to +1-50%. 
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While consistent reporting of precision is an important first step in providing the 
information necessary to better judge evaluation findings, it is equally if not more 
important to recognize the limitations inherent in current methods for calculating 
precision. In current practice, estimates of precision are obtained via a series of 
straightforward calculations based on the (theoretical) statistical imprecision of the 
method and the variability in the data being evaluated. Most calculations correctly 
begin with the sampling (for end-use metering methods) or explanatory variable 
coefficient (in the case of regression models for billing analyses) imprecision, 
which is based on the variability and completeness of the data at hand. However, 
this procedure is insuffiCient to calculate the actual imprecision of an evaluation's 
result. We, thus, maintain that the imprecision calculated using such methods is 
better thought of as representing a lower bound on the actual imprecision of the 
savings estimate. 

The estimate of precision represents a lower bound because of the possibility that 
the methodological assumptions (representative sampling of the population, 
explanatory variables in regression models measured without bias or excessive 
imprecision, etc.) on which the precision calculations are based may be flawed. 
When the estimate of precision associated with a savings estimate is taken directly 
from the sampling protocol, or regression model, this amounts to an implicit 
statement that the assumptions on which the method's viability is dependent are 
true with 100% certainty .1 When estimates of measure persistence and free 
ridership are incorporated without concomitant (or at least subjective) estimates of 
precision, the stated imprecision of lifetime savings estimates should be seen as 
even more optimistic. 

At this point, one may begin to question the value of pursuing the systematic 
assessment of evaluation trade-offs we advocate. That is, if imprecision is rarely 
reported and what is reported is known to be an underestimate, what advantages 
can our more formal approach offer over current more or less ad hoc methods? 
We believe there is one primary advantage: Increased defensibility, both to 
internal utility and external regulatory audiences. 

Formally acknowledging and systematically incorporating what we do and do not 
know in committing evaluation resources ensures that the decision has taken full 
advantage of all available information. There is at least as much or, some would 
argue, far more value in acknowledging what we do not know as there is in 
presenting what we do claim to know. Remaining silent on what we do not know 
misrepresents the robustness of evaluation findings and consequently their 
defensibility. 

1 Deviation of program conditions from each method's assumptions can also result in biased estimates, which can be 
represented by an asymmetric estimate of precision. 
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Given the prospect of a more competitive utility business, we expect that there will 
be greater scrutiny of all future spending decisions; evaluation budgets will be no 
exception. Formal representation of what is and is not known in developing these 
budgets will allow for greater explicitness assessing the value of proposed 
evaluation activities. In principle, this explicitness should lead to better decisions . 
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Appendix A 

Taxonomy of Evaluation Objectives 

When discussing the general objectives of DSM program evaluations, program 
savings estimates are considered the objective of impact evaluations, and 
assessments of program administration, delivery, and customer satisfaction are 
considered the objective of process evaluations. Rather than distinguishing 
between process and impact evaluations, it is more instructive to examine the 
evaluation requirements for more specific objectives. Table A-1 summarizes the 
information requirements for different evaluation objectives. 

Table A-1 includes evaluation requirements that are compiled in both process and 
impact evaluations. Both process and impact evaluations provide important 
information to program planners, evaluators, and regulators. While this research 
project has focused mainly on impact-oriented evaluation results, process 
evaluation information is equally essential to efficient, properly targeted DSM 
programs. 

Process evaluations can provide insights on how to increase consumer satisfaction 
and market penetration of a DSM program. Process evaluations can also identify 
cost-cutting and efficiency measures associated with program implementation and 
delivery. Short-term, interim process evaluations can provide a sanity check for 
program implementers by pinpointing which aspects of a program are working as 
expected, and which are falling short of expectations. Evaluation results can also 
give insight into the equity effects of DSM programs. A careful analysis of who is 
participating in DSM programs and who is not participating is required to uncover 
cross-subsidization of DSM programs through the utility rate structure. 

Impact evaluation results have several different uses: (i) They are used to plan the 
future of DSM programs; (ii) They are used to inform long range forecasts of 
demand and capacity requirements; and (iii) They are used in utility hearings to 
illustrate the magnitude of lost revenues, enabling utilities to adjust their rate 
structures or obtain PUC-promised incentives . The value of increasing evaluation 
expenditures is dependent upon the impact of the resulting information on 
planning, which in turn is dependent on the size of the DSM program. The larger 
the program and the higher the program's market penetration, the greater the 
impact of a miscalculation of savings on planning. 

A.l. PUC Incentive and Cost Recovery 

, DSM has been impeded in many states due to regulatory structures that penalize 
utilities for implementing conservation programs by not providing cost recovery 
mechanisms. Conservation verification protocols are being established in many 
states to provide a means for utilities to verify program-induced conservation, and 
then recover lost revenues in addition to shareholder incentive payments. For 
these circumstances, it is not enough to know how much energy was conserved 
during a post-program period. The appropriate question is how much conserved 
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Table A-1. Taxonomy of evaluation requirements for different objectives 

Requirement Estimate of ·Adjust Control for Adjust Adjust Identification/ Identification/ Analysis of Assessment 
~ energy estimates exogenous estimates estimates for quantification quantification customer of program 

savings for factors for customer intent of technology of takeback satisfaction administration 

Objective (impact technology (changes in takeback to install outside failure/misuse effects and adoption and delivery 

~ measure) failure/ weather, price, effects of program process 
misuse facility use) 

Inform PUC v v v v v (if contested (if contested (if contested (if contested 
rate, incentive, by regulators) by regulators) by by regulators) 
cost recovery regulators) 
hearings 
Prioritize v v t/ v v v v 
program within 
DSM plan 
Inform II v v v v v v 

I 

demand 
forecasts 

' 

Identify v v 
methods to i 

reduce 
program costs 
Identify v v 
methods to 
increase 
number of 
participants 
Identify v v v v 
methods to. 
improve 
savings per 
participant 
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energy is specifically attributable to the DSM program in question. Thus, 
techniques which control for all exogenous factors should be used. Free riders 
must be estimated in order to adjust savings estimates to only include savings 
induced by the program. 

Program Prioritization 

Prioritization of programs requires an assessment of program costs and benefits . 
Once again, it is important to measure only benefits directly attributable to the 
program. Measurement of free riders is important; free riders reduce a program's 
net benefits, but they are also an indicator that the program may no longer be 
unnecessary or marketed to the wrong population. Analyzing customer 
satisfaction and adoption provides clues to future participation rates and can detect 
socioeconomic gaps in market penetration. 

Demand Forecasts 

The conservation estimates incorporated into most demand forecasts today are 
based on engineering models of energy consumption. Sometimes these models are 
adjusted to account for technological and behavioral idiosyncrasies uncovered 
during onsite surveys and end-use metering. Statistical models. that are based on 
measured energy and demand savings, as opposed to conceptualizations of those 
savings, offer planners comprehensive estimates of electricity use reductions 
(together with a characterization of estimate uncertainty) resulting from previous 
conservation programs. Given the magnitude of most current DSM programs, 
however, there is little value gained in incorporating (relatively small) estimates of 
electricity savings in (relatively large) estimates of future demand. 

A.4. Reducing Program Costs 

A.5. 

Audits of internal program administration and delivery are useful in pinpointing 
program inefficiencies. An understanding of customer needs and attitudes can 
uncover cost-effective ways to interact with customers. 

Increasing Program Participation 

Understanding the customer and the effectiveness of different information delivery 
methods is crucial to obtaining program participation. Surveys of program 
·participants and non participants can identify customers' economic, social, and 
physical barriers to program participation 

A.6. Improving Per Participant Savings 

Improving per participant savings requires a detailed understanding of customer­
technology interactions following program intervention. Technology assessment in 
a simulated environment or in a sample of customers' dwellings, can provide 
important information regarding the suitability of particular DSM measures to a 
target market. 
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Description of Building Characteristics 

and Hours of Operation Variability 

In this appendix, we detail the distributions used to construct our simulated dataset 
of 500 office buildings. 

B. I Building Construction Characteristics. 

In order to create a set of buildings which approximate the diversity of efficient 
equipment and construction materials and proportions in commercial buildings in 
the Northeast United States, I sample from a large number of distributions 
representing different building characteristics. EIA data was used to estimate a 
beta distribution of square footage. A 40,000 sq. ft. cutoff is used to distinguish 
between small and large offices, which have different equipment and construction 
characteristics. A floor is added to the building for each 20,000 sq. ft. The 
distributions describing the types and proportions of HV AC systems are from a 
soon-to-be-released LBL report from Ellen Franconi (See tables B.3 and B.4 in 
that report). 

Distributions of building material R-Values, and lighting and equipment intensities 
have been taken from Akbari, H., J. Eto, S. Konopacki, A. Afzal, K. Heinemeier, 
and L. Rainer, Integrated Estimation of Commercial Sector End-Use Load Shapes 
and Energy Use Intensities in the PG&E Service Area, LBL-34263, December 
1993. In this document building characteristics of a sample of -7 5 large and -7 5 
small office buildings were tabulated. Each characteristic surveyed included min, 
max, mean, median, and the standard deviation, which provided enough 
information to estimate an equivalent beta distribution. Separate distributions are 
used for small (<40,000 sq. ft.) and large buildings, to distinguish between 
common characteristics of small buildings and those of larger buildings. 

The distributions for all parameters used to generate buildings and building energy 
savings for the DOE2 simulation are given in Table B-1. 
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Table B-1. Distributions for DOE2 input parameters 
Variable Office Size Distribution Min Max Parameters 
Building size Beta 1,000 200,000 2,8 

_{s_gft) 
sqft _person Small Beta 3.6 1260 1.5,4 
sqft _person Large Beta 20.7 1145 1.5,3 
ach Beta 0.7 1.0 2,3 
wall rvalue Small Beta 1.6 16.4 1.2,3 
wall rvalue Large Beta 1.3 23.2 3,8 .. 
window r value Small Beta 1.1 2.0 4,6 
window r value Large Beta 1.1 2.8 4,9 
window Small Beta 0.6 0.85 2,8 
shading 
coefficient 
window Large Beta 0.6 0.85 7,6 
shading 
coefficient 
roof r value Small Beta 1.8 51.1 2,9 
roof r value Large Beta 1.7 27.7 2,9 
equip intensity Small Beta 0 6.8 1.3,3 
equip intensity Large Beta 0.1 10.5 1.3,8 
glass/wall ratio Small Beta 0 0.65 3,6 
glass/wall ratio Large Beta 0 0.95 1.6,1.9 
HVAC type Small Poisson 30%gasH20 

50% packaged gas heat 
20% electric resistance heatinQ 

HVAC type Large Poisson 30% Multizone heating w/economiser 
30% Variable air volume system 
40%FanCoil 

Weekday Both Truncated 6 18 1.6,1.9 
Hours Beta 
Weekend Both Truncated 1 8 1.5,3 
Hours Beta 
lighting Small Beta 1 7.5 2,8 
intensity 
lighting Large Beta 0.5 4.6 1.5,2 
intensity 
%Measures Small Effect Size Beta 10 50 1.6,3 
changed 
%W/measure Beta 20 50 1.6,3 
saved 
%Measures Medium Effect Size Beta 30 80 1.6,3 
changed 
%W/measure Beta 20 60 1.6,3 
saved v 

%Measures Large Effect Size Beta 60 100 1.6,3 
changed 
%W/measure Beta 20 60 1.6,3 0 

saved 
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B.2 Changes in Building Hours of Operation over Time 

A base for daily weekday and weekend hours of operation are sampled from two 
separate beta distributions. The resulting values serve as the mean for two normal 
distributions (calibrated to stochastic variability over time in the Energy Edge1 

data), used to generate 24 more values to represent daily weekend and weekday 
hours for each month. These 24 values are input to DOE2 as the daily hours of 
operation, specific to each month. 

Energy Edge data on 13 buildings in the Pacific Northwest provide 6-30 month 
time series data on monthly full load hours of lighting equipment operation. From 
this small dataset, we can make a rough estimate of variability in hours of 
operation for a 'stable' office building and variability for a less stable office 
building. A summary of the Energy Edge time-series data is given in Figure B-1. 

By applying 'stable' and 'unstable' hours of operation schedules to the buildings 
simulated by DOE2, we can estimate the effects of varying hours of operation on 

Figure B-1. Weekday Hours of Operation for Energy Edge Offices 
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1 Electric load data was supplied by Energy Edge project leader Mary Ann Piette of LBL. For information on the 
Energy Edge Project, see Piette, M.A., Diamond, R., Nordman, B., deBuen. 0., Harris, J., Heinemeier, K., Janda, 
K .. "Final Report on the Energy Edge Impact Evaluation of 28 New, Low-Energy Commercial Buidings, Lawrence 
Berkeley Laboratory, Berkeley, California, LBL-33708, February 1994. 
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each evaluation method's ability to estimate program savings. A range of effect 
sizes, from 3% to 15% electricity savings, will be used to see if hours of operation 
changes can prevent some evaluation methods from observing proportionally 
smaller savings. Figure B-2 depicts the simulated hours of operation for a handful 
of buildings in the simulation dataset. Hours are simulated as being distributed 
with a beta distribution around a base value for each building. The base values are 
normally distributed. Average hours are lower in Figure B-2 due, to differences in 
the calculation of full load hours and simple hours. 

There is a fundamental difference between the observed hours of operation in 
Figure B-1 and the simulated hours in Figure B-2: data in Figure B-1 suggests 
that hours could be better represented by a random walk, rather than a distribution 
around a mean value, as in Figure B-2. Future iterations of this analysis could 
incorporate a random walk function to simulate hours of operation that more 
accurately mimic the Energy Edge data. 

Figure B-2. An Example of Simulated Hours of Operation 
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Comparing Annual Savings Estimates 

from Bottom-Up and Top Down Methods 

Chapters 3, 4, and 5 discussed the accuracy and precision associated with bottom­
up and top-down estimates of savings. In this appendix we compare these results 
and discuss some of the additional trade-offs which should be considered when 
selecting evaluation methods. We also discuss hybrid methods for calculating 
annual energy savings which combine results from multiple evaluation methods. 

C.l Comparing Costs and Results of Top-Down and Bottom-Up Methods 

Based on the analysis in Chapter 4, we derived estimates of metering cost and 
precision for five different program evaluations. The results of that analysis are 
summarized in Figure C-1. 

Figure C-1. Summary of Bottom-Up Method Results 
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Ratio of Adjusted Metered Estimate to Tracking Database Estimate 

The precision ranges from ± 66% for PG&E's Express program to ± 18% for 
PG&E' s Customized program. If the metered sample in each evaluation is 
representative of the total participant population, we can assume these estimates 
are unbiased. The cost of these evaluations is between $100,000 and $250,000, 
and varies based on the metered sample size (which affects metering data 
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collection and analysis costs) and the total number of participants (which affects 
tracking database collection and analysis costs). 

Because of our small sample of metering studies and tracking database 
information, we have insufficient data to confidently characterize the variability in 
the precision of metered estimates of annual savings. Differences in precision 
among the end-use metered studies appear to be due to two factors: 

1. Quality in the program tracking databases. If the tracking database is 
imprecise or inconsistent with its estimate of savings at each site, a metering 
study which uses the tracking database estimates of savings to extrapolate to 
the entire population will also be imprecise. As demonstrated by the NEBS 
and NU data, tracking database accuracy can vary dramatically from program 
to program. Utilities who review and compare their tracking databases to 
measured evaluation results, however, can iteratively improve their tracking 
databases' accuracy and precision. 

2. Heterogeneity in the sample of participants, in their patterns of energy 
consumption, and in their ·selection of program measures. These factors 
complicate the extrapolation from a sample to the entire population. They also 
complicate the calculation of accurate tracking database estimates of savings 
for each site. 

The average precision of the five studies we examined (measured as a standard 
deviation around the mean value after adjustments for interaction effects and 
limited duration metering) is about ±25%, the least precise metering studies result 
in precisions of ±50% or wider, and the most precise studies have precisions 
approaching ±10%. Based on the limited data available, these numbers represent 
our best estimates of the precision of end-use metering efforts to estimate annual 
savings. 

Figure C-2 reviews the results of the econometric methods from Chapter Five. 
The costs we estimate for these methods are much lower than the estimated costs 
of the metering-based evaluation methods. Given our simulated set of buildings 
and monthly consumption data, the time-series and cross-sectional/time-series 
methods performed well, with almost little bias (i.e., close to 100% accuracy) and 
precision ranging from ± 18% for the time-series regression (utilizing only 
participant data) to ± 5% for the time-series, cross-section regression with a 
lagged dependent variable. Given our assumptions regarding the accuracy and 
precision of a tracking database (from data in Chapter Two), the SAE models 
require site inspection-based estimates of savings to perform well, which increases 
their cost to over four times the cost of the top-down methods in Figure C-2. 
Thus, we omit the SAE methods from this comparative analysis. 
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Figure C-2. Summary of Top-Down Method Results 
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Model Accuracy 

If the simulated building and monthly consumption dataset accurately mimics a 
real-world dataset, the top-down methods provide more precise estimates of 
program savings than the bottom-up methods based on end-use metering results. 
Moreover, the top-down, billing data based methods are about half as expensive as 
the metering data based methods. 

If cost, accuracy, and precision were the only factors worth considering when 
selecting an evaluation technique, billing data based top-down methods would be 
the obvious choice. However, there are several qualitative differences in bottom­
up and top-down methods. These differences should also enter into the evaluation 
selection process. The first three are benefits of metering studies, and the 
remaining two describe benefits of billing analyses. 

1. Metering can be performed just prior to and immediately following equipment 
installation, so that initial estimates of annual savings can be obtained in a 
matter of months. Billing data based methods require many months of 
consumption data (here we use 12) to estimate annual savings. If an estimate 
of program savings is needed in the very short-term (e.g., if a decision 
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regarding next year's program budget needed to be made, based on the success 
of this year's program), a metering study may be worth the additional cost. 

2. Billing analyses provide no insight into the reasons for program success or 
failure. If a billing analysis detects §ill insignificap.t program effect, additional 
site inspections or communication with participants would be required to 
determine what aspect of the program resulted in a small estimate of savings 
For example, was it due to an inappropriate or defective technology being 
installed, a change iri participant usage patterns as a result of participation, or 
an inability of the billing analysis to separate the true program effect from other 
factors? 

3. Metering of equipment can provide not only total kWh savings, but time-of-use 
and kW load savings as well. This information can be valuable for demand 
forecasting and calculation of DSM program benefits. 

4. The obtrusive requirements of metering studies (repeatedly visiting participant 
facilities to survey, install, maintain, and remove metering equipment) preclude 
their use in some programs. In addition, some programs' delivery mechanisms 
do not provide evaluators with an opportunity to meter equipment at a facility 
before the efficient, program-subsidized equipment is installed {e.g., a rebate 
program where participants apply for a rebate when they purchase and install 
the efficient equipment). 

5. By incorporating data from a comparison group of nonparticipants, billing 
analyses can control for changes in electricity consumption based on non­
programmatic factors, such as a downturn in the economy or changes in the 
weather. Metering studies do not usually make adjustments of this tYpe, 
because the expense of incorporating metered data from a group of 
nonparticipants would dramatically increase the cost of the evaluation. 

In the next section, we review some techniques which combine the results of 
multiple methods in an effort to address qualitative and quantitative shortcomings 
associated with using a single method to estimate annual program savings. 

C.2 Hybrid Methods 

Because no single method provides both an accurate estimate of program savings 
as well as a quantification of individual factors that affect savings, strategies that 
combine the results of multiple evaluation methods are quite useful. Such 
evaluation strategies enable evaluators to increase the statistical precision of their 
savings estimates and enhance their understanding of program strengths and 
weaknesses. The complexity of interactions among the utility, the program 
delivery, the program technologies, and the participants suggests that evaluation 
would benefit from holistic approaches incorporating methods from a multitude of 
evaluation perspectives. Different measurement and evaluation techniques can be 
used to verify each other and generate composite estimates with improved 
precision. 
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At this time, most utilities at least implicitly acknowledge the complementary roles 
of different evaluation techniques. For example, tracking database estimates of 
savings based on auditor inspections of installed equipment are used until end-use 
metering data are available. A combination of end-use metering data and tracking 
database estimates are used until a billing analysis based on monthly energy 
consumption data is available. Thus the savings estimate is continually refined 
based on the latest information. At issue here is the formalization of this process 
through explicit recognition and prioritization of various evaluation techniques 
over a multiyear time horizon. 

Augmenting Billing Analyses with Verification Studies 

In order to alleviate problems of credibility associated with billing analyses, a 
recent trend in utility DSM is to some utilities complement their econometric 
analyses with limited sample, short-term metering studies, called verification 
studies. The cost of these verification studies has been falling rapidly with the 
advent of technological innovations in metering and run-time data collection 
equipment. 

For utilities that can afford both a billing analysis and ,a verification study, the 
combination of methods provides both top-down and bottom-up estimates of 
annual savings, which complement each other well. The billing analysis 
incorporates a wealth of information on participant and nonparticipant 
consumption characteristics and can control for HV AC/Lighting interactions. The 
metering study can verify installation and efficient operation of individual measures 
at a representative sample of sites. 

C.2.2 Triangulation 

While most utilities use multiple methods to verify savings estimates, a few utilities 
use weighting schemes to combine estimates of savings and generate a single, more 
robust estimate. Some utilities refer to these algorithms as triangulation. The 
simplest form of triangulation involves calculating a weighted average of the 
different estimates, weighting each estimate of savings by inverse of its variance. 

A more complicated weighting scheme might combine estimates using Bayesian 
techniques, where the weight of each estimate is based on a (predetermined) 
subjective judgment of the evaluator's confidence in each method. 

C.3 Taxonomy of Evaluation Methods and Utility Evaluation Strategies 

The diversity of impact evaluation techniques used in current practice is illustrated 
I) in Table C-1. One of the most important distinctions demonstrated in this 

taxonomy is the distinction between methods that implicitly account for different 
factors that affect savings and methods that allow one to explicitly quantify the 
effects of those same factors. For example, site inspections allow evaluators to 
discover explicitly the number of sites at which efficient equipment was removed 
or malfunctioning. A billing analysis automatically (implicitly) accounts for 
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removed and malfunctioning equipment since this equipment does not contribute 
to savings. But the evaluators conducting the billing analysis are unaware of 
precisely why measured savings are lower than originally estimated; they only see 
the reduced estimate of savings (often in the form of a ratio of measured 
consumption and tracking database estimates of program savings). 
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Table C-1. Taxonomy of Impact Evaluation Methods Used in Commercial Lighting DSM Programs 

Implicit Accounting of Attributes in Savings Calculations 

Attribute Adjusts for Controls for Adjusts for Adjusts for free 

~ technology exogenous take back riders and other 
failure/ factors2 effects selection biases 

Evaluation 
misuse1 

method.U. 

Tracking estimate 

Tracking estimate Partially 
with hours of use 
verification 

Tracking estimate Yes 
with site inspections 

Tracking estimate Yes Partially Yes 
with short-term 
metering 

Bill comparison of Yes Partially Yes Partially 
participants I 
nonJ)articipants 

Billing analysis Yes Yes Yes Yes4 

(regression of 
consumption data) 

Statistically adjusted Yes Yes Yes Yes4 

engineering analysis 
(SAE) 

Logit model Yes 
evaluating (explicitly 
participation decision _ 

---- ------
__gl.@_ntifies) 

/ 

1 Technology failure/misuse includes participant failure to install, participant sabotage 
2 Exogenous factors include weather, business and structure characteristics, and fuel prices 

3 If performed both before and after measure installation 
4 Only with the appropriate control group 
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Explicit Examination of Program Attributes 

Identifies/ Identifies/ Examines 

quantifies quantifies customer 
technology failure/ take back satisfaction 

misuse effects and adoption 
process 

Yes3 

Yes Yes3 Yes 

Yes Yes 

-- --------
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Errata for A Framework for Improving the Cost-Effectiveness of DSM Program 
Evaluations LBL-371 se 

On page 70, Table 5-5 lists costs for 500 sites, not 250 as stated in the text. 

On page 84, Table 6-6 should read as follows: 

Table 6-6. Cost of Conserved Energy for a Hypothetical Commercial 
Lighting Program 
Bottom- Mean Median Standard 90% 
Up (¢/kWh) (¢/kWh) Deviation Prediction 
Precision Interval 
Poor 4.8 4.0 ±44. 
Average 4.4 4.0 ± 1.6 ±60% 
Good 4.1 4.0 ±0.67 ±27% 
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