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ABSTRACT 
 Using real options, this paper formulates an optimal stopping model for applying pest 
control measures when the density of a pest population varies randomly.  A delay 
between successive pesticide applications is introduced to analyze the farmer’s expected 
marginal cost of reentry.  This model is applied to the control of a foliar pest of apples via 
a pesticide, and solved numerically. A sensitivity analysis shows that the pest density that 
should trigger pesticide use can vary significantly with the pest density volatility. 
Incorporating pest randomness into simple decision rules may thus help better manage the 
chemicals applied to soils and crops.  
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 While integrated pest management (IPM) has been gaining ground in an effort to 

reduce the reliance on chemicals with harmful environmental side effects, the concepts of 

economic thresholds (ET) and economic injury level (EIL) are still “the backbone of 

progressive concepts in (...) insect pest management” (Poston, Pedigo, and Welch).  

These concepts were introduced by entomologists to provide practical decision rules for 

using pesticides in a context of complex interactions between plants and pests, which are 

typically very difficult to model.  Stern et al. gave the most widely accepted definition of 

economic threshold: it is the “density at which control measures should be initiated to 

prevent an increasing pest population from reaching the economic injury level.”  The ET 

is thus an operating rule intimately tied to the EIL, which is “the lowest population 

density that will cause economic damage”, where the later is the amount of injury that 

justifies the cost of artificial control measures. 

 Although quite useful, these definitions needed some clarification regarding the 

amount of injury that should trigger some pest control action.  Headley formalized 

Hillebrandt’s marginal analysis of pest control, but he redefined the economic threshold 

as the level to which a pest should be reduced in order for the marginal revenue from the 

application of a pesticide to just equal its marginal cost.  Hall and Norgaard expanded 

Headley’s model and focused on the optimal timing of a pesticide application. 

However, economic models of pest control have mostly remained theoretical tools 

of limited practical value.  On one hand, economic models have been criticized for being 

too stylized.  Some attempts to better describe the dynamics of pest and host interaction, 

while providing some insights in the factors affecting optimal control strategies, have 
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shown that more realistic mathematical models can quickly become almost untractable 

(See for example Shoemaker).  On the other hand, the economic threshold as defined by 

economists has not been used widely in practice (Moffit et al.) because it requires the 

simultaneous calculation of optimal spraying time and pesticide dosage, whereas 

information needed for these calculations is usually unavailable.  Moreover, farmers are 

often advised by pesticide manufacturers to use a prescribed dosage.  Hence, they face the 

problem of determining an action threshold (Edwards and Heath), i.e. the critical pest 

density at which a specific action, such as spraying a pesticide, should be taken. 

Another reason for the resistance to the adoption of the economic threshold is that it 

relies on perfect information while there is often considerable uncertainty regarding the 

evolution of a pest population or the long-term effects of the application of a pesticide.  

There have been some attempts to address the problem of uncertainty related to pest 

control.  Feder investigated, qualitatively, the effect of uncertainty on the dosage of a 

pesticide by a risk-averse farmer; he considered uncertainty in the rate of damage per 

pest, in the size of the pest population, and in the efficacy of the pesticide.  Moffit et al. 

examined the impact of pest population uncertainty on the economic threshold, but in a 

static framework.  Later, Moffit investigated uncertainty in the initial rate of pest 

infestation to derive more efficient action-thresholds-type-rules for risk-averse farmers.  

Mangel coupled a genetic model with a model of pest population dynamic in a multi-

seasonal setting to take into account the build-up of insect resistance to a pesticide.  Using 

a continuous-time formulation, he showed how to incorporate pest age structure, the 

random arrival rate of pests, and the stochastic effect of a pesticide on pest growth rate.  



 3 

However, his stochastic model requires biological information that is often unavailable, 

and its numerical resolution appears quite challenging.  For practical uses, a compromise 

has to be found between the realism of a model and its usability.  To date, the impact of 

uncertainty in the evolution of the pest population on the decision to use pest control 

measures does not appear to have been solved satisfactorily. 

 The potential adverse health effects of pesticides, not only for the public, but also for 

farm workers, also raises some legitimate concerns.  In their analysis of the economics of 

reentry regulations for pesticides, Lichtenberg et al., where the first to provide a 

methodology for analyzing the tradeoffs between the adverse effects from pesticide 

exposure on the health of farm workers, and lost grower revenues due to restrictions on 

pesticide use.  They showed that these tradeoffs could be substantial in the case of 

parathion use in apples.  They considered, however, a deterministic setting where a 

grower can choose to apply once a standard dose of pesticide at a negligible cost. 

 There are a number of other important issues in pest management, such as increasing 

pest resistance (see for example Regev et al.), issues of coordination between adjacent 

farms, inter-seasonal pest dynamics, or environmental side-effects of pesticides. To 

decrease the reliance on chemicals to fight crop-damaging pests, IPM has been promoted 

to diversify the pest-control portfolio with a variety of biological and managerial 

strategies.  For a survey of economic and biological issues pertaining to pest control, see 

Carlson and Wetzstein, or Fernandez-Cornejo et al. 

 In this paper, we explore how the randomness of the density of a pest population can 

impact the use of a pesticide, and we provide a framework to incorporate this feature in 
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the determination of simple action rules like the economic threshold, in the spirit of 

Moffit et al.  We also explicitly model a delay between successive pest control measures 

and before harvest in order to examine the expected marginal cost of reentry regulations.  

Although we focus on pesticides, the same approach could be used for a variety of pest 

control measures.  We propose to view the possibility to spray a pesticide as a “real 

option,” i.e. similar to a financial option but applied to a non-financial instrument.  See 

Dixit and Pindyck for an introduction to the theory of real options, or Trigeorgis for 

examples of applications.  We use a continuous-time framework to conveniently analyze 

the impact of the pest density volatility on the timing of application of a pesticide. 

In the next section, we formulate the farmer’s decision of applying a pesticide as an 

optimal sequential stopping problem and we show how to solve it using stochastic 

dynamic programming.  We first consider a fixed pesticide dosage but we extend this 

model to allow for the selection of pesticide dosage.  We then apply this model to the 

European Red Mite, a foliar pest of apples.  We find that taking into account the 

randomness of the mite density can have an impact on pesticide use.  The last section 

offers concluding comments and some possible extensions of our model. The numerical 

method used to solve our model is summarized in Appendix A, and the algorithm to 

calculate the expected marginal cost for the grower of lengthening the reentry period is 

presented in Appendix B. 
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The Model 

 We consider a risk-neutral farmer whose objective is to maximize discounted net 

revenue from a crop threatened by a single pest.  Let Q(t) and X(t) denote, respectively, 

the plant biomass of the crop and the pest density at instant t.  The initial plant biomass 

Q0 and pest density X0 are given and we assume that the evolution of the plant biomass 

can be described by: 

(1) 
dQ

dt
G t X= ( , )  

where G(t,X) is a continuously differentiable function, increasing in t and decreasing in 

X, which models crop growth.  We also suppose that the pest density, X, follows a 

diffusion process with growth rate rn(t,X) and infinitesimal variance σn t X2 ( , ) , so that an 

increment in X can be written (Dixit and Pindyck): 

(2) dX r (t,X)dt (t,X)dzn= + σn  

The subscript “n” indicates that the parameters of the diffusion process followed by X 

may be influenced by applications of the pesticide.1  In the above, dz is the increment of a 

standard Wiener process (Dixit and Pindyck).  Note that the absence of Q as an argument 

of rn(t,X) may overstate pest growth if the crop is the pest’s only food source. 

To fight the pest problem, the farmer can apply up to N times a specified dose of 

pesticide at a total cost K per application per unit area, starting at time t = 0. For 

notational convenience, we number successive pesticide applications in decreasing order, 

from N to 1. For now, we also assume that the farmer follows the recommendation of the 

manufacturer for pesticide dosage, and that there is a single recommended dosage as 
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opposed to a range of values.  We postulate that applying the pesticide will cause the 

instantaneous death of a fraction M of the pest population.  Hence, if the pesticide is 

applied at time t, the pest density just after spraying, denoted by +
tX , and the pest density 

just before spraying, denoted by −
tX , are related by: 

(3) -
t

+
t M)X-(1=X  

In fact, pests do not die instantly and the impact of a pesticide depends on weather 

conditions and pest resistance.  To simplify our model, we ignore these issues and focus 

on the effect of stochastic pest growth on the timing of application. 

For health reasons, we assume that the last application of pesticide has to take place 

before time T, d days before harvest. The crop is thus harvested on day T + d. To study 

the issue of workers reentry, we also postulate that there is a minimum delay ∆ between 

successive applications of the pesticide to protect the health of farm workers.  This 

assumption implies that, if it takes place, the nth application of pesticide happens at the 

latest at time tnF = T - (n-1)∆. 

 Because the pest density varies randomly, future crop biomass and thus net revenue 

are uncertain until harvest time.  In taking the decision to spray, the farmer has to balance  

expected pest damages with the cost of applying the pesticide plus the loss of flexibility 

which comes from using one of its possibilities to reduce the density of the pest 

population by spraying the pesticide.  This is the motivation for using concepts from the 

theory of real options. 
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 To find the critical pest density that will trigger spraying, we view the crop as an 

investment and the possibility to spray as an option which can be exercised to improve 

the expected value of this investment.  We thus write the value in current dollars of the 

crop “asset” before pesticide application number n, denoted Jn, as the sum of the expected 

value of the crop at time t plus the value of the option to spray n times. We denote it by 

ϕn(t,X) if spraying can take place (i.e. if the last spray took place at least ∆ days ago), and 

by )X,t(~
nϕ  otherwise. In the first case, Jn can thus be written: 

(4) J (t, X) (t, X) + pe Q(t) G(u, X)du X(t)n
- (T+d-t)

t= +
























+

∫ϕ δ
n

t

T d

E  

In the above, p denotes the per unit harvest price, net of harvest cost, δ is the 

instantaneous discount rate, Et stands for the expectation at t, and &Q G(u,X)=  is the rate 

of change of plant biomass at time u given a pest density of X(t) at t.  If at time t, 

however, the last pesticide application took place at time t - s with 0 ≤ s < ∆, ϕn(t,X) 

should be replaced by )X,t(~
nϕ  in Equation (4) above, with: 

(5) ∫
+∞

−∆δ− ∆+−∆+−ϕ=ϕ
0

tn

)s(

tn dy)t,X;st,y(f)y,st(e)X,t(~  

This is just the expected value at time t, in current dollars, of the option term at time t-

s+∆; )t,X;st,y(f t∆+−  designates the value of the density function at time t-s+∆ for a 

pest density value of y, given that the pest density at time t is Xt. Since no more than N 

applications of the pesticide are allowed, there is no option term in the expression of 

J0(t,X) and 0
~ϕ  or ϕ0 is identically zero in Equation (4). 
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This framework allows us to cast the decision to spray for the nth time (1 ≤ n ≤ N) 

as an optimal stopping problem (Malliaris and Brock). From standard results in optimal 

stopping theory, the (t,X) space, with 0 ≤ t ≤ tnF = T - (n-1)∆ and X ≥ 0, is divided in two 

regions: in the “continuation region,” where the pest density is low, it is optimal to wait 

and monitor the evolution of the pest density, while in the “stopping region,” where the 

pest density is higher, it is optimal to apply the pesticide immediately. In the continuation 

region, if the option can be exercised, ϕn(t,X) must satisfy the Hamilton-Jacobi-Bellman 

equation (Mangel): 

(6) δϕ
∂ϕ

∂

∂ϕ

∂

σ ∂ ϕ

∂
n

n n n n
t X

t X t X t X
( , )

( , ) ( , ) ( , )
=

t
r (t, X)

X

(t,X)

X
n 2

+ +
2 2

2
 

 The “continuation region” is separated from the “stopping region” by a curve called a 

stopping frontier.  In the case study below, we examine how this curve depends on 

σn(t,X), the volatility of the pest density.  The stopping frontier for application “number 

n” of the pesticide, noted ))t(X,t( *
n  for ∆≤≤ 1)-(n-Tt0 , can be characterized by the 

“value-matching” and “smooth-pasting” conditions (Dixit and Pindyck).2  They require 

the value function and its first derivative with respect to X to be continuous across the 

stopping frontier: 

(7) K)M)X-(1,t(J)X,t(J *
n1-n

*
nn −=  

(8) 
X

)M)X-(1,t(J

X

)X,t(J *
n1-n

*
nn

∂
∂

=
∂

∂
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 Equation (7) also gives the expression of ϕn in the stopping region ( X)t(X*

n ≥ ): 

indeed, since it is optimal to apply a dose of pesticide immediately in the stopping region, 

ϕn(t,X) equals )X,t(~
1n−ϕ  plus the expected value of the crop saved by spraying at t if the 

pest density is X, net of spraying costs: 

(9) K)X,t(CS)X)M1(,t(~)X,t( 1nn −+−ϕ=ϕ −  

CS(t,X) is the expected value of the crop saved by spraying at t if the pest density is X: 

(10) CS t X pe E G u X du M X t E G u X du X tT d t
t

t

T d

t

t

T d

( , ) ( , ) ( ) ( ) ( , ) ( )( )= −











−

























− + −
+ +

∫ ∫δ 1  

 To solve these boundary value problems, we need, in addition to Equations (5) to 

(10), a final condition on the boundary of the domain of variation of t and X.  Recall that 

we require the option to spray n times to expire at time tnF = T-(n-1)∆.  From a simple 

arbitrage argument, the value of the option to spray n times at that time equals the sum of 

the expected net benefits from spraying plus the expected value of the option to spray 

another n-1 times, if this sum is positive, and 0 otherwise.  Hence: 

(11) )K)X,t(CS)X)M1(,t(~,0(Max)X,t( nFnF1nnFn −+−ϕ=ϕ −  

Based on biological considerations, we could also consider a variety of boundary 

conditions such as a reflecting barrier to prevent the extinction of the pest population over 

the time interval considered (Cox and Miller), but this is left for further work. 
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A Special Case 

 To prepare for the application to the European Red Mite where we focus on the 

impact of the volatility of the pest density on the decision to spray, consider that only two 

pesticide applications are allowed (i.e. N = 2) and assume that: 

(12) 
dQ

dt
a(t) bX= −  

In Equation (12), the continuous function a(t) represents the rate of plant growth in the 

absence of pest.  We now assume that X follows a geometric Brownian motion (GBM) 

with pest growth rate r and standard deviation coefficient σ (Dixit and Pindyck), so that: 

(13) dX rXdt  Xdz= + σ  

For simplicity, we suppose that r and σ are not affected by spraying.  The assumption that 

the pest density follows a geometric Brownian motion is appropriate to model pests that 

tend to grow exponentially but that are affected by random factors such as weather 

conditions and predators.  These pests, such as mites, aphids, or trips, have multiple 

generations per year and thus pose a risk of outbreak. 

For this choice of diffusion process for X, Equation (6) becomes: 

(14) 1,2n ,
X

)X,t(

2

X

X

)X,t(
rX

t

)X,t(
=)X,t(

2
n

222
nn

n =
∂

ϕ∂σ
+

∂
∂ϕ

+
∂

∂ϕ
δϕ  

The value function in the continuation region (before spraying, if spraying is allowed) is: 

(15) 






ϕ= δ 1)-(e
r

bX(t)
-A(t)-d)+A(T+Q(t)pe+X)(t,X)(t,J t)-d+r(Tt)-d+(T-

nn  
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where A(t) a(y)dy= ∫
0

t

. Equation (13) implies that X is lognormally distributed so 

Equation (5) becomes, for 0 ≤ s ≤ ∆: 

(16) ∫
+∞

−∆δ− σ−∆
σ

−−∆+∆+−ϕ=ϕ
0

2
2

tLNn

)s(

tn dy)]s[],
2

r][s[xy(f)y,st(e)X,t(~  

where )v,my(f 2

LN is the value at y of the probability density function of the lognormal 

distribution with parameters m and v2 (Casella and Berger, p. 628) and xt+s = Ln(Xt+s). 

Regrouping the continuity condition with Equation (7), we obtain, for X≥ *
nX : 

 (17) K)1e(
r

bMX
pe)X)M1(,t(~)X,t( )tdT(r)tdT(

1nn −−+−ϕ=ϕ −+−+δ−
−  

The smooth-pasting condition becomes: 

(18) )1e(
r

bM
pe)X)M1(,t(

X

~
)X,t(

X

)tdT(r)tdT(*

n
1n*

n
n −+−

∂
ϕ∂

=
∂
∂ϕ −+−+δ−−  

In the above, *

nX  is a function of t but we often omit its argument to lighten the notation. 

Moreover, the terminal condition (Equation (11)), can be written, for X≥0: 

(19) 






 −−+ϕϕ −+−+δ
− K1)(e

r

bMX
peM)X)-(1,(t~0,Max=X),(t )tdT(r)tdT(-

nF1nnFn
nFnF  

Equations (14), (16), (17), (18), and (19) uniquely define the stopping frontier )X,t( *
n ; 

we note that they do not contain a(t), the rate of plant growth in the absence of pest, so 

this term has no impact on the decision to spray.  These equations have to be solved 

numerically.  The numerical procedure used for simultaneously finding the stopping 

frontier and the option term, ϕ(•,•), in the continuation region is outlined in Appendix A.  
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Note that our formulation, with continuous time and pest density, is relatively easy to 

solve compared to discrete time and state models for which the cost of a numerical 

solution increases exponentially with the number of states and time points considered. 

 

Case of a Variable Pesticide Dose 

 Let us now suppose that the farmer has the choice between several pesticide dosages.  

Then, at each point in time between 0 and T, the farmer has to select both the optimal 

pesticide dosage and the critical pest population above which spraying should take place.  

This can be done in two stages.  Let us start with the last spray (n = 1).  First, for an 

arbitrary dose of pesticide, noted Y, the farmer uses the above formulation to calculate the 

stopping frontier ))Y,t(X,t( *
1 .  Note that both the pest mortality M, and the cost of 

pesticide application K are now functions of Y.  When )Y,t(X*
1  is known for the values 

of Y of interest, the farmer calculates at each point in time between 0 and T the dosage 

Y* that yields the largest expected profit.  This procedure is then repeated successively 

for increasing values of n from 2 to N.   

The resulting stopping frontiers are the stochastic counterparts of the “economic 

threshold” identified by Headley and Hall and Norgaard.  This procedure is illustrated 

below for one pesticide application, but it can readily be extended to several applications.  

However, the information required to implement this approach is usually unavailable, so 

it is unlikely to be of practical use. 
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An Application to the European Red Mite 

Assumptions and Model Data 

 We apply our model to the European red mite (ERM), which has become a 

problematic foliar pest of apples because of its resistance to many pesticides (Croft, Hoyt, 

and Westigard).  Typically, in New York State, ERM eggs hatch during April and May.  

Preventive treatment, in the form of oil, can be applied during that period.  The first 

adults appear in early June; they grow and reproduce until harvest time, in early October.  

In the absence of predators, ERM grows exponentially; Nyrop et al. report that the ERM 

daily growth rate varies between 0.025 and 0.125.   From June to August, pesticides can 

be applied as a rescue treatment to limit mite damage.  A common pesticide is Kelthane, 

which can be applied up to two times at a total cost (material and labor) of approximately 

$30 per acre per application.  We assume a mortality rate of 90% for the recommended 

dosage.3 

 The primary effect of mite infestation is to reduce yield through fruit size but it can 

also affect fruit appearance thus reducing the value of fresh fruits.  A recent study by 

Francesconi et al. has shown that mites damage apples by reducing the CO2 exchange rate 

of leaves.  In general, quantifying the damage inflicted by foliar pests on perennial crops 

is difficult because of large variations between plants.  For simplicity, we ignore 

appearance damage to focus only on crop weight loss and we adopt the relationship 

between average final fresh fruit weight W (in grams), and cumulative mite days (CMD) 

developed in Francesconi et al.: 

(20) W = 190 -  0.016 CMD  
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 In the above, CMD is the sum of all mite-days (MD) per leaf counted throughout the 

season.  The number of mite-days between count i and count i+1, noted MD(i,i+1) is 

(21) [ ]MD i i mpl i mpl i days i i( , ) . * ( ) ( ) * ( , )+ = + + +1 05 1 1  

where mpl(j) is the average number of mites per leaf observed during count j and 

days(i,i+1) is the number of days between count i and count i+1. 

Since treatment is commonly expressed in $ per acre, we normalize this damage 

relationship to a standard crop per acre.  Averaging good and bad years leads to an 

average crop of 18,000 lb./acre so that: 

(22) Q(lb) = 18,000 -  1.5 CMD  

From this relationship, we deduce that a reasonable value for the damage coefficient b, if 

our assumptions hold, is 1.5 lb. per (acre*CMD).  Equation (22) depends of course on the 

average number of leaves per apple: the more leaves there are per apple, the less 

important is the damage for a given number of mite days. 

 Another important model parameter is the price of a pound of apple.  We consider 

only fresh fruit, which are much more valuable to the farmer than fruit destined to be 

processed.  The price structure of fresh fruit depends on size, appearance, and variety.  

Half the farms in New York State, however, sell their crop to wholesalers who take care 

of packaging and distribution.  In recent years, a bushel of apples has brought 

approximately $6 to the farmer, net of harvesting.  If we further assume that a bushel 

weights approximately 42 lb., we obtain a net farm price of $ 0.15 per lb. of apples.4 
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 Four more parameters are needed: the discount rate δ; the infinitesimal variance 

coefficient of the process of X, denoted σ2; the minimum delay between successive 

pesticide applications, which we denote ∆; and d, the minimum delay between harvest 

and the last pesticide application.  For δ, we consider values between 0.0001 per day 

(3.72% per year) and 0.0002 per day (7.57% per year).  Since adequate time series data on 

mite density are not available, we use arbitrary but plausible values for σ2 ranging from 

0.01 to 0.09 per day.  Finally, we assume that ∆ = 7 days and we suppose that d = 30 

days, based on the fact that, in New York State, most apple growers will not treat for red 

mites in the last thirty days before harvest.  Table 1 summarizes the parameter values 

considered. The initial pest density, X0, is not needed here; it comes into play only to 

calculate the probability of hitting a point on the stopping frontier.5 

 

Results 

 Details of the numerical procedures employed are presented in Appendix A.  Results 

are summarized in Tables 2, 3a and 3b, and on Figures 1 to 8. 

Figures 1 and 2 illustrate how the stopping frontiers vary with σ for the median 

values of p, b, M, r, and δ presented in Table 1.  The stopping frontiers on Figure 1 

correspond to option to spray number 1, which expires after T = 90 days, while those on 

Figure 2 represent option to spray number 2, which is valid for the first T - ∆ = 83 days 

(option number 2 would be exercised first with our numbering system).  These stopping 

frontiers are the stochastic counterpart of the “action threshold” (Edwards and Heath) 
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often used in practice.  First, we observe that an increase in σ, everything else being the 

same, leads to spraying at higher pest densities: although pest density is expected to rise 

exponentially, the more it fluctuates randomly, the larger is the probability that it may go 

down to small values. This effect is not linked to the risk preference of the farmer, whom 

we assume to be risk neutral.6  Taking into account random fluctuations in pest density 

could thus lead to better use of pesticides.  This improvement, however, is likely to be 

practically significant only for pesticide applications after the first thirty days of the 

growing season when the pest volatility is small because initial stopping values can be 

quite small.  The second application of pesticide, which typically takes place later in the 

growing season, is more likely to be affected.  Quantifying the change in pesticide use 

would require a better knowledge of the volatility of the pest density and data on the pest 

densities at which the farmers have been applying pesticides. 

Moreover, we see that these stopping frontiers curve towards a common point at 

time T for option 1.  They appear to do the same at time T - ∆ for option 2, although their 

terminal points are distinct but close.  We also observe that the critical mite density 

decreases near harvest time because the farmer has to account for the possibility of a mite 

outbreak during the d days before harvest where spraying is not allowed.  A numerical 

investigation indicates that this effect becomes more pronounced when the length of the 

no-spraying period before harvest increases (i.e. when d is larger). 

Figure 3 shows the second stopping frontiers for different values of the minimum 

delay between successive pesticide applications (∆).  Note that the vertical axis of Figure 
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3 is linear instead of  logarithmic as for the other figures because the difference between 

the stopping frontiers displayed is small.  We see that the farmer will spray sooner for 

higher values of ∆ as a preventive measure against the expected increase in mite density 

during the period ∆. 

Figure 4 shows the first stopping frontier corresponding to the economic threshold 

when the farmer can spray only once and has the choice between three doses of pesticide 

(80%, 90%, or 100% of a standard dose.)  Parameters p, b, δ, and r are at their median 

value.  We postulate that pesticide efficacy, M, application cost, K, and the fraction of a 

standard pesticide dose, Y, are related by the relationships: M(Y) 1 e Y= − −2 3. *  and K(Y) 

= 5 + 25 * Y.  Note that when Y equals 1 (a standard dose of pesticide), M=0.9 and 

K=$30, the values of M and K used to generate Figures 1 and 2.  For this case, the 

stopping frontier is a composite of the frontiers corresponding to Y∈{0.8,0.9,1.0}: until 

day 68, the farmer should apply a standard dose of pesticide (Y*=1); from day 69 to day 

72, Y*=0.9; and Y*=0.8 thereafter.  These results illustrate that allowing the farmer to 

select pesticide dosage could help reduce pesticide use if reliable information on pesticide 

efficacy were available, which is unfortunately seldom the case. 

  Some results of a sensitivity analysis of the impact on the stopping frontier of a 

change in p, b, M, δ, or r, are shown in Table 2 and on Figures 5 to 8.  This analysis was 

conducted around the median parameter values presented in Table 1.  First, we find that 

the value of the discount rate, δ, has almost no influence on the decision to apply the 

pesticide, while changes in pesticide efficacy, M, have a limited practical impact on the 
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stopping frontiers (Figure 5).  The damage coefficient b, and the per-pound price of 

apples p, which play symmetric roles in our formulation, are more important (Figure 6.)  

In fact, the critical parameter of this model is the pest growth rate, r, as illustrated on 

Figure 7.  Everything else being the same, the pest density at which spraying should take 

place increases by more than an order of magnitude at the beginning of the growing 

season when r goes from 0.09 to 0.04.  The difference between the stopping frontiers 

narrows as we get closer to harvest time.  

 Finally, Figure 8 illustrates how the stopping frontiers vary with the spraying cost per 

acre (K). For the range we selected for K, the range of variation of the stopping frontiers 

is similar to that for the mite damage coefficient (d). 

 Data collection efforts for implementing our methodology should thus concentrate on 

the pest growth rate, on its infinitesimal standard deviation, and on the damage 

coefficient.  Consistent with the IPM philosophy, a better understanding of the pest 

biology and of the pest-host relationship should be pursued. 

 In addition, we computed the expected marginal cost (EMC), for the farmer, of 

increasing the minimum delay between successive pesticide applications to illustrate how 

our methodology could be used to analyze the reentry decision (Lichtenberg et al.)  Since 

deriving an analytical expression for the EMC is cumbersome, it was simulated following 

the procedure outlined in Appendix B.  Results are presented in Tables 3a and 3b for a 

simulation time step of DT=0.1 days, 100 000 replications, and for different starting times 

and starting densities, defined as fractions ( 65 and ,21,61 ) of the critical mite density 
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for ∆=7 days.  To have an indication of the convergence of the simulated EMCs, the 

standard error of the mean is shown in brackets below the corresponding EMC. 

 First, we observe that the simulated EMCs (in $/acre) are generally quite small, 

although they start becoming significant towards the end of the period of mite damage 

(bottom right of Table 3b).  It should be kept in mind, however, that the $ amounts shown 

underestimate the true marginal cost of delaying reentry because the farmer usually has 

more than one pest to worry about. It is likely, however, that the EMC could become 

much larger for longer ∆.  Second, as expected, the EMCs increase with ∆.  Although the 

exact value of any EMC is non-negative (more rigidity is costly to the farmer) some 

simulated values can turn out to be small negative numbers as for the first EMC on the 

last line of Table 3a.  This can happen, for example, if the day after the second option 

expired for ∆=5 days, the pest density increases just enough to justify using the second 

option for ∆=4 days, but later goes down to generate less damage than expected.  The 

exploration of EMCs for longer values of ∆ and for other types of pests and pesticides is 

left for future research. 

 

Conclusions 

In this paper, we propose to model the possibility to apply a pest control measure as 

a real option.  We explicitly take into account the random variations of the density of a 

pest population, and we formulate an optimal pest control problem that allows for several 

pesticide applications as well as variable pesticide doses.  We also explicitly model the 
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mandatory delay between consecutive pesticide applications.  This formulation provides a 

convenient framework for analyzing the reentry decision and for incorporating pest 

density randomness in the determination of simple action rules.  It has been known for 

some time (e.g. Arrow and Fisher), that ignoring randomness by replacing stochastic 

variables with their mean value can lead to decisions which differ greatly from the 

optimum.  This result seems, however, to have been ignored so far in the determination of 

simple rules for pest control measures. 

We illustrate this approach with the European red mite, a foliar pest of apples 

which has shown increasing resistance to pesticides.  We find that optimal stopping 

frontiers can vary significantly with the volatility of the pest density, so modeling 

explicitly the randomness of mite density could lead to a better use of pesticides, and may 

help decrease pesticide use.  This is an important finding in the context of increasing 

concerns about the environmental side-effects of pesticides. 

The information requirements for implementing this approach are compatible with 

a well-designed IPM strategy where pest density is regularly monitored.  Benefits of this 

approach over a conventional deterministic action rule are difficult to quantify, however, 

because they require information on the pest density volatility, which is not usually 

available, and the spraying habits of farmers. 

Our model is highly stylized.  Future research should consider time-dependent pest 

density diffusion parameters; uncertain pest growth rate and volatility; endogenous 

harvest date; damage control specification (e.g. see Hennessy or Fox and Weersink); 

farmer risk-aversion; and the quantification of reentry EMCs for different pesticides. 
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Appendix A 

To solve numerically the stochastic pest problem, we start by changing variables: 
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Introducing the new variables into Equations (14), (16), and (17), we obtain: 
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the nth option to spray.  Finally, the transform of Equation (18) (the smooth-pasting 

condition), is the derivative of Equation(A7) with respect to z along the stopping frontier.  

For solving our problem numerically, we also impose that the value of the option 

vanishes when X goes to zero, which leads to: 
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This assumption is compatible with the specification of a geometric Brownian motion for 

X, but it has no impact on the stopping frontier (Wilmott, Howison, and Dewynne).  Also 

note that the same approach can be followed when the pest growth rate r, and the 

volatility of the pest density vary with time.  A change of variables leads to Equation (A5) 

with similar boundary conditions.  See Wilmott, Howison, and Dewynne for details.   

To evaluate the integral in Equation (A6), we fit third order splines to the integrand 

over the interval (-4,4), which we then integrate.  For this purpose, we use the Fortran 

IMSL library routines dbsnak, dbsint, dbscpp, and dppitg with 20 splines. 

To solve the problem described by Equations (A5) to (A11), we consider two 

methods: an implicit method based on the Projected Successive Over-Relaxation 

algorithm (PSOR), and a boundary tracking method.  Both methods rely on defining, in ( 

τ, z ) space, equally spaced nodes at which we solve Equation (A5) below the unknown 

stopping boundary, subject to initial conditions (A8) and (A9), to(A7) at and above the 

unknown stopping boundary, and to the smooth pasting condition or to boundary 

conditions (A11) for z = -∞. 

Since we cannot numerically deal with boundaries at infinity, we replace them with 

boundaries that are “sufficiently far.”  We denote by ∆z and ∆τ respectively the 

increments in z and τ, and by nmin (<0) and nmax (>0) the lower and upper node numbers 

along the z-axis.  Multiplying the z-coordinate of a node by ∆z gives the corresponding z 

value, and likewise for its τ-coordinate.  Hence, we define Ui,j≡U(i*∆τ,j*∆z).  To solve 
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Equation (A5), it is usual to report ∆z and 
2)z(∆

τ∆
=ε , which should less than 0.5 for 

explicit finite-difference schemes (Wilmott, Howison, and Dewynne). 

• Implicit Method.  This method relies on a Crank-Nicholson scheme coupled with the 

projected SOR method (see § 8.7 and § 9.4 of Wilmott, Howison, and Dewynne). The 

PSOR method transforms a free boundary problem to a fixed boundary problem; the 

stopping frontier is inferred afterwards. 

We tried maximum values of +600 for nmax and –1600 for nmin, and values as small as 

0.01 for ∆z.  Since a Crank-Nicholson scheme imposes no restriction on ε, we varied ε 

between 0.25 and 5.0.  We found that the quality of the results depends on the value of d 

(see Table 1): for small values of d, we could easily compute the whole stopping frontier, 

but as d increased, we started “loosing” the stopping frontier for small values of t.  For 

d=30, the value of interest here, we could not get the lower third of the stopping frontier.  

We thus resorted to using a boundary tracking method. 

• Boundary Tracking Method 

This method keeps track directly of the stopping frontier.  Equation (A8) gives the 

initial location of the stopping frontier.  Suppose now that at time τ=i∆τ, we know that 

the boundary is at node nb.  We want to locate the boundary at time step i+1.  Since the 

boundary is continuous, it will not move by more than ∆z in one time step if ∆τ is small 

enough.  Then, we have to consider three cases at time step i+1: 1) the boundary goes up 

by ∆z; 2) it stays at the same z level; or 3) it goes down by ∆z.  For all cases, we start by 

calculating Ui+1,j for nmin ≤ j ≤ nb–1 from an explicit finite-difference version of (A5): 
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For this scheme to converge to the desired solution, we must have: 5.00 <ε≤  (Wilmott, 

Howison, and Dewynne). 

In case 1, we calculate bn,1iU +  from (A12), and we get Ui+1,j for nb+1 ≤ j ≤ nb+3 from 

(A7).  We then compute ω1, the absolute difference between DUi+1,nb+1 (see (A13) below) 

and the smooth-pasting condition at τ = (i+1)∆τ and z = (j+1)∆z.  This gives us a measure 

of how well the smooth-pasting condition is approximated, since DUi+1,nb+1 is a finite-

difference approximation of the derivative of U at z=(nb+1)∆z.  DUi,j is defined by: 
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In case 2, we compute Ui+1,j for nb ≤ j ≤ nb+2 from (A7), and then ω2, the absolute 

difference between DUi+1,nb and the smooth-pasting condition at τ = (i+1)∆τ and z = j∆z.   

In case 3, we calculate Ui+1,j from(A7) for nb ≤ j ≤ nb+1.  ω3 is the absolute difference 

between DUi+1,nb-1 and the smooth-pasting condition at τ = (i+1)∆τ and z = (j-1)∆z.   

The lowest value of ωi tells us what case we are in.  We calculate points above the 

stopping frontier (in the stopping region) from Equation(A7) as needed.  We iterate until 

2T5.0 σ=τ .    For more on boundary tracking methods, see Crank. 

Results shown on Figures 1 to 6 were calculated for parameter values nmin = –1600, 

nmax = 400, ∆z = 0.01, and ε = 0.45.  We varied these parameters to insure that 

satisfactory convergence was reached from a practical point of view.  Whenever possible, 

we compared results obtained by this method and by the PSOR method.  We found that 
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there was good agreement between the two methods.  The algorithms described above 

were programmed in Fortran 90 on a personal computer with an Intel Pentium 350 MHz 

processor.  The stopping frontiers for two applications, using the boundary tracking 

method, were calculated in approximately two hours. 

 

Appendix B 

 In this appendix we summarize the procedure used to simulate the expected marginal 

cost of increasing ∆ by one day.  It was used to generate the results reported in Tables 3a 

and 3b with a time step DT = 0.1 days and 100 000 replications.  First, we calculate 

expected damages (in $ at harvest time) for the stopping frontiers corresponding to a 

given ∆.  The algorithm goes as follows: after initializing pest damage, pest density 

(denoted by X), starting time, and the number of options to spray (2 in this case), we loop 

on time. For each time step, we first calculate the change in pest density from 

z DT X   DT X rdX σ+= , where z is a drawing from a standard normal distribution. 

We then add dX to X and calculate the increment in pest damage, which equals p b X DT.  

We then consider two cases: 

• If there are still 2 options to spray, then if the current pest density is greater than the 

critical pest density for stopping frontier 2, we apply a standard dose of pesticide, 

change X to X(1-M), and add Keδ(T+d-time) to the damages. Otherwise, we do nothing.  

Note that the second option to spray expires at time T-∆. 
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• If there is only 1 option to spray, then if at least ∆ days passed since the first spray and 

if the current pest density is greater than the critical pest density for stopping frontier 

1, we apply a standard dose of pesticide, change X to X(1-M), and add Keδ(T+d-time) to 

the damages. Otherwise, we do nothing.  The first option to spray expires at time T. 

• Otherwise, we just continue. 

Then, we increment time by DT and loop until time equals T+d.  We repeat this 

procedure after replacing ∆ with ∆+1, with the stopping frontiers corresponding to ∆+1, 

and take the difference of the damages obtained.  We iterate this procedure to obtain a 

large enough sample of differences in damages.  Its average value estimates the expected 

marginal cost of increasing ∆ by one day.  The sample standard error divided by the 

square root of the number of replications is the standard error associated with the 

calculated sample average. 
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Table 1: Summary of Model Parameters. 

Parameter Unit    Values Considered Parameter Meaning 

 

p   $/lb.    0.10, 0.15, 0.20  Price/lb. of apples. 

b   lb./(acre*CMD) 1.0, 1.5, 2.0    Mite damage coefficient. 

M   - -       0.8, 0.9, 0.99   Pesticide efficacy. 

K   $/acre    30      Cost of a pesticide application. 

δ   /day    10-4, 1.5*10-4, 2*10-4 Farmer’s discount rate. 

T   days    90      Period of mite damage. 

∆   days    7      Minimum delay between successive 

              pesticide applications 

d   days    30      Minimum delay between harvest and 

the last pesticide application. 

r   /day    0.04, 0.065, 0.09  Mite density growth rate. 

σ   1 day    0.1, 0.2, 0.3   Mite density infinitesimal standard 

deviation. 

Note: this table regroups all of the variables needed to generate the stopping frontiers.  

Parameters p, K, and δ are usually well known economic variables. ∆ and d are often 

imposed by regulations. The other variables (b, M, T, r, and σ) are biological parameters.  

T is fairly well known, whereas b and M are usually not known with much precision, but 

this is not a big drawback according to our sensitivity analysis.  Parameters r and σ could 

be obtained by maximum likelihood from a time series of pest densities. 
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Table 2: Sensitivity Analysis of X*. 

Parameter Time (Days) 

Name Value   20 40 60 80 

      

Reference  1.902 1.054 0.621 0.376 

      

b 1.0 2.853 1.581 0.931 0.564 

 2.0 1.426 0.790 0.465 0.282 

      

δ 1.00E-04 1.899 1.042 0.613 0.368 

 2.00E-04 1.904 1.056 0.628 0.381 

      

M 0.80 2.140 1.186 0.698 0.423 

 0.99 1.729 0.958 0.564 0.342 

      

r 0.040 3.103 2.059 1.466 1.107 

 0.090 1.099 0.489 0.207 0.073 

      

σ 0.1 1.119 0.412 0.156 0.057 

 0.3 3.231 2.467 1.883 1.481 

      

Κ 20 1.268 0.703 0.414 0.248 

 40 2.536 1.406 0.827 0.497 

 

Note: Parameters other than the ones indicated in the first column are at their median 

 Value. For their definition and units, see Table 1.
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Table 3a: Expected Marginal Cost (EMC) of increasing ∆∆∆∆ from 4 to 5 days. 

t (time 

days) 
)t(X

6

1 *

7=∆  
EMC 

($/acre) 
)t(X

2

1 *

7=∆  
EMC 

($/acre) 
)t(X

6

5 *

7=∆  
EMC 

($/acre) 

 

20 

 

0.060 

  

0.014 

(0.008) 

 

0.179 

 

 0.014 

(0.005) 

 

0.298 

 

-0.001 

(0.003) 

40 0.097  0.038 

(0.010) 

0.292  0.007 

(0.007) 

0.487  0.007 

(0.004) 

60 0.162  0.056 

(0.011) 

0.487  0.055 

(0.010) 

0.811  0.004 

(0.007) 

80 0.242 -0.005 

(0.001) 

0.726  0.118 

(0.018) 

1.210  0.153 

(0.019) 

 

Table 3b: Expected Marginal Cost (EMC) of increasing ∆∆∆∆ from 6 to 7 days. 

t (time 

days) 
)t(X

6

1 *

7=∆  
EMC 

($/acre) 
)t(X

2

1 *

7=∆  
EMC 

($/acre) 
)t(X

6

5 *

7=∆  
EMC 

($/acre) 

 

20 

 

0.060 

  

0.030 

(0.008) 

 

0.179 

 

 0.012 

(0.007) 

 

0.298 

 

0.009 

(0.003) 

   40 0.097  0.053 

(0.010) 

0.292  0.025 

(0.007) 

0.487   0.007 

(0.005) 

60 0.162  0.064 

(0.012) 

0.487  0.088 

(0.011) 

0.811  0.024 

(0.007) 

80 0.242  0.001 

(0.007) 

0.726  0.176 

(0.020) 

1.210  0.318 

(0.019) 

Note: A number in brackets below an EMC is the corresponding standard error of the 

mean ns , where s is the sample standard error and n is the number of replications. 
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Figure 1: First Stopping Frontiers vs. σ Figure 2: Second Stopping Frontiers vs. σ

Figure 3: Second Stopping Frontiers vs. ∆ Figure 4: Economic Threshold for three Doses
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Figure 5: Sensitivity to pesticide efficacy (M) Figure 6: Sensitivity to the mite damage

              coefficient (d).

Figure 7: Sensitivity to the pest growth rate (r). Figure 8: Sensitivity to the spraying cost/acre (K).
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1 Diffusion processes have been found to model reasonably well many physical, 

biological, economic, and social phenomena.  Examples include security price 

fluctuations in a perfect market, variations of population growth, or changes in species 

numbers subject to competition.  For more examples and for a good introduction to 

stochastic processes, see Karlin and Taylor. 

2 In the following, we omit the argument t when there is no ambiguity to lighten our 

notation. 

3 Our biological data were kindly provided by Professor Jan Nyrop, an entomologist with 

the Cornell experimentation station in Geneva, NY. 

4 Our economic data were kindly provided by Professor Gerald B. White, from the 

Agricultural, Resource, and Managerial Economics Department at Cornell University. 

5 This is because the diffusion to spray has to balance expected pest damages, which 

depend only on the current pest density and model parameters r and σ, with the cost of 

spraying the pesticide.  This cost should include the associated loss of flexibility since 

spraying is only allowed a finite number of times.  Thus, the initial pest density is not 

needed.  This is characteristic of Markov processes in stopping problems (see Malliaris 

and Brock). 

6 As remarked by an anonymous referee, we could expect, if we took risk aversion into 

account, that the stopping frontiers would not be shifted up as much when the volatility of 

the pest population density increases.  The reduction in pesticide use would thus decrease 

with increasing farmer risk aversion.  The impact of risk aversion still appears to be 
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debated in the literature, however.  While the conventional view holds that pesticides are 

risk-reducing, Moffit showed that average pesticide use may or may not be greater in the 

presence of risk-aversion when farmers decide to spray based on a threshold rule.  

Moreover, Gotsh and Regev found that fungicides for wheat producers in Switzerland can 

have a risk-increasing effect on revenue. 




