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ABSTRACT OF THE DISSERTATION

Aspects of localization in topological insulators

by

Pratik Sathe

Doctor of Philosophy in Physics

University of California, Los Angeles, 2023

Professor Rahul Roy, Chair

The topological properties of electronic band structures are closely related to the degree of

localization possible for the associated wavefunctions. In this dissertation, we investigate

certain aspects of this interplay between topology and localization in the context of static

as well as driven (Floquet) topological insulators.

The first part of this dissertation is motivated by Landau levels, the energy levels of

electrons in a two dimensional plane that are subject to a perpendicular magnetic field.

Landau levels form a key element of theoretical models of the quantum Hall effect, which

inspired the study of topological insulators. Each Landau level is highly degenerate or

flat, and is topologically non-trivial. Motivated by Landau levels, we study the topological

properties of tight-binding Hamiltonians which only have flat energy levels. We find that the

spectral projectors of such Hamiltonians are strictly local. In chapters 2 and 3, we show that

in one dimension, compact Wannier functions (and their analogs in the absence of lattice

translational invariance) can be constructed if and only if the subspace they span is described

by a strictly local projector. Using this insight, in Chapter 4, we present and prove a no-go

theorem which says that if a strictly local tight-binding Hamiltonian in two dimensions only

has flat bands, then each of the bands must have a Chern number of zero. All results are

proven without the requirement of lattice translational invariance. The role of an inequality

relating the number of energies of the Hamiltonian and the system size is also clarified.
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In the second part of this dissertation (Chapter 5), we present some results concerning

a delocalization transition that arises in a certain class of Floquet topological insulators.

Specifically, we study chiral Floquet topological insulators in one dimension, and show that

the localization lengths of eigenstates of the time evolution operator diverge with a universal

exponent of two as the time approachs a special point in drive.
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CHAPTER 1

Introduction

1.1 Overview

Topological phases of matter are a cornerstone of modern condensed matter physics. The

prototypical example of a topological phase is the quantum Hall fluid, which spurred rapid

theoretical and experiment progress, first to understand the quantum Hall effect(s), and later

to generalize, predict and observe topological physics arising in a variety of different contexts.

The Hall effect is the phenomenon in which an electric potential develops perpendicular to

the direction of the flow of current in a two-dimensional material, when a magnetic field

perpendicular to the plane is applied. The quantum Hall effect (QHE) is the remarkable

observation that the proportionality constant between the current and the voltage is quan-

tized to some very specific values, which appear as plateaus when one plots this ratio (the

transverse conductivity) as a function of the external magnetic field.

The QHE comes in two inter-related varieties, the integer QHE (IQHE) and the fractional

QHE (FQHE), which correspond to integer and fractional values for the plateaus of the

transverse conductivity divided e2/h. The theoretical underpinnings of both lie in the study

of Landau levels, which describe the spectrum of non-interacting electrons moving in a two-

dimensional surface, when subjected to a magnetic field perpendicular to the surface. While

IQHE can be understood in this picture (upon incorporating the effects of disorder), the

FQHE is more complicated, and arises due to the effects of electron-electron interactions.

A lattice generalization of the IQHE in the absence of a magnetic field is the so-called

Chern insulator, in which the effects of the lattice potential cannot be ignored. The spectrum

and eigenstates of the Hamiltonian are dictated by Bloch’s theorem. Using linear response
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theory, it can then be shown that the transverse conductivity is proportional to a topological

invariant corresponding to the filled bands called the Chern number. The deep connections

between electron wavefunction localization and topology found in the IQHE also manifest

themselves in Chern insulators.

Starting from the mid-2000s, there has been a shift towards extending the concept of

Chern insulators to other dimensions, while considering symmetries like particle-hole, chiral

and time-reversal symmetries. The corresponding systems are broadly called topological

insulators and superconductors. Furthermore, various topological effects were also explored

in the context of semi-metals, in which bands touch instead of having band gaps. Over

the last decade, topological properties in time-periodic, or Floquet systems have also been

intensely studied.

The fields of static and Floquet topological insulators are vast, not to mention the progress

made in understanding the QHEs. There are some excellent resources that discuss the QHE,

such as the book by Yoshioka [1], the lectures notes by Tong [2], and chapters in books by

Altland and Simons [3] and by Girvin and Yang [4]. This thesis is primarily concerned with

the study of the interplay between topology and wavefunction localization in the context

of topological insulators. While the ambition naturally spans all symmetry classes and

dimensions, this thesis primarily addresses systems in one and two dimensions.

In this chapter, we focus on some of the basic theory, techniques and concepts that

underlie the rest of the chapters. We start with a review of Bloch’s theorem and magnetic

translation operators in Section 1.2. Next, we review Wannier functions and the tight-

binding model, and how Peierls’ substitution accounts for the effects of incorporating a

magnetic field, in Section 1.3. Next, in Section 1.4, we derive a formula for the transverse

conductivity for a filled Bloch in terms of the Chern number and discuss the related topic of

the modern theory of polarization. Finally, we discuss twisted boundary conditions which

arise when magnetic fluxes are inserted through the torus on which a lattice with periodic

boundary conditions is assumed to lie on.
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1.2 Bloch’s Theorem and Magnetic Translation Operators

Bloch’s theorem is concerned with properties of the spectrum and eigenstates of a Hamilto-

nian describing non-interacting electrons moving in a lattice with no disorder, so that the

system is lattice translationally invariant. The discussion here follows the treatment provided

in Ref. [4].

1.2.1 Bloch’s Theorem

The single particle Hamiltonian for non-interacting electrons in a periodic potential defined

on a lattice with primitive vectors {aj} has the form

H =
p2

2m
+ U(r),

with U(r + aj) = U(r), and p = −iℏ∇. Bloch’s theorem states that the stationary states

are labeled by the lattice wave-vector k and band index n, and satisfy:

ψnk(r) = eik.runk(r)

with unk(r+ aj) = unk(r).
(1.1)

Note that the Bloch wavevectors are simultaneous eigenstats of H and the lattice translation

operators:

T̂aj
ψn,k(r) = eik.ajψn,k

Hψn,k(r) = ϵn,kψn,k(r)

Furthermore, one can show [5] using a Fourier expansion that

ψn,k+G = ψn,k (1.2)

and ϵn,k+G = ϵn,k, (1.3)

for any reciprocal lattice vector G. Consequently, we can restrict our attention to the 1st

Brillouin Zone (1BZ).
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It is straightforward to see from (1.3) that

h(k)un,k = ϵn(k)un,k,

where h(k) =
(p+ ℏk)2

2m
+ U(r)

(1.4)

1.2.2 Bloch’s Theorem in the Presence of a Uniform Magnetic Field

In the presence of a Hamiltonian, (1.1) gets modified to

H =
1

2m
(p− qA(r))2 + U(r),

where A(r) is the magnetic vector potential, and the magnetic field is B(r) = ∇×A(r).

The Hamiltonian no longer commutes with the primitive cell translation vectors aj be-

cause of the presence of the magnetic vector potential, which does not have the periodicity

of the lattice. However, it is possible to define suitably modified variants of translation

operators that are mutually commuting and which commute with the Hamiltonian.

First, we note that

Taj
HT †

aj
=

(p+ eA(r+ aj))
2

2m
+ U(r)

= H ′ (say).

Here, we used U(r+aj) = U(r). ClearlyH ′ ̸= H, sinceA(r) does not have lattice periodicity.

However, since the magnetic field is uniform, B(r+ aj) = B(r). Thus,

∇×A(r) = ∇×A(r+ aj)

so that A(r+ aj) = A(r) +∇faj
(r), (1.5)

for some function faj
(r).

It is straightforward to verify that

ei
e
ℏfaj (r)H ′e−i

e
ℏfaj (r) = H.

Thus, we can define the following modified translation operators—

T̃aj
:= exp

(
i
e

ℏ
faj

(r)
)
Taj

.
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They commute with H since T̃aj
HT̃aj

= H.

It is straightforward to check that

T̃a1T̃a2T̃
†
a1

= exp

(
ie

ℏ
Φa2×a1

)
T̃a2 ,

= exp

(
2πi

Φa2×a1

Φ0

)
T̃a2

where Φa2×a1 denotes the flux of the magnetic field through the parallelogram a2 × a1, with

the orientation r → r + a2 → r + a1 + a2 → r + a1 → r. Φ0 = h
e
is the magnetic flux

quantum.

Thus, the magnetic translation operators commute if the flux is an integer multiple of

the flux quantum:

Φa2×a1 = NΦ0. (1.6)

We will be interested in 2D lattices. Consider a lattice laid in the x-y plane, and a uniform

magnetic field along the ẑ direction. If the magnetic flux per unit cell in the original lattice

is p
q
Φ0 for co-prime integers p and q, then we can choose q of original unit cells to define

a magnetic unit cell. For example, we can define a magnetic unit cell defined by primitive

vectors v1 and v2 given by v1 = qa1 and v2 = a2. We then have

[T̃v1 , T̃v2 ] = [T̃vi
, H] = 0.

We can now obtain simultaneous eigenstates of T̃v1 , T̃v2 and H operators, say ψn,k(r), such

that

ψn,k(r) = eik.run,k(r)

unk(r) satisfies the slightly different periodicity condition compared to (1.1), as seen below:

T̃vi
ψn,k(r) = eik.viψn,k(r)

=⇒ ei
e
ℏfvi (r)eik.(r+vi)unk(r+ vi) = eik.(r+vi)unk(r)

=⇒ ei
e
ℏfvi (r)unk(r+ vi) = unk(r)
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Thus, the periodic function in Bloch’s theorem is replaced by a function that is periodic up to

a gauge-dependent phase. [Note that the f functions are defined through the relation (1.5),

and can be found explicitly for any given gauge choice for the vector potential A.] Note also

that while the Bloch wavefunctions are periodic in k space [see (1.2)], the magnetic Bloch

wavefunction are periodic only upto a phase factor:

ψn,k+G(r)e
iθn(k+G) = ψn,k(r)e

iθn(k) (1.7)

In other words, eiθn(k)ψn,k(r) is periodic in lattice reciprocal lattice space for magnetic Bloch

wavefunction. In the absence of a magnetic field, θn(k) = 0.

1.2.3 Landau Levels as Magnetic Bloch Bands

In the absence of a periodic ionic potential (i.e. in the absence of a lattice), the electronic

spectrum consists of the highly degenerate Landau levels. It is straightforward to apply the

results from the previous subsection to this case, with only slight modifications.

Since there is no natural lattice, we can choose any vectors a1 and a2 which satisfy (1.6).

The smallest magnetic cell corresponds to N = 1. The spectrum cannot change depending

on the choice of a1 and a2, and hence each magnetic Bloch band must be flat. These are

exactly the Landau levels which are usually found using alternate routes.

1.3 Peierls’ Substitution

Much of the following chapters will concern Wannier functions, and hence we review them

here. Closely related is the notion of tight-binding models, which will be used throughout

the following chapters. Hence, we first discuss these concepts. Later, in Chapter 4, we will

deal with situations wherein an external magnetic field is introduced within a tight-binding

model. This can be dealt with by using Peierl’s substitution, an approximation which we

will review here.
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1.3.1 Wannier Functions and the Tight-Binding Approximation

Consider the case wherein the Fermi energy lies in an isolated band (i.e. a band separated

by energy gaps from the bands above and below it). Instead of using Bloch wavefunctions,

it is often useful to consider an alternate basis of orthogonal wavefunctions called Wannier

functions. We will drop the band index that labels the Bloch wavefunctions since we are

concerned with a single band here. The Wannier functions ϕR(r) are defined via

ϕR(r) =
1

(2π)3

∫
dke−iR·kψk(r)

and ψk(r) =
1√
N

∑
R

ϕR(r)e
ik·r.

(1.8)

Essentially, Wannier functions are the inverse Fourier transform of the Bloch wavefunctions,

and vice versa.

Let us note some interesting properties of Wannier functions. First, ϕR for any lattice

vector R is a wavefunction localized at R. All Wannier functions are simply (lattice) trans-

lates of each other, and form a complete orthonormal basis for the band. Second, Wannier

functions are well localized in space. The larger the band gap, the higher the degree of lo-

calization. However, it is impossible to construct exponentially localized Wannier functions

if the band is topologically non-trivial.

Since all the relevant dynamics occurs within band n if the Fermi energy is in band

n, we can express the Hamiltonian conveniently in the Wannier basis. Specifically, since

|ψ(k)⟩ =∑R |ϕR⟩ eik·R, we have

H =
∑
k

ϵ(k) |ψ(k)⟩ ⟨ψ(k)|

=
∑
R,R′

tR,R′ |ϕR⟩ ⟨ϕR′| ,

where tR,R′ :=
∑
k

eik·(R−R′)ϵ(k)

Note also that since {|ϕR⟩} is an orthonormal basis (within the band), the “hopping ele-

ments” tij can also be represented as

tR,R′ = ⟨ϕR|H |ϕR′⟩
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=

∫
dnrϕ∗

R(r)HϕR′(r).

In the second quantized notation, if cR (c†R) is the annihilation (creation) operator for state

|ϕR⟩, then we can write

H =
∑
R,R′

tR,R′c†RcR′ . (1.9)

This is called the tight-binding representation, and is an exact expression. In real life, the

Bloch wavefunctions and Wannier functions are never known exactly. So, an appromixation

to the Wannier functions in terms of atomic orbitals is used. This is the so-called linear com-

bination of atomic orbitals (LCAO) approximation. In this approximation, the Hamiltonian

is still represented by an equation of form (1.9), but with these LCAO wavefunctions.

1.3.2 Tight-binding Representation in the Presence of a Magnetic Field

So far, we have considered a system with a magnetic field. How does including it affect the

tight-binding representation (1.9)? We will follow the treatment in Ref. [6] to answer this

question.

First, recall that in the presence of a magnetic field B, the Hamiltonian (1.1) changes to

H̃ =
(−iℏ∇− qA)2

2m
+ U(r), (1.10)

where A(r) denotes the magnetic vector potential (B = ∇×A).

In order to obtain a representation for (1.10) in terms of tight-binding orbitals, consider

an orthogonal basis [6] {ϕ̃R(r)} for the band (in which the Fermi energy lies), obtained from

the Wannier basis {ϕR(r)} for the problem without the magnetic field, through the following

transformation:

ϕ̃R(r) = exp

(
iq

ℏ
G(r)

)
ϕR(r), (1.11)

with G(r) :=

∫ r

R

A(r′) · dr′,
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=

∫ 1

0

(r−R) ·A(R+ λ(r−R)) dλ. (1.12)

(The integral in G is along the straight line connecting R and r.) We will now obtain the

matrix elements of H̃ between various {ϕ̃R(r)} functions. To that end, consider the action

of H̃ on ϕ̃R(r):

H̃ϕ̃R(r) =

[
(−iℏ∇− qA)2

2m
+ U(r)

]
e

iq
ℏ G(r)ϕR(r). (1.13)

The utility of defining ϕ̃ will now become clear. Specifically, we will find that the qA terms

in the equation above will (approximately) cancel with the derivative due to the exponential

term we introduced. To that end, let us first calculate the gradient of G:

∇G(r) = ∇
∫ 1

0

(r−R) ·A(R+ λ(r−R)) dλ.

=

∫ 1

0

∇ [(r−R) ·A(R+ λ(r−R))] dλ

Recall the formula:

∇ · (C ·D) = (C · ∇)D+ (D · ∇)C+C× (∇×D) +D× (∇×C).

Denoting (r−R) by C and A(R+ λ(r−R)) by D, we have

(C · ∇)D = ((r−R) · ∇)A(r′)

(D · ∇)C = A(r′)

C× (∇×D) = (r−R)×B(r′)

D× (∇×C) = 0,

wherein r′ = R+ λ(r−R). Summing them up, we get

G(r) =

∫ 1

0

dλ((r−R) · ∇)A(r′) +A(r′) + r′ ×B(r′)

Note however, that
∫ 1

0
A(r′) = A(r)−

∫ 1

0
(r−R)×B(r′). Thus,

∇G(r) = A(r) +

∫ 1

0

dλ((r−R) · ∇)A(r′)
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Now we will plug this in in order to simplify (1.13). First, note that

(−iℏ∇− qA)e
iq
ℏ G(r)ϕR(r) = e

iqG(r)
ℏ

[
−iℏ∇+

∫ 1

0

dλ((r−R) · ∇)A(r′)

]
ϕR(r)

Approximation 1 : We will now argue that the second term is negligible. We invoke the

locality of the Wannier functions. Whenever r is far away from R, ϕR(r) ≈ 0. On the other

hand, when r ≈ R, the integral term is almost zero. Hence, we have

(−iℏ∇− qA)ϕ̃R = e
iqG(r)

ℏ (−iℏ∇)ϕR(r) (1.14)

Thus (1.13) then becomes

H̃ϕ̃R ≈ e
iqG(r)

ℏ [HϕR(r)] .

Thus, we have〈
ϕ̃R

∣∣∣ H̃ ∣∣∣ϕ̃R′

〉
=

∫
dnrϕ̃∗

R(r)H̃ϕ̃R′(r).

=

∫
dnrϕ∗

R(r)HϕR′(r) exp

[
−iq

ℏ

∫ r

R

A · dr′ + iq

ℏ

∫ r

R′
A · dr′

]
= exp

(
iq

ℏ

∫ R

R′
A · dr′

)∫
dnrϕ∗

R(r)HϕR′(r) exp

(
−iq

ℏ

∫
R→r→R′→R

A · dr′
)

= exp

(
iq

ℏ

∫ R′

R

A · dr′
)∫

dnrϕ∗
R(r)HϕR′(r)e−

iq
ℏ ΦR,R′ (r),

where ΦR,R′(r) =
∫
R→r→R′→R

A · dr′ is the flux of the magnetic field through the triangle

∆RrR′.

Approximation 2 : The Φ term can be ignored. We use the fact the Wannier functions are

well localized at their respective lattice vectors. Let us assume that each Wannier function

decays exponentially with a length scale ξ, which is smaller than the lattice constant a.

Then, for values of r, for which |r −R|, |r −R′| > ξ, the integrand is negligible. The only

significant contribution arises from r that is in a region close to the line joining R and R′.

Now, if in addition, the length scale over which A varies in space is much smaller the lattice

constant, then for such r, ΦR,R′(r) ≈
∮
R→r→R′→R

A0 ·r′ = A0 ·
∮
R→r→R′→R

r′ = 0. Therefore,

we get

t̃R,R′ :=
〈
ϕ̃R

∣∣∣ H̃ ∣∣∣ϕ̃R′

〉
10



= exp

(
iq

ℏ

∫ R

R′
A · dr′

)∫
dnrϕ∗

R(r)HϕR′(r)

= exp

(
iq

ℏ

∫ R

R′
A · dr′

)
tR,R′ .

In other words, in the presence of a slowly varying magnetic field, the Hamiltonian is given

by

H̃ =
∑
R,R′

t̃R,R′ c̃†Rc̃R′ ,

with c̃ representing the destruction operator for the modified wavefunctions ϕ̃. The replace-

ment of the hopping elements, specifically

tR,R′ → tR,R′e
iq
ℏ
∫R
R′ A·dr′

is called Peierls substitution [7].

1.4 Quantization of Transverse Conductivity

The transverse conductivity of a filled Bloch band is proportional to the Chern number of

the band. In this section, we will review a derivation for the corresponding formula. We will

closely follow the treatment in Vandertbilt’s book [8], starting first with the development of

linear response theory at absolute zero.

1.4.0.1 First Order Perturbation Theory

First, let us recall 1st order perturbation theory. Let H be a Hamiltonian parameterized by

some parameter λ. Let use denote the eigenvalue equation for the nth energy state by

H(λ) |n(λ)⟩ = E(λ) |n(λ)⟩ .

Taylor expanding about each term to first order in ∆λ about some value λ0, we obtain

(H − En) |∂λn⟩ = ∂λ(En −H) |n⟩ , (1.15)
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with ∂λ ≡ ∂
∂λ
. Note also that E and |n⟩ are functions of λ evaluated at λ0, but we have

dropped this dependence for notational convenience.

Multiplying both sides by ⟨n| gives us

∂λEn = ⟨n| ∂λH |n⟩ .

Plugging this back into (1.15), we get

(En −H) |∂λn⟩ = (1− |n⟩ ⟨n|)︸ ︷︷ ︸
Qn

∂λH |n⟩

= Qn∂λH |n⟩

Multiplying both sides by ⟨m| for m ̸= n we get

⟨m|∂λn⟩ =
⟨m| ∂λH |n⟩
En − Em

.

Thus, we have

Qn |∂λn⟩ =
(∑
m ̸=n

|m⟩ ⟨m|
En − Em

)
︸ ︷︷ ︸

Tn

∂λH |n⟩

= Tn(∂λH) |n⟩ . (1.16)

On the other hand, note that ⟨n|∂λn⟩ is purely imaginary, since ∂λ ⟨n|n⟩ = 0. Thus, we can

define a purely real quantity, An(λ) = i ⟨n|∂λn⟩, so that

|∂λn⟩ = −iAn(λ) + Tn(∂λH) |n⟩ . (1.17)

An(λ) is known as the Berry connection. This solves (1.15). This is basically a compact way

of writing down basic results from perturbation theory.

Multiple Independent Electrons: When we have multiple non-interacting electrons

in a systems, they occupy distinct energy levels. We can conveniently define

Q =
unocc.∑
m

|m⟩ ⟨m|
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T =
unocc.∑
m

|m⟩ ⟨m|
En − Em

Following the same steps as those in the derivation of (1.16), if we take the sum for m only

over unoccupied states instead of m ̸= n, we get

Q |∂λn⟩ = T (∂λH) |n⟩ (1.18)

Linear response theory is concerned with how (the expectation value of) an observable

changes if a perturbation is added to the Hamiltonian describing a system. We see that

⟨O⟩(λ) = ⟨n(λ)|O |n(λ)⟩, so that

∂λ⟨O⟩ = 2Re ⟨n|O |∂λn⟩ (1.19)

Since ⟨n|∂λn⟩ is purely imaginary, we can replace O above by OQn. Furthermore, in the case

of multiple independent (i.e. non-interacting) electrons, the right hand side should contain

a sum over all occupied states n, so that

∂λ⟨O⟩ =
occ.∑
n

2Re ⟨n|OQn |∂λn⟩

=
occ.∑
n

2Re ⟨n|OQ |∂λn⟩ , (1.20)

wherein we skipped some straightforward steps that allow us to replace Qn → Q.

1.4.1 Hall Conductance for a Band Insulator

If we have a set of filled Bloch bands, we can apply the equations in the previous subsections

to the Bloch Hamiltonian Hk = e−ik.rHeik.r. We also replace |n⟩ → |unk⟩. Q is also replaced

by Qk =
∑unocc.

m |umk⟩ ⟨umk|.

Thus, (1.20) in this case becomes

∂λ⟨O⟩ =
∑
k

occ.∑
n

2Re ⟨∂λunk|QkO |unk⟩ .

Using
∑

k ≡ Vcell
(2π)d

∫
BZ
, we thus obtain

∂λ⟨O⟩ =
Vcell
(2π)d

occ.∑
n

∫
BZ

dk 2Re ⟨∂λunk|QkO |unk⟩ , (1.21)
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with d being the dimensionality of the system.

Similarly, (1.18) becomes

Qk |∂λunk⟩ = Tk(∂λH) |unk⟩ (1.22)

(1.21) and (1.22) together imply

∂λ⟨O⟩ =
Vcell
(2π)d

occ.∑
n

∫
BZ

2Re ⟨unk| (∂λH)TkO |unk⟩ , (1.23)

Note: Here, λ should be interpreted as a parameter that characterizes the strength of a

perturbing term in the Hamiltonian.

Now consider an external perturbation, in the form of a uniform weak electric field E,

applied to a 2d crystalline insulator. (If the electric field is strong, higher-order corrections

may be required.) With the perturbation, Hk → Hk + eE.r. The two components of E

serve as the parameters characterizing the strength of the perturbation. Using the notation

∂µ ≡ ∂
∂Eµ

for µ = x, y, we see that ∂µH = erµ from (1.23), we get

∂ν⟨O⟩ =
eAcell

(2π)2

occ.∑
n

∫
BZ

2Re ⟨unk| rνTkO |unk⟩ d2k, (1.24)

We can replace Tk above with QkTk since they are equal.

Note that the conductivity tensor is σµν = ∂ν⟨−evµ⟩. So, we want an expression for

∂ν⟨v⟩. To that end, we simplify as follows

Qkr |unk⟩ =
unocc.∑
m

|umk⟩ ⟨umk| r |unk⟩

= iℏ
unocc.∑
m

|umk⟩ ⟨umk| − i
ℏ [r, Hk] |unk⟩

(Enk − Emk)

= iℏ
unocc.∑
m

|umk⟩ ⟨umk|
(Enk − Emk)

vk |unk⟩

= iℏTkvk |unk⟩

Plugging into (1.24), we get

σµν = −e∂ν⟨vµ⟩/Acell
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=
−ℏe2
(2π)2

occ.∑
n

∫
BZ

d2k 2Re i ⟨unk| vνT 2
kvµ |unk⟩

=
ℏe2

(2π)2

occ.∑
n

∫
BZ

d2k 2 Im ⟨unk| vνT 2
kvµ |unk⟩

When µ = ν, this is clearly 0, since the term is real. Using (1.22) with k as the parameter

λ, and making use of ∂kHk = ℏvk
1, we finally obtain

σyx =
e2

(2π)2ℏ

occ.∑
n

∫
BZ

d2k 2 Im ⟨∂yunk|Qk |∂xunk⟩

=
e2

(2π)2ℏ

occ.∑
n

∫
BZ

d2k 2 Im ⟨∂yunk|∂xunk⟩ .

To get the second line, we replace Qk → Qnk = 1 − |unk⟩ ⟨unk|, and use the fact that

⟨∂yunk|unk⟩ ⟨unk|∂xunk⟩ = iAx(−iAy) is purely real.

Finally, this gives us

σyx =
e2

ℏ

occ.∑
n

Cn. (1.25)

Note that this approach is partly problematic, since the potential associated with an

electric field blows up at large r, and consequently it should not be legal to treat it as a

perturbation. A more satisfactory approach involves a time varying magnetic vector potential

and no electrostatic potential. However, we will not discuss it here.

1.5 Twisted Boundary Conditions

In Chapter 4, we will deal with twisted boundary conditions, which arise when magnetic

fluxes are threaded through the holes of a torus on which a system is assumed to lie one. In

this section, we derive the connection between magnetic flux threading and twisted boundary

conditions.

1which follows from Hk = e−ik.rHeik.r = (p+ ℏk)2/2m+ U(r), v = − i
ℏ [r, H] and vk = e−ik.rveik.r
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1.5.1 Interacting Electrons with Disorder in a Continuum Model

We consider a system of size x × y, with periodic boundary conditions so that the system

has a toroidal geometry. Let us assume that there are N electrons that are free to move on a

torus, with substrate potential (potential due to a lattice, which may or may not have some

disorder) U(r) and electron-electron interactions V (r). Then, the Hamiltonian, without any

fluxes inserted is given by

H =
N∑
j=1

1

2mj

(−iℏ∇j + eA(rj))
2 +

∑
j

U(rj) +
∑
j<k

V (|rj − rk|)

Now, consider a flux ϕy inserted through a hole, parallel to the ŷ direction. The vector

potential changes from A(r) to A(r) +A′(r), with A′(r) such that
∮
A′(r)dr = ϕy, for any

loop encircling the y axis. The Hamiltonian gets modified to Hϕ, given by

Hϕ =
N∑
j=1

1

2mj

(−iℏ∇j + eA(rj) + eA′(rj))
2 +

∑
j

U(rj) +
∑
j<k

V (|rj − rk|)

Since ∇×A′(r) = 0, we have A′(r) = ∇χ(r) for some χ. Note that χ(r) is not single valued

as x goes from 0 to Lx. In fact χ(x = Lx)− χ(x = 0) =
∮
∇χdr =

∮
A(r).dr = ϕy. We will

now follow the arguments in Ref. [9].

Let ψ(r1, . . . , rN) be an eigenstate of H (the Hamiltonian with the magnetic flux), so

that Hψ = Eψ. Define a new wavefunctions ψ′ as follows:

ψ′(r1, . . . , rN) = e−i
e
ℏ
∑N

j=1 χ(rj)ψ(r1, . . . , rN).

Operating Hϕ on ψ′, we see that

Hϕψ
′ = e−i

e
ℏ
∑N

j=1 χ(rj)Hψ

= e−i
e
ℏ
∑N

j=1 χ(rj)Eψ

= Eψ′

Thus, ψ′ is an eigenstate of Hϕ. Note however that ψ′ must satisfy periodic boundary con-

ditions. Specifically, for any j, ψ′(xj = 0) = ψ′(xj = Lx), and similarly for yj, since the
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wavefunction must be single valued. (All the position coordinates not specified as argu-

ments of this function are implied to assume the same values on both sides of an equation.)

Therefore, we have

ψ′(xj = Lx) = ψ′(xj = 0)

=⇒ ψ(xj = Lx)e
−i eℏ

∑N
j=1 χ(rj) = ψ′(xj = 0)e−i

e
ℏ
∑N

j=1 χ(rj)

=⇒ ψ(xj = Lx)e
−i eℏχ(xj=0) = ψ′(xj = 0)e−i

e
ℏχ(xj=Lx)

=⇒ ψ(xj = Lx) = e−i
e
ℏ (χ(xj=Lx)−χ(xj=0))ψ(xj = 0)

so that ψ(r1, . . . , rj = Lx, . . . , rN) = e
i2π

ϕy
Φ0ψ(r1, . . . , rj = 0, . . . , rN).

Note that this condition will apply to every j = 1, . . . , N , as is also required by anti-symmetry

of the wavefunction. These conditions are referred to as twisted boundary conditions.

To summarize, the solution to a Hamiltonian with a flux inserted is actually a solution

of the flux-free Hamiltonian, but with the requirement that the solution satisfy twisted

boundary conditions.

1.5.2 Single-Particle Tight-Binding Hamiltonian without Disorder

We work through this case since it is quite useful in the context of modern theory of polariza-

tion, Wannier representability and topological insulators. This is a straightforward exercise

and we use a specific gauge.

For a system with lattice translation invariance (LTI) that is defined on a torus, if one

inserts magnetic flux along the two holes, the spectrum of the Hamiltonian as well as the

eigenstates change in a particular fashion. In this section, we will see precisely how this

happens for a single-particle tight-binding Hamiltonian. We will see that the Bloch wave-

functions have the same form as the zero magnetic field case, but the change is in the allowed

values of crystal momentum. Additionally, for dispersive bands, all the energy eigenvalues

shift slightly, but in the thermodynamic limit, the spectrum remains unchanged.

We will consider a Hamiltonian H with LTI defined on a rectangular lattice of size

Lx × Ly cells, with periodic boundary conditions along both directions. Let H only have
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at most nearest-neighbor hopping matrix elements. (Every Hamiltonian can be brought

into this form by a unit-cell redefinition, unless the hopping range of the Hamiltonian is

of the order of the system size.) We will be considering periodic boundary conditions with

x = 1, . . . , Lx and y = 1, . . . , Ly.

Clearly, Tx/yHT
†
x/y = H, for translation operators Tx =

∑Lx

x,y=1 |x+ 1 mod Lx, y⟩ ⟨x, y|
and Ty defined similarly. To find the eigenvalues and eigenvectors, we define H(kx, ky) =

⟨kx, ky|H |kx, ky⟩ and diagonalize it. Here, |kx⟩ = 1√
Lx

∑Lx

x=1 e
−ikxx |x⟩ and similarly for

|ky⟩. Clearly, Tx/y
∣∣kx/y〉 = eikx/y

∣∣kx/y〉 but with the restriction that kx/y = 2π
Lx/y

n, with

n = 0, . . . , Lx/y − 1.

We will only add flux ϕ parallel to the ŷ direction in the following discussion. (The conse-

quences of adding flux along both the x̂ and ŷ directions can be inferred straightforwardly.)

Let the Hamiltonian after flux insertion be denoted by H(ϕ). We can use a gauge in which

only those bonds that connect locations (Lx, y) and (1, y′) for any y, y′ get an addition phase

through Peierls’ substitution. Specifically,

⟨1, y′|H(ϕ) |Lx, y⟩ = e
−i2π ϕ

Φ0 ⟨1, y′|H(ϕ = 0) |Lx, y⟩ ,

where Φ0 = e/h is the magnetic flux quantum. Clearly, TxH(ϕ)T †
x = H(ϕ), but only if ϕ

is an integer multiple of Φ0. To make progress in diagonalizing H(ϕ), we define a ‘twisted’

translation operator:

Tx(ϕ) =

(
Lx−1∑
x=1

|x+ 1⟩ ⟨x|
)

+ e
−i2π Φ

Φ0 |1⟩ ⟨Lx| .

(We have suppressed the y index here.) It is straightforward to check that

[Tx(ϕ), H(ϕ)] = 0,

and [Ty, H(ϕ)] = 0

for all values of ϕ.

Furthermore, eigen-equations for Tx(ϕ) are of the form:

Tx(ϕ) |kx⟩ = eikx |kx⟩
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where |kx⟩ =
1√
Lx

Lx∑
x=1

e−ikxx |x⟩

and kx =
2π

Lx

(
n− ϕ

Φ0

)
Defining Hϕ(kx) := ⟨kx|H(ϕ) |kx⟩, we then have

Hϕ(kx) = Hϕ=0(kx)

but with kx =
2π

Lx
(n− ϕ

Φ0

)

Now, if one inserts fluxes ϕx and ϕy along both the directions, if we denote the modified

Hamiltonian by Hϕx,ϕy(kx, ky), we see that

Hϕx,ϕy(kx, ky) = H0,0 (kx, ky)

but with kx =
2π

Lx
(nx −

ϕx
Φ0

)

and ky =
2π

Ly
(ny −

ϕy
Φ0

)

Clearly, the spectrum is unchanged if the ϕx and ϕy are integer multiples of Φ0 (and the

eigenvectors are the same as well, but now they correspond to shifted energies). However,

for other values of the fluxes, the spectrum undergoes a change. Additionally, the crystal

momentum kx drifts as ϕx is increased: kx → kx − 2π
Lx

ϕx
Φ0
, and similarly for ky.

Such an analysis is useful in numerically confirming the topological character of a model.

In a cylindrical geometry, for example when periodic boundary condition is imposed only

along the x̂ direction, we get ‘edge modes’ that go from one band to another. The insertion

of a flux along the ŷ direction then results in what is known as ‘spectral flow’, a signature

of topological non-triviality in an open system.

1.6 Outline of this Thesis

The connections between localization properties of Wannier functions and projection oper-

ators that are strictly local are explored in Chapters 2 and 3. Specifically, in Chapter 2,
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we show that if the projection operator onto a subspace of the single-particle Hilbert space

is strictly-local hopping on a 1d lattice, then it must follow that there exists an orthogo-

nal basis of compactly supported wavefunctions spanning the subspace. This is phrased in

terms of Wannier functions, and their generalization in the absence of lattice translational

invariance. Generalization to higher dimensional systems is proposed, and it is shown that

if an orthogonal basis of compact wavefunctions spans a subspace, then the corresponding

projection operator must be Chern trivial, by virtue of having a vanishing topological index.

In Chapter 3, we sharpen these results and show that in one dimensional systems, strict

locality of projection operators is equivalent to the existence of compactly-supported Wannier

functions. Connections to a variant, called compactly-supported Wannier-type functions and

to maximally-localized Wannier functions are presented.

In Chapter 4, the results from the two preceding chapters are used in order to show

that if a Hamiltonian only has flat bands, then all its bands must be topologically trivial.

Specifically, we show that the Chern number of each band must be zero.

In Chapter 5, which can be read independently of the rest of the chapters, we present

preliminary results pertaining to a universal delocalization transition in chiral Floquet topo-

logical insulators.
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CHAPTER 2

Compactly Supported Wannier functions and Strictly

Local Projectors

This chapter was originally published as Ref. [10]1:

Pratik Sathe, Fenner Harper, and Rahul Roy. “Compactly supported Wannier functions

and strictly local projectors” Journal of Physics A: Mathematical and Theoretical 54.33

(2021): 335302.

2.1 Abstract

Wannier functions that are maximally localized help in understanding many properties of

crystalline materials. In the absence of topological obstructions, they are at least exponen-

tially localized. In some cases such as flat-band Hamiltonians, it is possible to construct

Wannier functions that are even more localized, so that they are compactly supported thus

having zero support outside their corresponding locations. Under what general conditions is

it possible to construct compactly supported Wannier functions? We answer this question

in this paper. Specifically, we show that in 1d non-interacting tight-binding models, strict

locality of the projection operator is a necessary and sufficient condition for a subspace to

be spanned by a compactly supported orthogonal basis, independent of lattice translation

symmetry. For any strictly local projector, we provide a procedure for obtaining such a

1The following acknowledgement appeared in the original manuscript: We thank A. Culver, D. Reiss, X.
Liu, A. Brown and L. Lindwasser for useful discussions and comments. P.S., F.H., and R.R. acknowledge
support from the NSF under CAREER Grant No. DMR-1455368, and from the Mani L. Bhaumik Institute
for Theoretical Physics.
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basis. For higher dimensional systems, we discuss some additional conditions under which

an occupied subspace is spanned by a compactly supported orthogonal basis, and show that

the corresponding projectors are topologically trivial in many cases. We also show that a

projector in arbitrary dimensions is strictly local if and only if for any chosen axis, its image

is spanned by hybrid Wannier functions that are compactly supported along that axis.

2.2 Introduction

Extended Bloch wavefunctions and localized Wannier functions [11] are two common choices

of basis vectors for a Bloch band. Localized Wannier functions have applications in a num-

ber of fields, including the modern theory of polarization [12], orbital magnetization [13],

quantum transport [14] and tight binding interpolation [5, 15]. Consequently, conditions

required for the existence of localized Wannier functions have been investigated extensively.

Isolated bands of 1d inversion symmetric systems are always spanned by exponentially lo-

calized Wannier functions as shown by Kohn [16]. The localization properties of Wannier

functions can often be inferred from the localization properties of the associated band pro-

jector. For instance, band projectors often possess real space matrix elements which decay

exponentially [17], leading to generalizations [18, 19] of Kohn’s result.

Because of the importance of obtaining localized Wannier functions, there has been sig-

nificant interest in obtaining Wannier functions that are as localized as possible. A popular

variational approach seeks localized Wannier functions by numerically minimizing the second

moment of the Wannier functions around their centers [20]. It has been shown that maximally

localized Wannier functions decay exponentially (or faster) in 1d systems, with extensions

proved for higher dimensional systems in the absence of topological obstructions [21].

A related, and sometimes more extreme form of wavefunction localization is compact

support or strict localization in lattice models, wherein a wavefunction has non-zero support

only over a finite set of orbitals of the lattice. Wavefunctions that are linear combinations of a

finite set of orbitals bear a close analogy to Boys orbitals [22] which are studied in chemistry in
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the context of chemical bonding and other applications. The wavefunctions of Bloch electrons

deep under the Fermi level are also expected to correspond to compactly supported (CS)

Wannier functions. Additionally, in some applications, it is useful to approximate highly

localized Wannier functions by CS wavefunctions [23, 24, 25, 26].

Non-orthogonal bases consisting of CS wavefunctions, also known as CS Wannier-type

functions have also received significant attention [27, 28, 29]. CS Wannier-type functions ex-

ist most commonly in strictly local (SL) flat-band Hamiltonians [30] in the context of which

they are also known as compact localized states (CLSs). Such bases help in understanding

a number of many-body quantum phenomena (see [31] for a review), including novel super-

conducting phases in multi-layer twisted graphene [32, 33]. CLSs have been used to classify

and construct flat-band Hamiltonians [34, 35, 36]. Models so constructed are often made

interacting, in order to study interesting many-body quantum phenomena arising in such

contexts. For example, orthogonal CLSs have been used to construct models with many-

body localized states [37] and quantum scar states [38] in flat-band systems. Orthogonal

CLSs that span an entire flat band are precisely CS Wannier functions of the flat band.

Indeed, the conditions associated with the existence of orthogonal CLSs spanning flat bands

and of CS Wannier functions in systems without flat bands are closely related.

Yet another variant of Wannier functions are hybrid Wannier functions [39], that are lo-

calized and Wannier-like along one direction, and Bloch wave-like along the other directions.

Localized hybrid Wannier functions have a number of applications, including the study of

twisted bilayer graphene [40], and characterization of static [41, 42, 43] and Floquet topo-

logical insulators [44]. Similar to CS Wannier functions, a set of hybrid Wannier functions

that are CS along one of the axes can span a band in some cases. We refer to such functions

as CS hybrid Wannier functions.

While conditions associated with the existence of exponentially localized Wannier func-

tions, and of CLSs have been studied, those required for the existence of CS Wannier func-

tions and CS hybrid Wannier functions remain unexplored. These considerations motivate

us to pose the following questions: In a tight-binding lattice model, given an arbitrary set
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of occupied states, is there a way of determining whether their span possesses a CS Wannier

basis? Analogously, in the absence of lattice translational invariance, under what conditions

can the occupied subspace be spanned by an orthogonal basis of CS wavefunctions? We call

such a basis a compactly supported orthogonal basis or a CSOB in short. We show that the

localization properties of the associated projector has a direct bearing on these questions.

For 1d systems, we answer this question completely, showing an equivalence between strict

locality of an orthogonal basis and strict locality of the associated orthogonal projector. For

higher dimensional systems, we obtain necessary and sufficient conditions for the existence of

such a basis, as well as for CS hybrid Wannier functions. Our main results are summarized

below.

Main Result. For an arbitrary subspace spanned by single particle states in a non-interacting

tight-binding model, independent of translational invariance, the following statements are

true.

(1) In 1d systems, an orthogonal basis consisting of compactly supported wavefunctions (i.e.

a CSOB) spanning the subspace exists iff. the associated orthogonal projector is strictly

local.

(2) For a lattice in d dimensions, compactly supported hybrid Wannier functions localized

along an axis exist for any choice (out of d possible choices) of the localization axis if

and only if the associated band projector is strictly local.

(3) For arbitrary dimensional lattices, if the space is spanned by a CSOB, then the projector

onto it is strictly local. If a projector is of a nearest neighbor form (or reducible to this

form via a change of primitive vectors, or unit cell enlargement), its span possesses a

CSOB.

Localization properties of Wannier functions are closely related to the associated bands’

topology [45, 46, 47, 48]. Indeed, for many classes of Hamiltonians, exponentially localized

Wannier functions exist iff. the band is topologically trivial. Hence, in addition to the Main
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Figure 2.1: Summary of the main results of this paper. All the statements hold true inde-

pendent of whether the the system is translationally invariant (TI), except for the statement

connecting the existence of CS hybrid Wannier basis for all axes to topological triviality.

Result, we also discuss topological properties of projectors associated with CSOBs and CS

hybrid Wannier functions. In particular, using existing results from the literature, we show

that all translationally invariant SL projectors in d > 1 are topologically trivial. Moreover,

for even dimensional systems, we show that if a space is spanned by a CSOB, then it is

necessarily Chern trivial, irrespective of translational invariance. We also show that if CS

hybrid Wannier functions exist for any choice of the localization axis, the corresponding

projector is necessarily topologically trivial for a translationally invariant system. This

contrasts with exponentially localized hybrid Wannier functions, which can be constructed

for any band regardless of its topological properties [20, 49]. We summarize the Main Results

as well as these extra results in figure 2.1.

We note that each of the three parts of the Main Result consists of a necessary condition

and a sufficient condition for the existence of a CSOB (or a CS hybrid Wannier functions).

The necessary condition in all cases is that the projector should be SL, and is straightforward

to prove. Proving the sufficient condition is harder, and hence a significant portion of this

paper deals with this aspect. Since the sufficient conditions are different for 1d and higher
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dimensions, these two cases are discussed separately. In section 2.3, we discuss the notation

and definitions used in this paper, and prove the necessary direction from the Main Result.

In addition, we also discuss the relationship between CLSs and CS Wanner-type functions,

and show how to obtain non-orthogonal CLSs corresponding to any SL projector. In section

2.4, we prove by construction for 1d systems, that the image of any SL projector is spanned

by a CSOB (or a CS Wannier basis if translationally invariant). Similarly, in section 2.5, we

prove the sufficient part of points (2) and (3) of the Main Result. In addition we prove the

extra results pertaining to topological triviality mentioned above. We conclude the paper

with section 2.6.

2.3 Preliminary discussion

In this section, we discuss some basic definitions and notation used in this paper as well

as the connections between compact localized states that arise in flat-band systems, and

compactly supported Wannier-functions associated with strictly local projectors. We also

prove the sufficient part of the Main Result. At the end of this section, we provide a simple

method for constructing strictly local projectors in 1d and 2d.

2.3.1 Notation

We consider d dimensional tight-binding models, with any (single particle) operator being

represented by a matrix with rows and columns labeled by pairs of indices (r⃗, i), with r⃗ ∈
Z
d denoting a Bravais lattice site position, and i ∈ {1, . . . , nr⃗} denoting the orbital index

(which subsumes all quantum numbers, including spin quantum numbers if present). Our

conclusions remain valid for finite lattices as well, for which we replace Zd by an appropriate

set of integer tuples. We denote a position basis vector by |r⃗, i⟩, and refer to it as orbital i

at site r⃗.

Henceforth, we use the terms site and cell interchangeably. Specifically, a cell at location

r⃗ will mean the same as the site at location r⃗. By a supercell representation of the lattice,
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we mean a labelling scheme in which multiple sites in the original lattice representation are

grouped together to form a new site. This reversible transformation involves relabeling of

quantum numbers, as described in section 2.4.3.

We denote the Hilbert space associated with all the orbitals at cell r⃗ by Hr⃗, and the total

Hilbert space by Htotal. We note that

Htotal =
⊕
r⃗∈Zd

Hr⃗, (2.1)

with ⊕ denoting a direct sum. In general, the number of orbitals at cell r⃗, denoted by nr⃗,

may be different for different cells, and our conclusions do not depend on them being equal.

For notational simplicity, we assume without loss of generality that nr⃗ = n is independent

of the location. For systems with translational invariance, this condition is automatically

satisfied. Additionally we find it convenient to rewrite Htotal as,

Htotal = Z
⊗d ⊗H, (2.2)

where H denotes the n-dimensional orbital space. We refer to any orthonormal basis vectors

of H as orbitals.

In this paper, we consider orthogonal projection operators, i.e. operators P : Htotal →
Htotal, that satisfy P 2 = P † = P , with (.)† denoting the matrix conjugate transposition

operation. We define a strictly local (SL) projection operator to be one which has a finite

upper bound on the extent of its hopping elements:

Definition 1. An orthogonal projection operator P : Htotal → Htotal is said to be strictly local

if there exists a finite integer b such that ⟨r⃗, i|P |r⃗ ′, j⟩ = 0 ∀ |r⃗−r⃗ ′| > b and i, j ∈ {1, . . . , n}.
The maximum hopping distance of P is the smallest integer b which satisfies this condition.

A wavefunction which has non-zero support only on a finite number of sites is said to be

compactly supported. Specifically,

Definition 2. A wavefunction is compactly supported iff. there exists a finite integer r, such

that it has zero support outside a ball of radius r. The smallest integer value of r is called
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the size of the wavefunction. A basis is said to be a compactly supported orthogonal basis

(CSOB) of (a finite) size R iff. every constituent wavefunction is compactly supported and

has a size of at most R.

In the context of finite sized lattices, a basis is considered to be compactly supported

only if R is smaller than the size of the lattice. Similarly, only those projection operators

that have a maximum hopping distance smaller than the size of the lattice will be considered

to be strictly local.

For an SL projector P , the following notation will be used in the paper:

1. Let ΠP
r⃗ denote the set of vectors obtained by operating P on all the orbitals at cell r⃗.

That is,

ΠP
r⃗ := {P |r⃗, i⟩ : i ∈ 1, . . . , n}. (2.3)

The choice of which orbital basis is chosen while calculating ΠP
r⃗ will be specified, or

will be clear from the context.

2. Let HP
r⃗ ⊂ Htotal denote the space spanned by ΠP

r⃗ .

3. Let HP ≡ ∪r⃗∈ZdHP
r⃗ denote the image of P .

4. Let Π̃P
r⃗ denote an orthonormal basis of HP

r⃗ . (Π̃P
r⃗ can be obtained by applying the

Gram-Schmidt orthogonalization procedure on ΠP
r⃗ ). We note that since P is SL, all

wavefunctions in the sets Π̃P
r⃗ and ΠP

r⃗ are compactly supported.

5. Let Pr⃗ denote the orthogonal projection operator onto HP
r⃗ . Pr⃗ can be expressed as

Pr⃗ =
∑

|χ⟩∈Π̃P
r⃗

|χ⟩ ⟨χ| . (2.4)

2.3.2 Compactly Supported Wannier functions and Compact Localized States

While the primary object of interest of this paper is compactly supported (CS) Wannier

functions, a closely related type of basis consists of CS Wannier-type functions, which ex-

ist prominently in flat-band Hamiltonians. As we will show later, CS Wannier functions’
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existence is related to the strict localization of the associated projector. While flat-band

projectors need not be SL projectors and vice versa, both their images are spanned by CS

Wannier-type functions and in some cases CS Wannier functions as well. In this section, we

will discuss these two types of bases for flat-band Hamiltonians and SL projectors.

Let us first discuss Wannier-type functions, which are in a sense a generalization of

Wannier functions. Similar to Wannier functions, Wannier-type functions consist of a set of

wavefunctions localized at a cell, and all their lattice translates, and span a band or a set of

bands. However, unlike Wannier functions which are by definition orthogonal, Wannier-type

functions can be non-orthogonal, or even linearly dependent. Consequently, a set of m bands

may be spanned by l ≥ m flavors of Wannier-type functions, whereas exactly m flavors of

Wannier functions span m bands. Wannier-type functions that are CS [28, 29] are desirable

in certain applications [24]. Importantly, the existence of non-orthogonal CS Wannier-type

functions does not in general imply the existence of CS Wannier functions.

CS Wannier-type functions exist most notably as bases spanning flat bands in flat-band

Hamiltonians [30, 31]. Such functions corresponding to a flat band are also Hamiltonian

eigenstates, and are also referred to as compact localized states (CLSs). In most flat-band

Hamiltonians, the CLSs are not mutually orthogonal, and can even by linearly dependent.

Indeed, in the presence of band touching, CLSs may not even span the entire flat band [50].

However, it is always possible to modify such models so that they have orthogonal CLSs

spanning a flat band in an enlarged unit cell. This can be done by choosing a subset of CLSs,

comprising regularly spaced CLSs with no physical overlap on the lattice [37, 38]. While

such a set does not span a full band in a primitive cell representation, they always span an

entire flat band in an appropriately enlarged unit cell. Hence, they can also be referred to

as CS Wannier functions. In some cases, flat-band Hamiltonians possess orthogonal CLSs

naturally, without needing unit cell enlargement. Some popular examples from the literature

with such bases are discussed in sections 2.4 and 2.5. It is possible to create many more

examples of flat-band Hamiltonians with orthogonal CLSs, by constructing nearest neighbor

projectors as done in section 2.3.4.
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Figure 2.2: The real space connectivity of the projector from equation (2.5) is shown in (a).

The upper and lower array of dots represents the two sublattices A and B respectively. An

on-site potential of 1
2
is present for each orbital. Two flavors of non-orthogonal CLSs, i.e.

CS Wannier-type functions spanning the image of the projector are shown in (b) and (c).

An orthogonal CLS, i.e. a CS Wannier function is shown in (d).

While the term CLSs is commonly used only in the context of flat-band Hamiltonians, the

distinction between orthogonal CLSs and CS Wannier functions is unnecessary for our pur-

pose. Indeed, it is always possible to deform a band’s energy without changing the subspace

corresponding to it. Expressing a Hamiltonian as H(k⃗) =
∑

iEi(k⃗)Pi(k⃗), where Pi’s are

the band projectors, one can modify a band’s energy function to ‘flatten’ the corresponding

band [51] without modifying the band projectors, and vice versa. Such an operation does

not affect the Wannier and Wannier-type functions spanning that band, since they are as-

sociated with the band subspace, and have no dependence on the band dispersion. Thus,

(non-)orthogonal CLSs are a special type of CS Wannier(-type) functions. As a result, the

conditions associated with the existence of orthogonal CLSs spanning a flat band, and those

associated with the existence of CS Wannier functions for any band which may or may not

be flat, are equivalent to each other.
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These arguments also highlight that the properties of the band projector are connected

to the existence of CS Wannier functions or orthogonal CLSs spanning a band. Indeed, as

we will show later in the paper, the existence of CS Wannier functions is tied to the band

projector being SL. Like SL flat-band Hamiltonians, SL projectors also possess CS Wannier-

type functions. In 1d, they have the additional property that their images are spanned by CS

Wannier functions. Regardless of the dimension, non-orthogonal CLSs can be constructed

straightforwardly for any SL projector. To that end, we first note that for any lattice vector

|r⃗, α⟩, since P 2 = P ,

P (P |r⃗, α⟩) = (P |r⃗, α⟩).

Thus, if P |r⃗, α⟩ ̸= 0, it is an eigenvector of P with eigenvalue 1. Since P is strictly local,

P |r⃗, α⟩ is compactly supported. Additionally, if P is translationally invariant, then the set

{P |r⃗, α⟩ |r⃗ ∈ Zn} is one flavor of CLS. If there are l number of α’s for which P |x⃗, α⟩ ≠ 0,

we obtain l number of CLSs which together span the band(s) corresponding to P . In gen-

eral, without further processing, none of these wavefunctions are guaranteed to be mutually

orthogonal. Moreover, it is possible for two wavefunctions within the same flavor of CLSs to

be non-orthogonal to each other.

The existence of CS Wannier-type functions for SL projectors can be understood as a

destructive interference phenomenon, similar to CLS in flat-band Hamiltonians. This is

based on the rather simple observation that any SL projector can also be regarded as a

flat-band Hamiltonian with two flat bands. The CLSs for the band with energy 1 are exactly

the CS Wannier-type functions spanning the SL projector’s image. Although gapped flat-

bands are always spanned by a set of CLSs, they need not be orthogonal CLSs. Indeed, it is

impossible to find orthogonal CLSs spanning a flat-band for many flat-band Hamiltonians.

Hence, interpreting an SL projector as a flat-band Hamiltonian does not directly help us to

conclude that CS Wannier functions spanning it exist. Especially in 1d, this is a reflection of

the fact that SL projectors are a subset of flat-band projectors. For some explicit examples

of flat-band projectors that are not SL, see section 3 in reference [30].

We illustrate many of these points using a simple example of a 1d projector [see fig-
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ure 2.2(a)], given by

P (k) =
1

2

1 + cos k sin k

sin k 1− cos k

 . (2.5)

We can construct two sets of CLSs by operating the projector on each A and B sublattice

orbital [figures 2.2(b) and 2.2(c) show one CLS each from these two sets]. Each set of CLS

is not only non-orthogonal, but also linearly dependent, so that neither of the two sets span

the image of the projector individually. However, both sets of CLSs considered together

span the image of the projector, and hence form two flavors of CS Wannier-type functions.

As we will show in the next section, one can always find CS Wannier functions spanning

the image of any 1d SL projector. For the example under consideration, this consists of

the CLS shown in figure 2.2(d), and all its lattice translates. It can be easily verified that

this set is orthogonal, and hence spans the image of P . While it is possible to also obtain

these orthogonal CLSs using only destructive interference-based observations, it does not

follow immediately that this can be done for projectors with more complicated connectivity,

higher number of dimensions (for example, see (2.24)) or in the absence of lattice translation

symmetry.

Thus, while it is clear that for any SL projector, one can construct non-orthogonal CLSs,

it is far less obvious (and possibly untrue for d > 1) that one can construct orthogonal CLSs.

One of the objectives of this paper is to present a systematic procedure for the construction

of such orthogonal CLSs/CS Wannier functions, and the identification of conditions required

for the existence of such functions.

Before proceeding, we note that for non-translationally invariant SL projectors, although

CLSs as defined above don’t exist, we may define an analogous basis. Specifically, the set

{P |r⃗, α⟩ |r⃗ ∈ Zd, α = 1, . . . , n} is a non-orthogonal basis of the image of P , and consists of

CS wavefunctions.
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2.3.3 Compact Basis and Strictly Local Projectors

The primary focus of this paper is the identification of necessary and sufficient conditions

for the existence of a compactly supported orthogonal basis (CSOB) corresponding to a

subspace. In this section, we prove the necessary condition for all dimensions: the strict

locality of the associated orthogonal projector.

Proving that the span of a CSOB always corresponds to an SL projector is straightfor-

ward. Let a set S be a CSOB of size R on a d-dimensional lattice. Let P be the orthogonal

projector onto the space spanned by S. Then for any two locations z, z′ ∈ Z
d such that

|z − z′| > R, and orbitals α, β, we note that

⟨z, α|P |z′, β⟩ =
∑
|χ⟩∈S

⟨z, α|χ⟩ ⟨χ|z′, β⟩

= 0.

In other words, the maximum hopping distance of P is at most R. By definition, P is then

an SL projector.

Following a similar reasoning, we can easily show that if an orthogonal basis consists of

wavefunctions each of which are compactly supported along only one axis, then the corre-

sponding projector is strictly local along that axis. This implies that if CS hybrid Wannier

functions exist for all choices of the localized axis, then the projector is SL (along all direc-

tions). This proves the necessary part of point (2) of the Main Result.

2.3.4 A Simple Method for Constructing SL Projectors

In this section, we present a simple method for constructing translationally invariant SL pro-

jectors in one and two dimensions. We note that while one may use the equivalence that we

have proven for 1d and construct SL projectors from a compactly supported translationally

invariant orthogonal basis, such a method is not entirely straightforward to implement since

one first needs to construct a translationally invariant orthogonal basis which is compactly

supported and of an appropriate size. A much simpler alternative inspired by Clifford alge-
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bras can however be used, wherein an NN projector can be constructed by first obtaining

what we call an NN flat Hamiltonian. Such a flat Hamiltonian is an example of a flat-band

Hamiltonian with all bands being flat and with energies ±1. We obtain the projector P onto

the −1 eigenspace of H, and note that the since H = 1−2P , P is guaranteed to be a nearest

neighbor projector. We start by constructing an example of a 1d NN flat-band Hamiltonian

in subsection 2.3.4.1, followed by a construction of a 2d NN flat band Hamiltonian in sub-

section 2.3.4.2. While we explicitly describe the procedure only for strictly local projectors

in 1 and 2 dimensional lattices, this method can be straightforwardly generalized to higher

dimensions, and larger hopping distances. Although there exist SL projectors that cannot

be generated using this method, it can still be used to create many interesting examples of

SL projectors.

2.3.4.1 1d Strictly Local Projectors

It is convenient to utilize the Fourier space representation since we only consider transla-

tionally invariant projectors. First, we construct a flat NN Hamiltonian H, from which we

will extract the desired NN projector. For H to be an NN Hamiltonian, its Fourier space

representation must be of the form:

H(k) = C+e
ik + C0 + C−e

−ik,

with C+, C− and C0 being n× n matrices which are constrained by the equations H(k)† =

H(k), and H(k)2 = 1. For simplicity, we choose H to possesses two bands. Consequently,

H(k) can be expressed in terms of the identity matrix 12×2 and the two-dimensional Pauli

matrices {σi} as

H(k) = a0(k)12×2 +
3∑
i=1

ai(k)σi.

Since {σi, σj} = 2δij, the condition that H(k) is flat translates to
∑3

µ=0 a
2
µ(k) = 1 and

aia0 = 0. In order to obtain interesting solutions, we choose a0 = 0. Together with H† = H,
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this implies that

a1(k)
2 + a2(k)

2 + a3(k)
2 = 1;

ai(k)
∗ = ai(k).

(2.6)

Since the Hamiltonian is of an NN form, each ai(k) is expressible as

ai(k) = ciX + c∗iX
−1 + di,

with complex ci’s, real di’s, and X := eik. Conditions (2.6) imply that∑
i

c2i = 0

∑
i

cidi = 0

∑
i

2|ci|2 + d2i = 1.

(2.7)

Solutions to these equations can be used to construct various flat Hamiltonians and

projectors. A trivial example is one with ci = 0, and d1 = 0, d2 = 0 and d3 = 1, which

corresponds to

H(k) ≡

1 0

0 −1

 ,

and P (k) =
12×2 −H(k)

2
≡

0 0

0 1

 .

Less trivial solutions of constraints (2.7) can be used to construct more interesting projectors.

For example, consider the following parameters:

c1 =
1

3
, c2 =

1

3
e

2π
3
i, c3 =

1

3
e

4π
3
i, di =

1

3
.

The corresponding Hamiltonian is given by

H(k) =
1

3

 (1 + 2 cos
(
k + 4π

3

)
) (1 + 2 cos k)− i(1 + 2 cos

(
k + 2π

3

)
)

(1 + 2 cos k) + i(1 + 2 cos
(
k + 2π

3

)
) −(1 + 2 cos

(
k + 4π

3

)
)

 .

(2.8)
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The projector P (k) onto the −1 eigenspace can be obained by using the equation P (k) =

(12×2 − H(k))/2. Since P (k) has matrix elements which are Laurent polynomials in eik, it

is an SL projector.

Having obtained an SL projector, one can use it to construct Hamiltonians which have

CS Wannier functions, with any choice of the band energy (flat, or otherwise). For example

one may construct a strictly local flat-band Hamiltonian, with the flat band possessing CS

Wannier functions, i.e. orthogonal compact localized states (CLSs). To that end, if P (k)

is an SL projector obtained using the method above, we can choose it to correspond to

some constant energy, say E. The band associated with the remaining subspace, i.e. the

image of 1 − P (k), can be chosen to have a dispersion E(k), which should be chosen to be

a real function expressible as a Laurent polynomial in eik. We can also add more bands

to our Hamiltonian by constructing another Hermitian matrix H ′(k) with entries which are

Laurent polynomials in eik. Arbitrary examples of H ′(k) and E(k) satisfying the constraints

mentioned above can be easily constructed. Putting it all together, we obtain a strictly local

flat band Hamiltonian H(k) using

H(k) = H ′(k)⊕ [E(k)(1− P (k)) + EP (k)]. (2.9)

In order to construct an SL flat band Hamiltonian with a larger number of flat bands,

one can use the method above to create multiple SL P (k)’s and assign a constant energy to

each projector. Specifically, we may construct multiple flat band Hamiltonians using (2.9),

and take their direct sum to construct a flat-band Hamiltonian with a larger number of flat

bands. Alternatively, one may use the higher dimensional Dirac (or gamma) matrices for an

analogous construction. To illustrate the latter procedure, we show how this can be used to

construct nearest-neighbor projectors on 2d lattices in the next subsection.

2.3.4.2 2d Strictly Local Projectors

Similar to the previous subsection, we start with the construction of a flat Hamiltonian H.

Here, we choose H to have four bands in order to demonstrate the use of higher dimensional
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generators of the Clifford algebra. Hence, we express the flat Hamiltonian in terms of Dirac

matrices Γµ, instead of Pauli matrices, as follows:

H(k⃗) =
3∑

µ=0

aµ(k⃗)Γ
µ;

with Γ0 = γ0 =

12 0

0 −12

 ,

Γ1 = iγ1 = i

 0 σx

−σx 0

 ,

Γ2 = iγ2 = i

 0 σy

−σy 0

 ,

and Γ3 = iγ3 = i

 0 σz

−σz 0

 .

The Dirac matrices satisfy the anti-commutation relations {Γµ,Γν} = 2δµν and Γµ† = Γµ.

For H(k⃗) to be a nearest-neighbor Hamiltonian, the parameters ai(k⃗) must be of the form

ai(k⃗) = cixX + c∗ixX
−1 + ciyY + c∗iyY

−1

+ cixyXY + c∗ixyX
−1Y −1

+ c−ixyXY
−1 + c∗−ixyX

−1Y

+ di, (2.10)

with complex c’s, real d’s, and X = eikx , Y = eiky . H(k⃗)2 = 1 leads to the condition:∑
i

a2i = 1. (2.11)

Equating the coefficients of all products of all powers of X and Y gives us the following

conditions:

∑
2(|cix|2 + |ciy|2 + |cixy|2 + |c−ixy|2) + d2i = 1∑

ciyc−ixy + c∗iycixy + cixdi = 0
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∑
cixc

∗
−ixy + c∗ixcixy + ciydi = 0∑

c2ix + 2cixyc−ixy = 0∑
c2iy + 2cixyc

∗
−ixy = 0∑

cixciy + cixydi = 0∑
cixc

∗
iy + c−ixydi = 0∑

cixcixy = 0∑
cixc−ixy = 0∑
ciycixy = 0∑
ciyc

∗
−ixy = 0∑
c2ixy = 0∑
c2−ixy = 0.

Any solution of these set of equations can used to create a projector. For example,

choosing cixy = c−ixy = di = 0, the following choice satisfies all the conditions:

µ 0 1 2 3

cµx 0 0 1
2
√
2

i
2
√
2

cµy
1

2
√
2

i
2
√
2

0 0

This corresponds to the Hamiltonian:

H(k⃗) =
1

2
√
2


Y + Y −1 0 −(X −X−1) −(Y − Y −1) + (X +X−1)

0 Y + Y −1 −(Y − Y −1)− (X +X−1) (X −X−1)

X −X−1 (Y − Y −1)− (X +X−1) −(Y + Y −1) 0

(Y − Y −1) −(X −X−1) 0 −(Y + Y −1)

.

We obtain P (k⃗) by using P (k⃗) = 14×4−H(k⃗)
2

.
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Figure 2.3: (a) SL projectors on 1d lattices are represented by band diagonal projection

matrices, and CS wavefunctions are represented by sparse vectors which have non-zero com-

ponents only within a finite patch (shown in blue). The main result for 1d projectors implies

an orthogonal projection operator is band diagonal if and only if it possess a CS orthogonal

eigenbasis. (b) 1d SL projectors on finite periodic lattices are band diagonal, with appro-

priate modifications at the corners. In theorem 1, a relation between the band width of the

projector and the number of non-zero elements of the basis vectors is provided.

2.4 Compactly Supported Orthogonal Basis: 1d lattices

As shown in section 2.3.3, it is straightforward to show that if a compactly supported or-

thogonal basis (CSOB) or a CS Wannier basis exists, then the corresponding projector is

necessarily SL. In this section, we prove the converse, i.e. if a 1d projector is SL, then there

exists a CSOB spanning its image, thereby completing the proof of part (1) of the Main

Result. Specifically, we will show that

Theorem 1. In 1d systems, the span of a set of occupied states possesses a compactly

supported orthogonal basis (CSOB) if and only if the orthogonal projector onto the span is

strictly local. Additionally:

(1) If the maximum hopping distance of an SL projector is b, then there exists such a basis

consisting of wavefunctions of a maximum size of 3b cells, irrespective of the presence of

translational invariance.
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(2) If the projector is translationally invariant, its image is spanned by a compactly supported

Wannier basis in a size 2b supercell representation of the lattice.

We prove these statements through algorithmic constructions of CSOBs and CS Wannier

functions, and provide bounds on their sizes on the way.

Let us briefly discuss some properties of SL projectors and outline the approach we

will use in this section. We note that 1d SL projectors are band-diagonal matrices when

expressed in the orbital basis (see figure 2.3). For example, every 1d nearest neighbor (NN)

projector can be represented by a block tridiagonal matrix, with the block size being equal

to the number of orbitals per cell. Although it is straightforward to obtain a CSOB for a

block size of one, the corresponding statement is not obvious for larger block sizes. However,

using the Gram-Schmidt orthogonalization procedure with an appropriate orthogonalization

sequence, we show that it is always possible to obtain such an eigenbasis for any block size

(see section 2.4.1). If the projector is also translationally invariant, i.e. with repeating blocks

in the matrix representation, the basis can be chosen to be a Wannier basis in a supercell

representation (see section 2.4.2). We then extend these results to all 1d SL projectors,

since they can be represented as NN projectors using supercell representations (see section

2.4.3). In terms of matrices, this is equivalent to expressing any band diagonal matrix as

a block-tridiagonal matrix by grouping together the original blocks into appropriate larger

blocks. In this sense, the problem of obtaining a CSOB for any SL projector is equivalent to

the problem of obtaining one for an NN projector.

While a number of model Hamiltonian systems possessing CS Wannier functions and

orthogonal CLSs have been studied in the literature, to our knowledge, this is the first time

that the connection of such systems with the strict localization of the corresponding pro-

jection operator has been explicitly established. Most examples from the literature with

CS Wannier functions involve flat-band Hamiltonians defined on the Creutz ladder [52], the

sawtooth lattice [37, 38] and the diamond lattice [53]. Here, we briefly discuss the Creutz

lattice, which has been extensively studied both theoretically [54, 55, 56] and experimen-

tally [57, 58]. As noted in [56], for one choice of parameters (see figure 2.4), the Creutz

40



ladder has two exactly flat bands of energies ±2t, each of which is spanned by CS Wannier

functions. The corresponding Hamiltonian in k-space is given by:

H(k) = 2t

sin k cos k

cos k − sin k

 . (2.12)

As mentioned in section 2.3.2, SL flat-band Hamiltonians possess some destructive interfer-

ence properties, which constrain the movement of initially localized particles. For example,

in the system under consideration, a particle initially localized on an A orbital cannot diffuse

to a B orbital located more than a hop away (see figure 2 and related discussion in refer-

ence [56]). Based on this observation, one can obtain orthogonal CLSs, or equivalently, CS

Wannier functions for the two bands of this Hamiltonian. The Wannier functions (labeled

by ± for the two bands) localized at cell z are given by:

|W±⟩ =
1

2
(±i |z, A⟩ ± |z,B⟩+ |z + 1, A⟩+ i |z + 1, B⟩) .

In accordance with the predictions of our paper, the band projectors onto the two bands are

SL, and are given by

P±(k) =
1

2

1± sin k ± cos k

± cos k 1∓ sin k

 . (2.13)

Indeed, using the techniques developed in the next subsection, one can obtain these CS

Wannier functions from the expressions for the projectors P±(k).

it

it

t

t

Figure 2.4: Example of a popular model with CS Wannier functions: the Creutz ladder. The

hopping amplitudes result in two flat bands and CS Wannier functions. The A (B) orbitals

are shown in red (blue). The hopping amplitudes are shown next to the arrows.
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While most popular flat-band Hamiltonians do not possess CS Wannier functions, i.e. a

set of orthogonal CLSs spanning the flat band, as discussed in section 2.3.2, it is possible

to construct models with orthogonal CLSs by enlargement of the unit cell of any known

flat-band model. This was done for example in [37] and [38] to obtain CS Wannier functions

spanning a flat band in the sawtooth lattice.

Although most of the examples from the literature involve flat bands, CS Wannier func-

tions and SL projectors can correspond to dispersive bands. Such an example is provided

in Appendix 2.A, along with a discussion of the CS Wannier functions obtained using the

algorithm from the next subsection.

2.4.1 Nearest Neighbor Projectors

In this section, we present an algorithm for obtaining a CSOB corresponding to any nearest

neighbor (NN) projector. The algorithm is based on the Gram-Schmidt orthogonalization

procedure, and produces a CSOB with each basis vector having a maximum spatial extent

of 3 consecutive lattice cells. The methods in this section are applicable even if the projector

is not translationally invariant.

The basic idea underlying our procedure is to obtain the set Π̃P
z defined in section 2.3.1,

corresponding to the localized eigenstates of Pz for some lattice site z, and to ‘reduce’ P to

P−Pz as required by the Gram-Schmidt procedure. Then, we operate this reduced projector

P − Pz on another cell z′, and iterate along a sequence of cell locations which includes all

the integers. The union of all the Π̃P
z sets will form an orthonormal basis for the image of P .

While at the first step, Π̃P
z is guaranteed to have compactly supported wavefunctions, it is

not obvious that the size of the corresponding wavefunctions stays bounded for subsequent

steps. With the help of the following lemma, we can show that the size of each vector at any

step will be at most three consecutive cells.

Lemma 1. For any z ∈ Z, orbital indices i, j ∈ {1, . . . , n}, and integers δ, δ′ > 0,

⟨z − δ, i| (P − Pz) |z + δ′, j⟩ = 0. (2.14)
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Additionally,

(P − Pz) |z, j⟩ = 0. (2.15)

z z + 1z − 1

(a)

z z + 1z − 1

(b)

Figure 2.5: Change in the connectivity of an NN projector after a Gram-Schmidt step. Each

dot represents a cell, with arrows indicating possible non-zero matrix elements of P . (a)

Connectivity of an NN projector P . (b) Connectivity of the reduced projector P − Pz.

Missing arrows indicate that the corresponding matrix elements are zero.

Proof. For any cell z, let Pzz : Hz → Hz denote the n × n matrix corresponding to the

matrix elements of P between different orbitals at cell z, i.e.

(Pzz)ij = ⟨z, i|P |z, j⟩ .

Since P is Hermitian, Pzz is also Hermitian. Hence, there exists a unitary matrix Uz, such

that Dz = U †
zPzzUz is a real diagonal matrix. Let dz denote the vector of diagonal elements

of the matrix Dz. The unitary Uz defines a new basis at z:

|z, i⟩′ :=
∑
j

(Uz)ji |z, j⟩ . (2.16)

We call the orbital basis {|z, α⟩′ |α = 1, . . . , n} a diagonal basis at z. Since ⟨z, i|′ P |z, j⟩′ =
diδij, we can significantly reduce the intra-cell connectivity of P , by performing the unitary

transformation at every cell separately. Equivalently, we use the global unitary transforma-

tion

U :=
⊕
z∈Z

Uz. (2.17)
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Hereafter, for notational convenience, we drop the prime outside the vectors, and assume

that we have already rotated the basis to a diagonal one. Thus, ⟨z, α|P |z, β⟩ = 0 whenever

α ̸= β.

Now we obtain a few important identities using the fact that P is an orthogonal NN

projector, and using appropriate insertions of resolution of identity:

1. Since P is positive-semidefinite, for any cell z and orbital α, we have

⟨z, α|P |z, α⟩ ≥ 0. (2.18)

2. For any two neighboring cells z and z + 1 and orbitals α, β, we have

⟨z, α|P |z, α⟩+ ⟨z + 1, β|P |z + 1, β⟩ = 1, whenever ⟨z, α|P |z + 1, β⟩ ≠ 0. (2.19)

This follows from

⟨z, α|P |z + 1, β⟩ = ⟨z, α|P 2 |z + 1, β⟩

= ⟨z, α|P |z, α⟩ ⟨z, α|P |z + 1, β⟩+ ⟨z, α|P |z + 1, β⟩ ⟨z + 1, β|P |z + 1, β⟩

= ⟨z, α|P |z + 1, β⟩ (⟨z, α|P |z, α⟩+ ⟨z + 1, β|P |z + 1, β⟩) .

3. Similarly, for any two cells z and z + 2 separated by two hops, since P is an NN

operator, ∑
γ

⟨z, α|P |z + 1, γ⟩ ⟨z + 1, γ|P |z + 2, β⟩ = 0. (2.20)

Now we obtain the projector Pz by orthogonalizing Πz (using the diagonal basis orbitals of

Pzz in expression 2.3). Since ⟨z, α|P |z, β⟩ = 0 whenever α ̸= β, Πz is already orthogonal, so

we only need to normalize the vectors in it in order to obtain an orthonormal set. Whenever

P |z, α⟩ ≠ 0, we denote the corresponding normalized vector by

|P, z, α⟩ := P |z, α⟩√
⟨z, α|P |z, α⟩

.

Thus, we obtain Pz by adding the projector onto each orthonormal vector:

Pz ≡
(dz)α ̸=0∑

α

|P, z, α⟩ ⟨P, z, α| =
(dz)α ̸=0∑

α

P
|z, α⟩ ⟨z, α|
⟨z, α|P |z, α⟩P.
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Since Πz consists of wavefunctions with non-zero support only on cells z and z± 1, equation

(2.14) is already satisfied, whenever δ > 1 or δ′ > 1. Thus, we only need to verify that (2.14)

is satisfied for δ = δ′ = 1, for which, we get

⟨z − 1, α|Pz |z + 1, β⟩ =
(dz)γ ̸=0∑

γ

⟨z − 1, α|P |z, γ⟩ ⟨z, γ|P |z + 1, β⟩
⟨z, γ|P |z, γ⟩ .

Any non-zero term in the summation will have ⟨z − 1, α|P |z, γ⟩ ≠ 0. From condition

(2.19), all such orbitals γ at cell z possess the same self-hop:

⟨z, γ|P |z, γ⟩ = 1− ⟨z − 1, α|P |z − 1, α⟩ ≠ 0.

Thus, we get

⟨z − 1, α|Pz |z + 1, β⟩ = 1

1− ⟨z − 1, α|P |z − 1, α⟩
∑
γ

⟨z − 1, α|P |z, γ⟩ ⟨z, γ|P |z + 1, β⟩

= 0, (2.21)

where we have used condition (2.20). Since P has vanishing matrix elements between orbitals

lying on opposite sides of z, this proves equation (2.14).

We note that P |z, α⟩ = Pz |z, α⟩ and hence (P − Pz) |z, α⟩ = 0. This leads to equation

(2.15). The connectivity of the reduced projector is shown in figure 2.5.

Based on this lemma, we present a method for obtaining a CSOB for the image of an

NN projector, as described in Procedure 1.

Lemma 2. The set Π̃ obtained from the Gram-Schmidt algorithm 1 is an orthonormal basis

of the image of the NN projector P. Furthermore, every element of Π̃ is compactly supported,

with a spatial extent of no more than three consecutive cells.

Proof. The set ∪zΠP
z spans the image of P . Hence, procedure 1, which is the application of

the Gram-Schimidt procedure on it, creates an orthonormal basis of the image of P . Lemma

1 implies that the reduced projector P − Pz obtained at any iteration in the procedure is

also an NN projector. Thus, every vector belonging to Π̃P
z for any z is guaranteed to be

compactly supported, with a maximum spatial extent of 3 consecutive cells.
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Procedure 1: Procedure for Constructing a CSOB for the Image of any 1d NN

Projector

Input : An NN projector P acting on a 1d lattice.

Procedure: Define a non-repeating sequence S ≡ z0, z1, . . . of integers, s.t. it

contains all the integers. Set P ← P . Initialize k = 0, and do:

1. Set z ← zk.

2. Obtain ΠP
z (as defined in eq. (2.3)).

3. Orthonormalize the set ΠP
z to obtain Π̃P

z .

4. Obtain Pz from Π̃P
z using (2.4).

5. Update P ← P − Pz, increment k, and go back to step (1).

Output: The set Π̃ := ∪z∈ZΠ̃P
z of compactly supported wavefunctions, which is an

orthonormal basis of the image of the projector P .

It is possible to choose a sequence S so that at most n of the created basis vectors have

a spatial extent of 3 cells, with all the remaining vectors having a spatial extent of at most

2 consecutive cells. For an example, see figure 2.6.

2.4.2 Translationally Invariant Nearest Neighbor Projectors

Although Procedure 1 from the previous section also works for translationally invariant

projectors, in general, the obtained basis may not consist of Wannier functions. In this

section, we will show that it is possible to obtain a Wannier basis consisting of compactly

supported functions for the image of P , in a size 2 supercell lattice representation. By a size

2 supercell representation of the lattice, we mean relabelling the cells so that the lattice is

regarded as consisting of “supercells” which are each twice the size of the original cell. In this

representation, the unit cell is the supercell which consists of two primitive unit cells. We

also use a supercell representation for the conversion of an SL projector to an NN projector,
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as will be discussed in the next subsection. To that end, we first divide the lattice into two

subsets, A, and B, consisting of alternating cells. For concreteness, we choose A to consist

of even locations (2Z), and B to be the odd locations (2Z+ 1).

We define the set ΠP
A as being

ΠP
A =

⋃
i∈A

ΠP
i .

We also define HP
A to be the span of ΠP

A, and PA to be the orthogonal projection onto HP
A.

From lemma 1, we note that P − PA has a significantly reduced connectivity, as shown

in figure 2.7. Specifically, the only non-zero matrix elements of P − PA between any two

orbitals, are those between any two orbitals located at the same cell belonging to set B.

0 1 2 3−1−2−3

Figure 2.6: If we use the sequence S = 0,−1, 1,−2, 2, . . . in procedure 1, then all sets Π̃P
z

except for Π̃P
0 consist of wavefunctions of a maximum size of 2. Each colored rectangle

represents the maximum spatial extent of the wavefunctions in Π̃P
z obtained during one

iteration of the procedure. Each unit cell is represented by a black dot.

0 1 2 3−1−2−3
(a)

0 1 2 3−1−2−3
(b)

Figure 2.7: Sets A and B are shown in red and blue respectively. (a) Connectivity of an NN

projector P . (b) Connectivity of P−PA. Missing arrows indicate vanishing matrix elements.

Since P is translationally invariant, it is useful to define a translation operator T̂ , which
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Procedure 2: Compactly Supported Wannier Basis for 1d translationally invariant

NN projectors

Input : A 1d translationally invariant NN projection operator P .

Procedure:

1. Obtain ΠP
0 , and orthogonalize it to obtain the set Π̃P

0 .

2. Obtain the orthogonal projection operator P0 onto the span of ΠP
0 .

3. Obtain a reduced projection operator P ′ := P − P0 − T̂ 2P0T̂ †2.

4. Obtain and orthogonalize ΠP ′
1 to obtain the set Π̃P ′

1 .

5. Obtain the set Π̃, defined as

Π̃ =

(⋃
z∈Z
{T̂ 2z |χ⟩ : |χ⟩ ∈ Π̃P

0 }
)
∪
(⋃
z∈Z
{T̂ 2z |χ⟩ : |χ⟩ ∈ Π̃P ′

1 }
)
. (2.22)

Output: The set Π̃ consisting of compactly supported Wannier functions spanning

the image of P , corresponding to a size 2 supercell representation.

satisfies

T̂ |z, i⟩ = |z + 1, i⟩ ,

for all z ∈ Z and i ∈ {1, . . . , n}. Since P is translationally invariant, P = T̂ †P T̂ .

The algorithm for obtaining a CSOB is summarized in Procedure 2.

Lemma 3. The output obtained using Procedure 2 is a compactly supported Wannier basis

spanning the image of P corresponding to a size 2 supercell representation.

Proof. The output of Procedure 2 is the set Π̃, which is a union of two disjoint sets (see

equation (2.22)). The first set is a union of the set Π̃P
0 , and all its even unit cell translates.

We will now show that this set is an orthogonal basis of HP
A.

First, we note that the the set {T̂ 2z |χ⟩ : |χ⟩ ∈ Π̃P
0 } is an orthogonal basis of HP

2z, since

P is translationally invariant. Moreover, for any z ̸= 0, this set is also orthogonal to the
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(a)

(b)

(c)

Figure 2.8: The red and blue dots denote the lattice sites belonging to sets A and B respec-

tively. (a) Wavefunctions in Π̃P
z centered at cell z ∈ A are chosen to be the wavefunctions

in Π̃P
0 translated by z cells. Each red rectangle centered at z denotes the maximum spa-

tial extent of wavefunctions belonging to Π̃P
z . (b) Each blue bubble denotes the maximum

spatial extent of the wavefunctions in the set Π̃P−PA
1 , and its translates by an even number

of cells. (c) The two sets of functions together form a Wannier basis in a size 2 supercell

representation, with each supercell consisting of one cell each from A and B.

set Π̃P
0 . To see this, we show that any orthonormal bases Π̃P

z1
and Π̃P

z2
for distinct locations

z1, z2 ∈ A are mutually orthogonal. Let |Ψ⟩ ∈ HP
z1

and |Φ⟩ ∈ HP
z2

be two vectors. There

exist vectors |ψ⟩ ∈ Hz1 and |ϕ⟩ ∈ Hz2 such that |Ψ⟩ = P |ψ⟩ and |Φ⟩ = P |ϕ⟩. Taking the

inner product of |Ψ⟩ and |Φ⟩, we obtain

⟨Φ|Ψ⟩ = ⟨ϕ|P †P |ψ⟩

= ⟨ϕ|P |ψ⟩

= 0,

since z1 and z2 are located at least two hops away, which is larger than the maximum hopping

distance of P . Thus, HP
z1

and HP
z2

are mutually orthogonal for distinct z1, z2 ∈ A. Thus,

the set
⋃
z∈Z{T̂ 2z |χ⟩ : |χ⟩ ∈ Π̃P

0 } is an orthogonal basis of HP
A. Additionally, since P is NN

hopping, it consists of compactly supported wavefunctions with a maximum spatial extent

of 3 cells, as shown in figure 2.8(a).

49



The second set in equation (2.22) is an orthonormal basis of HP \HP
A. To prove this, we

first note that

P ′ |1, i⟩ = (P − P0 − T̂ 2P0T̂ †2) |1, i⟩

=

[
P −

(∑
z∈Z
T̂ 2zP0T̂ †2z

)]
|1, i⟩

= (P − PA) |1, i⟩ .

Hence, the set Π̃P ′
1 is an orthonormal basis of HP−PA

1 . P − PA remains invariant under

translations by an even number of cells. Since P − PA is also a nearest neighbor pro-

jector (using lemma 1), using the same arguments as for the first set, we conclude that⋃
z∈Z{T̂ 2z |χ⟩ : |χ⟩ ∈ Π̃P ′

1 } is an orthogonal basis of HP \ HP
A. Additionally, using lemma 1,

we infer that every wavefunction it contains is compactly supported, with non-zero support

on only one cell [ see figure 2.8(b)].

Thus, Π̃ is a compactly supported orthogonal basis of HP . By construction,

T̂ 2z |χ⟩ ∈ Π if |χ⟩ ∈ Π̃,

for any z ∈ Z. Thus, Π̃ consists of compactly supported Wannier basis, within a size 2

supercell representation [figure 2.8(c)].

2.4.3 Supercell Representation and Strictly Local Projectors

As discussed at the beginning of this section, an SL operator on a 1d lattice with a maximum

hopping distance b can be expressed as an operator with only nearest neighbor hopping terms

Figure 2.9: An example of conversion of a 1d SL operator to an NN operator using a supercell

representation. If an operator has a maximum hopping distance of 2, then grouping the sites

in pairs converts the operator to an NN operator in the ‘supercell’ representation.
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using a supercell representation with each supercell consisting of b number of primitive cells

(for an illustrative example, see figure 2.9). The range of the operator is reduced, at the cost

of an increase in the number of orbitals per cell (n → nb). This transformation enables us

to apply the techniques and results for NN projectors (b = 1) to SL projectors (b ≥ 1).

In particular, if we choose the supercell located at the origin to consist of primitive cells

0, 1, . . . , b− 1, the position and orbital indices in the two representations have the following

correspondence:

Primitive cell←→ Supercell

|z, i⟩ ≡ |z \ b, n× (z mod b) + i⟩s ,
(2.23)

with the subscript s denoting a vector in the supercell representation, and \ denoting the

quotient upon division.

Putting together the results from the previous subsections and the conversion of an SL

projector to an NN projector using the supercell representation, we arrive at the following

results for arbitrary range SL projectors.

Corollary 1. The image of an SL projector on a 1d lattice with a maximum hopping distance

b possess a CSOB consisting of wavefunctions of a maximum spatial extent of 3b consecutive

cells.

We first create a size b supercell representation where P is a NN projector. Using Proce-

dure 1, we obtain a CSOB in this supercell representation. We revert back to the original,

or primitive cell representation using the correspondence (2.23). This process is summarized

in the following sequence:

Primitive cell

representation

−→ Supercell representation −→Primitive cell

representation

SL Projector

(b ≥ 1)

−→ NN Projector

(b = 1)

Procedure 1−−−−−−→ CSOB

(max size 3)

−→ CSOB

(max size 3b)

Similarly, we can use Procedure 2 for obtaining a Wannier basis for arbitrary range

translationally invariant SL projectors.
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Corollary 2. The image of a translationally invariant strictly local projector with a maxi-

mum hopping distance b on a 1d lattice is spanned by a compactly supported Wannier basis

within a size 2b supercell lattice representation.

The procedure for obtaining such a basis is summarized in the following sequence:

Primitive cell
Size b−−−→ Size b supercell

Size 2−−−→ Size 2b supercell

representation representation representation

SL Projector (b ≥ 1) −→ NN Projector (b = 1)
Procedure 2−−−−−−→ CS Wannier basis.

To summarize, we have shown that the image of a strictly local projector in 1d is always

spanned by a compactly supported orthogonal basis (or a compactly supported Wannier basis

if the projector has lattice translational invariance). This completes our proof of theorem 1.

Having presented a technique for the construction of CS Wannier functions for 1d SL pro-

jectors, we apply this technique to an example Hamiltonian with a band associated with an

SL projector in Appendix 2.A. Furthermore, we discuss why the Gram-Schmidt orthogonal-

ization procedure in our algorithm is easier to use instead of the symmetric orthogonalization

procedure [59]. We also compare our results with those obtained using the maximally local-

ized Wannier functions procedure [20].

In the next section we will study how these results can be extended to higher dimensional

lattices which have a larger coordination number. We close this section with some comments

on the Bethe lattice which is sometimes regarded as an infinite dimensional lattice. For an

NN projector on the Bethe lattice with an arbitrary coordination number, using the methods

of Lemma 1, we can show that projecting out a site results in a reduced connectivity for

the projector. Consequently, analogous to Lemma 3 and Procedure 1, using an arbitrary

sequence of site locations guarantees the creation of an orthonormal basis which is compactly

supported.
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2.5 Higher dimensional lattices

In 1d, we were able to show that for an arbitrary basis of wavefunctions, the existence of

a compactly supported orthogonal basis (CSOB) equals the strict locality of the associated

projector. However, the results for the 1d case do not all carry over to higher dimensional

lattices. While strict locality of the projector is a necessary condition for the existence of a

CSOB even in higher dimensions (see section 2.3.3), the methods we have employed so far

for the 1d case do not prove that it is a sufficient one. Our proof for the existence of a CSOB

given any 1d SL projector relied on the fact that any 1d SL projector can be represented

as a nearest-neighbor (NN) projector in a supercell representation, or equivalently, a block

tridiagonal matrix in the orbital basis. In higher dimensions, such a simple matrix represen-

tation for even the simplest non-trivial SL projector, i.e. an NN projector is lacking. Generic

SL or NN projectors in d > 1 cannot be represented by block tridiagonal matrices, or even

band diagonal matrices. This makes the task of identifying the properties of a projector that

are equivalent to the existence of a CSOB difficult.

Consequently, we identify a condition more stringent than strict locality of the projector

as a sufficient condition for the existence of a CSOB. While NN projectors in d > 1 cannot in

general be represented as block tridiagonal matrices, it is still possible to show that the image

of any NN projector is spanned by a CSOB. However, unlike in 1d, higher dimensional SL

projectors cannot in general be expressed as NN projectors using a supercell transformation.

Consequently, we can extend the results for NN projectors only to those SL projectors that

can be brought to an NN form using a supercell representation. We call such projectors

NN-reducible projectors. (For a discussion of the condition of being NN-reducible, we refer

the reader to section 2.5.4.) Due to these considerations, unlike in 1d, we obtain separate

necessary and sufficient conditions for the existence of a CSOB spanning a subspace. Since

the necessary condition has already been proved in section 2.3.3, in this section, we focus

on proving the sufficient condition, which is that a projector should be NN hopping, or

NN-reducible.

Additionally, as mentioned in the introduction, in higher dimensional lattices it is pos-
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sible to construct ‘hybrid Wannier functions’ that are compactly supported along just one

dimension. We show that their existence hinges on the the strict locality of projectors just

like the existence of compactly supported wavefunctions in one dimension.

For all these cases, we provide algorithms for obtaining CSOBs and CS hybrid Wannier

functions, and provide upper bounds on their sizes. In summary, we will prove the following

statements.

Theorem 2. Let P be a strictly local projector with a maximum hopping distance b, acting

on a d > 1 dimensional tight binding lattice.

(1) If P is NN reducible, there exists a compactly supported orthonormal basis spanning its

image, with each basis vector having a size of at most 3b× . . .× 3b cells.

(2) If P is translationally invariant and NN reducible, there exists a compactly supported

Wannier basis spanning its image, in a size 2b× . . .× 2b supercell lattice representation.

(3) If P is translationally invariant, its image is spanned by hybrid Wannier functions which

have compact support along the localized (i.e. Wannier-like) dimension, in a size 2b

supercell representation of the lattice. The supercell transformation is required only along

the localized dimension, which may be chosen to be any of the d dimensions. Moreover,

if P is strictly local along any one direction with a maximum hopping distance b, (with

no restrictions on the localization along the other directions), then strictly local hybrid

Wannier functions corresponding to a size 2b supercell which are localized along that

direction can be formed.

In addition, we will discuss the topological properties of such projectors in this section.

Before proving these statements, we first discuss some model Hamiltonians with CS

Wannier functions. In figure 2.10, we show two examples from the literature of 2d flat-band

Hamiltonians, that have flat bands spanned by orthogonal CLSs, i.e. flat-band CS Wannier

functions. These Hamiltonians are based on the square kagome lattice [60, 54] with six

sites per unit cell and the frustrated bilayer [61, 62] with two sites per unit cell. In both
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cases the natural choices of the primitive cells are such that each CLS lies entirely within a

unit cell. While CS Wannier functions can be easily constructed for the flat bands in these

examples, for many flat-band Hamiltonians, orthogonal CLSs spanning a flat band do not

exist. However, as discussed in section 2.3.2, it is possible to modify such Hamiltonians by

enlargement of the unit cell, so that orthogonal CLSs span an entire flat band. This approach

was used for example in reference [54], to construct two Hamiltonians on the kagome lattice

wherein a flat band is spanned by CS Wannier functions. One can apply the same technique

to other flat-band models from the literature, such as the decorated square lattice [63] and

the dice lattice [64].

In all of these examples, the CS Wannier functions are associated with flat bands, and

are localized within one cell each. Consequently, the corresponding band projector is on-

site hopping, and hence is independent of k in a k-space representation. One can simply

diagonalize the projector in order to obtain CS Wannier functions in such cases. How-

ever, there are many Hamiltonians with a band spanned by CS Wannier functions that are

spread across multiple cells, and with band projectors that are strictly local, but not on-site

hopping. While one can diagonalize a translationally invariant NN projector expressed in

k-space, in general a Fourier transform of the obtained Bloch wavefunction results in expo-

nentially localized Wannier functions as opposed to CS Wannier functions (for an example,

see Appendix 2.A). Similarly, as discussed in section 2.3.2, it may be possible to construct

CS Wannier functions using destructive interference arguments for translationally invariant

NN projectors if they have a simple form. However, it is not straightforward to do so for a

more complicated projector, such the following 2d NN projector:

P (k) =
1

12

 e−iky
√
3+eiky

√
3+6 −e−iky

√
3+eiky

√
3+2eikx−2 e−iky

√
3+2eikx+1 −eiky

√
3+2eikx+1

e−iky
√
3−eiky

√
3+2e−ikx−2 −e−iky

√
3−eiky

√
3+6 e−iky

√
3−2e−ikx−1 eiky

√
3+2e−ikx+1

eiky
√
3+2e−ikx+1 eiky

√
3−2eikx−1 7−2e−ikx−2eikx e−ikx(−ei(kx+ky)

√
3−2e2ikx+2)

−e−iky
√
3+2e−ikx+1 e−iky

√
3+2eikx+1 −e−iky

√
3−2e−ikx+2eikx 5+2e−ikx+2eikx

.
(2.24)

In contrast, the method presented in this section enables us to construct CS Wannier func-

tions since this projector is NN hopping. The Wannier functions (centered at (x, y)) so

obtained are |W1⟩ = 1√
6
|x, y⟩ ⊗ (|B⟩ + |C⟩ + |D⟩) + 1√

6
|x+ 1, y⟩ ⊗ (|A⟩ − |C⟩ + |D⟩) and

|W2⟩ = 1
2
|x, y⟩ ⊗ (|A⟩ − |B⟩ + |C⟩) + 1

2
√
3
|x, y − 1⟩ ⊗ (|A⟩ + |B⟩ − |D⟩), where the orbitals
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are labelled by letters A to D.

(a)
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(d)

Figure 2.10: (a) The square kagome lattice and (c) the frustrated bilayer lattice. In both

cases, the black and red segments denote hopping elements with values t1 and t2 respectively.

The flat band CLSs, i.e. CS Wannier functions are highlighted in yellow. In the case of the

square kagome lattice, each CLS has support on four sites and an amplitude of 1
2
with

alternating signs on the four sites. For the frustrated bilayer lattice, each CLSs has an

amplitude of +1 and −1 on the two sites where it is located. The band structures of the

square kagome lattice with (t1, t2) = (2, 1), and of the frustrated bilayer with (t1, t2) = (0, 1)

are shown in figures (b) and (d). The flat band is colored blue.

Having discussed some examples, we proceed to the proof of theorem 2, which we split

across the following subsections. Since the problem of finding hybrid Wannier functions can

be reduced to a one dimensional problem, we start with the proof of point (3) of Theorem 2 in

subsection 2.5.1. In subsections 2.5.2 and 2.5.3 we present procedures for obtaining CSOBs

for NN projectors. In subsection 2.5.4, we discuss how to determine whether a projector is

NN-reducible, and show how a supercell representation can be used to extend the results
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for NN projectors to the more general class of NN-reducible projectors. In subsection 2.5.5,

we discuss the topological properties of SL projectors as well as projectors associated with

CSOBs and CS hybrid Wannier functions.

2.5.1 Hybrid Wannier Functions for Strictly Local Projectors

Procedure 3: Compactly Supported Hybrid Wannier functions for Strictly Local

Projectors

Input : A translationally invariant SL projection operator P operating on a d

dimensional lattice

Procedure: To obtain hybrid Wannier functions which are Wannier-like along the dth

dimension, for every value of k⃗⊥ in the d− 1 dimensional B.Z.:

1. Obtain the 1d projector P (k⃗⊥) using expression (2.26).

2. Use a size b supercell representation to express P (k⃗⊥) as a 1d NN projector.

3. Following Procedure 2, obtain a CW basis for the image of P (k⃗⊥). Let Π̃
k⃗⊥
⊥ denote

this basis.

4. Obtain the set Π̃k⃗⊥ := {k⃗⊥ ⊗ |ψ⟩ : |ψ⟩ ∈ Π̃k⃗⊥
⊥ }.

Obtain the set

Π̃ :=

B.Z.d−1⋃
k⃗⊥

Π̃k⃗⊥ .

Output: The set Π̃ consisting of hybrid Wannier functions within a size

1× . . .× 1× 2b supercell representation, which are compactly supported

and Wannier-like along the dth dimension.

As discussed in the introduction, hybrid Wannier functions are a variant of Wannier

functions for d > 1 dimensional translationally-invariant systems. Hybrid Wannier functions

can be obtained by taking the inverse Fourier transform of the Bloch wavefunctions along

57



exactly one dimension. Such wavefunctions can be chosen to be localized and Wannier-

like along one dimension, and Bloch wave-like and delocalized along the other dimensions.

Starting with a real space representation of a translationally invariant SL projector, we

outline a procedure for obtaining such a basis, so that it is compact localized along the

localized dimension. We will use the convention (2.2) of expressing the Hilbert space as a

tensor product, Z⊗d ⊗H, throughout this section, where H represents the space of orbitals

and spin.

First, we revisit the k-space, or Fourier space representation for a projector. As is cus-

tomary, we consider finite periodic lattices of size L1 × . . .× Ld, so that the number of sites

N = L1 . . . Ld. For infinite lattices, we take the limit of the lengths going to infinity. Without

loss of generality, we choose the direct lattice to be a hyper-cube so that the Brillouin Zone

(B.Z.) consists of reciprocal lattice vectors k⃗ satisfying k⃗.R⃗ ∈ 2πZ for any R⃗ ∈ Zd such that

ki ∈ (−π, π] ∀ i ∈ {1, . . . , d}. An orthogonal band projection operator P can be expressed

as

P =
∑
k⃗∈B.Z.

|⃗k⟩ ⟨k⃗| ⊗ P (k⃗),

where |⃗k⟩ := 1√
N

∑
r⃗∈Zd

e−ik⃗.r⃗ |r⃗⟩ ,

and P (k⃗) := ⟨k⃗|P |⃗k⟩ .

We have suppressed all orbital quantum numbers in the expressions above to aid readability.

Each P (k⃗) is an n× n matrix function of k⃗. Since P is idempotent, P (k⃗)P (k⃗′) = δk⃗,⃗k′P (k⃗),

i.e. all the P (k⃗)’s for distinct k⃗’s are mutually orthogonal projection operators.

In order to obtain hybrid Wannier functions which are localized along the mth dimension,

we express P in the Fourier space corresponding to all spatial dimensions, except for the

mth dimension. Here, we only discuss the case with m = d; the rest can be obtained by

simple modifications. Let B.Z.d−1 denote the Brillouin zone in d− 1 dimensions. Denoting

the spatial position along the dth dimension by z, we obtain

P =
∑

k⃗⊥∈B.Z.d−1

|⃗k⊥⟩ ⟨k⃗⊥| ⊗ P (k⃗⊥), (2.25)
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with k⃗⊥ ≡ (k1, . . . , kd−1), and P (k⃗⊥) being an orthogonal projection operator given by

P (k⃗⊥) :=
∑
z,z′∈Z

|z⟩ ⟨z′| ⊗ ⟨k⃗⊥, z|P |⃗k⊥, z′⟩ . (2.26)

Since P (k⃗⊥)P (k⃗′⊥) = δk⃗⊥ ,⃗k′⊥
P (k⃗⊥) , equation (2.25) implies that the task of obtaining an

orthogonal basis for the image of P can be split into the task of obtaining orthogonal bases

for each P (k⃗⊥) individually. Since P is strictly local, each P (k⃗⊥) can be thought of as being

a one dimensional strictly local projector acting on a lattice with positions z ∈ Z. Corollary
2 guarantees that each P (k⃗⊥) must have a compactly supported Wannier basis in a size 2b

supercell representation. This leads us to a procedure of obtaining hybrid Wannier functions

which are compact localized along any chosen dimension (see procedure 3).

While in our considerations so far, we have considered an SL projector, if we were to

consider a projector that was strictly local along any one direction without the requirement

that it be strictly local along any of the other directions, it follows from the arguments above

that hybrid Wannier functions which are localized in one direction can still be constructed.

This completes our proof for part one of Theorem 2.

2.5.2 Nearest Neighbor Projectors

We now construct a CSOB for nearest-neighbour projectors in d dimensions. Similar to

the 1d case, the Gram-Schmidt orthogonalization must be carried out in a sequence which

guarantees that after any step, the reduced projector remains NN hopping or on-site hopping,

if the original projector is NN hopping. We observe that unlike in the 1d case, this puts

restrictions on the orthogonalization sequence in higher dimensions. Although there are

multiple possible types of sequences which ensure this condition is satisfied, for concreteness,

here, we present a specific one (in Procedure 4), which also be used to obtain a CW basis

for translationally invariant NN projectors as well.

This procedure relies on dividing the lattice into two sets, A and B consisting of alter-

nating cells similar to what was done in section 2.4.2. For concreteness, we choose A and B
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to be given by

A = {r⃗ : r⃗ ∈ Zd;
d∑
i=1

ri ∈ 2Z};

B = {r⃗ : r⃗ ∈ Zd;
d∑
i=1

ri ∈ 2Z+ 1}.
(2.27)

Since any two distinct cells r⃗1, r⃗2 ∈ A are separated by at least two hops, Pr⃗1Pr⃗2 = 0, and

hence PA :=
∑

r⃗∈A Pr⃗ is an orthogonal projector.

Lemma 4. The orthogonal projector P − PA satisfies ⟨r⃗1, i| (P − PA) |r⃗2, j⟩ = 0 for all

i, j ∈ {1, . . . , n}, unless r⃗1 = r⃗2 ∈ B.

Proof. Let δ̂i denote the unit vector along dimension i. Similar to the proof for 1d projectors

(Lemma 1), we introduce the diagonal basis (cf (2.17)), with the primes dropped for nota-

tional convenience. As before, we denote the diagonal of the Pr⃗r⃗ matrix in this representation

by dr⃗, so that ⟨r⃗, α|P |r⃗, β⟩ = (dr⃗)βδαβ.

Since P |r⃗, α⟩ = PA |r⃗, α⟩ whenever r⃗ ∈ A, both r⃗1 and r⃗2 must belong to B for the

corresponding matrix element to be non-zero. If r⃗1, r⃗2 ∈ B and are distinct, we get

⟨r⃗1, α|P − PA |r⃗2, β⟩ = −⟨r⃗1, α|PA |r⃗2, β⟩

= −⟨r⃗1, α|
∑
s=±1

d∑
m=1

Pr⃗2+sδ̂m |r⃗2, β⟩ , (2.28)

since Pr⃗ |r⃗2, β⟩ = 0 unless r⃗ is a nearest neighbor of r⃗2. Since P only has NN hopping terms,

this is zero, unless r⃗1 and r⃗2 are equal to each other, or are two hops away from each other,

i.e. only if r⃗2 is of the form r⃗1 ± δ̂p ± δ̂q for some p, q ∈ {1, . . . , d}. In order to show that

the matrix element is zero for the case with two hops, we will require the higher dimensional

analogs of equations (2.18), (2.19) and (2.20), which are

⟨r⃗, α|P |r⃗, α⟩ ≥ 0, (2.29)

⟨r⃗, α|P |r⃗, α⟩+ ⟨r⃗ + δ̂p, β|P |r⃗ + δ̂p, β⟩ = 1 ∀p ∈ {1, . . . , n}, whenever ⟨r⃗, α|P |r⃗ + δ̂p, β⟩ ≠ 0,

(2.30)
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Procedure 4: Construction of a CSOB for any NN projector in arbitrary dimen-

sions
Input : A nearest neighbor projector P acting on a d ≥ 1 dimensional lattice

Procedure: Divide the lattice into two sets A and B consisting of alternating cells,

according to (2.27).

1. Obtain Π̃P
r⃗ and hence Pr⃗, for every r⃗ ∈ A.

2. Obtain the orthogonal projector P − PA := P −∑r⃗∈A Pr⃗.

3. Obtain Π̃P−PA

r⃗ for every r⃗ ∈ B.

Output: The set Π̃ :=
(⋃

r⃗∈A Π̃
P
r⃗

)
∪
(⋃

r⃗∈B Π̃P−PA

r⃗

)
which is a CSOB spanning the

image of P .

and
∑
γ

c.n.∑
v⃗

⟨r⃗, α|P |v⃗, γ⟩ ⟨v⃗, γ|P |w⃗, β⟩ = 0 (2.31)

respectively. The summation in (2.31), with a superscript ‘c.n.’ (for common neighbors) is

over those vectors v⃗ which are nearest neighbors of both r⃗ and w⃗.

For the case where r⃗2 is two hops away from r⃗1, expression (2.28) simplifies to zero as

follows:

⟨r⃗1, α|
d∑

m=1

Pr⃗2+δ̂m |r⃗2, β⟩ = ⟨r⃗1, α|
c.n.∑
w⃗

Pw⃗ |r⃗2, β⟩

=
c.n.∑
w⃗

(dw⃗)γ ̸=0∑
γ

⟨r⃗1, α|P |w⃗, γ⟩ ⟨w⃗, γ|P |r⃗2, β⟩
⟨w⃗, γ⃗|P |w⃗, γ⟩ .

If ⟨r⃗1, α|P |r⃗1, α⟩ = 1, then every term in the summation is zero. Otherwise, we get

. . . =
(δr⃗1)α

1− ⟨r⃗1, α|P |r⃗1, α⟩
c.n.∑
w⃗

∑
γ

⟨r⃗1, α|P |w⃗, γ⟩ ⟨w⃗, γ|P |r⃗2, β⟩ from (2.30),

= 0, from (2.31).

Thus, matrix elements of P − PA can be non-vanishing only if r⃗1 = r⃗2 ∈ B.
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(a) (b)

Figure 2.11: Procedure 4 for a 2d NN projector : Cells belonging to sets A and B are repre-

sented by red and blue dots respectively. (a) In order to obtain PA, we operate P on each

cell belonging to A, and orthogonalize the vectors. Each colored shape centered at location

r⃗ denotes the maximum spatial extent of the wavefunctions in Π̃P
r⃗ . (We show one shape

in green, in order to highlight the ‘plus’ shape of each of these sets). (b) Since P − PA is

on-site hopping, operating it on any cell in set B creates wavefunctions which are localized

at exactly that cell. Each blue circle centered at r⃗ ∈ B represents the maximum extent of

vectors in Π̃P−PA

r⃗ .

The basis vectors obtained using Procedure 4 consist of wavefunctions which have a

maximum spatial extent (volume) of at most 3× . . .× 3 cells. As shown in figure 2.11, they

are in fact significantly smaller in extent than this upper bound.

2.5.3 Translationally Invariant Nearest Neighbor Projectors

Let T̂i denote the unit translation operator along the ith dimension. For r⃗ ∈ Zd, let T̂r⃗ denote
a translation by an amount r⃗.

Although Procedure 4 can also be used to generate a compactly supported orthonormal

basis from translationally invariant projectors, in general the resulting basis will not be a

Wannier basis. However, the wavefunctions can be chosen to have translational invariance
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properties if each Π̃P
r⃗ (Π̃P−PA

r⃗ ) for r⃗ ∈ A (r⃗ ∈ B) is chosen to be a translation of Π̃P
0⃗
(Π̃P−PA

δ̂1
)

by r⃗ (r⃗− δ̂1) cells. Based on this principle, we propose a method (Procedure 5) for obtaining

a CS Wannier basis spanning the image of P within a supercell representation. For d = 1,

this procedure is equivalent to Procedure 2.

Procedure 5: Compactly Supported Wannier Basis for d dimensional NN Projec-

tors
Input : A translationally invariant NN projection operator P on a d dimensional

lattice

Procedure:

1. Obtain ΠP
0 , and orthogonalize it to obtain the set Π̃P

0 .

2. Obtain the orthogonal projection operator P0 onto the span of ΠP
0 .

3. Obtain a reduced projection operator (which removes all the nearest neighbors of the

site δ̂1)

P ′ := P −
d∑
i=1

T̂iT̂1P0T̂ †
1 T̂ †

i −
d∑
i=1

T̂ †
i T̂1P0T̂ †

1 T̂i.

4. Obtain and orthogonalize ΠP ′

δ̂1
to obtain the set Π̃P ′

δ̂1
.

5. Obtain the set Π, defined as

Π =

(⋃
r⃗∈A
{T̂r⃗ |χ⟩ : |χ⟩ ∈ Π̃P

0 }
)
∪
(⋃
r⃗∈B
{T̂r⃗−δ̂1 |χ⟩ : |χ⟩ ∈ Π̃P ′

δ̂1
}
)

(2.32)

Output: The set Π consisting of compactly supported Wannier functions spanning

the image of P , within a size 2× . . .× 2 supercell representation.

Using steps similar to those used for proving theorem 3, we can show that Procedure 5

outputs a CW basis as claimed.
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2.5.4 Supercell representation and Nearest Neighbor Reducible Projectors

We now discuss how to extend the results and methods for NN projectors to SL projectors

with larger hopping distances. To that end, we use a supercell representation analogous

to the one used for 1d in section 2.4.3. Unlike in 1d where every SL projector is an NN

projector in some supercell representation, in general, an SL projector in d > 1 becomes

a next-nearest-neighbor (NNN) hopping projector instead of an NN projector using this

transformation. Specifically, if the maximum hopping distance of an SL projector is b, then

the projector has at most NNN hopping terms within a size b×. . .×b supercell representation
(see figure 2.12). This reversible transformation is associated with the correspondence:

Primitive cell representation←→ Supercell representation

|r1, . . . , rd, i⟩ ≡
∣∣∣r1 \ b, . . . , rd \ b, i+ d∑

m=1

nm(rm mod b)
〉
s
,

(2.33)

Since the methods developed in sections 2.5.2 and 2.5.3 are applicable only to NN pro-

jectors (and not general NNN projectors), even after using a supercell representation, these

techniques cannot be applied to a general SL projector operator for d > 1.

Hence, we look for projectors that have an NN-hopping form using suitable transforma-

tions. We call such projectors NN-reducible. Which SL projectors are NN-reducible? While

SL projectors with various types of connectivity are NN-reducible, here we highlight some

particularly simple cases. It is easy to see that SL projectors that satisfy ⟨r⃗, i|P |r⃗ ′, j⟩ = 0,

whenever r⃗− r⃗ ′ is not along any of the primitive cell directions become NN hopping within

a supercell representation of the type described above. For example, an SL projector on a

square lattice that has non-zero hoppings only along the ±x̂ and ±ŷ directions, but no other

direction is NN-reducible. This is in contrast with the NNN-reducible projectors of the type

shown in figure 2.12(b). For some SL projector that appear to be of an NNN form after the

transformation (2.33), it may still be possible to apply the results from the previous sections

to obtain CS Wannier functions. For example, if an SL projector on a square lattice in a

supercell representation only connects neighboring cells along the x̂ and x̂ + ŷ directions,

the projector is NN-hopping if we regard these two vectors as being the lattice vectors. We
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(a) (b)

Figure 2.12: Each black dot represents a lattice cell (which may consist of multiple orbitals).

The dashed circle denotes the maximum hopping distance from that cell. (a) The connectiv-

ity of a generic SL operator with a maximum hopping distance of b = 2. Hopping elements

from an arbitrary cell are shown in red.Grouping all the sites within each cell of a 2×2 grid,

we obtain a supercell representation. (b) The operator becomes an NNN hopping operator

in the supercell representation. Here, the operator connects neighboring cell along the x̂, ŷ,

as well as the x̂± ŷ directions, with x̂ and ŷ denoting the two axes.

consider all such SL projectors that can be brought to an NN form using change of primitive

cell vectors and supercell transformations as NN-reducible. Without loss of generality, we

only consider NN-reducible projectors that have hopping elements only along the primitive

cell directions below.

For such projectors, we obtain the following results:

Corollary 3. If an SL projector with a maximum hopping distance b is NN reducible, its

image is spanned by a CSOB consisting of wavefunctions of a maximum spatial extent of

3b× . . .× 3b cells.

The procedure for obtaining such a basis is summarized in the following table:
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Primitive cell
Size−−−−→

b×...×b
Supercell representation −→ Primitive cell

representation representation

SL Projector −→ NN Projector
Procedure 4−−−−−−→ CSOB −→ CSOB

(b ≥ 1) (b = 1) (max size 3) (max size 3b).

Corollary 4. If a translationally invariant SL projector with a maximum hopping distance

b is NN reducible, its image is spanned by a CS Wannier basis within a size 2b × . . . × 2b

supercell representation.

The procedure for obtaining such a basis is summarized in the following table:

Primitive cell
Size b−−−→ Size b supercell

Size 2−−−→ Size 2b supercell

representation representation representation

SL Projector (b ≥ 1) −→ NN Projector (b = 1)
Procedure 5−−−−−−→ CS Wannier basis.

This completes our proof for theorem 2.

2.5.5 Topological Triviality and Compact Bases

So far, we have investigated the conditions under which is it possible for a band to be

spanned by compactly supported orthogonal bases (CSOBs) or by compactly supported

hybrid Wannier functions. Specifically, we identified localization properties of associated

projection operators that are necessary or sufficient for the existence of such bases. Similar

questions regarding the existence of localized Wannier functions have a long history, as

noted in the introduction. The existence of exponentially localized Wannier functions has

a bearing on the topological properties of the corresponding bands, with non-trivial band

topology restricting the degree of localization possible for Wannier functions. This motivates

us to investigate the topological properties of bands possessing CSOBs.

We start with a brief overview of known results. Thouless [45] showed that well localized

magnetic Wannier functions can be constructed in 2d if and only if the Chern number

is zero. For d ≤ 3, it was later shown that in the presence of time-reversal symmetry

and translational invariance, exponentially localized Wannier functions corresponding to an
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isolated band or a set of isolated bands always exist [16, 18, 19, 65]. For systems with other

symmetry properties, the existence of such localized Wannier functions is not guaranteed, or

even impossible, when the bands are topologically non-trvial. For instance, bands with non-

zero Chern numbers do not possess exponentially localized Wannier functions [48]. More

generally, there exists a localization dichotomy [46] which says that either exponentially

localized Wannier functions exist and the Chern numbers are zero, or all Wannier functions

are delocalized (with diverging second moment of the position operator) and the Chern

numbers are non-zero. Recently, this result was partially extended to disordered systems [66],

with a proof for the vanishing of the Chern marker for 2d insulators possessing exponentially

localized generalized Wannier functions.

Since compactly supported Wannier functions (in Rn) are even more localized than

generic exponentially local Wannier functions, one may expect topological triviality to follow

immediately from these results. While we find this to be true (as discussed below), care is

needed while drawing such a conclusion. In all the works discussed above, the wavefunction

localization is described in terms of decay of wavefunction amplitude in real space, i.e. Rn.

We note that this notion of localization may not in general be the same as localization in

tight-binding models which we consider in this paper. Specifically, orbitals on the lattice

(Zn) which are used as the basis in tightbinding descriptions may themselves not be com-

pactly supported, or even exponentially localized in space (Rn). Thus the wavefunctions

which are linear combinations of a finite set of such tightbinding orbitals do not in general

vanish outside a certain bounded region in space as one might otherwise assume from the

use of the term “compact support” in describing these wavefunctions.

A number of results relating compact support localization of Wannier functions in tight-

binding models and topological triviality of associated bands are relevant to the cases consid-

ered in this paper. Specifically, it was proved that flat bands in 2d flat-bands Hamiltonians

which are strictly local in a tight-binding sense always have a Chern number of zero [30].

This property can be viewed as arising due to the fact that the flat bands in such models

are spanned by compactly supported Wannier-type functions or CLSs. More recently, this
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result was generalized to all symmetry classes and arbitrary dimensions greater than one, by

proving that the vector bundle associated with band(s) which are spanned by CS Wannier-

type functions are topologically trivial [29]. As discussed in section 2.3.2, CS Wannier-type

functions are in general non-orthogonal, and consequently the orthogonal Wannier functions

we consider in this paper are a special type of CS Wannier-type functions. Similarly, the set

of SL projectors is a subset of the set of projectors that have their images spanned by CS

Wannier-type functions. Thus, it follows directly from the results in [29] that:

Theorem 3. For translationally invariant tight-binding models in d > 1, a set of bands that

is spanned by compactly supported Wannier functions is topologically trivial. More generally,

bands associated with strictly local projectors are topologically trivial.

It follows that translationally invariant NN and NN-reducible projectors are topologically

trivial, since they are SL.

While a topological obstruction exists for constructing localized Wannier functions, no

such obstruction exists for localized hybrid Wannier functions. Since hybrid Wannier func-

tions can be treated as 1d Wannier functions (see section 2.5.1), using the arguments in [20],

it follows that for any number of dimensions, hybrid Wannier functions that are exponen-

tially localized along the localized axis exist, independent of the topological properties of the

associated band(s). For example, as can be seen using the Coulomb gauge, quantum Hall

systems admit localized hybrid Wannier-like solutions that are exponentially decaying along

one direction, despite the Chern number being non-zero [1]. Similarly, anomalous quantum

Hall systems possess maximally localized hybrid Wannier functions that are exponentially

localized [49] despite a non-vanishing Chern number. These statements do no preclude the

possibility of a topologically non-trivial band being spanned by compactly supported hybrid

Wannier function. An interesting consequence of the theorem above, and the equivalence of

strict localization of a projector, and the existence of CS hybrid Wannier functions along all

axes, we find that such bands are necessarily topologically trivial. Specifically:

Theorem 4. For a d > 1 dimensional system, if a set of bands is such that for any of
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the d orthogonal axes, there exist hybrid Wannier functions (spanning the bands) that are

compactly supported along the chosen axis, then the band(s) are topologically trivial.

In this section, we have so far only considered systems which are translationally invari-

ant. It would be interesting to study the topological properties of similar systems without

translational invariance. For example, an analog of compactly supported hybrid Wannier

functions could be a set of wavefunctions not related by lattice translations that are each

compactly supported along one direction, but possibly delocalized along the other directions.

We leave the question of topological triviality of such cases for future work.

Based on physical ground we anticipate that even non-translationally invariant SL pro-

jectors as well as bands associated with CSOBs should be topologically trivial. Using simple

arguments applied to recent results from the literature, we will now show that the latter

statement is indeed true. Specifically, we consider projectors that have no symmetries ex-

cept possibly lattice translation symmetry, i.e. class A systems from the Altland-Zirnbauer

classification scheme [67]. The topological classification of systems across all dimensions is

organized in the form of a periodic table [68, 69]. As can be seen from the table, odd di-

mensional class A projectors are always K-theoretically trivial. However, in 2n dimensions,

they are characterized by the integer valued nth Chern number [70].

Using simple arguments, we will now show that the topological Chern invariant for class

A projectors that are associated with CSOBs is zero.

Theorem 5. In all dimensions, if a projector without symmetries (except possibly lattice

translation symmetry) is such that its image is spanned by a compactly supported orthogonal

basis, then it is Chern trivial.

We only need to show that such projectors in even dimensions are Chern trivial. To that

end, we use the real space expression from [70], for the integer valued Chern number, which

for a 2n dimensional system is given by

Ind P = −(2πi)n

n!

∑
σ

(−1)σ TrP [θσ1 , P ] . . . [θσn , P ], (2.34)
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where Tr denotes the trace operation, the summation is over all permutations σ, and θi

denotes the projection operator onto the positive half plane along the ith direction, i.e.

θi =
∑

α

∑
ri>0 |r⃗, α⟩ ⟨r⃗, α|. Our arguments are based on the following properties of the index:

(i) the additivity of the index for mutually orthogonal projectors, (ii) the independence of

the index from the choice of the origin, or axes, and (iii) the local computability of the

index. Physically, since the 2d case is of the most interest, we demonstrate our arguments

by applying them to the 2d case. These arguments and the conclusion are valid for higher

dimensional cases as well.

First, we note that for 2d, the index is the same as the Chern marker expression [71, 72],

which is the real space analog of the k-space expression for Chern number used for periodic

systems. The Chern marker for a projector P is given by

ChP = −2πiTrP [[θx, P ], [θy, P ]]. (2.35)

As shown explicitly in [71], the Chern marker is additive, i.e. Chern marker of the sum of

two mutually orthogonal projectors is the sum of the Chern markers of the two projectors.

Consider a CSOB of size R, consisting of wavefunctions |ψi⟩. Let P be the orthogonal

projector onto the span of the CSOB. Clearly, P is SL, and is the sum of the orthogonal

projection operators Pi projecting onto states |ψ⟩i’s:

P =
∑
i=1

Pi;

with Pi = |ψi⟩ ⟨ψi| ,

PiPj = δijPi.

(2.36)

By definition, each wavefunction |ψi⟩ has non-zero support only within a circle Bi centered

at some location c⃗i of radius R. (The c⃗i’s are not unique; however, the conclusions that

follow do not depend on the choice.) Thus, each projector Pi has non-zero hopping terms

only within Bi.

From (2.35), we note that ChPi ̸= 0 only if |ψi⟩ straddles both the axes, i.e. if |⃗ci| ≤ R,

and is zero otherwise. For example, if Bi lies entirely in the right half plane, then the

70



operator θx can be replaced by the identity operator in equation (2.35), resulting in a zero

Chern marker (and similarly for other cases). Using this, and the additivity of the Chern

marker, we obtain

ChP = Ch (
∑
|c⃗i|≤R

Pi)︸ ︷︷ ︸
P̃

+Ch(
∑
|c⃗i|>R

Pi) = Ch P̃ .

(For a cartoon picture see figure 2.13.) Since the Chern number is independent of the choice

of the origin, we may shift the origin and reevaluate the Chern number without affecting

its value. Consider moving the origin by a distance of at least 2R in any direction. For

example, let the new location of the origin be (−3R,−3R). Since none of the constituent

wavefunctions of P̃ straddle both of the new axes, Ch P̃ = 0. Consequently,

ChP = 0.

The Chern marker is additive in all dimensions. Thus, applying the same reasoning to

equation (2.34), it is easy to show that projectors associated with CSOBs are Chern trivial

in all dimensions.

2.6 Conclusions

In this paper, we have obtained necessary and sufficient conditions for a band or a set

of bands to be spanned by compactly supported Wannier functions, or in the absence of

lattice translational invariance, for a subspace of the Hilbert space to possess an orthogonal

basis consisting of compactly supported wavefunctions. In 1d tight-binding models, we have

established that there exists a compactly supported orthogonal basis spanning the occupied

subspace iff. the corresponding projection operator is strictly local. In the process, we

presented an algorithm for constructing a compactly supported orthogonal basis for the image

of any strictly local projector. This algorithm generates wavefunctions having a maximum

spatial extent three times the maximum hopping distance of the projector. Nearest neighbor

projectors on a Bethe lattice with arbitrary coordination number also have a compactly

supported orthonormal basis.
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(a) (b)

Figure 2.13: An illustrative example in 2d. (a) Each basis state |ψi⟩ of a CSOB of size

R = 2 is shown by a colored region, and has non-zero support only on the sites within that

region. (b) Only those wavefunctions that have their centers c⃗i’s inside the dashed circle have

non-zero contributions to the Chern marker. Retaining only these wavefunctions defines a

new projector P̃ , which has the same Chern number as P .

For higher dimensional lattices, we showed that while strict locality of the projector

is a necessary condition for the existence of a compactly supported orthogonal basis, a

sufficient condition is that the projector be expressible as a nearest neighbor projector using

a change of primitive cell vectors or a supercell representation. For such projectors, which

we call nearest neighbor reducible, we presented an algorithm for constructing a compactly

supported orthogonal basis, or a compactly supported Wannier basis when translationally

invariant. Additionally, we showed hybrid Wannier functions that are compactly supported

can be constructed for any choice of the localization axis iff. the associated projector is

strictly local. Since the localization properties of band projectors and Wannier functions are

closely related to band topology, we also showed that all translationally invariant strictly local

projectors in systems with dimensions two and higher are topologically trivial. Additionally,

using some simple arguments, we have shown that projectors without any symmetry other

than possibly lattice translation symmetry, that are associated with compactly supported

orthogonal bases are Chern trivial. Moreover, the existence of hybrid Wannier functions
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that are compactly supported along the localized axis for any choice of the localized axis

implies topological triviality, unlike exponentially localized hybrid Wannier functions, which

can exist even for topologically non-trivial bands.

Our results suggest a number of interesting directions for future work. The compactly

supported orthogonal bases resulting from our construction may not be maximally localized.

It would be interesting to improve the bounds on the spatial support of these basis functions,

and also formulate an analytic procedure which results in maximally localized orthogonal

basis functions. In the case of translationally invariant projectors, our procedures generate

Wannier bases in supercell representations. A natural follow-up would be to find minimal

sized supercell representations which have compactly supported Wannier bases. Here, we

have shown that a strictly local projector and a compact orthonormal basis are essentially

equivalent on 1d lattices. For dimensions two and higher, it would be useful to identify local-

ity conditions on the projector operator that are equivalent to the existence of a compactly

supported orthogonal basis. It would also be interesting to prove or disprove the topological

triviality of strictly local projectors in arbitrary dimensional systems in the absence of lattice

translational invariance.
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APPENDIX

2.A Compactly Supported Wannier Functions for an Example

Hamiltonian

In this section, we discuss an example of an SL projector in 1d, and compare our results with

numerical techniques from the literature. To our knowledge, there are no simple methods

in the literature of proving that the span of generic SL projectors possess a compactly

supported orthogonal basis (CSOB). Here, we consider the following example of a 1d two-

band (translationally invariant) Hamiltonian given in k-space by

H(k) =
1

6

h11 h12

h21 h22

 ,

with h11 = 3 sin k + cos k
(
2
√
2 cos k − 2

√
2 sin k + 8

√
2 + 3

)
,

h12 = (cos k − sin k + 4)
(
i− 2

√
2 sin k

)
,

h21 = −(cos k − sin k + 4)(i+ 2
√
2 sin k),

h22 = (cos k + 2)(3− 2
√
2 cos k) + (2 cos k

√
2 + 3)(sin k − 2).

(2.37)

The two energy bands of this Hamiltonian are E1(k) = 2 + cos k, and E2(k) = −2 + sin k.

The band projector corresponding to the E1 band is given by

P (k) =
1

6

 2 cos(k)
√
2 + 3 i− 2

√
2 sin(k)

−i− 2
√
2 sin(k) 3− 2

√
2 cos(k)

 , (2.38)

which is an SL projector. Since the projector is translationally invariant, we seek a Wannier

basis. Our theorem implies that there exist CS Wannier functions spanning each of the two

bands in a size-two supercell representation.

Usually, Wannier functions are computed by first obtaining the corresponding Bloch

wavefunctions. For the example projector, the Bloch wavefunction (upto a phase) is

ψ1(k) =
1√
6

 2
√
2 sin(k)−i√

3−2
√
2 cos(k)

−
√
3− 2

√
2 cos(k)

 . (2.39)
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A corresponding Wannier basis is then obtained through a Fourier transform of the Bloch

wavefunction. Specifically, a Wannier function wR1 (z) localized at cell R can be obtained

using

wR1 (z) =
L

2π

∫ π

−π
dkeik(R−z)ψ1(k), (2.40)

where L is the system size. Since ψ1(k) is a smooth function of k, the corresponding Wannier

function is exponentially localized (see figure 2.14). However, Wannier functions are not

unique, because of a gauge degree of freedom:

ψ1(k)→ eiθ(k)ψ1(k).

A more localized Wannier basis can be obtained by using a ‘better’ gauge θ(k).

While it is not the objective of this paper to obtain maximally localized Wannier func-

tions (MLWFs) for SL projectors, it is useful to compare our approach with the MLWF

procedure [20]. The k-space MLWF procedure converges to the optimal gauge using a gradi-

ent descent procedure on an initial ‘guess’ Wannier basis. While our numerical experiments

indicate that the MLWF procedure generates compactly supported Wannier functions (which

are usually different from the ones obtained using procedure 2), they do not guarantee the

existence of compactly supported Wannier functions for arbitrary SL projectors. In con-

trast, our procedure is analytical, and generates wavefunctions which are exactly compactly

supported.

For non-translationally invariant projectors, a notable point of similarity between the

MLWF procedure and our approach is the starting point which involves choosing ‘trial or-

bitals’ on which the projector is operated. In both procedures, the post-projection wave-

functions are orthonormalized (followed by gradient descent in the case of the MLWF al-

gorithm). While the MLWF procedure uses the Lowdin (i.e. symmetric) orthogonalization

procedure [59], we use the Gram-Schmidt procedure. This is intentional: the Lowdin pro-

cedure is applicable only if the set to be orthogonalized is linearly independent, while the

Gram-Schmidt procedure lacks this restriction. Hence, for generic SL projectors, the real

space MLWF procedure requires suitably chosen trial orbitals. While such a choice may exist,
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Figure 2.14: Wannier functions (WFs) centered at R = 0, corresponding to three differ-

ent gauge choices and corresponding to the span of (2.38) are shown. The wavefunction

probability is plotted a function of position. Green: Numerically obtained Wannier function

corresponding to (2.39) is exponentially localized. Blue: Numerically obtained MLWF is

compactly supported upto numerical precision. Red: The two compactly supported Wan-

nier functions obtained analytically using algorithm 2 in a size 2 supercell representation

have the same probability distribution in the primitive cell representation.

we are not aware of a general method for obtaining one for arbitrary SL projectors. A much

simpler approach (which we adopt) is to choose all the orbitals |r⃗, n⟩ as trial orbitals. The

set ΠP
r⃗ (defined in (2.3)) which is generally linearly dependent can then be orthonormalized

using the Gram-Schmidt procedure.
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CHAPTER 3

Compact Wannier functions in One Dimension

This chapter has been adapted from the preprint (Ref. [73])1:

Pratik Sathe, and Rahul Roy. “Compact Wannier Functions in One Dimension.” arXiv

preprint arXiv:2302.11608 (2023).

3.1 Abstract

Wannier functions have widespread utility in condensed matter physics and beyond. Topo-

logical physics, on the other hand, has largely involved the related notion of compactly-

supported Wannier-type functions, which arise naturally in flat bands. In this work, we

establish a connection between these two notions, by finding the necessary and sufficient

conditions under which compact Wannier functions exist in one dimension. We present an

exhaustive construction of models with compact Wannier functions and show that the Wan-

nier functions are unique, and in general, distinct from the corresponding maximally-localized

Wannier functions.

1The following acknowledgement appeared in the original manuscript: We thank Adrian Culver, Dominic
Reiss, Steven Kivelson and Bartholomew Andrews for discussions, and Fenner Harper for collaboration on
a related project. We acknowledge financial support from the University of California Laboratory Fees
Research Program funded by the UC Office of the President (UCOP), grant number LFR-20-653926. P.S.
acknowledges financial support from Bhaumik Graduate Fellowship (UCLA).
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3.2 Introduction

Wannier functions find applications in almost all areas of condensed matter physics. In

addition to providing a formal justification for the tight-binding approach [5], they help in

understanding a broad range of properties of crystalline materials (see Ref. [74] and the

references therein).

Maximally-localized Wannier functions are often used as a starting point in numerical

studies [20, 75]. The localization properties of Wannier functions also have a direct bearing

on the topological properties of electronic bands [45, 76, 77, 78, 79]. Exponentially-localized

Wannier functions can be constructed if and only if the Chern number and Hall conductivity

of the corresponding filled band(s) are zero [45, 48, 46]. An even stronger form of localization

is compact support, a property of ‘compactly-supported Wannier-type functions’, which

feature in topological no-go theorems [30, 28, 29].

Compactly-supported Wannier-type functions necessarily exist in bands which are com-

pletely flat. Flat-band Hamiltonians have attracted a lot of recent attention [31]. They

can host a variety of interesting phases, from the extensively studied integer and fractional

quantum Hall effects in Landau levels [1] to more recent examples such as unconventional

superconductivity in bilayer graphene [80, 81, 32, 33, 82, 83, 84] and fractional Chern in-

sulators [85, 86, 87]. Consequently, a substantial body of work focuses on systematically

constructing flat-band models [35, 36, 88], often exploiting compactly-supported Wannier-

type functions, which are commonly also known as compact localized states. When such

wavefunctions form an orthogonal basis (a situation arising for example when all bands are

flat [89, 90, 91], or otherwise [38]), the corresponding projector is Chern trivial regardless of

lattice periodicity [10, 92].

Compactly-supported Wannier-type functions, in general, are not orthogonal, and are

therefore not truly Wannier functions (which are orthogonal). In this work, we relate these

two concepts and identify the necessary and sufficient conditions required for the existence

of compactly supported Wannier functions (or compact Wannier functions in short) in one
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dimension, i.e. Wannier functions that vanish outside a finite region of the lattice. Building

on previous work [10], we show that compact Wannier functions (CWFs) can be constructed

if and only if the band projector (or equivalently the appropriate single particle Green’s

function) is strictly local (SL). Our proof leads us to an exhaustive construction in 1d of all

possible models that have CWFs, and thus also of SL projectors. We also show that CWFs

are unique when they span a single band while CWFs that span multiple bands together are

not unique. Finally, we relate compact Wannier functions to compactly supported Wannier-

type functions by showing that the latter must be the same as the former when the former

exist.

Contrary to the intuition that compact localization is a stronger form of localization than

exponential localization, we show that maximally-localized Wannier functions (MLWFs) are

generally not compactly supported but are exponentially localized instead, even when CWFs

can be constructed. However, for nearest-neighbor-hopping projectors, we show that the

MLWFs are compactly supported, and provide a construction to obtain such wavefunctions.

For systems without lattice translational invariance (LTI), we extend this construction to

obtain generalized Wannier functions [93]. Using this method, we show how to obtain an

orthogonal basis of compactly-supported wavefunctions that spans the image of a non-LTI

strictly local projector, with the size of each wavefunction being twice the maximum hopping

range of the projector.

3.3 Setup and Notation

We consider 1d models expressed in tight-binding representations so that single particle

operators are represented by matrices with rows and column labeled by two indices each: an

integer-valued position index x, and an orbital index i = 1, . . . , n.

A compact (i.e. compactly supported) wavefunction is one with non-zero support only

on a finite region of the lattice. We refer to the length of that region as the size of the

wavefunction. We also consider orthogonal projectors (i.e. operators satisfying P = P † =
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P 2), and call a projector P strictly local (SL) if ⟨x1, i|P |x2, j⟩ = 0 whenever |x1 − x2| > R

for some finite integer R. We call the smallest value of R the maximum hopping range of the

projector. For finite systems, this terminology is meaningful only if R is less than the system

size. Our methods and results apply to finite as well as infinite systems. For simplicity of

notation, we will work with the latter.

3.4 Equivalence of compact Wannier functions and strictly local

projectors

In Ref. [10], it was shown by construction that strict locality (SL) of 1d projectors is equiv-

alent to the existence of an orthogonal basis of compactly-supported wavefunctions. For

projectors with lattice translational invariance (LTI) however, the method of construction

did not always result in Wannier functions.

We will now show that in LTI systems, strict locality of a projector is equivalent to the

existence of CWFs corresponding to the band(s). First, we note that if a set of CWFs spans

a set of s ≥ 1 bands, then the corresponding projector P is SL. This follows from the fact

that P (k) =
∑s

i |ψi(k)⟩ ⟨ψi(k)|, where |ψ1(k)⟩ , . . . , |ψs(k)⟩ are the Fourier representations of
distinct CWF flavors. Clearly, P (k) has matrix elements that are all Laurent polynomials

(i.e. Laurent series with finite number of terms) in eik. The proof of the converse is more

subtle as we will now see.

Consider an SL projector with maximum hopping range R ≥ 1. (The case R = 0

is trivial, since P can be diagonalized with an intra-cell rotation thus giving us compact

Wannier functions.) In k−space, it corresponds to a projection matrix P (k) with elements

that are Laurent polynomials in eik with degrees ≤ R. Each step of our iterative procedure

implements an SL unitary rotation Ur(k) that reduces the maximum hopping range of the

projector by 1.

We will now discuss the iterative step. Consider an intermediate step, at the start of

which we have a projector P (r) that has a maximum hopping range r with R ≥ r ≥ 1. Note
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that P (r) can be expressed as

P (r)(k) = P0 +
r∑

m=1

(
Pme

ikm + P †
me

−ikm) , (3.1)

First, we obtain a singular value decomposition (SVD) of Pr, which we conveniently write

as

Pr =
∑
σ ̸=0

nσ∑
i=1

σ |ψσ,i⟩ ⟨ϕσ,i| . (3.2)

σ denotes the non-zero singular values, and nσ denotes the degeneracy of σ. By construction,

all the ψ’s are mutually orthogonal, and so are the ϕ’s.

We note that P 2
r = 0, which follows from (P (r))2 = P (r), and (3.1). Squaring (3.2) and

using P 2
r = 0, we conclude that ⟨ψσ,i|ϕσ′,j⟩ = 0. Therefore, the set S of all ϕ’s and ψ’s

together is a set of orthonormal wavefunctions. If |S| < n (the number of orbitals per cell),

then one can obtain enough wavefunction {|µ⟩} such that together with S, they form an

orthogonal basis for the orbital space H.

We now implement a unit cell redefinition, so that all the ϕ wavefunctions at cell x− 1,

and all the ψ and µ wavefunctions at cell x together are grouped into a new cell at x. This

corresponds to a unitary transformation Ur, given by

Ur(k) =
∑
ϕ

e−ik |ϕ⟩ ⟨ϕ|+
∑
ψ

|ψ⟩ ⟨ψ|+
∑
µ

|µ⟩ ⟨µ| , (3.3)

with
∑

ψ and
∑

ϕ being shorthands for
∑

σ ̸=0

∑nσ

i=1. In this new basis, P (r) transforms to

P (r−1) = U †
rP

(r)Ur (which is also a projection matrix), and has a maximum hopping range

of r − 1, as we will show below.

Before proceeding, let us introduce some useful notation. We find it convenient to repre-

sent the Hilbert space Htotal in two forms, (1) as a tensor product of the position space and

the orbital space H, and (2) as a direct sum of spaces at each cell as follows:

Htotal = Z⊗H,

Htotal =
⊕
x∈Z
Hx,

(3.4)
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where H denotes the n dimensional orbital space, while Hx denotes the Hilbert space at cell

x. (The expressions can be suitable modified for finite systems.)

At the start of an intermediate step of the procedure, let the projector have a maximum

hopping range r ≥ 1, and be denoted by P (r). Hence, in k−space, we can write P (r) =

P0 +
∑r

m=1 Pre
ikr + P †

r e
−ikr. We first compute an SVD of Pr:

Pr =
∑
σ ̸=0

nσ∑
i=1

σ |ψσ,i⟩ ⟨ϕσ,i| . (3.5)

It follows from P 2
r = 0 that all ϕ’s and ψ’s are mutually orthogonal. If the total number of

these wavefunctions is less than n, the number of orbitals per cell, then one can straightfor-

wardly obtain a set of wavefunction {|µ⟩} which completes the basis for H (i.e. the orbital

space).

Now consider the unitary rotation

Ur(k) =
∑
σ ̸=0

nσ∑
i=1

e−ik |ϕσ,i⟩ ⟨ϕσ,i|+
∑
σ ̸=0

nσ∑
i=1

|ψσ,i⟩ ⟨ψσ,i|+
∑
µ

|µ⟩ ⟨µ| . (3.6)

This is equivalent to first implementing an intra-cell rotation followed by a unit-cell redefi-

nition.

In the new basis, the projector is represented by the matrix Ur(k)
†P (k)Ur(k). Clearly, all

the matrix elements of Ur(k)
†P (k)Ur(k) are Laurent polynomials in eik. We will now show

that the degree of each polynomial in Ur(k)
†P (k)Ur(k) is less than r.

The calculation below is straightforward to carry out in the general case with multiple,

possibly degenerate σ’s. For notational simplicity, we will go through the calculation only

for the case with a single non-zero σ, with no degeneracy. This allows us to safely drop the

subscripts σ, i for ψ and ϕ and proceed with a much simpler notation. We then have

Pr = σ |ϕ⟩ ⟨ψ| , (3.7)

and Ur(k) = e−ik |ϕ⟩ ⟨ϕ|+ |ψ⟩ ⟨ψ|+
∑
µ

|µ⟩ ⟨µ| (3.8)

It is straightforward to show that the coefficients of all powers greater than r of eik in
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U †
r (k)P (k)Ur(k) are 0. We will now show that the coefficient of eikr is also zero. We have:

Coefficient of eikr in U †
r (k)P (k)Ur(k) = Coefficient of eikr in(

eik |ϕ⟩ ⟨ϕ|+ |ψ⟩ ⟨ψ|+
∑
µ

|µ⟩ ⟨µ|
)

×
(
P0 +

r∑
m=1

Pme
ikm +

r∑
m=1

P †
me

−ikm
)

×
(
e−ik |ϕ⟩ ⟨ϕ|+ |ψ⟩ ⟨ψ|+

∑
µ

|µ⟩ ⟨µ|
)

= |ϕ⟩ ⟨ϕ|Pr |ϕ⟩ ⟨ϕ|︸ ︷︷ ︸
t1

+
(
|ψ⟩ ⟨ψ|+

∑
µ

|µ⟩ ⟨µ|
)
Pr

(
|ψ⟩ ⟨ψ|+

∑
µ

|µ⟩ ⟨µ|
)

︸ ︷︷ ︸
t2

+ |ϕ⟩ ⟨ϕ|Pr−1

(
|ψ⟩ ⟨ψ|+

∑
µ

|µ⟩ ⟨µ|
)

︸ ︷︷ ︸
t3

= 0.

(3.9)

This is because, t1, t2 and t3 above are all zero. That t1 and t2 vanish follows from (3.7) and

the mutual orthogonality of |ψ⟩, |ϕ⟩ and |µ⟩’s. t3 can be seen to vanish because ⟨ϕ|Pr−1 |µ⟩ =
⟨ϕ|Pr−1 |ψ⟩ = 0. To see this, note that for the case r > 1, equating the coefficients of ei(2r−1)k

on both sides of P (k) = P (k)2 gives us

PrPr−1 + PrPr−1 = 0,

and thus |ψ⟩ ⟨ϕ|Pr−1 + Pr−1 |ψ⟩ ⟨ϕ| = 0. (3.10)

Let ⟨α| (. . . ) |β⟩ denote left-multiplying by ⟨α| and right-multiplying by |β⟩ both sides of

equation (. . . ). Then, we have

⟨ϕ| (3.10) |ϕ⟩ =⇒ ⟨ϕ|Pr−1 |ψ⟩ = 0

and ⟨ψ| (3.10) |µ⟩ =⇒ ⟨ϕ|Pr−1 |µ⟩ = 0.
(3.11)

83



On the other hand, for r = 1, we have

P0P1 + P1P0 = P1

∴ P0 |ψ⟩ ⟨ϕ|+ |ψ⟩ ⟨ϕ|P0 = |ψ⟩ ⟨ϕ| , (3.12)

so that

⟨ϕ| (3.12) |ϕ⟩ =⇒ ⟨ϕ|P0 |ψ⟩ = 0

and ⟨ψ| (3.12) |µ⟩ =⇒ ⟨ϕ|P0 |µ⟩ = 0.
(3.13)

Thus, in either case, t3 = 0 and hence the largest positive power of eik with a non-zero

coefficient in P1(k) is less than r. It follows similarly that all powers of eik that are ≤ (−r)
are also zero, since P (k) is a Hermitian matrix.

We have thus shown that the iterative step transforms an SL projector with a maximum

hopping range r to a projector with a maximum hopping range of at most r − 1.

Thus, after at most R steps, the projector is an on-site hopping projector, so that one

final k-independent rotation U0 finally diagonalizes it. The total unitary transformation is

P (k)→ U †(k)P (k)U(k) = diag(1, . . . , 1, 0, . . . , 0)

with U(k) = UR(k) . . . U1(k)U0. (3.14)

All matrix elements of U(k) are Laurent polynomials in eik. Hence, the inverse Fourier

transforms of the columns of U(k) corresponding to the 1 eigenvalues are CWFs spanning

the bands corresponding to P (k).

It is straightforward to show that the size of the CWFs can be at most R + 1 cells,

if the projector has a maximum hopping range R. To that end, we note that each CWF

obtained via the procedure described above is actually a bare orbital in the rotated basis

determined by U(k). A CWF in the original orbital basis can be obtained by implementing

the rotations in reverse on a bare orbital. Since the application of each Ui increases the

size of a wavefunction in position space by 1 cell, the CWFs cannot be larger than R + 1

cells. Additionally, at least one of the obtained CWF flavors must have a size of R+1 cells.
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(Otherwise, the maximum hopping range of the projector can be inferred to be less than R,

which contradicts the assumption.)

Therefore, the procedure for obtaining CWFs from an SL projector, implemented in

reverse, is a recipe for an exhaustive construction of CWFs as well as of SL projectors with

LTI. For example, if one wants to construct an SL projector spanning a single band in a

three band model, and which has a maximum hopping range of 2, then one can start with

diag(1, 0, 0), and repeatedly transform it using intra-cell unitaries and unit-cell re-definitions.

In the absence of LTI, the crystal momentum k is no longer a good quantum number,

and as a result, this procedure is not directly applicable. Nonetheless, an orthogonal basis

of compact wavefunctions can be constructed for an SL projector without LTI, as shown in

Sec 3.7.

3.5 Application of the Procedure to an Example Projector

In order to the procedure described above in action, we walk through its application for an

example projector and show how to obtain the corresponding compact Wannier functions.

Consider a strictly-local projector with a maximum hopping range of 2, that in k-space is

represented by

P (k) =


1
3
+ e−ik

6
+ eik

6
− e−ik

6
√
2
+ e−2ik

6
√
2
− 1

3
√
2

e−ik

2
√
6
+ e−2ik

2
√
6

− eik

6
√
2
+ e2ik

6
√
2
− 1

3
√
2

5
12
− e−ik

6
− eik

6
1

4
√
3
− e−ik

2
√
3

eik

2
√
6
+ e2ik

2
√
6

1
4
√
3
− eik

2
√
3

1
4

 (3.15)

The coefficient of e2ik, i.e. P2 is

P2 =
1

6
√
2


0 0 0

1 0 0
√
3 0 0

 (3.16)
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An SVD of P2 can be conveniently written as:

P2 =
1

3
√
2
|ψ⟩ ⟨ϕ|

with |ψ⟩ = 1

2

(
0 1

√
3
)T

,

|ϕ⟩ =
(
1 0 0

)T (3.17)

To complete the basis for H, we obtain |µ⟩ = 1
2

(
0 −

√
3 1

)T
. The first rotation according

to the procedure is then U2(k) = eik |ϕ⟩ ⟨ϕ|+ |ψ⟩ ⟨ψ|+ |µ⟩ ⟨µ| which in this case turns out to

be U2(k) = diag(e−ik, 1, 1). The projector after the rotation is represented by

P (1) = U †
2PU2

=
1

6


e−ik + eik + 2 −

√
2eik + e−ik√

2
− 1√

2

√
3
2
+
√

3
2
e−ik

−
√
2e−ik + eik√

2
− 1√

2
−e−ik − eik + 5

2

√
3
2
−
√
3e−ik√

3
2
+
√

3
2
eik

√
3
2
−
√
3eik 3

2

 .
(3.18)

As expected, all entries are Laurent polynomials with degrees less than or equal to 1. In the

next step, we obtain an SVD of the P1 corresponding to P (1):

P1 =
1

6


1 −

√
2 0

1√
2
−1 0√

3
2
−
√
3 0

 ,

which has an SVD given by P1 =
1

2
|ψ⟩ ⟨ϕ|

with |ψ⟩ = −1√
6

(√
2 1

√
3
)T

,

|ϕ⟩ = 1√
3

(
−1

√
2 0

)T
.

(3.19)

The basis for H can be completed by adding the vector |µ⟩ =
(
−
√
2 −1

√
3
)T

to the set

{|ϕ⟩ , |ψ⟩}. The second rotation, U1 = e−ik |ϕ⟩ ⟨ϕ|+ |ψ⟩ ⟨ψ|+ |µ⟩ ⟨µ| is then found to be

U1 =
1

3


2 + e−ik

√
2
(
1− e−ik

)
0

√
2
(
1− e−ik

)
1 + 2e−ik 0

0 0 3

 . (3.20)
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Implementing this rotation, we get

P (1) → P (0) = U †
1P

(1)U1

=
1

12


8 −2

√
2 2
√
6

−2
√
2 1 −

√
3

2
√
6 −

√
3 3

 (3.21)

The final step is diagonalizing P (0) with a unitary U0:

P (0) → U †
0P

(0)U0 =diag(1, 0, 0)

with U0 =


√

2
3
−
√

3
11

1
3

− 1
2
√
3

0 2
√
2

3

1
2

2
√

2
11

0

 (3.22)

Thus, we have implemented a net unitary transformation P → U †PU = diag(1, 0, 0), with

U = U2U1U0, given by

U =


e−2ik(1+eik)√

6
− e−2ik(1+2eik)√

33
1
3
e−2ik

(
−1 + 2eik

)
e−ik(−2+eik)

2
√
3

−
√

2
33
e−ik

(
−1 + eik

)
1
3

√
2e−ik

(
1 + eik

)
1
2

2
√

2
11

0

 (3.23)

The family of Wannier function {|w⟩x |x ∈ Z} corresponding to P is obtained by simply

taking the inverse Fourier transform of the first column of U . Clearly, |w⟩x (up to lattice

translation and phase re-definitions) is

|w⟩x = |x⟩ ⊗


1√
6

0

0

+ |x+ 1⟩ ⊗


1√
6

−1√
3

0

+ |x+ 2⟩ ⊗


0

1
2
√
3

1
2

 (3.24)

As a corollary, we also obtain Wannier functions for (1 − P ), which in this case are the

inverse Fourier transforms of the second and third columns of (3.23).
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3.6 Maximally-localized Wannier functions for strictly-local pro-

jectors

Maximally localized Wannier functions (MLWFs) are defined as Wannier functions that have

the least quadratic spread in space [20, 74]. In 1d, MLWFs are eigenstates of the projected

position operator, i.e. of Px̂P [20].

In 1d, it has been shown that MLWFs have tails that die off exponentially (or faster) [20].

Since CWFs are compactly supported thus having zero support outside of a finite region of

the lattice, it might seem reasonable to assume that they are also maximally localized. We

will now show that this is not the case. Specifically, even when a set of bands is spanned

by CWFs (or equivalently, the projector is SL), the corresponding MLWFs need not be

compactly supported.

To that end, we provide a simple representative example. Consider a two band model

with one band that is spanned by a flavor of CWFs, with the CWF at location x being

|ψx⟩ =
1√
6
(
√
2 |x, 1⟩ − |x+ 1, 1⟩+

+ |x+ 1, 2⟩+
√
2 |x+ 2, 2⟩).

(3.25)

Is it straightforward to express the Px̂P operator in terms of these wavefunctions. We find

that

Px̂P =
∑
x

(
(x+ 1) |ψx⟩ ⟨ψx|

+
1

3
√
2
(|ψx+1⟩ ⟨ψx|+ |ψx⟩ ⟨ψx+1|)

)
.

(3.26)

The MLWFs are then a set, consisting of a wavefunction |wx⟩ which is a simultaneous

eigenstate of Px̂P and P , and all its lattice translates. It is easy to see that no eigenstate

of Px̂P (corresponding to a non-zero eigenvalue) can be compactly supported. (If that were

the case, then |wx⟩ =
∑l+m

i=l ci |ψi⟩ for some ci and finite l and m > 0. We then find that

Px̂P |wx⟩ has a larger spatial spread that |wx⟩, leading to a contradiction.)

Thus for this example, MLWFs are not compactly supported, even though a CWF basis

spans the band. However, the MLWFs are exponentially localized, which also follows from
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Ref. [20]. We expect that the behavior seen in this example applies more generally; in

other words, that the numerical construction of MLWFs will result not in CWFs, but in

exponentially decaying Wannier functions.

Even though CWFs are not always MLWFs, when a projector is nearest-neighbor hop-

ping, the MLWFs are actually compactly supported. Furthermore, if such a projector does

not have LTI, it is still possible to obtain ‘generalized Wannier functions’ [93], which are

analogs of MLWFs. We will prove both these statements in the next section.

3.7 Maximally Localized Wannier Functions for Nearest Neighbor

Projectors

We showed in section 3.4 that strict locality of projectors is equivalent to the existence of

compactly-supported Wannier functions (CWFs) for systems with LTI. However, maximally-

localized Wannier functions (MLWFs) corresponding to a strictly-local (SL) projector can

be exponentially localized and not compact in some cases.

In this section, we will provide some key results for projectors that are nearest-neighbor

(NN) hopping in one dimension, with or without LTI. Specifically, we will show that MLWFs

for NN projectors are always compactly supported. We will provide a procedure for such a

construction. In addition, we will show that even in the absence of LTI, one can construct

analogs of MLWFs called generalized Wannier functions [93] for any NN projector. We

highlight that the MLWFs and generalized Wannier functions have a size of 1 or 2 cell only.

In either case, the obtained wavefunctions are eigenstates of Px̂P .

The procedure for constructing Px̂P eigenstates for NN projectors without LTI is also

applicable to NN projectors with LTI. However, for the latter, we desire to obtain a set of

Wannier functions, which have the property that the set they form is invariant under any

lattice translation operation. Hence, the procedure developed for non-LTI systems requires

modifications in order to obtain MLWFs for LTI NN projectors. Hence we first present the

procedure for NN projectors without LTI, followed by a presentation of the procedure for
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NN projectors with LTI. Finally, we discuss how to extend these results to SL projectors

with larger hopping ranges.

3.7.1 Nearest Neighbor Projectors without Lattice Translational Invariance

First we describe some notation and conventions. We will say that P ‘connects’ two orbitals

if P has a non-zero matrix element between them. We find it convenient to define ‘hopping

matrices’ as follows. For any cell x, hopping matrices P x
i are defined as:

P x
i := ⟨x+ i|P |x⟩ , (3.27)

thus being matrices of size n× n, where n is the number of orbitals per cell. Since P is NN

hopping, for each x only P x
0 and P x

±1 can be non-zero. Furthermore, P x+1
−1 = (P x

1 )
†, since P

is Hermitian.

The primary tool in our procedure is again the singular value decomposition (SVD). Given

an NN projector P , our objective is to obtain eigenvectors of P that are also eigenstates of

the Px̂P operator. To that end, we leverage the properties of various blocks in the matrix

representation of P .

Our procedure is iterative, with each step resulting in an intra-cell unitary rotation. Each

unitary rotation corresponds to a change of basis, and is accompanied by a reduction in the

connectivity of the projector in the new basis. At the end of the procedure, we obtain states

that are simultaneous eigenstates of P as well as Px̂P . We will now present this procedure.

The first step is to diagonalize P x
0 for each x. Thus, at each cell x, we obtain an orthogonal

basis {|x, λi⟩} comprising eigenvectors of P x
0 , that spans the local Hilbert space Hx. Here,

the index i distinguishes degenerate states (if λ is degenerate). For the steps that follow, we

refer to orbitals as being the eigenvectors of the P x
0 matrices. When clear from the context,

we will drop the position index and the degeneracy index if inessential.

We note that all eigenvalues of P x
0 matrices lie in [0, 1]. To see this, consider an eigenvector

|λ⟩ of P x
0 with eigenvalue λ. Then,

P x
0 = (P x

0 )
2 + (P x

1 )
†P x

1 + P x−1
1 (P x−1

1 )†
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=⇒ λ− λ2 = ||P x
1 |λ⟩ ||2 + ||P x−1

1 |λ⟩ ||2 (3.28)

=⇒ λ− λ2 ≥ 0

∴ 0 ≤ λ ≤ 1.

Next, we note that P connects orbitals at adjacent cells only if their eigenvalues add to

1. In other words, ⟨x+ 1, λ′|P |x, λ⟩ = 0, unless λ+ λ′ = 1. This follows from

P x
1 = P x

1 P
x
0 + P x+1

0 P x
1

=⇒ ⟨λ′|P x
1 |λ⟩ = ⟨λ′|P x

1 P
x
0 |λ⟩+ ⟨λ′|P x+1

0 P x
1 |λ⟩

∴ 0 = (λ+ λ′ − 1) ⟨λ′|P x
1 |λ⟩ .

(3.29)

A corollary is that if they exist, λ = 0 states are annihilated by P , while λ = 1 states are

eigenvectors of P with eigenvalue 1. Additionally, it follows that if P x
0 has an eigenvalue

λ, then at least one of P x±1
0 must have an eigenvalue of 1 − λ. (Otherwise, we reach the

contradiction that P has eigenvalues other than 0 and 1.)

With these properties at our disposal, we proceed to the next step, which is to obtain an

SVD of all the P x
1 matrices simultaneously. Specifically, we will show that judicious unitary

rotations at each cell can bring all the P x
1 matrices into diagonal forms simultaneously.

We will show that such rotations can be obtained by implementing SVDs (with particular

properties) of the P x
1 matrices sequentially. [At face value, it is not obvious that this can

be done, because (for example) an SVD of P x
1 can interfere with an SVD of P x−1

1 , since

the domain space and the target space respectively of the two are the same (i.e. Hx).] To

explain how this can be done, we first discuss properties of the SVD of a single P x
1 matrix.

First, we note that orbitals corresponding to λ = 0 and λ = 1 at x (when they exist)

can be ignored, since P x
1 annihilates them. For eigenvalues λ ̸= 0 or 1 of P x

0 , as noted

before, P connects |x, λi⟩ only to the 1− λ orbitals at cells x± 1. Thus, P x
1 has a particular

block structure, with non-zero blocks P x
λ→1−λ that connect the λ subspace at x to the (1−λ)

subspace at x+1. If Hy
β denotes the eigenvalue β subspace at cell y, then the block structure
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of P x
1 can be inferred to be:

P x
1 =

Hx
λ . . . Hx

µ Hx
0 Hx

1



P x
λ→1−λ 0 0 0 0 Hx+1

1−λ

0
. . . 0 0 0

...

0 0 P x
µ→1−µ 0 0 Hx+1

1−µ

0 0 0 0 0 Hx+1
1

0 0 0 0 0 Hx+1
0

, (3.30)

where λ, . . . , µ denote the non-zero eigenvalues of P x
0 . [Note that it is possible for some

eigenvalues to not be ‘paired’ in the matrix representation above. For example P x
0 may have

an eigenvalue γ ∈ (0, 1), but it is possible for P x+1
0 to not have an eigenvalue of 1 − γ.

Similarly, it is possible that there may not be a 0 or 1 eigenspace at x or x+ 1. In all such

cases, the corresponding rows/columns should be understood as being absent in the block

structure above.]

We exploit this block structure, and obtain an SVD of P x
1 by combining the SVDs of each

of the blocks obtained independently. Thus, we can obtain unitary rotations within each λ

subspace at x and each 1−λ subspace at x+1, so that (in the new basis) P x
1 connects every

λ orbital at x with either zero, or exactly one ‘partner’ orbital corresponding to eigenvalue

1 − λ at cell x + 1. Henceforth, orbitals at x and x + 1 will refer to these post-rotation

orbitals.

Having implemented these rotations, let us now discuss how an SVD of P x−1
1 can be

obtained without disturbing the partner structure between cells x and x + 1. To that end,

we first note that whenever orbital |x, λ⟩ has a partner orbital |x+ 1, 1− λ⟩, P does not

connect |x, λ⟩ with any orbital at cell x − 1. (This follows from the fact that P 2 = P is

NN-hopping, so that P x
1 P

x−1
1 = 0.) On the other hand, it also follows that if an orbital |x, λ⟩

with λ ̸= 0, 1 does not have a partner orbital at cell x+ 1, then |x, λ⟩ must be connected to

at least one orbital (which must have eigenvalue 1 − λ) at cell x − 1, and thus P x−1
1 must

have a block P x−1
1−λ,λ that connects these subspaces.
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Thus, P x−1
1 maps the 1− λ orbitals at cell x− 1 only onto those λ orbitals at x that do

not have partner orbitals at x + 1. Thus, an SVD of P x−1
1−λ→λ can be obtained that leaves

untouched the λ orbitals at cell x that have partners at x + 1. Such an SVD also ensures

that all the λ (̸= 0, 1) orbitals at x now get exactly one partner state, either at x + 1 or

at x − 1. [This along with (3.28) implies that the non-zero singluar values of P x
λ,1−λ are all

equal to
√
λ(1− λ).] Implementing such SVDs of all its blocks, we thus obtain an SVD for

P x−1
1 which respects the SVD of P x

1 . In a similar fashion, one can obtain an SVD for P x+1
1

without disturbing the partner structure between cells x− 1 and x.

The procedure ends when SVDs of all the P1s are obtained sequentially following the

prescription above. At the end of the procedure, the connectivity of the projector is greatly

reduced in the rotated orbitals, and has the property that every λ ̸= 0, 1 orbital at a cell

x is connected via P only to itself and exactly one partner orbital (with eigenvalue 1 − λ)
either at cell x − 1 or at x + 1. On the other hand any orbital that corresponds to λ = 0

is annihilated by P , while λ = 1 orbitals are eigenvectors of P with eigenvalue 1. In this

orbital basis, we straightforwardly obtain a generalized Wannier basis, i.e. an orthogonal

basis of the image of P , with the property that each basis vector is also an eigenvector of

Px̂P .

Specifically, the basis consists of ‘monomers’, i.e. all the λ = 1 orbitals that exist, along

with ‘dimers’, each of which is a linear combination of a λ orbital (for λ ̸= 0, 1), and its

(1− λ) partner orbital at a neighboring cell. For example, if orbital |x, λ⟩ corresponding to

eigenvalue λ ̸= 0, 1 of P x
0 has a partner orbital |x+ 1, 1− λ⟩ at cell x + 1, then P x

1 |x, λ⟩ =√
λ(1− λ) |x+ 1, 1− λ⟩. Thus, we can define a state |w⟩ which is a simultaneous eigenstate

of P and Px̂P . Specifically,

|w⟩ :=
√
λ |x, λ⟩+

√
1− λ |x+ 1, 1− λ⟩ ,

is s.t. P |w⟩ = |w⟩ ,

and Px̂P |w⟩ = (x+ 1− λ) |w⟩ .

(3.31)

The set of all such monomer and dimer states forms the set of generalized Wannier functions

for P , since it spans the image of P , and consists of simultaneous eigenstates of P and Px̂P .
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3.7.2 Nearest Neighbor Projectors with Lattice Translational Invariance

We now return to the case of NN projectors with LTI. While the procedure for obtaining

generalized Wannier functions also generates simultaneous eigenstates of P and Px̂P opera-

tors for LTI NN projectors, the obtained basis may not be Wannier functions, since they may

lack the property of forming a set that is invariant under any lattice translation operation.

We will now provide a modification that generates compact Wannier functions (which are

also the maximally-localized Wannier functions).

First, we note that because of LTI, we have only two hopping matrices P1 and P0 [see

(3.27)] that determine the projector, since P (k) = P0+P1e
ik+P †

1 e
−ik. Additionally, many of

the statements from the non-LTI case carry over. Since P †
0 = P0 and P0 = P 2

0 +P1P
†
1 +P

†
1P1,

eigenvalues of P0 are real and lie in [0, 1]. As before, we diagonalize P0 and obtain an

orthonormal eigen-basis {|λi⟩ | λ is an eigenvalue of P0} for the orbital space H, with λs

denoting P0 eigenvalues and i distinguishing degenerate states. Until specified otherwise,

from this point onwards, by orbitals, we will mean vectors from this basis.

Since P1 = P1P0 +P0P1, we note that ⟨µ|P1 |λ⟩ ≠ 0 for λ ̸= 0, 1 only if µ+ λ = 1. Thus,

P connects orbitals λ and µ at neighboring cells only if the sum of the P0 eigenvalues they

correspond to add to 1. We also note that if P0 has an eigenvalue λ ̸= 0, 1, then it also

must have an eigenvalue 1 − λ. So, if nλ denotes the multiplicity of eigenvalue λ, then for

λ ∈ (0, 1), nλ ̸= 0 ⇐⇒ n1−λ ̸= 0. Therefore, P1 has a block structure similar to (3.30).
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Dropping all the position indices from (3.30), we can write it as

P1 =

Hλ H1−λ . . . Hµ H1−µ H0 H1



0 P(1−λ)→λ 0 0 0 0 0 Hλ

Pλ→(1−λ) 0 0 0 0 0 0 H1−λ

0 0
. . . 0 0 0 0

...

0 0 0 0 P(1−µ)→µ 0 0 Hµ

0 0 0 Pµ→(1−µ) 0 0 0 H(1−µ)

0 0 0 0 0 0 0 H0

0 0 0 0 0 0 0 H1

, (3.32)

with λ, . . . , µ denoting eigenvalues of P0 that lie in (0, 0.5], andHλ denoting the λ eigenspace.

λ = 1−λ when λ = 0.5, so the two corresponding rows/columns collapse to one in this case.

Rows (and columns) corresponding to eigenvalues that do not exist for a particular example

should be understood as being absent in the representation above. Similarly to the procedure

for the non-LTI projectors, we will obtain an SVD of the P1 matrix by obtaining the SVDs

of its various blocks.

Let us first consider the blocks corresponding to λ and 1−λ for λ ∈ (0, 0.5). We start with

an SVD of Pλ→(1−λ). If |λ⟩ and |1− λ⟩ are two vectors corresponding to a non-zero singular

value σ so that P1 |λ⟩ = σ |1− λ⟩ and P †
1 |1− λ⟩ = σ |λ⟩, then P1 |1− λ⟩ = 0 and P †

1 |λ⟩ = 0.

[This follows from P 2 = P being an NN operator, so that P 2
1 = (P †

1 )
2 = 0.] In position space,

this means that P maps the span of {|x, λ⟩ , |x+ 1, 1− λ⟩} onto itself. Thus, such vectors are

‘paired’ with each other. As a consequence, P(1−λ)→λ has possibly non-zero matrix elements

only between vectors corresponding to zero singular values of Pλ→(1−λ). An SVD of P(1−λ)→λ

can thus be implemented via rotations affecting only these subspaces, leaving the subspaces

of the paired vectors untouched. At the end of all these rotations, every λ orbital at a cell is

connected to one and only one 1− λ (‘partner’) orbital at a neighboring cell, and similarly

for 1−λ. We note again that all the non-zero singular values of both P(1−λ)→λ and Pλ→(1−λ)

are equal to
√
λ(1− λ). This follows from the equation P0 = P 2

0 + P †
1P1 + P1P

†
1 .

Let us now consider the case of P0.5→0.5. Suppose an SVD of this matrix is given by

95



P0.5→0.5 =
∑

σ ̸=0 σ |ψσ⟩ ⟨ϕσ|. Since P 2
1 = 0, all the ψ and ϕ vectors are orthogonal to each

other. Thus, the set of all |ψ⟩s and |ϕ⟩s form an orthonormal basis ofH0.5. (This is because if

there were to exist any |µ⟩ ∈ H0.5 orthogonal to both |ϕ⟩s and |ψ⟩s, then we would find that

P1 |µ⟩ = P †
1 |µ⟩ = 0, implying that P |x, µ⟩ = 0.5 |x, µ⟩, which is impossible.) In addition,

P0 = P 2
0 +P †

1P1 +P1P
†
1 implies that every singular value σ =

√
0.5(1− 0.5) = 0.5. Thus, in

this basis for H0.5, each orbital has a partner orbital, so that for every partner pair ψ and

ϕ, P maps the span of {|x, ϕ⟩ , |x+ 1, ψ⟩} onto itself.

It is now straightforward to construct Wannier functions using these orbitals. For each

eigenvalue λ ∈ (0, 0.5] of P0, every orbital |λ⟩ is paired with exactly one orbital |1− λ⟩. For
every such pair, {

√
λ |x, λ⟩+

√
1− λ |x+ 1, 1− λ⟩ |x} forms one flavor of Wannier functions.

Similarly, if an eigenvalue of 1 exists, every corresponding eigenvector and all its lattice

translates form a flavor of Wannier functions. It is straightforward to see that all these

wavefunctions are eigenstates of Px̂P as well, and are thus the maximally-localized Wannier

functions (MLWFs) for the span of the projector.

3.7.3 Larger Hopping Range Projectors without Lattice Translational Invari-

ance

For lattice translationally invariant (LTI) strictly-local (SL) projectors with maximum hop-

ping range R > 1, as shown in Section 3.4, we can always construct CWFs spanning its

image, with each wavefunction having a maximum size of no more than R+1. However, the

technique is not applicable to projectors that are not LTI. In order to obtain an orthogonal

basis of compact wavefunction for such projectors with a maximum hopping range R, we

first consider a supercell representation, so that R cells in the original lattice are clubbed

together to form one supercell. In the supercell representation, the SL projector is now an

NN projector. We can now apply the procedures from the previous subsections, and obtain

a basis that spans the image of P . Reverting back to the original (i.e. primitive cell) lattice

representation, this basis is then an orthogonal basis of compactly-supported wavefunctions

that spans the image of P . These wave-functions then have a maximum spatial extent of no
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more than 2R cells.

3.8 Uniqueness of compact Wannier functions

We will now show that if a single band is spanned by CWFs {|ψx⟩ |x ∈ Z}, then these CWFs

form a unique set of Wannier functions (up to a phase) that are compactly supported for

that band.

We prove this by contradiction. Suppose there exists another flavor of CWFs, {|ϕx⟩ |x ∈
Z} that spans the band. Then every |ϕx⟩ can be expressed as a superposition of a finite

number of |ψy⟩’s, so that

|ϕx⟩ =
∑
k≤i≤l

ci |ψx+i⟩ , (3.33)

with integers k and l such that both ck and cl ̸= 0. Since the ϕ’s are Wannier functions,

they are orthogonal to their translates. With T denoting translation by one unit cell, we

thus have

0 = ⟨ϕx|T l−k |ϕx⟩

=
∑

k≤i,m≤l
c∗i cmδi+k,m+l

= c∗l ck,

(3.34)

which is impossible since both cl and ck are non-zero. Thus, every other WF of the band is

a superposition of an infinite number of translates of |ψ⟩’s, implying that CWFs for a single

band are unique up to inconsequential phases.

In contrast, the CWFs for multiple bands are not unique, so that when a set of multiple

bands are together spanned by a set of CWFs, one can generate many such sets. For

example, if two band are together spanned by CWFs {|ψx⟩ |x ∈ Z} ∪ {|ϕx⟩ |x ∈ Z}, then
{(|ψx⟩ + |ϕx⟩)/

√
2 | x ∈ Z} ∪ {(|ψx⟩ − |ϕx⟩)/

√
2 | x ∈ Z} forms a distinct set of CWFs

spanning the same set of bands.

97



3.9 Uniqueness of compactly-supported Wannier-type functions

for a strictly-local projector

Wannier-type functions are a generalization of Wannier functions, in that they form a pos-

sibly non-orthogonal or even an over-complete basis for a set of bands. The existence of

compactly-supported Wannier-type functions (CWTs) implies topological triviality in di-

mensions d > 1 [29]. A flat band (in a lattice of any dimensionality) is spanned by such

wavefunctions, which are called compact localized states or CLSs in that context [35], and

are eigenstates of the Hamiltonian.

SL projectors can be associated with flat, i.e. dispersionless bands (for example, see

Ref. [89, 91, 91]) as well as dispersive bands. However, not all flat-band projectors are

strictly local, and in general one cannot construct CWFs for flat bands. (For a detailed

discussion, see section 2 of Ref. [10]). Consequently, CLSs or CWTs are not, in general,

expected to form an orthogonal basis.

We will now show that if a single flavor of CWTs spans a band described by an SL

projector P , then the CWTs are actually the unique CWFs spanning the band. To that end,

we will show that if a single flavor of CWTs spans a band, the CWTs form an orthogonal set

of wavefunctions. In Fourier space, the CWTs, say {|ψx⟩ |x ∈ Z} each of size p, correspond to

a possibly unnormalized, but non-vanishing Bloch-like wavefunction |ψ(k)⟩ =∑p−1
j=0 |ϕj⟩ eikj

(with |ϕ0⟩ ≠ 0 and |ϕp−1⟩ ≠ 0). Thus, the band projector P (k) can be expressed as P (k) =

P(k)
Q(k)

, with P(k) = |ψ(k)⟩ ⟨ψ(k)| and Q = ⟨ψ(k)|ψ(k)⟩. Each element of P , and Q are

then Laurent polynomials in eik with degrees at most p − 1. Since each matrix element

Pij = QPij, the degree of Q is < p − 1 (or else, it equals p − 1 and P (k) has degree

0, in which case the problem is trivial and hence we will not discuss it further). Thus

⟨ϕp−1|ϕ0⟩ = 0, with both vectors being non-zero. One can thus iteratively implement unit-

cell redefinitions similar to (3.3) with the identification ϕ0 → ϕ and ϕp−1 → ψ, and conclude

that U(k) |ψ(k)⟩ =
(
1 0 . . . 0

)T
, and therefore |ψ(k)⟩ is normalized for all k after all.

In other words, the CWTs are actually CWFs, and it then follows from the uniqueness of
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CWFs that the CWTs are the unique CWFs. We note that a similar procedure was used

in Ref. [91] for constructing compact localized states for Hamiltonians that only have flat

bands.

3.10 Conclusions

Flat, or dispersion-less electronic bands in tight-binding models are spanned by compactly-

supported Wannier-type functions, which in general can form a non-orthogonal set. In line

with the localization-topology correspondence, their existence is known to be incompatible

with topological non-triviality of the band(s) they span. Wannier-type functions are never-

theless not true Wannier functions. In one-dimensional models, we answered the question

of when one can form compact Wannier functions from compact Wannier-type functions.

We showed that the existence of compact Wannier functions is equivalent to the strict local-

ity of the band projector (or the single-particle Green’s function). We provided a method

for constructing compact Wannier functions corresponding to a strictly-local projector. We

also showed that they are unique if they span a single band, and furthermore, compactly-

supported Wannier-type functions are equivalent to compact Wannier functions when the

latter exist.

For bands spanned by compact Wannier functions, we showed that maximally-localized

Wannier functions are in general exponentially localized and not compactly supported, ex-

cept when the band projector is nearest-neighbor hopping. In the latter case, we presented a

procedure for obtaining maximally-localized Wannier functions (generalized Wannier func-

tions) for projectors with (without) lattice translational invariance. We also presented a

method for constructing all possible 1d models that have compact Wannier functions, which

we expect will find applications in the construction of flat-band models with a rich variety

of applications in single-particle and many-particle physics.

A simple corollary of our work is that in higher dimensions, hybrid Wannier functions

that are compactly supported along one direction can exist if and only if the band projector
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is strictly local along that direction. While our methods do not directly apply to higher

dimensions, they could conceivably be modified to identify conditions equivalent to the

existence of compact Wannier functions in higher dimensions. A lot of our results and

discussion can also be rephrased in terms of the single-particle Green’s function which suggest

generalizations to interacting systems.
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CHAPTER 4

Flat Hamiltonians are Topologically Trivial

This chapter has been adapted from the following preprint (Ref. [94]) 1:

Pratik Sathe, and Rahul Roy. “Topological Triviality of Strictly-Local Flat Hamiltonians.”

arXiv:2309.06487 (2023).

4.1 Abstract

Landau levels play a key role in theoretical models of the quantum Hall effect. Each Landau

level is degenerate, flat and topologically non-trivial. Motivated by Landau levels, we study

tight-binding Hamiltonians whose energy levels are all flat. We demonstrate that in two

dimensions, for such Hamiltonians, the flat bands must be topologically trivial. To that end,

we show that the projector onto each flat band is necessarily strictly local. Our conclusions

do not need the assumption of lattice translational invariance.

4.2 Introduction

Topological phases of matter are a cornerstone of modern condensed matter physics. Begin-

ning with the discovery of the quantum Hall effects (QHE) [95, 96], topology has played an

important role in understanding and predicting novel phases of matter ranging from topo-

1The following acknowledgement appeared in the original manuscript: We thank Adrian Culver for pro-
viding helpful comments on the manuscript. P.S. and R.R. acknowledge financial support from the University
of California Laboratory Fees Research Program funded by the UC Office of the President (UCOP), grant
number LFR-20-653926. P.S. acknowledges financial support from the Center for Quantum Science and
Engineering Fellowship (UCLA) and the Bhaumik Graduate Fellowship (UCLA).
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logical insulators and superconductors to topologically ordered phases of matter [97, 98].

The Hall conductivity of a filled Landau level or a Bloch band is proportional to a

topological invariant called the Chern number [99, 100, 101]. Much like Landau levels, a

Bloch band that is flat or dispersionless and which has a non-zero Chern number can host

fractional quantum Hall phases when subject to interactions. Such systems are known as

fractional Chern insulators (FCIs) and hold significant experimental appeal since they have

the potential to exhibit fractional QHE at small (or even zero) magnetic fields and high

temperatures [102]. Consequently, a substantial amount of research has focused on the

study of topological flat-band models (see Refs. [51, 86, 103] for reviews).

Hamiltonians with flat bands are also interesting because of numerous other phenom-

ena they exhibit [31]. The effects of interactions are pronounced in flat-band Hamiltoni-

ans, and hence they serve as a platform to explore novel correlated phases of matter. In

addition to FCIs, some prominent examples include unconventional superconductivity in

bilayer graphene [32, 84, 81, 33], flat-band superfluidity [104, 105] and flat-band ferromag-

netism [106].

Various no-go theorems restrict the possibility of topological flat bands. Strict localization

of a band projector, a condition more restrictive than band flatness, was shown to imply a

vanishing Hall conductance [76]. Further, if a strictly local (SL) Hamiltonian has a flat band,

then it must have a Chern number of zero [30, 29]. These results apply to Hamiltonians

with lattice translational invariance (LTI). It has also been shown that local commuting

projector Hamiltonians cannot exhibit the QHE [92]. The non-interacting limit of such a

model has a flat band which is spanned by an orthogonal basis of compactly supported

wavefunctions [10, 73].

Non-interacting Hamiltonians that exclusively have flat bands, which we call flat Hamil-

tonians, have also attracted significant attention. Flat Hamiltonians can exhibit uncon-

ventional behavior when interactions are introduced. Some examples include many-body

localization in translationally-invariant Hamiltonians [107, 108], non-linear caging [91, 109]

and transport via two-particle bound states [110, 111]. Furthermore, the spectrum of a flat
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Hamiltonian is similar to Landau levels since all the energies are flat and degenerate. Due

to this resemblance, topological flat Hamiltonians that have SL hoppings seem to be partic-

ularly promising as platforms for fractional QHE. Indeed, many of the initial proposals for

FCIs were Hamiltonians with all bands being approximately flat [112, 113, 114, 115].

In this Letter, we prove some unique properties of SL flat Hamiltonians with exactly flat

bands and establish a no-go theorem. First, we show that the projection operators associated

with all the flat bands in a SL flat Hamiltonian are also SL, regardless of lattice dimension or

the system having LTI. Next, we show that the spectrum of such a Hamiltonian is unchanged

even with twisted boundary conditions. By utilizing properties unique to SL projectors, we

show that each flat band in a flat Hamiltonian has a Chern number of zero. (We compute

the many-body Chern number defined in terms of the twist angles [100].) More generally,

our statement applies to any Hamiltonian that has a highly degenerate spectrum, regardless

of whether it has LTI. The no-go theorem is summarized below.

Theorem. Consider a SL tight-binding Hamiltonian defined on a 2d system of size Lx×Ly
cells with periodic boundary conditions. Let n denote the number of distinct energies and

R denote the maximum hopping range of the Hamiltonian. If Lx,y ≥ 3nR, then the Chern

number associated with each energy is 0.

We note that within the context of flat Hamiltonians with LTI, the inequality above is

broadly satisfied. However, exotic models (such as those in Ref. [116] which have an extensive

number of flat bands) that do not have this property can evidently be topological.

4.3 Notation and Setup

We consider 2d tight-binding Hamiltonians with orbitals |r, α⟩ where r = (x, y) denotes

cell position and α = 1, . . . , N denotes different orbitals in a unit cell. We will restrict our

discussion to systems that lie on a torus (i.e. those that satisfy periodic boundary conditions).

Without loss of generality, we consider square lattices of size Lx × Ly with lattice constant

1.

103



The concepts of strict localization of operators and wavefunctions will play an important

role in our arguments. A wavefunction is compactly supported if it has non-zero support only

on a finite region of the lattice. On the other hand, an operator O in an infinite sized system

is said to be strictly local (SL) if ⟨r, α| O |r′, β⟩ = 0 (for any α, β) whenever |r− r′| > R for

some finite number R. We call the smallest value of R for which this is true the maximum

hopping range of the operator. For finite sized systems, this condition is satisfied by every

operator. Therefore, we instead propose the following definition for finite-sized systems on

a torus: an operator is called SL if it does not connect any two cells that are maximally

separated from each other. This is equivalent to the conditions 2R + 2 ≤ Lx/y.

The central focus of this manuscript is on flat Hamiltonians, which we now define. We

recall that in an infinite sized system, the spectrum of a Hamiltonian with LTI consists of

a finite number of continuous bands following Bloch’s theorem. The energy eigenvalues of a

Hamiltonian on a finite system are necessarily discrete but are still arranged in the form of

bands if the Hamiltonian is LTI. In particular, each band is spanned by Bloch wavefunctions

at a set of discrete values of the crystal momentum that are equal in number to the system

size. If a Hamiltonian with LTI only has flat bands, then we call it a flat Hamiltonian. Thus,

each energy level has a degeneracy equal to the system size. In the case of Hamiltonians

without LTI, we consider Hamiltonians that have a similar property of possessing highly

degenerate energy levels. In a slight abuse of notation, we will refer to the distinct energy

levels of such Hamiltonians as flat bands even in the absence of LTI. Regardless of LTI, all

our results are derived for Hamiltonians and system sizes which satisfy 3nR ≤ Lx,y, where n

denotes the number of distinct energies or flat bands, and R denotes the maximum hopping

range of H. Strictly speaking, in addition to the condition Lx,y ≥ 3nR, we also require that

the Hamiltonian satisfy Lx,y ≥ 2nR + 2 to ensure that all the projectors are SL. Except for

the special (and uninteresting) case of nR ∈ {0, 1}, it is always true that 3nR ≥ 2nR + 2,

so that we simply require Lx,y ≥ 3nR.

Each energy eigenspace of a Hamiltonian may be associated with an orthogonal projector,

i.e., a Hermitian operator P which satisfies P 2 = P . The locality properties of projectors
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associated with energy eigenspaces will form an important part of our subsequent discussion.

We will also find it useful to use a simple kind of dimensional reduction. Specifically,

any 2d SL operator can always be regarded as a 1d SL operator by grouping together all

the lattice sites in every row (or column) into a single 1d lattice site. In particular, a 2d

next-nearest-neighbor (NNN)-hopping projector P (i.e. one with R =
√
2) is also a nearest-

neighbor (NN)-hopping projector (with R = 1) on a 1d lattice with one truncated dimension.

We will find it useful to define ‘hopping matrices’ for 1d SL projectors. Specifically, we

define P x
i for a SL projector P as follows:

P x
i := ⟨x+ i|P |x⟩ . (4.1)

The number of rows or columns in this matrix is equal to the number of orbitals in each cell.

We note that such hopping matrices can also be defined for 2d SL projectors by regarding

them as 1d projectors using the dimensional reduction described above.

4.4 All Projectors of a Flat Hamiltonian are Strictly Local

Proposition: If a Hamiltonian is strictly local (SL), and has a finite number of distinct

energies, then each of the projectors onto individual energies is also SL. Furthermore, if the

maximum hopping distance of the Hamiltonian is r, and the number of distinct energies is

n, then the maximum hopping distance of each of the band projectors cannot be more than

rn.

Proof : Let H be the Hamiltonian, with a finite number of distinct energies E1, . . . , En,

arranged in increasing order. Let the corresponding projectors be denoted by P1, . . . , Pn.

Without loss of generality, all the energies can be chosen to be non-zero. (In case an energy

is zero, one can always add a constant energy shift that makes all the energies non-zero.

This has no effect on the projectors and hence our conclusions.)
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We then find that

H =
n∑
i=1

EiPi

H2 =
n∑
i=1

E2
i Pi

...

Hn =
n∑
i=1

En
i Pi,

(4.2)

where we have used the property P 2
i = Pi for every i.

Note that Hn has a maximum hopping distance no more than Rn. Hence, each of the

operators H, . . . , Hn has vanishing matrix elements between any locations separated by a

distance greater than Rn. Let i ≡ (r⃗1, α) and j ≡ (r⃗2, β) label orbitals α and β at locations

r⃗1 and r⃗2 satisfying |r⃗1 − r⃗2| > Rn. Equating the (i, j) matrix elements of both sides of

equations (4.2) gives us 
E1 E2 . . . En

E2
1 E2

2 . . . E2
n

...
...

En
1 En

2 . . . En
n




(P1)i,j

(P2)i,j
...

(Pn)i,j

 =


0

0
...

0

 (4.3)

We note that the determinant of the matrix on the left hand side is non-zero. This is because

det


E1 E2 . . . En

E2
1 E2

2 . . . E2
n

...
...

En
1 En

2 . . . En
n

 =

(
n∏
i=1

Ei

)
det


1 1 . . . 1

E1 E2 . . . En
...

...

En−1
1 En−1

2 . . . En−1
n


=

n∏
i=1

Ei
∏

1≤i<j≤n
(Ei − Ej)

̸= 0

(4.4)

The last line follows from Ei being distinct, non-zero energies, while the intermediate

determinant is the well-known Vandermonde determinant.
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Recalling that a homogeneous system of linear equations has non-trivial solutions if and

only if the coefficient matrix is non-singular, we conclude that the only solution for (4.3) is

the trivial one (i.e. the zero vector).

In other words, each of the projectors P1, . . . , Pn are strictly-local with maximum hopping

ranges less than or equal to nR, since the conclusion about the uniqueness of the solution

is applicable to all r1, r2 that satisfy |r1 − r2| > nR. This statement is independent of the

dimensionality of the lattice as well as whether the Hamiltonian is invariant under lattice

translations. (In Ref. [91], it was stated without proof that strictly-local flat Hamiltonians

must have strictly-local projectors, in the context of 1d Hamiltonians with lattice trans-

lational invariance. [See the discussion below equation (A22) in that paper.] By proving

this conjecture, we fill a gap in their proof for the statement that each band in a 1d flat

Hamiltonian can be spanned by compact Wannier function.)

For systems of infinite size and finite n, all the projectors are thus SL. However, for

finite-sized systems, the projectors may not be SL if nR is comparable to the system size.

Since pi ≥ R for at least one i, q := max{R, p1, . . . , pn} is such that q ≤ nR. Thus, all the

projectors are SL if 2q + 2 ≤ Lx/y. This is guaranteed if 2nR + 2 ≤ Lx/y.

In the subsequent sections, the following observation will be useful. If we group the unit

cells so that q×q primitive cells form a supercell, then all the projectors and the Hamiltonian

are NNN-hopping operators. If Lx is not divisible by q, then we choose the first ⌊Lx/q⌋ − 1

number of supercells along x̂ to consist of q cells each (where ⌊.⌋ denotes the floor function),
while the last supercell will comprise Lx − q(⌊Lx/q⌋ − 1) number of primitive cells. We

implement a similar grouping along ŷ if Ly is not divisible by q.

4.5 Niu-Thouless-Wu (NTW) Invariant

In the presence of disorder and/or interactions, there is no band structure, and hence one

cannot express the transverse conductivity in terms of the Chern number of a Bloch band [see

(1.25)]. However, Niu, Thouless andWu [100] showed that even in the presence of interactions
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and disorder, Hall conductance is still quantized and is equal to the Chern number computed

with a base manifold corresponding not to the Brillouin zone, but to certain magnetic fluxes

(or equivalently, ‘twist angles’ for twisted boundary conditions). Specifically, the parameter

space consists of the two fluxes inserted through the two holes of a torus, on which the lattice

of the system is considered lie on; see Fig. 4.1. Substrate potential that may or may not be

periodic, as well as electron-electron Coulomb interactions are allowed. It is assumed that

at any values of fluxes, the (many-body) ground state is always gapped.

ϕy

ϕx

x̂

ŷ

Figure 4.1: Periodic boundary conditions are imposed on the system, so that it lies on a

torus. Two magnetic fluxes ϕx and ϕy are inserted through the two holes of the torus. The

x̂ and ŷ directions are shown for reference.

Then, using the Kubo formula, they show that the transverse conductivity is essentially

proportional to the Berry curvature at the particular parameter values. At this point, they

argue that in the infinite system size limit, the boundary conditions should not matter, and

hence the actual transverse conductivity must be this quantity, averaged over all the twist

angles. This is, of course the Chern number of the many-body ground state wavefunction, in

the flux parameter space, and is hence quantized. For finite system sizes, the Chern number

can be defined using the same formula.

Let us go through the derivation of the formula. With magnetic vector potential given

by A = ϕx
Lx
x̂+ ϕy

Ly
ŷ, the Hamiltonian is then

H =
∑
i

(pi + eA)2

2m
+
∑
i

Ui(ri) +
∑
i<j

V (|ri − rj|) (4.5)
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Let E denote an external electric field. This results into a perturbation to the Hamiltonian,

given by eE.r. Denoting by ∂µ ≡ ∂
∂Eµ

, we note that

erµ = ∂µH. (4.6)

The current density is given by j = ev/A, where A = LxLy is the surface area. Let |Ψ⟩ ≡
|Ψ(ϕx, ϕy)⟩ denote the many-body ground state as a function of the fluxes. Using linear

response theory [see (1.19) and (1.18)], we thus get

σµν = ∂µ⟨jν⟩ =
2e

A
Re ⟨Ψ|OTQ |∂µΨ⟩

=
2e2

A
Re ⟨Ψ| vνTrµ |Ψ⟩

=
ℏe2

A
2 Im ⟨Ψ| vνT 2vµ |Ψ⟩ . (4.7)

The velocity operator components are given by vµ = −i
ℏ [rµ, H] = Lµ

e
∂H
∂ϕµ

. Plugging into

(1.18), we have

Tvµ |Ψ⟩ =
Lµ
e
Q
∣∣∂ϕµΨ〉 (4.8)

Plugging into (4.7), we get

σxy = −iℏ[
〈
∂ϕxΨ

∣∣∂ϕyΨ〉− h.c.] (4.9)

This quantity is not quantized. However, for large system sizes, the physical properties

would not depend on the boundary condition, and hence the magnetic flux values. Hence,

Niu, Thouless and Wu argued that one could replace σxy by the average over all flux values

ϕx, ϕy ∈ [0,Φ0), where Φ0 = h/e. Taking an average, we find that

σ̄xy =
e2

h
C

where C =

(
1

2πi

∫ Φ0

0

∫ Φ0

0

dϕx dϕy
〈
∂ϕxΨ

∣∣∂ϕyΨ〉− 〈∂ϕyΨ∣∣∂ϕxΨ〉) . (4.10)

where C is the Chern number and only has integer values.

While the actual conductivity is equal to the flux-averaged conductivity only in the

thermodynamic limit, the Chern number, as defined above, is well-defined for any system size.
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Even for finite systems, the transverse conductivity has been shown to be proportional to this

Chern number up to exponentially small errors in the system size [117, 118]. Consequently,

the transverse conductivity for finite system sizes is also equal to e2C/h up to exponentially

small errors. We can straightforwardly generalize (4.10) in order to define a Chern number for

an isolated flat band or energy in a flat Hamiltonian. Specifically, we use expression Eq. (4.10)

but with |Ψ⟩ taken to be the ‘flat band wavefunction’, i.e. the many-body wavefunction

corresponding to only the flat band states being fully occupied, with the rest of the energies

being unoccupied. We will henceforth use this definition.

4.6 Spectrum and Projectors after Flux Insertion

The spectrum of a non-flat Hamiltonian generally changes when magnetic fluxes are threaded

through the two holes of a torus as shown in Fig. 4.1. However, for flat Hamiltonians which

have SL projectors (and which further satisfy Lx,y ≥ 3q and Lx,y ≥ 2q + 2), the spectrum is

unchanged even after threading any amount of flux, as we will show below.

Let us first consider the case when only ϕx is inserted, so that H changes to H(ϕx)

following Peierls substitution [7]. We choose a gauge for the substitution that corresponds

to twisted boundary conditions (TBCs) [100], so that only those hopping elements that

cross the boundary at x = Lx are modified. In other words, every hopping elements that

connects a cell with an x-coordinate in {Lx−R+1, . . . , Lx} to a cell with an x-coordinate in

{1, 2, . . . , R} is multiplied by a phase of e−2πiϕx/Φ0 , while hoppings in the reverse direction get

multiplied by e2πiϕx/Φ0 . (Φ0 = h/e is the magnetic flux quantum.) The rest of the hopping

elements are unchanged in the substitution.

Similarly, we can implement TBCs for all the Pi as well, if they are SL. Denoting the

post-transformation operators by Pi(ϕx)s, we note that

H(ϕx) =
N∑
i=1

EiPi(ϕx). (4.11)

While it is not immediately obvious, this equation is actually a spectral decomposition of

H(ϕx) when Lx ≥ 3q, as shown in Appendix 4.A.
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This fact can also be used to obtain a spectral decomposition for the Hamiltonian

H(ϕx, ϕy), the Hamiltonian with both the fluxes are inserted, if Ly ≥ 3q and Ly ≥ 2q + 2.

The key idea is to treat H(ϕx) as the ‘initial Hamiltonian’ and repeat the steps above.

Specifically, we obtain H(ϕx, ϕy) by applying TBCs to H(ϕx) along ŷ. Transforming the

projectors similarly, so that Pi(ϕx)→ Pi(ϕx, ϕy), we get

H(ϕx, ϕy) =
N∑
i=1

EiPi(ϕx, ϕy). (4.12)

Applying the proof from Appendix 4.A again, we conclude that (4.12) is also a spectral de-

composition. Thus, flat Hamiltonians have the interesting property of having an unchanging

spectrum if Lx,y ≥ 2q + 2 and Lx,y ≥ 3q. Both these conditions are satisfied if Lx,y ≥ 3nR

and Lx,y ≥ 2nR + 2.

4.7 Many-Body Wavefunctions after Magnetic Flux Insertion

Let us proceed with the task of computing the Chern number corresponding to a flat band

in a flat Hamiltonian. Let the energy of the flat band be E and the corresponding projector,

P . We assume that Lx,y ≥ 3nR so that the spectrum of a flat Hamiltonian is unaffected by

the fluxes as shown above. Thus, for any ϕx, ϕy, while the state of the system corresponding

to that energy level being fully filled is unique, the corresponding wavefunction |Ψ(ϕx, ϕy)⟩
has a phase ambiguity. We will now provide a prescription that fixes the phase to obtain a

global expression for |Ψ(ϕx, ϕy)⟩ that can then be used to compute the Chern number.

We will start with a brief outline of our approach. First, we obtain a particular type of

orthogonal basis of single-particle wavefunctions spanning the energy E subspace when no

fluxes are inserted. The Slater determinant then yields |Ψ⟩ at zero flux. Next, we consider the
case when only ϕx is inserted, so that P transforms to P (ϕx). We show that wavefunctions

obtained for ϕx = 0, when modified appropriately, are eigenstates of P (ϕx) and thus span E

at flux ϕx. The corresponding Slater determinant yields |Ψ(ϕx)⟩, which by construction is

shown to be a smooth function of ϕx. In the last step, we insert flux ϕy in addition to ϕx.

Specifically, for each value of ϕx, we follow a similar procedure to obtain a smooth family of
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wavefunctions as a function of ϕy. This finally results in a global expression for |Ψ(ϕx, ϕy)⟩.

For the remainder of the manuscript we will work within the size q×q supercell represen-
tation described previously. Thus, H and all Pis are then NNN operators in this represen-

tation, and we have a supercell grid of a size of at least 3× 3 since we assumed Lx,y ≥ 3nR.

The wavefunctions obtained in this representation can always be expressed in the original

primitive cell representation at the end.

The first step involves obtaining the flat band many-body wavefunction before inserting

ϕx. First, we demote the y index to an orbital index so that P can be regarded as a NN

projector on a 1d lattice with position coordinate x. Next, we will use the property that

the image of a 1d SL projector can always be spanned by an orthogonal basis of compactly-

supported wavefunctions [10, 73]. Specifically, we use the construction of generalized Wannier

functions presented in Ref. [73] for 1d NN projectors. The wavefunction so obtained are of

two types: ‘monomers’ and ‘dimers’. A monomer has support on only one cell, while a dimer

has support only on two consecutive cells. (In the original 2d picture, each such wavefunction

is strictly localized along x̂ but is possible delocalized along ŷ.)

Monomer-dimer bases have an important property which we call the ‘support property’.

Specifically, whenever two wavefunctions from such a basis have non-zero support at a com-

mon cell, say x0, then their supports at x0 are also mutually orthogonal.

We note further that a monomer-dimer basis so obtained is not unique. For instance,

multiplying any monomer or dimer in a given basis by a phase itself results in a different

basis. Less trivial possibilities arise whenver any P x
1 hopping matrix [defined in (4.1)] has

degenerate singular values; see Ref. [73]. However, for our purpose, it suffices to choose any

valid monomer-dimer basis for P . For convenience, let us denote the chosen basis by a set B.
We obtain the flat band many-body wavefunction |Ψ⟩ at zero flux by computing the Slater

determinant of B.

Next, we insert flux ϕx so that P now transforms to P (ϕx). The hopping matrices of

P that connect x = 0 and x = 1 get transformed, with the rest being unaffected. The
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substitution can be summarized as:

P 0
1

ϕx−→ e−2πiϕx/Φ0P 0
1

and P 1
−1

ϕx−→ e2πiϕx/Φ0P 1
−1.

(4.13)

While B is not an orthonormal basis for the image of P (ϕx), a simple modification of it does

span the image. Consider two subsets of B, namely C which consists only of those dimers

that have support at both x = 0 and x = 1, and U that consists of all other wavefunctions

from B, so that B = U ∪C. It is easy to see that every element of U is also an eigenvector of

P (ϕx) (with an eigenvalue of 1), since P (ϕx) is the same as P except for hopping elements

between x = 0 and x = 1. However, the elements of C are not eigenvectors of P (ϕx). They

can however be modified as follows. Consider a wavefunction |w⟩ ∈ C. Let

|w⟩ = α |x = 0, ψ0⟩+ β |x = 1, ψ1⟩ , (4.14)

for some support vectors |ψ0,1⟩. We now define |wϕx⟩ as follows:

|wϕx⟩ := α |x = 0, ψ0⟩+ e−i2πϕx/Φ0β |x = 1, ψ1⟩ . (4.15)

Using (4.13) and the fact that P |w⟩ = |w⟩, we conclude that P (ϕx) |wϕx⟩ = |wϕx⟩. Let us

denote by Cϕx the set obtained after modifying every element of C in this way, and define

Bϕx := U ∪ Cϕx . Then, using the support property of monomer-dimer bases, we furthermore

conclude that Bϕx is an orthogonal basis (and actually a monomer-dimer basis) for the image

of P (ϕx). For any value of ϕx, the Slater determinant of Bϕx thus yields |Ψ(ϕx)⟩. Clearly,

|Ψ(ϕx)⟩ is a smooth function of ϕx. Furthermore, since Bϕx=Φ0 is the same as Bϕx=0, we also

find that |Ψ(ϕx = 0)⟩ = |Ψ(ϕx = Φ0)⟩.

Having obtained |Ψ(ϕx)⟩, we will now discuss the last step, i.e. obtaining the many-body

wavefunction when ϕy is also inserted. To that end, for any value of ϕx, we first set H(ϕx) to

be the ‘initial’ flat Hamiltonian and then apply the entire procedure discussed above, but for

the flux ϕy. [We thus obtain monomer-dimer states for each band projector Pi(ϕx, ϕy), with

the states being strictly localized along ŷ.] The Slater determinant of these wavefunctions,

denoted |Ψ̃ϕx(ϕy)⟩, corresponds to the flat band at those flux values. Since the many-body

113



state corresponding to the flat band is unique for any flux values, |Ψ(ϕx)⟩ and |Ψ̃ϕx(ϕy = 0)⟩
must be the same up to a phase, so that |Ψ(ϕx)⟩ = eiθϕx |Ψ̃ϕx(ϕy = 0)⟩ for some θϕx ∈ R.

Finally we define |Ψ(ϕx, ϕy)⟩ := eiθϕx |Ψ̃ϕx(ϕy)⟩.

We find that by construction, for all values of ϕx and ϕy,

|Ψ(ϕx, 0)⟩ = |Ψ(ϕx,Φ0)⟩ ,

and |Ψ(0, ϕy)⟩ = |Ψ(Φ0, ϕy)⟩ .
(4.16)

Using Stokes’ theorem, we can write (4.10) as

C =
1

2π

∮
Γ

i ⟨Ψ|∇ϕΨ⟩ .dϕ, (4.17)

where Γ is the boundary (0, 0)→ (Φ0, 0)→ (Φ0,Φ0)→ (0,Φ0)→ (0, 0).

From (4.16), we conclude that the line integral contributions from (0, 0) → (Φ0, 0) and

(Φ0,Φ0)→ (0,Φ0) cancel each other, and so do those from (Φ0, 0)→ (Φ0,Φ0) and (0,Φ0)→
(0, 0). Consequently, C = 0. Let us note that while our proof of Chern triviality was stated

for flat bands in flat Hamiltonians, all the steps can also be used to prove that the Chern

number associated with an isolated degenerate energy (or a flat band) that has SL projector

is zero, regardless of whether the rest of the bands are flat.

While our arguments apply only to tight-binding models, we find it interpret them in

the context of Landau levels. The fact that Landau levels are infinite in number seems to

provide an escape route, since it does not imply that the projection operators are strictly

local, which forms a crucial part of the remaining proof.

4.8 Conclusions

We showed that all bands of a two dimensional strictly local (SL) flat Hamiltonians have a

Chern number of zero. To that end, we showed that each band in such a system is described

by a SL projector. We also showed that the spectrum of such Hamiltonians is unchanged

even after flux threading in a toroidal geometry. We demonstrated all our results without

the requirement of lattice-translational invariance (LTI) thereby going beyond existing no-go
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(0, 0) (Φ0, 0)

(0,Φ0) (Φ0,Φ0)

|Ψ(ϕx, ϕy)⟩

ϕx

ϕy

Figure 4.2: The (ϕx, ϕy) parameter space with ϕx, ϕy ∈ [0,Φ0]. For any pair of values (ϕx, ϕy),

wavefunction |Ψ(ϕx, ϕy)⟩ is obtained in two steps – by applying the single-flux procedure for

the flux insertions corresponding to each of the two red arrows in sequence. The line integral

in (4.17) is computed along the boundary of the region (black arrows).

theorems concerning flat bands. Furthermore, we clarified the role of a subtle condition that

allows for a topological flat Hamiltonian in finite systems.

An important step of our proof involved showing that each band projector is strictly

local. Since projection operators are equal-time Green’s functions in non-interacting systems,

generalizations to interacting cases might be possible. Our no-go theorem was proven for

system sizes that are greater than a lower bound expressible in terms of the number of

energies and maximum hopping range of the Hamiltonian. It would be interesting to obtain

an improved lower bound.

115



APPENDIX

4.A Proof of Spectrum not changing after Flux Insertion

In the main text, it was asserted that when a flux ϕx is inserted, the spectrum of a flat

Hamiltonian does not change (if Lx ≥ 3q and Lx ≥ 2q + 2). Here, we provide a proof for

this statement.

Let us denote the spectral decomposition of the flat Hamiltonian H by

H =
n∑
i=1

EiPi, (4.18)

where PiPj = PjPi = Piδij. R and pi denote the maximum hopping ranges of H and Pi

respectively, and q := max{R, p1, . . . , pn}. As described in the main text, the Hamiltonian

gets transformed according to Peierls substitution upon inserting ϕx. We chose a gauge for

the substitution which corresponds to twisted boundary conditions (TBCs) with a boundary

at x = Lx (or equivalently, x = 0). In order to implement Peierls substitution on the

projectors as well, we require that they be SL along x̂. This requires that Lx ≥ 2q + 2.

Denoting by Pi(ϕx) the post-substitution version of Pi, we obtain

H(ϕx) =
n∑
i=1

EiPi(ϕx). (4.19)

We will now show that similar to the original Pis, each Pi(ϕx) is an orthogonal projector and

that any two distinct projectors from this transformed set are mutually orthogonal.

We will find it convenient to work in the size q × q supercell representation described in

the main text, so that H and all the Pis are NNN-hopping. Since the y-coordinate does not

play a role here, the problem is effectively 1d. Hence, we suppress the y-coordinate for the

following steps. Each Pi can then effectively be treated as a 1d NN projector.

We will start by showing that each Pi(ϕx) is an orthogonal projector. To that end, let us

consider any projector P ∈ {P1, . . . , Pn}. If Lx ≥ 3q, then there are at least 3 supercells in

the lattice. Peierls substitution for P (implemented in the primitive cell representation) is
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then equivalent to modifying only those hopping matrices [as defined in Eq. (4.1) in the main

text] that connect x = 0 and x = 1 in the supercell representation. Thus, in the supercell

representation, the changes are captured by the following transformations of the hopping

matrices:

P 0
1

ϕx−→ e−2πiϕx/Φ0P 0
1

and P 1
−1

ϕx−→ e2πiϕx/Φ0P 1
−1.

(4.20)

Note that if Lx < 3q, then we only have two supercells, and Peierls substitution implemented

in the primitive cell representation is not equivalent to (4.20) in the supercell representation.

Since we make use of (4.20) below, we require that Lx ≥ 3q at this point.

Before inserting a flux, P is an orthogonal projector and hence satisfies P 2 = P = P †.

This is equivalent to the conditions

(P x
j )

† = P x+j
−j ,

P x
0 = (P x

0 )
2 + (P x

1 )
†(P x

1 ) + (P x−1
1 )(P x−1

1 )†,

and P x
1 = P x+1

0 P x
1 + P x

1 P
x
0 ,

(4.21)

for all cell positions x. It is straightforward to show P continues to satisfy (4.21) even after

undergoing Peierls substitution (4.20). Thus, every Pi(ϕx) is also an orthogonal projector.

Now let us consider any two distinct projectors P,Q ∈ {P1, . . . , Pn}. They necessarily

satisfy PQ = QP = 0. Expressed in terms of the hopping matrices, these equalities can be

written as

P x
0Q

x
0 = Qx

0P
x
0 = 0

P x
1Q

x
0 + P x+1

0 Qx
1 = Qx

1P
x
0 +Qx+1

0 P x
1 = 0

P x+1
1 Qx

1 = Qx+1
1 P x

1 = 0.

(4.22)

It is easy to show that P and Q continue to satisfy (4.22) even after undergoing the sub-

stitution (4.20) (and its analog for Q). Thus, all the Pi(ϕx)s together are a set of mutually

orthogonal projectors. Eq. (4.19) is therefore a spectral decomposition.
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CHAPTER 5

Delocalization Transition in Chiral Floquet Topological

Insulators

5.1 Introduction

The localization of eigenstates of a non-interacting Hamiltonian in the presence of disor-

der, a phenomenon known as Anderson localization, has broad implications in condensed

matter physics, and statistical mechanics in general [119]. While any amount of disorder

localizes all eigenstates in a one-dimensional system, in dimensions three and higher, a

metal-insulator transition exists as a function of disorder strength [120]. (In the special case

of two-dimensional systems, the eigenstates are localized, but with possibly large localization

lengths.)

Quite broadly, topological non-triviality (of a kind that depends on the context) can

provide an obstruction to the localization of eigenstates. We have already encountered some

examples in the previous chapters, wherein non-trivial topology restricts the possibility of

Wannier functions that are well-localized. Another related connection between localization

and topology arises in the plateau transition [121]. Specifically, in the integer quantum Hall

effect, disorder localizes all states except for those at the center of every Landau level, where

at least one delocalized state exists because of the topological non-triviality of Landau levels.

The localization length of eigenstates as a function of energy difference from the center of

the band diverges with an exponent believed to be universal.

In this chapter, we present some analogous results in the context of Floquet topolog-

ical insulators, i.e. systems with non-interacting, time-periodic Hamiltonians. We find a
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localization-delocalization transition which is universal for a certain class of models. Fur-

thermore, these results are interesting in their own right in the context of Floquet phases.

A rich variety of topological phases can be observed in the context of driven systems, with

characteristics unique to Floquet systems which are absent in static systems [122]. Similar to

the periodic table of (static) topological insulators [123] which provides a classification of the

phases corresponding to different symmetry classes and dimensions in the Altland-Zirnbauer

classification of symmetries [124], an analogous periodic table classifying Floquet topological

insulators has been established [125].

We consider the simplest type of a Floquet topological insulator, a one-dimensional class

AIII Floquet insulator (which has chiral or sublattice symmetry but does not have time-

reversal or particle-hole symmetries). The focus of the current chapter is to analyze the

localization properties of topologically non-trivial Hamiltonians in this class of models in the

presence of disorder. Instead of considering localization lengths as a function of energy, we

study them as a function of time. In particular, we find that in loop drives (see below), the

localization length Lloc of all the eigenstates of the time evolution operator as a function of

time diverge to infinity as

Lloc ∼ (t− Tdrive/2)−2, (5.1)

when t→ Tdrive/2, where Tdrive is the time period of the drive [i.e. of H(t)].

A forthcoming manuscript aims to present various aspects of our results in a comprehen-

sive manner and to provide an analytical explanation for the universality of the exponent of

2, and by expanding on the scope of our results. We also note that some preliminary results

have also been reported in Ref. [126]. In this chapter, we focus on presenting the main result

and a derivation of the exponent in a particular ensemble of disordered drives. Let us start

with a discussion of some the setup and relevant definitions.
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5.2 Overview of Chiral Floquet Topological Insulators

The Hamiltonian H(t) have a time period of Tdrive. The study of Floquet topological insula-

tors often revolves around the time-evolution operator U(t), for values 0 ≤ t ≤ Tdrive. U(t)

can be computed using

U(t) = T exp

[
−i
∫ t

0

dt′H(t′)

]
,

where T is the time-ordering symbol.

Unlike Hamiltonians, which have real eigenvalues, unitary operators have eigenvalues

which lie on the complex unit circle. Thus, for any t, we have eigen-equations of the type

U(t) |Ψ⟩ = e−iϵt |Ψ⟩ , (5.2)

wherein ϵt is defined modulo 2π. ϵ is called a quasi-energy. Similar to Bloch’s theorem for

Hamiltonians, if H(t) has lattice translational invariance, the quasienergies are arranged in

a quasi-energy band structure.

We recall that topological insulators have a gap in their spectrum when the system is

closed (i.e. has periodic boundary conditions), and when the insulator is in a topologically

non-trivial phase, the corresponding open system has one or more edge modes in a gap.

Similarly, in the case of Floquet topological insulators, we consider drives that have a gap in

the quasienergy spectrum for U(Tdrive). It is then possible to define the ‘Floquet Hamiltonian’

HF , defined via the expression

U(Tdrive) = exp(−iHFTdrive).

Equivalence classes have been defined in Ref. [125] using a notion of homotopy. Specif-

ically, two gapped drives U1 and U2 in a symmetry class S are said to be homotopically

equivalent if there exists a function h(s) for s ∈ [0, 1] such that h(0) = U1 and h(1) = U2,

with h(s) being a gapped unitary in the symmetry class S for all value of s.

Let us now discuss loop drives, which are the center of focus of this chapter. First,

let us note that in general, U(Tdrive) ̸= 1. However, in Ref. [125] it was argued that an
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arbitrary Floquet unitary can be decomposed into a combination of a static evolution, and

a ‘loop’ evolution. The loop component is a unitary operator U(t) for 0 ≤ t < 1 such

that (upto an appropriate scaling of time) U(0) = U(1) = 1. The properties of the drive

that are uniquely Floquet were then shown to be captured by the loop component. While

any Floquet drive can be decomposed into a loop and a constant part, here, we will only

consider Floquet drives that have the loop property without requiring a decomposition, so

that U(t = 0) = U(Tdrive) = 1.

Returning to the class AIII Floquet drives, i.e. the objects of interest in this chapter, we

note that are defined by the following properties of the corresponding Hamiltonian H(t):

CH(t)C−1 = −H(−t), (5.3)

and by implication CU(Tdrive)C
−1 = U †(Tdrive).

Here, the chiral operator C is a unitary operator such that C2 = CC† = 1. For the case with

two orbitals per site, we choose a basis in which C = 1 ⊗

1 0

0 1

. A class AIII Floquet

loop drive is then a drive which furthermore satisfies U(Tdrive) = U(0) = 1.

It may be verified that at the midpoint of drive, we have [127]

CU(Tdrive/2)C
−1 = U(T/2),

so that U(Tdrive/2) has a block diagonal form

U(Tdrive/2) =

U+ 0

0 U−

 .

The topological invariant characterizing one dimensional class AIII loop drives is then the

flow invariant of U+ as defined in Ref. [127]:

ν[U ] = F [U+] =
∑
j≥0

∑
k<0

(|U jk
+ |2 − |Ukj

+ |2),

where U jk
+ is the j, k-component of the unitary matrix U+, j is summed over all orbitals with

positions ≤ 0, while k is summed over all orbitals with positions > 0. The flow invariant F [V ]

for any 1d unitary V has been shown to be integer valued by Kitaev [128]. Consequently, the

topological invariant as defined above for the class AIII loop drives is also integer-valued.
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5.2.1 The Model Drive

Much of the analysis in this chapter will revolve around a simple drive, henceforth referred

to as the ‘model drive’, which was introduced in Ref. [127].

The model drive is defined on a chain with orbitals |n,A⟩ and |n,B⟩ for n ∈ Z, and has

the following Hamiltonian:

H(t) =



H1 if 0 < t < Tdrive
4

H2 if Tdrive
4

< t < Tdrive
2

H2 if Tdrive
2

< t < 3Tdrive
4

H1 if 3Tdrive
4

< t < Tdrive

, (5.4)

with

H1 =
2π

Tdrive

∑
n

(|n,A⟩ ⟨n,B|+ |n,B⟩ ⟨n,A|);

H2 = −
2π

Tdrive

∑
n

(|n+ 1, A⟩ ⟨n,B|+ |n,B⟩ ⟨n+ 1, A|).
(5.5)

Without loss of generality, we choose Tdrive = 2π. The minus sign in the expression for H2

ensures that at the midpoint of the drive, the Floquet unitary moves A orbitals to the right,

and B orbitals to the left without adding a phase. Much of our analysis will revolve around

analyzing the model drive with some added disorder.

Before proceeding, let us study the eigenstates of the time evolution operator U(t) around

the midpoint, i.e. for π/2 < t < 3π/2. With ∆t := t − Tdrive/2, we are therefore concerned

with the range of values−π/2 < ∆t < π/2. An eigenstate of |Ψ⟩ satisfies U(t) |Ψ⟩ = e−iϵt |Ψ⟩.
We may express |Ψ⟩ in position space as

|Ψ⟩ =
∑
n

(
ΨA(n) |n,A⟩+ΨB(n) |n,B⟩

)
.

It is straightforward to see that the eigenequation can also be written in terms of these

components as

cos(∆t)ΨA(n− 1) + i sin(∆t)ΨB(n) = e−ϵtΨA(n)
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i sin(∆t)ΨA(n) + cos(∆t)ΨB(n+ 1) = e−iϵtΨB(n),

for all n. This formula can be more conveniently written asΨA(n+ 1)

ΨB(n+ 1)

 =

eiϵt sec∆t i tan∆t

−i tan∆t e−iϵt sec∆t


︸ ︷︷ ︸

Mn

ΨA(n)

ΨB(n)

 . (5.6)

We call Mn the position-space transfer matrix, since it tell us how the amplitudes of an

eigenstate at a cell n+ 1 are related to the amplitudes of the same eigenstate at cell n.

5.2.2 Disordering the Model Drive

In order to obtain a family of drives that are in some sense a ‘disordering’ of the model drive,

the simplest approach might be to replace H1 or H2 in (5.5) by some disordered variants.

However, the loop property is unlikely to hold for an arbitrary drive picked from such an

ensemble.

We instead propose an ensemble of Floquet Hamiltonians with the following form:

H(t) =



Hd if 0 < t < ∆

H1 if ∆ < t < ∆+ Tdrive
4

H2 if ∆ + Tdrive
4

< t < ∆+ Tdrive
2

H2 if ∆ + Tdrive
2

< t < ∆+ 3Tdrive
4

H1 if ∆ + 3Tdrive
4

< t < Tdrive +∆

−Hd of Tdrive +∆ < t < Tdrive + 2∆

(5.7)

Here, H1 and H2 are those defined in (5.5). In order to ensure that the drive has the loop

property, the random Hermitian matrix Hd must satisfy the condition:

CHdC = Hd, (5.8)

so that Hd can be written as

Hd = HA
d ⊕HB

d , (5.9)
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wherein the pieces H
A/B
d act on the A and B sublattices individually.

We find it convenient to take ∆→ 0+ by scaling Hd appropriately, so that H(t) is has a

period of Tdrive instead of Tdrive + 2∆. Clearly, the time evolution operator is then given by

U(t) = Uclean(t)Ud 0 < t < Tdrive

wherein Ud = exp(−iHd) and Uclean(t) corresponds to the time evolution operator of the

model drive without disorder. It is to be understood that at t = Tdrive, we also multiply by

U †
d , i.e. U(Tdrive) = U †

dUclean(t)Ud = 1.

Any ensemble of Hds which satisfies this property generates AIII Floquet loop drives.

For the remainder of the thesis, we work with a particular ensemble. Specifically, we choose

Hd that acts on each A and B orbital separately, so that Ud defined above can be written as

Ud =
N∑
n=1

(
eiϕn,A |n,A⟩ ⟨n,A|+ eiϕn,B |n,B⟩ ⟨n,B|

)
(5.10)

Expressing an eigenvector of U(t) for π/2 < t < 3π/2 in position space and plugging into

the eigenequation U(t) |Ψ⟩ = e−iϵt |Ψ⟩, we obtain a position-space transfer matrix similar to

(5.6):ΨA(n+ 1)

ΨB(n+ 1)

 =

 eiϵt+ϕn,A sec∆t i tan∆t

−i tan∆tei(ϕn,A−ϕn+1,B) e−iϵt−iϕn+1,B sec∆t


︸ ︷︷ ︸

Mn

ΨA(n)

ΨB(n)

 . (5.11)

Such a transfer matrix can be used to numerically compute the localization lengths of

eigenvectors as a function of the quasienergy ϵ and ∆t (time away from the midpoint of the

drive). Specifically, for any combination of ϵ and ∆t, one may obtain many transfer matrices

by randomly generating ϕn,A and ϕn,B for a given ensemble, and obtain the rate at which

the logarithm of the larger eigenvalue of the product MN . . .M1 increases as a function of

N . The inverse of this rate yields the localization length. For more details of this procedure

as well as the corresponding numerical results, we refer the reader to Ref. [126].
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5.3 Fyodorov-Sommers Method

We now switch gears and derive the position-space transfer matrix using an alternate proce-

dure, based on the Fyodorov-Sommers (FS) formalism [129]. We start with a basic overview

of the FS formalism. Then, we focus on the model drive with full on-site disorder, beginning

with a discussion for two arrangements of the leads, which we refer to as the ‘A-B’ and ‘1-2’

arrangements. For this problem, we show that the FS formalism applied to a particular

setup is equivalent to the real space transfer matrix approach discussed above that resulted

in Eq. (5.11). Specifically, the scattering matrix obtained using FS is the same as the scat-

tering matrix corresponding to the tranfer matrix corresponding to (5.11). We also derive

the log additivity of the transmission probability, which gives us the exact localization length

for all ∆t’s.

5.3.1 Scattering Formalism in Discrete Time Systems

We will now discuss the general development of the Fyodorov-Sommers approach [129]. Let U

be a unitary operator which acts on a 1d lattice, and dictates the evolution of a wavefunction

Ψ[T ], where T ∈ Z denotes the time. Thus,

Ψ[T + 1] = UΨ[T ]. (5.12)

Here, we interpret Ψ[T ] as a column vector, and U as a unitary matrix. Consider a system

with three subspaces, Ein, Eout and E0, which can be interpreted as the incoming, outgoing

and ‘sample’ spaces. These subspaces need not be mutually orthogonal, nor is it necessary

for Ein ⊕ Eout ⊕ E0 to equal the total Hilbert space.

In the context of scattering, the change in one time step of the probability of the particle

being in the sample region, is equal to the difference between the incoming probability

ϕin[T ]
†ϕin[T ] and the outgoing probability ϕout[T ]

†ϕout[T ], i.e. the particle conservation

condition:

ψ[T + 1]†ψ[T + 1]− ψ[T ]†ψ[T ] = ϕin[T ]
†ϕin[T ]− ϕout[T ]†ϕout[T ]. (5.13)
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The vectors Ψ and ϕin/out are projections onto the corresponding subspaces, i.e.

ψ[T ] = P0Ψ[T ],

ϕin[T ] = PinΨ[T ],

ϕout[T ] = PoutΨ[T ].

These projectors are rectangular matrices with the number of rows equaling the dimension

of the space to be projected onto, and the number of columns equaling the dimension of the

Hilbert space (the projectors satisfy PP T = 1, but not P TP = 1).

The sample vector at time T +1 depends only on the sample vector and incoming vector

at time T , while the outgoing vector only depends on the sample and incoming vectors. To

summarize, the action of the unitary restricted to these subspaces is given byψ[T + 1]

ϕout[T ]

 = V

 ψ[T ]

ϕin[T ]

 ;

V =

 A Wout

Win S0

 .

(5.14)

Note: Intuitively, one would want to write ϕout[T + 1] instead of ϕout[T ] as the second

component of the vector on the left hand side. However, this only results in an overall

change of phase for the scattering matrix, i.e. S[ω]→ e−iωS[ω]. Hence, to keep the notation

consistent with [129], we use their convention.

It is easy to show that if equations (5.12) and (5.14) are both true, then V is a unitary

matrix.

Now, let us decompose the wavefunction Ψ[t] in the Fourier space, so that

Ψ[T ] =
∑
ω

e−iωTΨ[ω];

Ψ[ω] =
∑
T

eiωTΨ[t].
(5.15)

With similar decompositions for ψ and ϕin/out vectors. In the Fourier space, equation (5.14)
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becomes

∑
ω

e−iωT

ψ[ω]e−iω
ϕout[ω]

− V
 ψ[ω]

ϕin[ω]

 = 0. (5.16)

Setting T to 1, we conclude that the matrix equation inside the square brackets must be

zero. We eliminate ψ[ω] from this system of two equations. It is easy to show that we finally

obtain:

ϕout[ω] = S[ω]ϕin[ω];

with S[ω] = S0 +Wout
1

e−iω − AWin.
(5.17)

It is straightforward to prove that S[ω] is unitary for any ω. The unitarity of S can be

inferred from the unitarity of V . One way to prove the unitarity of S is to multiply V † to

both sides of equation (5.16). This gives us ϕin[ω] = S[ω]†ϕout, with the same S as in (5.17).

Since this equation as well as equation (5.17) is valid for all values of ϕin[ω], S[ω] has to be

unitary.

5.3.2 Rotated Basis Formula

Here, we derive in detail an alternate and more compact expression, equation (5) in [129],

for the V matrix in (5.14).

Let the dimensions of the Ein/out and E0 spaces be m and p respectively. The unitarity

of V gives us the following conditions:

AW †
2 +W1S

†
0 = 0 (5.18)

AA† +W1W
†
1 = 1 (5.19)

W2W
†
2 + S0S

†
0 = 1 (5.20)

A†W1 +W †
2S0 = 0 (5.21)

A†A+W †
2W2 = 1 (5.22)

W †
1W1 + S†

0S0 = 1. (5.23)
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Here, W1 and W2 are the Win and Wout matrices. Now, W2 is an m × p matrix. We now

obtain an SVD of W2, Clearly, there exist unitary matrices U (1) and V (1), and a p×m sized

diagonal rectangular matrix τ such that

W2 = U (1)τ †V (1).

Equation (5.20) implies that

S0S
†
0 = U (1)(1− τ †τ)U (1)†

=⇒ ∃ V (2) s.t. S0 = U (1)
√

1− τ †τV (2)

Equation (5.22) implies that

A†A = V (1)†(1− ττ †)V (1).

Clearly, this implies the existence of a unitary X of size p× p s.t.

A = X
√
1− ττ †V (1).

We can always define a new unitary U = V (1)†X. In terms of U , we thus get

A = V (1)†
[
U
√

1− ττ †
]
V (1)

Similarly, (5.19) implies that

W1W
†
1 = V (1)†U(ττ †)U †V (1).

This implies the existence of a unitary matrix Y such that

W1 = V (1)†U∆tY.

Plugging these all into (5.18), we get

V (1)†U
[√

1− ττ †τ + τY V (2)†
√
1− τ †τ

]
U (1)† = 0

=⇒
√
1− ττ †τ + τY V (2)†

√
1− τ †τ = 0.
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Since τ is a diagonal matrix, this implies that Y = −V (2), and consequently,

W1 = −V (1)†UτV (2).

Putting this all together, we get

V =

V (1)† 0

0 U (1)

U√1− ττ † −Uτ
τ †

√
1− τ †τ

V (1) 0

0 V (2)

 . (5.24)

Thus, this special form can always be attained by separately rotating the left and right

incoming and outgoing subspaces. In this rotated basis, (5.17) becomes

S[ω] =
√

1− τ †τ − τ † 1

e−iω − U
√
1− ττ †

Uτ. (5.25)

5.3.3 Scattering Matrix for Model Drive with Onsite Disorder

In this section, we start by discussing the various scattering setups for the model drive with

on-site disorder. Specifically, we are interested in analyzing the properties of the model drive

at times Tdrive/2+∆t for small ∆t. The time evolution operator for model drive with onsite

disorder discussed in Section 5.2.2 at Tdrive/2 + ∆t is given by

U(Tdrive/2 + ∆t) |n,A⟩ = eiϕnA(cos∆t |n+ 1, A⟩+ i sin∆t |n,B⟩)

U(Tdrive/2 + ∆t) |n,B⟩ = eiϕnB(cos∆t |n− 1, B⟩+ i sin∆t |n,A⟩).
(5.26)

While it might be possible to explicitly calculate the scattering matrix for multiple scat-

terers using formulas for finding the inverse of band diagonal matrices, here we only calculate

the scattering matrices explicitly for a single scatterer. For all the setups we consider in this

section, we find that it is possible to obtain a scattering transfer matrix associated with a

single scatterer. This can be used to analytically study the scattering properties of a larger

scattering sample. Interestingly, the scattering transfer matrix we obtain for this model is

identical to the position space transfer matrix. However, we find that for other Floquet

drives, including the model drive with other types of disorder, it may or may not be possible

to obtain a simple ‘chainable’ scattering matrix.
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First, we discuss the ‘A-B’ and ‘1-2’ leads, for which we make a distinction between

the disordered sample region, and the disorder-free leads. Then, we discuss the case where

there is no qualitative distinction between the sample and the leads. This is equivalent to

considering 1-2 leads with disorder. In this case, we find that the scattering matrix is in

fact equal to the scattering matrix corresponding to the position-space transfer matrix in

Eq. (5.11). As we will see, this is not surprising. In the case of the model drive with onsite

disorder, this third setup corresponds exactly to the problem of relating the amplitudes (of

the eigenvector of U(Tdrive/2 + ∆t)) at two different sites relative to each other.)

Before proceeding, we introduce a notation that will be used in this section. Specifically,

we assume that a vector Ψ satisfies (5.12), and is expressed in the orbital basis as

|Ψ[T ]⟩ =
∑
n∈Z

B∑
α=A

Ψ[n, α, T ] |n, α⟩ . (5.27)

5.3.3.1 A-B Leads

In this setup, we assume that the dynamics in the sample are the same as that of U(Tdrive/2+

∆t) given in (5.26). On the other hand, the dynamics in the leads, which we call A-B

dynamics, is set to be identical to the dynamics of U(Tdrive/2). That is, the action of U

moves the A orbital to the right and the B orbitals to the left. At the boundary region of

the sample, the dynamics is intermediate between the two.

Specifically, we denote the unitary of the scattering setup by U , with its action given by

U |n,A⟩ =


eiϕn,A(cos∆t |n+ 1, A⟩+ i sin∆t |n,B⟩), if 1 ≤ n < L;

eiϕn,A |n+ 1, A⟩ , otherwise.

(5.28)

U |n,B⟩ =


eiϕn,B(cos∆t |n− 1, B⟩+ i sin∆t |n,B⟩), if 1 < n ≤ L;

eiϕn,B |n+ 1, A⟩ , otherwise.

(5.29)

The connectivity of the unitary U is shown schematically in figure 5.1. We restrict the

disorder to sites 1 to L, i.e. we set ϕn,A/B = 0 for n < 1 and n > L. We also note that the

‘scatterers’ at sites 1 and L are qualitatively different from the scatterers at sites 2 to L-1.
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−1 0 1 2 L− 1 L L+ 1 L+ 2

Figure 5.1: The scattering setup with A-B leads: The upper and lower rows of circles

correspond to the A and B orbitals respectively. We designate the colored region to be

the ‘sample’ subspace. The red (blue) circles correspond to the in (out) subspaces. The

arrows denote the connectivity of the scattering unitary U . The black arrows correspond to

a hopping amplitude of 1, while the red and blue arrows correspond to hopping amplitudes

of i sin∆t and cos∆t respectively (upto on-site phases).

Specifically, the unitary lacks a hopping from |1, B⟩ to |1, A⟩ and from |L,A⟩ to |L,B⟩. (We

interpret this as the sites 1 and L being ‘lead connectors’, which we will not modify when

we consider increasing the size of the sample. Instead, we will add a scatterer to the region

2 to L-1.)

To apply the FS formalism, we first need to identify the sample, incoming and outgoing

spaces. It is natural to choose the sample vector to be

ψ[T ] =
(
Ψ[1A, T ] Ψ[1B, T ] . . . Ψ[L,A, T ] Ψ[L,B, T ]

)T
(5.30)

In order to identify the in/out subspaces, we first obtain the corresponding particle conser-

vation equation. A few lines of algebra give us

ψ[T + 1]†ψ[T + 1]− ψ[T ]†ψ[T ] = (|Ψ[0, A, T ]|2 + |Ψ[L+ 1, B, T ]|2)

− (|Ψ[1, B, T ]|2 + |Ψ[L,A, T ]|2)
. (5.31)

Hence, we define the the in/out vectors to be

ϕin[T ] =
(
Ψ[0, A, T ] Ψ[L+ 1, B, T ]

)T
ϕout[T ] =

(
Ψ[1, B, T ] Ψ[L,A, T ]

)T
.

(5.32)
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Thus, the S[ω] matrix connects the wavefunction amplitudes as follows:Ψ[1, B, ω]

Ψ[L,A, ω]

 = S[ω]

 Ψ[0, A, ω]

Ψ[L+ 1, B, ω]

 . (5.33)

One may straightforwardly obtain the matrices A,Win,Wout and S0 at this point. Specif-

ically, let Pin, Pout and P0 denote rectangular projection matrices onto the in, out and sample

spaces. (Recall that these matrices satisfy PP T = 1 but not P TP = 1.) For example, let Pin

is a 2× dimH matrix, with all elements being zero, except for those corresponding to (0, A)

and (L+1, B). Then, it is easy to see that A = P0UP
T
0 , Win = P0UP

T
in, Wout = PoutP

T
0 and

S0 = PoutP
T
in. Clearly, S0 = 0 as expected.

Here, we don’t explicitly express these is matrix form. We note that the rather awkward

choice for the incoming subspace, which is (0, A) and (L+1, B) instead of (1, A) and (L,B)

as one would want, is due to the fact that we used (5.14), with ϕin[T ] instead of ϕin[T + 1]

on the right hand side. If we use the latter, then ϕout will correspond to (1, A) and (L,B)

as we want. This will result in an overall phase change in the corresponding S[ω].

Let us briefly discuss how to interpret this setup as one corresponding to ‘scattering of

waves’. Let us decompose Ψ in Fourier space for time as well as position space. In particular,

let Ψ be an eigenvector of U , so that UΨ = e−iωΨ, and let Ψ[T ] = UTΨ = e−iωt be a vector

which evolves according to U and has the value of Ψ at T = 0. Thus, we have

Ψ[n, α, T ] =
∑
k,ω′

ei(kn−ω
′T )Ψ[k, α, ω′],

= e−iω
∑
k

eiknΨ[k, α, ω].

For n < 1 and n ≥ L, we note that

Ψ[n+ 1, A, T + 1] = Ψ[n,A, T ]

=⇒ e−iωT
∑
k

eikn(ei(k−ω) − 1)Ψ[k,A, ω] = 0

=⇒ Ψn<1,n≥L[k,A, ω] = 0 if k ̸= ω,

=⇒ Ψn<1(n≥L)Ψ[n,A, ω] = eiωnΨn<1(n≥L)[ω,A, ω].
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Similarly, for the B channel, get get

Ψn≤1,n>L[k,B] = 0, if k ̸= −ω.

=⇒ Ψn≤1(n>L)Ψ[n,B, ω] = e−iωnΨn≤1(n>L)[−ω,B, ω].

Here, the subscripts denoting the position denote the fact that the k−space decomposition

has been done only in the corresponding region. Thus, the only waves moving on the left

and right of the sample are right moving k = ω waves in the A channel, and left moving

k = ω waves in the B channel. Let us denote the incoming an outgoing wave amplitudes as

follows:

Ψn≤1[ω,A, ω] = L+

Ψn≥L[ω,A, ω] = eiωLR+

Ψn≤1[−ω,B, ω] = e−iωL−

Ψn≥L[−ω,B, ω] = e−iω(L+1)R−,

where the phases have been adjusted, so as to get a nice form upon substitution in (5.33):L−

R+

 = S[ω]

L+
R−

 .

Thus, the scattering matrix relates the incoming wave amplitudes to the outgoing wave

amplitudes.

5.3.3.2 1-2 Leads

In this setup, the dynamics everywhere is the same as that of U(Tdrive/2+∆t). The disorder

is turned on in the sample, and turned off everywhere else. Specifically, the evolution is

determined by a unitary given by

U |n,A⟩ = eiϕn,A(cos∆t |n+ 1, A⟩+ i sin∆t |n,B⟩),

U |n,B⟩ = eiϕn,B(cos∆t |n− 1, B⟩+ i sin∆t |n,A⟩),
(5.34)

with ϕn,A/B = 0 for n < 1 and n > L, along with ϕ1,A = 0 and ϕL+1,B = 0. The setup is

shown schematically in figure 5.2. The reason for choosing this ‘tilted’ box, rather than a
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rectangular box will become clear soon. (Choosing a rectangular box makes the probability

conservation equation complicated, with the in and out spaces being mixtures of two orbitals

each. Additionally, the combination on the left is not the same as the combination on the

right, making it harder to obtain the desirable chainable form similar to the transfer matrix

approach. This choice necessitates obtaining appropriate rotations as in (5.24).)

−1 0 1 2 L− 1 L L+ 1 L+ 2

Figure 5.2: The scattering setup for 1-2 leads. The red (blue) circles correspond to the in

(out) subspaces. The arrows denote the connectivity of the scattering unitary U . The red

and blue arrows correspond to hopping amplitudes of i sin∆t and cos∆t respectively (upto

an on-site phase). We designate the colored region to be the ‘sample’ subspace.

As before, in order to obtain the S matrix, we first obtain the particle conservation

relation. We note that for a wavefunction |Ψ⟩ evolving according to U , the change in the

probability in one time step at any A or B orbital is given by

|Ψ[n,A, T + 1]|2 − |Ψ[n,A, T ]|2 = cos2∆t|Ψ[n− 1, A, T ]|2 + sin2∆t|Ψ[n,B, T ]|2

(5.35)

+ sin(2∆t) Re[iei(ϕn,B−ϕn−1,A)Ψ∗[n− 1, A, T ]Ψ[n,B, T ]]

− |Ψ[n,A, T ]|2;

|Ψ[n− 1, B, T + 1]|2 − |Ψ[n− 1, B, T ]|2 = sin2∆t|Ψ[n− 1, A, T ]|2 + cos2∆t|Ψ[n,B, T ]|2

(5.36)

− sin(2∆t) Re[iei(ϕn,B−ϕn−1,A)Ψ∗[n− 1, A, T ]Ψ[n,B, T ]]

− |Ψ[n− 1, B, T ]|2.

We note that adding the two equations leads to the cancellation of the cross terms on the

right hand side. Thus, we get the particle conservation equation (5.13) with the following
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choice:

ψ[T ] =
(
Ψ[1B, T ] Ψ[2A, T ] . . . Ψ[L,A, T ] Ψ[L,B, T ] Ψ[L+ 1, A, T ]

)T
ϕin[T ] =

(
Ψ[1, A, T ] Ψ[L+ 1, B, T ]

)T
ϕout[t] =

(
Ψ[1, B, T ] Ψ[L+ 1, A, T ]

)T
.

(5.37)

As before, the matrices A, Win/out and S0 can be obtained straightforwarly, although it

is less trivial to obtain the S[ω] matrix from these because of the matrix inversion.

5.3.4 Connection to Real-Space Transfer Matrix Approach

In the previous subsections, we implemented the FS approach from the point of view of

a scattering matrix corresponding to a scattering experiment with incoming and outgoing

waves. However, one may also interpret the FS approach in the following manner: for

an eigenvector corresponding to an assumed quasienergy of the unitary, S[ω] relates the

amplitude of the eigenvector at on site, to that at another site. This is precisely the real

space transfer matrix approach, as done in [126].

This can be shown to be true straightforwardly. Let Ψ be an eigenvector of a unitary U

corresponding to an eigenvalue of e−iω. Let Ψ[T ] be a time-dependent vector which evolves

according to U , and which equals Ψ at time T = 0. Thus, this vector satisfies

Ψ[T ] = UTΨ[0] = e−iωTΨ. (5.38)

Thus, in the Fourier space, Ψ[T ] has only one component, with Ψ[ω′] = 0 whenever ω′ ̸= ω.

Since the sample and in/out vectors are simply projections of Ψ, they too obey this statement.

Therefore, the scattering matrix provides the a relationship between the amplitudes of an

assumed eigenvector at the ends of the sample region. Note that in the section on 1-2 leads,

whether the disorder outside the sample region was zero or not did not affect our conclusions,

and hence we borrow that setup, except that the disorder outside is not set to zero.

We will now calculate the scattering matrix corresponding to one scatterer. Consider the
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sample region to consist of (n,B) and (n+ 1, A). Thus, we choose

ψ[T ] =
(
Ψ[n,B, T ] Ψ[n+ 1, A, T ]

)T
,

ϕin[T ] =
(
Ψ[n,A, T ] Ψ[n+ 1, B, T ]

)T
,

ϕout[T ] =
(
Ψ[n,B, T ] Ψ[n+ 1, A, T ]

)T
= ψ[T ].

The submatrices of V are then given by

Wout =

1 0

0 1

 , S0 =

0 0

0 0


Win =

i sin∆teiϕnA cos∆teiϕn+1,B

cos∆teiϕn,A i sin∆teiϕn+1,B

 , A =

0 0

0 0

 .

Thus, the scattering matrix is

S[ω] = 0 + 1
1

e−iω − 0
Win

= eiω

i sin∆teiϕnA cos∆teiϕn+1,B

cos∆teiϕn,A i sin∆teiϕn+1,B

 . (5.39)

Thus, we have:  Ψ[n,B, ω]

Ψ[n+ 1, A, ω]

 = S[ω]

 Ψ[n,A, ω]

Ψ[n+ 1, B, ω]


Since Ψ[n, α, ω] = Ψ[n, α], we can drop the omega dependence from the left hand side for

an eigenvector of quasienergy ω. We would like to obtain a relationship instead between

the amplitude of Ψ at sites n+ 1 and n. In other words, we would like to obtain a transfer

matrix. To that end, recall that a scattering matrix S and a transfer matrix M are related

as follows:

S =

r t′

t r′

 ⇐⇒ M =

 1
t∗
− r∗

t∗

− r
t′

1
t

 ,

Thus, we obtainΨ[n+ 1, A]

Ψ[n+ 1, B]

 =

 sec∆tei(ω+ϕn,A) i tan∆t

−i tan∆tei(ϕn,A−ϕn+1,B) sec∆te−i(ω+ϕn,A)


︸ ︷︷ ︸

M

Ψ[n,A]

Ψ[n,B]

 .
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This is precisely the position-space transfer matrix derived above, i.e. the matrix in

(5.11). Note that ω here is identical to the quasienergy tϵ.

5.4 Model Drive with Full Onsite Disorder

In this section, we will show that for the model drive with full on-site disorder, i.e. with

ϕn,A and ϕn,B in (5.10) being uniformly distributed over [−π, π], the exponent is indeed 2,

i.e. we will show that Lloc ∝ ∆t−2.

Furthermore, we will show that the logarithm of the transmission coefficient in this case

follows the Fokker-Planck equation.

Much of the calculations here follow the treatment in Ref. [130].

5.4.1 Derivation of the Exponent

To that end, we obtain a relationship between transmission coefficients corresponding to

different sample sizes. We will use the Neumann series, so that

S[ω] = S0 +Wout
1

e−iω − AWin.

= S0 +Wout(1 + eiωA+ e2iωA2 + . . . )eiωWin.

Now, consider the scattering matrix corresponding to a sample of size L, as shown in figure

5.2. Let us denote the transmission and reflection amplitudes by t1−L, t′1−L and r1−L, r′l−L

respectively. Now if we increase the sample region by one unit to the right, then the transmis-

sion amplitude t1−(L+1) will be related (using the series form above) to those of SL through

the following relationship:

t1−(L+1) = t1−Lf1 + t1−Lf2r
′
l−Lf1 + t1−LfLf2r

′
l−Lf2r

′
l−Lf1 + . . .

= t1−Lf1(1 + (f2r
′
l−L) + (f2r

′
l−L)

2 + . . . )

=
t1−Lf1

1− f2r′l−L
, (5.40)
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with f1 = cos τei(ω+ϕL+2,A) and f2 = i sin τei(ω+ϕL+1,A). We note that tL−(L+1) = f1, and

r′L−(L+1) = f2 so that we may write

t1−(L+1) =
t1−LtL−(L+1)

1− r′l−Lr′L−(L+1)

. (5.41)

In fact using the Neumann series, we can see that this is true for any two sample spaces

which share a boundary. The same conclusion can be reached at following the arguments in

[130].

In the equation above, if we choose L = 1 and use the notation t12 = t1−3, t1 = t1−2,

t2 = t2−3, r
′
1 = r′1−2 and r2 = r2−3, then we have

t1−2 =
t1t2

1− r′1r2
,

This is precisely equation (12) from [130]. We now proceed analogously. Taking the square

of the absolute values of both the sides, we get

T12 =
T1T2

|1−√R1R2eiθ|2
, (5.42)

wherein we have absorbed the arguments of r′1 and r2 into θ. In general, the distribution of θ

is disorder dependent. In our case, we can show that θ is uniformly distributed in [−2w, 2w],
or [−π, π] with the choice w = π. This is straightforward:

θ = arg r′1r2. (5.43)

Reading of the r′ and r from equation (5.39), we have

r′1 = i sin(∆t) exp(i(ω + ϕ2,B)) (5.44)

r2 = i sin(∆t) exp(i(ϕ2,A + ω)) (5.45)

Thus,

θ = ϕ2,A + ϕ2,B − π + 2ω. (5.46)

Note that ϕ2,A and ϕ2,B are both distributed uniformly over [−π, π]. The sum of uniform

I.I.D. distributions is given by the Irwin-Hall distribution. Thus ϕ2,A+ϕ2,B has a triangular
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probability density function:

fϕ2,A+ϕ2,B(x) =


1
2π
x+ 1 for − 2π < x < 0

− 1
2π
x+ 1 for 0 ≤ x < 2π

(5.47)

However, note that the value of ϕ2,A + ϕ2,B is only meaningful modulo 2π. Thus, θ is

uniformly distributed over [−π, π].

We consider now the logarithm of the transmission probability upon combining two scat-

terers. Taking the average of (5.42), we see that

⟨lnT12⟩d =
〈
lnT1 + lnT2 − ln |1−

√
R1R2e

iθ|2
〉
θ

= lnT1 + lnT2 −
∫ 2π

0

dθ ln |1−
√
R1R2e

iθ|2

= lnT1 + lnT2 + 2i

∮
C

dx
|1−√R1R2x|

x
(5.48)

= lnT1 + lnT2.

Note that in step (5.48), C denotes the unit circle in the complex plane, with a counter-

clockwise orientation. Using Cauchy’s residue theorem, the integral vanishes. Thus, the log

of the transmission value is additive. Thus, the transmission from sites 1 to L satisfies

⟨lnT1···L⟩ =
L∑
i

lnTi (5.49)

From (5.39), note that each Ti = cos2(∆t), and thus

⟨lnT1···L⟩ = 2L ln cos(∆t). (5.50)

Recall that the localization length ξ is defined through the equation:

⟨lnT1···L⟩ = −
L

ξ
. (5.51)

Thus, the localization length has the value

ξ = − 1

2 ln cos(∆t)
(5.52)

=
1

∆t2 +O(∆t4)
so that ξ ∝ ∆t−2 for τ → 0 (5.53)
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5.4.2 Fokker-Planck Equation for Log Transmission

Now, let us use equation (5.40) in order to derive the Fokker-Planck equation for the log

of the transmission probability. This enables us to derive an expression for the probability

distribution of the log of the transmission probability for large lengths. We note that we are

only able to derive this equation for the case when τ → 0.

To aid readability, let us replace subscripts 1−L and 1− (L+1) by simply L and L+1.

(This notation is different than the one we used while deriving the log additivity of the

transmission probability.) Thus, we have

tL+1 =
tL cos τe

i(ω+ϕL+2,A)

1− i sin τei(ω+ϕL+1,A)r′L
. (5.54)

Taking the absolute value square on both sides, we get

TL+1 =
TL cos

2 τ

1 + (1− TL) + 2 sin τ
√
1− TL sin ΓL

,

with ΓL = ω + ϕL+1,A + arg r′L. Taking the logarithm on both sides, and using the notation

ηL = − log TL, we get

ηL+1 = ηL − 2 log cos τ + log[2− TL + 2 sin τ
√

1− TL sin ΓL].

For large lengths, we expect TL → 0. We Taylor expand to second order in τ , which gives us

ηL+1 = ηL + τ 2[2− e−ηL − 2 sin2 ΓL(1− e−ηL)] + 2τ sin ΓL
√
1− e−ηL . (5.55)

We can use this to relate the probability distribution of η’s for lengths L and L+ 1. Specif-

ically,

PL+1(η) =

∫
dΓ

2π

∫
dPL(η

′)δ(η′ + τ 2[2− e−η′ − 2 sin2 Γ(1− e−η′)] + 2τ sin Γ
√

1− e−η′ − η)

Inverting the relation (5.55) and opening the δ function, we get

PL+1(η) =

∫
dΓ

2π
PL(η − τ 2[2− e−η − 2 sin2 Γ(1− e−η)]− 2τ sin Γ

√
1− e−η)

Taylor expanding to second order in τ , we get

PL+1(η) = PL(η)− τ 2
∂PL
∂η

+′ τ 2(1− e−η)∂
2PL
∂η2

.
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Taking the continuum limit, we write PL+1 − PL → ∂P
∂L

. For L→∞, we expect η →∞, so

that e−η → 0. This finally gives us

τ−2∂P

∂L
= −∂P

∂η
+
∂2P

∂η2
. (5.56)

The solution of this equation is

PL(η) =

√
Lloc
2πη

exp

[
−(η − 2n/Lloc)

2

2n/Lloc

]
, (5.57)

with Lloc = 2τ−2 (5.58)

5.5 Conclusion

In this chapter, we studied a specific class of disordered chiral Floquet topological insulators

in one dimension that are described by loop drives. We further showed that the eigenvectors

of the time evolution operator at times t close to the midpoint of the drive have localization

lengths that diverge as Lloc ∝ |t− Tdrive/2|−2.

After reviewing the definition of Chiral Floquet topological insulators, we presented an

example drive that was proposed in the literature. After discussing various ways to disorder

this example drive, we calculated the position-space transfer matrix the model drive with on-

site phase disorder. Using the scattering theory approach for discrete time quantum systems,

we derived the same formula with an appropriate setup. Finally, we derived the exponent

of two using for the model drive with full phase disorder, and showed that the logarithm of

the transmission coefficient follows the Fokker-Plank equation.

While the arguments presented here are restricted to the case of the model drive with

full on-site phase disorder, it is possible to show that the exponent is universal and appears

in all 1d chiral loop drives. These arguments rely on the results presented in Refs. [131, 132],

which outline a perturbative scattering theory approach for independently and identically

disordered scatterers which are individually almost fully transmitting (i.e. have transmission

coefficients close to one). The full argument along with supporting numerical evidence for

the universality of the exponent will be presenting in a forthcoming manuscript.
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[59] Per-Olov Löwdin. On the non-orthogonality problem connected with the use of atomic
wave functions in the theory of molecules and crystals. The Journal of Chemical
Physics, 18(3):365–375, 1950.

[60] Rahul Siddharthan and Antoine Georges. Square kagome quantum antiferromagnet
and the eight-vertex model. Physical Review B, 65(1):014417, December 2001.

[61] Johannes Richter, Oleg Derzhko, and Taras Krokhmalskii. Finite-temperature order-
disorder phase transition in a frustrated bilayer quantum Heisenberg antiferromagnet
in strong magnetic fields. Physical Review B, 74(14):144430, October 2006.

[62] Oleg Derzhko, Johannes Richter, and Mykola Maksymenko. Strongly correlated flat-
band systems: The route from Heisenberg spins to Hubbard electrons. International
Journal of Modern Physics B, 29(12):1530007, 2015.

[63] Hal Tasaki. Ferromagnetism in the Hubbard models with degenerate single-electron
ground states. Physical review letters, 69(10):1608, 1992.

[64] Bill Sutherland. Localization of electronic wave functions due to local topology. Phys-
ical Review B, 34(8):5208–5211, October 1986.

[65] Domenico Monaco and Gianluca Panati. Symmetry and Localization in Periodic Crys-
tals: Triviality of Bloch Bundles with a Fermionic Time-Reversal Symmetry. Acta
Applicandae Mathematicae, 137(1):185–203, June 2015.

[66] Giovanna Marcelli, Massimo Moscolari, and Gianluca Panati. Localization implies
Chern triviality in non-periodic insulators. arXiv preprint arXiv:2012.14407, 2020.

[67] Alexander Altland and Martin R. Zirnbauer. Nonstandard symmetry classes in meso-
scopic normal-superconducting hybrid structures. Physical Review B, 55(2):1142–1161,
January 1997.

[68] Alexei Kitaev. Periodic table for topological insulators and superconductors. AIP
Conference Proceedings, 1134(1):22–30, May 2009.

[69] Shinsei Ryu, Andreas P Schnyder, Akira Furusaki, and Andreas W W Ludwig. Topo-
logical insulators and superconductors: Tenfold way and dimensional hierarchy. New
Journal of Physics, 12(6):065010, June 2010.

146



[70] Hosho Katsura and Tohru Koma. The noncommutative index theorem and the periodic
table for disordered topological insulators and superconductors. Journal of Mathemat-
ical Physics, 59(3):031903, 2018.

[71] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics,
321(1):2–111, 2006.

[72] Giovanna Marcelli, Domenico Monaco, Massimo Moscolari, and Gianluca Panati. The
Haldane model and its localization dichotomy. arXiv preprint arXiv:1909.03298, 2019.

[73] Pratik Sathe and Rahul Roy. Compact Wannier Functions in One Dimension, February
2023.

[74] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt.
Maximally localized Wannier functions: Theory and applications. Reviews of Modern
Physics, 84(4):1419–1475, October 2012.

[75] Arash A. Mostofi, Jonathan R. Yates, Young-Su Lee, Ivo Souza, David Vanderbilt,
and Nicola Marzari. Wannier90: A tool for obtaining maximally-localised Wannier
functions. Computer Physics Communications, 178(9):685–699, May 2008.

[76] Roman Bezrukavnikov and Anton Kapustin. Localization Properties of Chern Insula-
tors. Arnold Mathematical Journal, 5(1):15–21, March 2019.

[77] Giovanna Marcelli, Massimo Moscolari, and Gianluca Panati. Localization of Gen-
eralized Wannier Bases Implies Chern Triviality in Non-periodic Insulators. Annales
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[109] Goran Gligorić, Petra P. Beličev, Daniel Leykam, and Aleksandra Maluckov. Nonlin-
ear symmetry breaking of Aharonov-Bohm cages. Physical Review A, 99(1):013826,
January 2019.

149



[110] Murad Tovmasyan, Sebastiano Peotta, Long Liang, Päivi Törmä, and Sebastian D.
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band induced local Hilbert space fragmentation, June 2023.
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