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Abstract:  14 
 15 
Physics-based circuit parameters like series and shunt resistance are essential to provide insights into 16 
the degradation status of photovoltaic (PV) arrays. However, calculating these parameters typically 17 
requires a full current-voltage characteristic (I-V curve), the acquisition of which involves specific 18 
measurement devices and costly methods. Thus, I-V curves of the PV system level are often not 19 
available. This paper proposes a methodology (PVPRO) to estimate these I-V curve parameters using 20 
only operation (string-level DC voltage and current) and weather data (irradiance and temperature). 21 
PVPRO first performs multi-stage data pre-processing to remove noisy data. Next, the time-series DC 22 
data are used to fit an equivalent circuit single-diode model (SDM) to estimate the circuit parameters 23 
by minimizing the differences between the measured and estimated values. In this way, the time 24 
evolutions of the SDM parameters are obtained. We evaluate PVPRO on synthetic datasets and find 25 
an excellent estimation of both SDM and the key I-V parameters (e.g., open-circuit voltage, short-26 
circuit current, maximum power, etc.) with an average relative error of 0.55%. The performance, 27 
especially the extracted degradation rate of parameters, is robust to various measurement noises and 28 
the presence of faults. In addition, PVPRO is applied to a 271kW PV field system. The relative error 29 
between the real and estimated operation voltage and current is <1%, suggesting that degradation 30 
trends are well captured. PVPRO represents a promising open-source tool to extract the time-series 31 
degradation trends of key PV parameters from routine operation data.  32 
 33 
Keywords: Parameter estimation, single-diode model, degradation, photovoltaic, health monitoring 34 

 35 
Nomenclature  

DC Direct current 
FF Fill factor 
𝐺 Irradiance (W/m2) 
𝐼 Current (A) 
𝐼! Saturation current (A) 
𝐼"# Photocurrent (A) 
𝐼$" Current at Maximum Power Point (A) 
𝐼%& Short-circuit current (A) 
I-V curve Current-voltage characteristic 
𝑘' Boltzmann constant (J/K) 
MPP Maximum power point 
𝑛 Diode factor (unitless) 
𝑁( Number of cells of a PV module 

 

𝑃$" Maximum Power (W) 
𝑉 Voltage (V) 
𝑉$" Voltage at MPP (V) 
𝑉!& Open-circuit voltage (V) 
PV Photovoltaic 
𝑞 Electron’s charge (C) 
r2 Coefficient of determination 
RMSE Rooted mean squared error 
𝑅% Series resistance (Ω) 
𝑅%# Shunt resistance (Ω) 
sc-Si Single crystalline silicon 
SDM Single diode model 
STC Standard test condition 
𝑇& Cell temperature (°C) 
𝑇$ Module temperature (°C) 

 

 36 
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1 Introduction 37 
In recent decades, the photovoltaic (PV) industry has experienced rapid growth worldwide, with 38 
installed solar capacity increasing by 19% in 2021 (SEIA, 2022). According to the ‘Net Zero Emissions 39 
by 2050’ scenario, solar electricity is expected to comprise 24.2% of global energy production (IEA, 40 
2021). With the rapid developments in materials and designs, reliability issues are increasingly 41 
important (Zaghba et al., 2022; Zeb et al., 2022). Exposed to the harsh outdoor environment, PV 42 
systems are subject to various degradation mechanisms (Lillo-Sánchez et al., 2021; Mellit et al., 2018). 43 
Analyzing the degradation of the PV system is vital to predicting the system lifetime and accurately 44 
projecting project finances (Theristis et al., 2020). It is also essential to reveal the underlying 45 
mechanisms of the degradation, which may be caused by various factors like corrosion and defects 46 
(Asadpour et al., 2021; Asadpour and A. Alam, 2022).  Understanding these degradation factors will 47 
greatly help in planning efficient operation & maintenance (O&M) (Rahman et al., 2021), preventing 48 
severe failures of PV systems (Alam et al., 2015) and feeding back to improve the next generation of 49 
systems. 50 
 51 
Common degradation analysis strategies can be roughly split into remote monitoring and in-field 52 
measurements (Jordan and Kurtz, 2013). The remote strategies generally leverage operational data, 53 
like electrical and environmental factors, to perform the analysis (Jordan and Kurtz, 2014; Kumar and 54 
Kumar, 2017). Popular remote-monitoring strategies include the performance ratio method (Schardt 55 
and te Heesen, 2021), the reference yield method (Padmavathi and Daniel, 2013) and machine 56 
learning techniques (David et al., 2021; Mellit and Kalogirou, 2022). While these remote strategies 57 
permit real-time monitoring of PV systems, the available data is often limited. Comparatively, in-field 58 
strategies allow performing advanced measurements, like aerial IR imaging, I-V characterization (Li 59 
et al., 2021a), electroluminescence (EL) imaging (Chen et al., 2022; Jahn et al., 2018) and 60 
photoluminescence (PL) imaging (Doll et al., 2021; Vuković et al., 2022), which provide rich information 61 
to characterize the system status. Among the in-field techniques, I-V characterization extracts unique 62 
and valuable information about the health and performance of the PV array (Kalliojärvi-Viljakainen et 63 
al., 2022; Li et al., 2022). These include the electrical signatures (e.g., open-circuit voltage 𝑉!", short-64 
circuit current 𝐼#" , fill factor 𝐹𝐹) and the physics-based equivalent model parameters (e.g., series 65 
resistance 𝑅# and shunt resistance 𝑅#$) (Li et al., 2021b; Wang et al., 2020). To extract the equivalent 66 
model parameters, various methods have been proposed in the literature, as reviewed in (Humada et 67 
al., 2020; Yang et al., 2020). Alternatively, instead of using I-V characterization, these model 68 
parameters can be estimated from information provided in the manufacturer datasheet (Batzelis, 2019). 69 
However, the actual model parameters are likely to degrade after years of operation (Ndiaye et al., 70 
2013; Phinikarides et al., 2014). Therefore, the parameters extracted from the manufacturer datasheet 71 
generally do not represent the true model parameters. Comparatively, the parameters extracted from 72 
the I-V characteristics (I-V curves) measured in the field can reflect the true health condition of the PV 73 
system, thus allowing for accurate performance modeling (Humada et al., 2020), degradation analysis 74 
(Kumar and Kumar, 2017), as well as the quality assurance check of the PV system (De la Parra et 75 
al., 2017).  76 
 77 
However, in-field I-V characterization is generally a time-consuming process, which requires site visits 78 
and specialized measurement devices (Pillai and Rajasekar, 2018). Additionally, I-V characterization 79 
with the most careful techniques still has noise uncertainty of 2-5% due to a variety of factors (Smirnov 80 
et al., 2010) (irradiance, spectral mismatch, temperature, etc.), making analysis of trends very difficult. 81 
With typical minimally-trained operators, the uncertainty of field I-V characterization is likely much 82 
higher. While continuous in-field single module I-V tracers are available (MorganSolar, 2022), these 83 
lead to additional cost and complexity for installation at the PV system level (Livera et al., 2019). 84 
Consequently, I-V curves of PV systems are often not available for the extraction of the electrical or 85 
equivalent circuit parameters for degradation analysis. 86 
 87 
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Given this fact, researchers have conceived alternative methods. Instead of using the entire I-V curves, 88 
partial curves (i.e., a portion of the curve) or reduced I-V curve data (several key points) can also be 89 
leveraged to extract the model parameters. Both methods can effectively reduce the interference time 90 
caused by the measurement to the PV devices in operation.  A common practice of partial curves is 91 
to use the data measured around the maximum power point (MPP). However, a key issue for this type 92 
of methodology lies in the determination of the optimal neighborhood range of MPP. For example, 93 
Cardenas et al. (Cardenas et al., 2017) utilize about 50% of the measurement (around the MPP) of an 94 
entire I-V curve. Lappalainen et al. (Lappalainen et al., 2020) select a portion of the I-V curve with 95 
voltage within ±3V of the MPP voltage (module open circuit voltage of 33 V) to fit the model. Kalliojärvi 96 
et al. (Kalliojärvi et al., 2022) statistically investigated the impact of the measurement range near MPP 97 
on the fitting performance of a single-diode model (SDM). It is shown that the portion of the curve 98 
where the corresponding power is above 50% of the MPP power provides a viable alternative to extract 99 
the model parameters. Concerning the reduced I-V curve data, the relevant research show difference 100 
in the selection of key points. A common strategy is to use the same parameters (like 𝑉!", 𝐼#", voltage 101 
at MPP 𝑉%&, current at MPP 𝐼%&) in the datasheet but measured in the field (Dobos, 2012), which then 102 
allows for the implementation of the same techniques (i.e., parameter extraction form datasheet 103 
information) (Batzelis, 2019) to identify the model parameters. Besides, Tay et al. (Tay et al., 2017) 104 
proposed to use 6 points sparsely located on the I-V curve to estimate the model parameters. The 105 
Suns-Voc method (Killam et al., 2021; Wang et al., 2018) uses the 𝑉!" to estimate diode parameters 106 
and reconstruct pseudo I-V curves. Toledo et al. (Toledo and Blanes, 2016) pick up 4 arbitrary points 107 
on the I-V curves to identify the SDM parameters. Most importantly, it should be noted that these 108 
methods, based on either partial or reduced I-V curve data, still require additional measurements other 109 
than the operation data (DC voltage and current), which will, therefore, inevitably affect the normal 110 
operation of the PV system but with reduced impact than the acquisition of entire I-V curves.  111 
 112 
Since the operation data is the most common and readily available data for a PV system, some 113 
researchers have considered primarily using the operation data instead of the costly and time-114 
consuming I-V characterization-based data to estimate the model parameters. Such methods have 115 
the advantage of requiring no additional measurements apart from the data already collected. Relying 116 
on operational and environmental data, Chakar et al. (Chakar et al., 2022) adopted the Teaching-117 
Learning-Based Optimization technique to extract circuit parameters. Nevertheless, the training 118 
process is complicated, and the generalization capability is limited when applying the method to a new 119 
PV system. Based on a physical double-diode PV cell model, Sun et al. (Sun et al., 2019) introduced 120 
Sun-Vmp, an open-source method to extract the model parameters by fitting the physics-based circuit 121 
model using time-series maximum power point (MPP) data. This method is promising; however, in its 122 
current form, it relies on assumptions such as parameters following a monotonic degradation trend 123 
over time and could be improved in terms of fitting speed. In addition, the pre-processing procedure is 124 
simple without considering the operating and climatic conditions (like clear sky filters), which may 125 
deteriorate the performance when using noisy or impure field data. 126 
 127 
Environmental measurements like irradiance and temperature are generally required for PV model 128 
parameter extraction. However, when these data are unavailable, some solutions may be applicable, 129 
in which parameter extraction can be performed without associated environmental data. For example, 130 
using I-V curves, the research (Lappalainen et al., 2022) presents a methodology to estimate both the 131 
model and environmental parameters via SDM fitting. The identified irradiance and temperature exhibit 132 
high accuracy even during sharp transitions and low irradiance conditions. Similar research is 133 
performed by (Jones and Hansen, 2019), where an algorithm is proposed to identify model parameters 134 
from individual I-V curves.  135 
 136 
In this manuscript, we propose a novel methodology (PVPRO) to extract the PV model parameters for 137 
degradation analysis. Notably, PVPRO only requires routine operational and environmental data; 138 
these are commonly available measurements for modern PV systems (Lindig et al., 2020), and 139 
additional measurements of entire, partial, or reduced I-V curve data are not required. Compared to 140 
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past methods that also rely on operational data, PV-Pro does not assume a monotonic degradation 141 
trend of parameters as in (Sun et al., 2019) but introduces more comprehensive pre-processing 142 
techniques to handle noisy data. Compared to the machine learning approach in (Chakar et al., 2022), 143 
PV-Pro does not require retraining the model for new PV systems, which substantially improves the 144 
transferability and usability of the application. 145 
 146 
The contribution of this paper is reflected in the following aspects: 1) A comprehensive methodology 147 
for parameter estimation and degradation analysis based on easily accessible PV operation and 148 
environmental data and requiring no additional measurements is proposed; 2) Time evolution trends 149 
of the model and I-V curve parameters are shown to be well captured on synthetic data sets; 3) The 150 
methodology is robust to measurement interference and the presence of faults; 4) An open-source 151 
Python package is available to perform the analysis (https://github.com/DuraMAT/pvpro). 152 
 153 
The remainder of this paper is organized as follows: Section 2 presents the methodology of PVPRO, 154 
including the preprocessing and parameter estimation. Section 3 evaluates PVPRO using synthetic 155 
datasets under three case studies. A demonstration of PVPRO on a field PV dataset is given in Section 156 
4. Discussions on the parameter estimation and the challenges are presented in Section 5. Section 6 157 
concludes the paper. 158 

2 Methodology of PVPRO 159 
The main concept of PVPRO is to use operation data (DC current 𝐼'( , DC voltage 𝑉'( , module 160 
temperature 𝑇%, and plane-of-array irradiance 𝐺) to determine the time-evolution of PV array SDM 161 
parameters at standard test conditions (STC, 𝐺 = 1000𝑊/𝑚) , 𝑇% = 25°C), as depicted in Fig. 1. 162 
Specifically, the analysis pipeline of PVPRO consists of 2 steps, namely the preprocessing of data and 163 
the parameter estimation, which are described below in Section 2.1 and 2.2, respectively. 164 
 165 

 166 
Fig. 1 Flowchart illustrating PVPRO analysis. The overall goal of PVPRO is to estimate SDM parameters and I-V curve 167 

parameters using only typical production and environmental data as inputs. 168 
2.1 Pre-processing of data 169 
Field-measured PV data is subject to noise and may contain erroneous values, therefore it is essential 170 
to perform efficient pre-processing of the raw data. To this end, PVPRO applies the following 171 
operations: 1) remove the daylight-saving time discontinuities (if present); 2) identify the operation 172 
condition to filter data at periods of inverter clipping and off-MPP operations; 3) detect clear sky periods; 173 
4) detect and remove the outliers. 174 
 175 
2.1.1 Daylight saving time correction 176 

Input

• DC voltage, current
(Time series)

• Irradiance
• Temperature

Produc'on data

Environmental data

PVPRO

Step 1 Pre-processing

• Daylight saving 9me correc9on
• Iden9fica9on of opera9on 

condi9on
• Clear sky detec9on
• Outlier detec9on

Step 2 Parameter es'ma'on
• Single diode modelling

Output

SDM parameters

• 𝐼𝑝ℎ , 𝐼𝑜 , 𝑅𝑠, 𝑅𝑠ℎ , 𝑛
(Time series)

IV curve parameters
• 𝑉𝑚𝑝 , 𝐼𝑚𝑝 , 𝑉𝑜𝑐 , 𝐼𝑠𝑐 , 𝑃𝑚𝑝
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A
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When the measurement of field data contains DST shifts, PVPRO adopts the DST correction function 177 
provided in the Solar data tools (Meyers et al., 2022, 2020) to correct the data timestamp to eliminate 178 
the shifts. 179 
 180 
2.1.2 Identification of operation condition 181 
The PVPRO algorithm is principally designed for data at maximum power point (MPP). However, it is 182 
not typically reported whether an inverter is at MPP or other operating points (open circuit, clipped, 183 
etc.). To better select the data for analysis, PVPRO identifies the operating condition of the PV array 184 
based on the electrical output and environmental data. The operating condition can be: operating at 185 
MPP, inverter off, open-circuited, clipped, or anomaly. The detailed procedure is provided in 186 
Supplementary Information (SI) Section A). This step allows users to decide which type of data to use 187 
for the following analysis. In this research, only MPP data points are included in the data set PVPRO 188 
analysis.  An example is illustrated in Fig. 2 using a public PV dataset (NIST ground array) from 2015 189 
to 2019 (Boyd et al., 2017).  190 

 191 
Fig. 2 Example of automatically identified operating conditions of the preprocessing routine using data of the NIST 192 
ground array from 2015 to 2019. Five PV array conditions are considered and labeled by different colors. The y-axis 193 
presents the time of day with the approximate sunrise and sunset time marked. It is observed that the PV array is 194 

generally under MPP condition during the daytime. 195 
 196 

2.1.3 Clear time detection 197 
Rapid changes in irradiance can lead to higher errors in the predicted operation point due to the spatial 198 
difference from the irradiance sensor to the array and imperfect synchronization between the 199 
irradiance/temperature sensors and the PV array (Modbus protocol typically has 30 seconds to 200 
minutes between acquisitions on each different sensor) (Friesen et al., 2018). To reduce the impact 201 
of fast weather changes on the extracted parameters, the data set is filtered to include only clear sky 202 
conditions. We accomplish this with an efficient clear time detection algorithm – statistical clear sky 203 
fitting (SCSF) algorithm (provided in Solar data tools (Meyers et al., 2020)) is employed with an 204 
example plotted in Fig. 3. Compared to other clear sky algorithms (Alia-Martinez et al., 2016; Ineichen, 205 
2016), SCSF is independent of traditional atmospheric and geometric modeling techniques and 206 
resilient to shading conditions (Meyers et al., 2019). SCSF also minimizes the effects of spectral 207 
changes which are not accounted for otherwise. From Fig. 3, it is observed that on cloudy days, the 208 
clear sky time (marked in red points) could be well identified for analysis. 209 
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 210 
Fig. 3 Example of identified clear time based on module output power. On cloudy days, the SCSF algorithm correctly 211 

identifies the clear periods, marked in red points. 212 
2.1.4 Outlier detection and removal 213 
For field PV data, outliers are commonly encountered due to various reasons, such as non-214 
synchronous measurements, clouds, signal noise, and sensor issues (Li et al., 2020). It is thus 215 
essential to carefully identify and remove such outliers. Generally, the measured 𝐼'( is expected to be 216 
approximately proportional to the irradiance 𝐺 and 𝑉'( is linearly related to module temperature 𝑇%. 217 
Accordingly, we identify such outliers by performing a linear regression of 𝐼'( as a function of 𝐺 and 218 
𝑉'( by 𝑇%. The Huber regressor (Sun et al., 2020), which minimizes the squared differences and is 219 
robust to outliers in the fitting procedure. A threshold parameter (default value of 2) can be adjusted 220 
by the user based on the number of data points to determine the boundary between outliers and 221 
retained points (Sun et al., 2020). An example application for the detection of current and voltage 222 
outliers is shown in Fig. 4 using the NIST ground array dataset.  223 

 224 
Fig. 4 Example of detected outliers and points to retain for analysis. (a) Detection of 𝐼!"  outliers as a function of 	225 

𝐺. (b) Detection of 𝑉!" 	outliers as a function of 𝑇#Parameter estimation. 226 
 227 

2.2 Parameter estimation 228 
After pre-processing the data by performing the four operations presented in Section 2.1, PVPRO 229 
performs the SDM parameter estimation, with the procedure outlined in Fig. 5. The single-diode model 230 
(SDM) is adopted as the equivalent circuit model in this research, which is simple but can sufficiently 231 
characterize the performance of PV modules (Humada et al., 2016) in most situations and is also 232 
suitable for the case of changing environmental conditions (de Blas et al., 2002). Notably, PVPRO 233 
processes the time-series operation and environmental data by splitting the data into time windows. 234 
The evolution trend of the SDM parameters is obtained by concatenating the estimated results from 235 
each time-window data. Details of each step of the parameter estimation procedure are described 236 
next.  237 

(b)(a)
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  238 
Fig. 5 Flowchart illustrating the estimation of SDM parameters using PVPRO. The whole process is performed on the 239 
time-series processed operation and environmental data. First, the initial guess of the SDM parameters is estimated 240 
from the module parameters. Then, for each time-window data, based on the SDM modeling, the 𝑉!"  and 𝐼!"  are 241 

estimated at the measured environmental conditions. These are compared with the measured values to compute a 242 
loss value. The SDM parameters are repeatedly updated until the loss is minimized, which marks the completion of 243 

the parameter extraction for that time-window data. This process is applied to all the time windows. In this way, 244 
PVPRO finally outputs a time series of SDM parameters. 245 

2.2.1 Initial estimation of model parameters 246 
The first step of the fitting procedure is to perform an initial guess of the SDM parameters of the PV 247 
module from the manufacturing datasheet. The single diode equation (1) includes five primary 248 
parameters, i.e., the photocurrent (𝐼&$), saturation current (𝐼!), series resistance (𝑅#), shunt resistance 249 
(𝑅#$), and the diode factor (𝑛). These parameters under different irradiance (G) and cell temperature 250 
(𝑇") are expressed from (2) to (5) based on the values at the reference condition (𝐼&$_+,-, 𝐼._+,-, 𝑅#$_+,-, 251 
𝑅#_+,- , 𝑛+,- ) using the De Soto model (De Soto et al., 2006). The initial guess of the five SDM 252 
parameters at the reference condition is obtained from the module datasheet information using the 253 
‘pvlib.ivtools.sdm.fit_desoto’ function (Holmgren et al., 2018), which obtains the reference parameters 254 
by optimizing the De Soto model functions (De Soto et al., 2006). 𝑅# and 𝑛 are assumed constant at 255 
its reference value, i.e., 𝑅#_+,-  and 𝑛+,-	 (De Soto et al., 2006). 𝑇"  is estimated from the module 256 
temperature (𝑇%) using the Sandia Array Performance Model provided in pvlib (Holmgren et al., 2018). 257 
Note that the 𝑅#$  in the DeSoto model is proportional to the inverse irradiance. This assumption 258 
presents problems in the parameter extraction, for example, 𝑅#$  could become unbounded as 259 
irradiance falls to 0. Therefore, we add a constant (𝐺#$_,/0+1) as indicated in (1). This modified DeSoto 260 
model is then leveraged to extract the five SDM parameters, which are adopted as the initial 261 
parameters for PVPRO analysis. 262 
 263 
 264 

𝐼 = 𝐼&$ − 𝐼. 6exp :
2345!

67"8#9/;
; − 1< − (𝑉 + 𝐼𝑅#)(

<
5#$

+ 𝐺#$_,/0+1)		 (1)	 265 
 266 

𝐼&$ =	
𝐺
𝐺+,-

>𝐼&$_+,- + 𝛼4!$@𝑇" − 𝑇"_+,-AB	 (2) 267 

Module 
parameters

(from datasheet)

SDM parameters
(𝐼𝑝ℎ , 𝐼𝑜 , 𝑅𝑠 , 𝑅𝑠ℎ , 𝑛)

Simulated
VDC, IDC

Ini%al guess

Update

+

−

𝐼𝑝ℎ
𝑅𝑠ℎ

𝑅𝑠

Diode

𝐼
𝑉

𝐼0

SDM modeling

Time window 1 Time window 2 …Time 0

Parameter
extrac'on

If loss is minimized

Loss

Time-series opera%on data (processed)

If loss is not
minimized

Time-series environmental data

Measured
VDC, IDC

Time-series SDM parameters
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𝐼. = 𝐼._+,- C
𝑇"

𝑇"_+,-
D
=

exp C
1
𝑘 F
𝐸>_+,-
𝑇"_+,-

−
𝐸>
𝑇"
HD (3) 268 

𝐸> = 𝐸>_+,->1 − 𝑑𝐸>𝑑𝑇@𝑇" − 𝑇"_	+,-AB	 (4) 269 
 270 

𝑅#$ = 𝑅#$_		+,-
𝐺+,-
𝐺

(5) 271 
where,  272 

• 𝑁@: Number of cells connected in series of a PV module 273 
• 𝑘A : Boltzmann constant (1.38´10-23 J/K) 274 
• 𝑞: Electron’s charge (1.6´10-19 C) 275 
• 𝐼._+,-: Reference value of 𝐼! at STC 276 
• 𝐼&$_+,-: Reference value of 𝐼&$ at STC 277 
• 𝑅#$_+,-: Reference value of 𝑅#$ at STC 278 
• 𝐸>: Material bandgap 279 
• 𝑑𝐸>𝑑𝑇: temperature coefficient of bandgap energy, depends on the PV technology 280 

 281 
 282 
Based on the initial parameters, the SDM could predict the per-module maximum power point under 283 
any environmental conditions. An illustration of the estimated module 𝑉%&  and 𝐼%&  using the 284 
environmental data from the NIST ground array dataset is presented in Fig. 6, where the estimated 285 
𝑉'( and 𝐼'( are compared with the measured ones. 286 

 287 
Fig. 6 Measured and estimated 𝑉!"   and 𝐼!"  (using the SDM with initially estimated parameters) at 2 periods, i.e., 288 
January and August in 2015 (a): 𝑉!"   (b): 𝐼!" . We can observe that for the initially estimated parameters, the fit 289 

quality varies under different periods. Refinements to the SDM parameters are thus conducted by PVPRO as 290 
discussed in the context. 291 

To quantify the accuracy of the SDM with the initial parameters, the root mean squared error (RMSE) 292 
between the estimated and measured values for 𝑉'( and 𝐼'( is calculated. From the results, the RMSE 293 
varies when using different periods of data (like in different seasons), as shown in Fig. 6. This indicates 294 
that the SDM with the initial parameters does not fit all the periods of measured data. In addition, the 295 

(b)

(a)



9 
 

parameters may also change over time due to degradation. Thus, the SDM parameters need to be 296 
determined dynamically based on the data of each time period, which is the task of the next step. 297 
 298 
2.2.2 Fitting of model parameters 299 
As presented in Fig. 5, to fit the SDM parameters, a loss needs to be computed to quantify the 300 
difference between the estimated and measured 𝑉'( and 𝐼'(. Here, the L2 loss is adopted, which is 301 
stable and enables a fast convergence (Allen-Zhu et al., 2018). To help ensure an equal weight of 𝑉'( 302 
and 𝐼'(, both losses are divided by the median value as presented in (6). The mean value of the L2 303 
loss of 𝑉'( and 𝐼'( across all measurement points is adopted as the total loss. 304 

𝐿2_𝐿𝑜𝑠𝑠 = RF
𝑉'(%!B,C,B − 𝑉'(%,1#D+,B

𝑉'(%,BE16
H
)

+ F
𝐼'(%!B,C,B − 𝐼'(%,1#D+,B

𝐼'(%,BE16
H
)

S /2 (6) 305 

 306 
Next, the fitting procedure is performed. L-BFGS-B (Liu and Nocedal, 1989) is adopted as the solver, 307 
which permits a good optimization performance while using a limited amount of computer memory. 308 
The solver updates the SDM parameters in each loop. The fitting process is marked complete when 309 
the loss is minimized, or the maximum iterations are reached. The number of the maximum iterations 310 
is set to 500, which allows a good compromise between fitting performance and speed. Considering 311 
the significant variance in the order of magnitude of the five parameters (𝐼. is usually in the range [10-312 
10A, 10-7A] while 𝑅# in [0W, 3W]), the numerical value of the five SDM parameters are normalized to 313 
fall within similar ranges to improve the numerical performance of the fitting algorithm (the specific 314 
numerical transformation functions are listed in Section B of the SI). Lower and upper bounds are 315 
recommended for the SDM parameters which permit the estimated values to fall into reasonable 316 
ranges. Details of the setup of bounds are provided in Section C of the SI.  317 
 318 
Assuming that the model parameters are relatively stable within a short period, the data is split into 319 
time windows to perform the fitting procedure as shown in Fig. 5. The length of the time window can 320 
be adjusted depending on the time length of the data to process. When dealing with years of data, our 321 
default recommendation is to set the time interval as 2 weeks (14 days), which permits enough data 322 
points per iteration and maintains good time resolution. Using this fitting procedure, PVPRO can then 323 
estimate the time evolution of the SDM parameters based on the PV operation and environmental 324 
data. 325 
 326 

3 Performance evaluation using synthetic datasets 327 
PVPRO is first evaluated on synthetic datasets, which are generated based on controlled 328 
environmental data and SDM parameters, as illustrated in Fig. 7. Using such synthetic datasets, the 329 
performance of PVPRO can be quantified by comparing the estimated SDM parameters with the 330 
ground truth. Notably, synthetic measurement noise can be added to the measurement and the SDM 331 
parameters can be configured to demonstrate a specific time-based pattern (like with the presence of 332 
fault or steady degradation). Accordingly, this section will present 3 case studies: Section 3.1 333 
demonstrates PVPRO using a synthetic dataset modelling a 11kW PV array. Section 3.2 investigates 334 
the impact of the measurement error (random and systematic error (Dirnberger and Kraling, 2013; 335 
Reise et al., 2018)) on the performance. Section 3.3 evaluates PVPRO in the presence of faults. 336 
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  337 
Fig. 7 Diagram illustrating testing of PV-Pro on synthetic datasets. First, a synthetic dataset is generated based on a 338 

chosen ground truth pattern for both SDM parameters and environmental data. Next, the SDM simulates the 339 
operation data, and noise can be added to the environmental data. PVPRO is provided with these environmental 340 

and operation data but without the SDM parameters. Instead, the SDM parameters will be estimated by PVPRO and 341 
are compared with the ground truth. 342 

 343 

3.1 Case study using a synthetic dataset modeling an 11kW PV array 344 
Based on the flowchart in Fig. 7, a synthetic dataset is generated for an 11kW PV array of 50 single 345 
crystalline silicon (sc-Si) modules. The true (generated) initial SDM parameters and corresponding I-346 
V parameters are listed in Table 1. The array consists of 5 strings with 10 modules connected in series 347 
in each string. The environmental parameters are taken from 4 years (1998-2002) of meteorological 348 
data – NSRDB database (version 3.0.1) (Sengupta et al., 2018) at 37° 53' 24"N 122° 15' 36"W, which 349 
provides the true values of the plane-of array irradiance (𝐺FGH), ambient temperature (𝑇1), wind speed, 350 
etc. The module backsheet temperature (𝑇%) is determined from the 𝐺FGH, 𝑇1 and wind speed using 351 
the common temperature translation method (D.L. King et al., 2004). Measurement noise is not 352 
included in this case study (the impact of the noise will be systematically studied in Section 3.2).  353 

Table 1 Module parameters (I-V and SDM parameters) 354 
I-V 

parameters 
Value SDM 

parameters 
Value 

𝑉$"_*+, 38.3 V 𝐼"#_*+, 6.0 A 
𝐼$"_*+, 5.65 A 𝐼!_*+, 1E-10 A 
𝑉!&_*+, 45.89 V 𝑛*+, 1.2 
𝐼%&_*+, 6.0 A 𝑅%_*+, 0.35 W 
𝑃$"_*+, 216 W 𝑅%#_*+, 600 W 

 355 
3.1.1 Determination of the degradation pattern for the synthetic dataset 356 
To approximate the field-measured long-term PV operation data, degradation over time is artificially 357 
introduced to the SDM parameters (𝐼&$_+,-, 𝐼!_+,-, 𝑅#_+,-, and 𝑅#$_+,-) to generate the synthetic dataset. 358 
The diode factor 𝑛+,-  is assumed constant. The increase of 𝑅#_𝑟𝑒𝑓  and the decrease of 𝑅#$_𝑟𝑒𝑓  are 359 
intended to simulate corrosion and degradation of solder bonds (Aghaei et al., 2022). Specifically, a 360 
linear degradation is set for 𝑅#_+,- (0.02 W/year, 5.71%/year), 𝑅#$_+,- (-10 W/year, 1.67%/year), and 361 
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𝐼._+,-	(1𝑒I<<A/year, 10%/year) along with a degradation with seasonal variation for 𝐼&$_+,-  (linear 362 
degradation 0.05 A/year, -0.83%/year, the seasonal amplitude of 0.025A). The decrease of 𝐼&$_+,- 363 
reflects the degradation of 𝐼#"_+,-  while the 𝐼._+,-  for 𝑉!"_+,- . The degradation rates are chosen by 364 
considering both the module parameters and the common rates reported in the literature which are 365 
obtained from long-term field tests (Kahoul et al., 2021).  366 
 367 
3.1.2 Estimation results 368 
Given the synthetic dataset, PVPRO outputs the estimated SDM parameters (𝐼&$_+,-, 𝐼!_+,-, 𝑅#_+,-, 369 
𝑅#$_+,-, 𝑛+,-) at the reference condition, i.e., STC in this research. Then, using these parameters, the 370 
SDM could predict the estimated I-V parameters at the reference condition (𝑉%&_+,-, 𝐼%&_+,-, 𝑉!"_+,-, 371 
𝐼#"_+,-, 𝑃%&_+,-). For this analysis, PVPRO fit parameters are set to values listed in SI Table S3. The 372 
ground truth of the I-V parameters is extracted from the I-V curves modeled by the SDM, as depicted 373 
in Fig. 7. The relative root-mean-square error (RMSE) and the coefficient of determination (r2 score) 374 
are adopted as the evaluation metrics (detailed in Section E of SI). The relative RMSE quantifies the 375 
average error of estimation, while the r2 score reflects the matching degree of the degradation trend 376 
of the parameters. The estimated I-V and SDM parameters with the ground truth are presented in Fig. 377 
8, where the year-of-year (YOY) trends are also highlighted. The estimated and true degradation rate 378 
of these parameters are summarized in Table 2. 379 

 380 
Fig. 8 Degradation trend of I-V and SDM parameters estimated by PVPRO (the dashed line represents the fitted YOY 381 

trend of parameters). Overall, PVPRO achieves good estimation of the parameters with r2 score>=0.90. 382 
Table 2 Degradation rates of estimated I-V and SDM parameters 383 

  Estimated 
degradation 

rate (%) 

Reference 
degradation 

rate (%) 

Relative rate 
error (%) 

I-V 
parameters 

𝑉$"_*+,   -0.69 -0.64  7.37 
𝐼$"_*+, -0.92 -0.947 3.22 
 𝑉!&_*+,  -0.35 -0.37 4.23 
𝐼%&_*+,   -0.85 -0.88  3.71 
𝑃$"_*+, -1.60 -1.564 2.41 

Mean±std -0.88±0.41 -0.88±0.44 4.18±1.70 
𝐼"#_*+, -0.85 -0.879 3.81 



12 
 

SDM 
parameters 

𝐼!_*+, 7.89 9.95 20.70 
𝑛*+, 0.0 0.0 - 
𝑅%_*+, 5.71 5.71 0.05 
𝑅%#_*+, -1.54 -1.66 7.68 

Mean±std 2.80±4.08 3.28±5.54 8.06±7.78 
 384 
At first glance at the extracted evolution trend, it is observed that the pre-determined periodic wave of 385 
𝐼&$_+,-  (conceived to approximate seasonal variation) also propagates into the current-related I-V 386 
curve parameters (𝐼%&_+,-, 𝐼#"_+,-, and 𝑃%&_+,-). For other parameters, an overall linear evolution trend 387 
is exhibited. As for the performance, for all the parameters, PVPRO achieves an excellent estimation 388 
with the average relative RMSE 0.55% and the r2 score of 0.98. For the I-V parameters (𝑉%&_+,-, 389 
𝐼%&_+,-, 𝑉!"_+,-, 𝐼#"_+,-, 𝑃%&_+,-), the performance of PVPRO is even better, with the r2 score reaching 390 
nearly 1 and relative RMSE less than 0.1%. The average relative error of degradation rate is also 391 
below 5%, as presented in Table 2. It should be noted that 𝑉%& and 𝐼%& under various irradiance and 392 
temperatures are used to minimize the loss (as introduced in Fig. 5). Thus, it is logical to achieve a 393 
good performance of 𝑉%&_+,-  and 𝐼%&_+,-  under reference condition (i.e., STC) as these are the 394 
parameters for which loss is minimized. Note that, 𝑉!"_+,- , 𝐼#"_+,-  and 𝑃%&_+,-  are the parameters 395 
estimated by the SDM, which are indirectly optimized using 𝑉%&  and 𝐼%& . Their high accuracy, 396 
consequently, demonstrate the capability of PVPRO for the estimation of the I-V parameters through 397 
the SDM modeling.   398 
 399 
Regarding the SDM parameters, the overall estimation accuracy is lower than the I-V parameters with 400 
the average RMSE of 1.04% and degradation rate error of 8.06%. Comparatively,  𝐼&$_+,-, 𝐼!_+,-, and 401 
𝑛+,-  matched well the evolution trend of the true values. It may be noted that the estimated 𝐼!_+,- has 402 
a relatively large relative RMSE (2.55%) and degradation rate error (20.70%). This is due to the small 403 
value of 𝐼!_+,-, which is around 10-10 A. For the estimated 𝑅#_+,- and 𝑅#$_+,-, the seasonality variation 404 
is also observed, especially for 𝑅#,	which leads to the high RMSE and degradation rate error as the 405 
true degradation trend is linear. Nevertheless, the r2 score for all the parameters is good, equal to or 406 
higher than 0.90. Thus, in the absence of measurement noise, we thereby conclude that PVPRO 407 
performs very well for capturing degradation trends.  408 
 409 
3.2 Impact of random and systematic measurement noise 410 
The results presented above are from a dataset free of additional measurement noise. To evaluate 411 
the robustness of PVPRO when dealing with different data quality, we study the effect of two 412 
measurement errors to 𝐺 and 𝑇%: (i) random noise and (ii) systematic errors. The random noise is set 413 
to a Gaussian distribution sampled independently at each point. The systematic error is set to a 414 
constant bias to the measurement values, which is generally due to the calibration error or 415 
measurement offset (Reise et al., 2018). We vary the noise level of these two types of noise and 416 
examine the corresponding average estimation error (relative RMSE, r2 score, and degradation rate 417 
error) of the I-V (𝑉%&_+,-, 𝐼%&_+,-, 𝑉!"_+,-, 𝐼#"_+,-, 𝑃%&_+,-) and SDM (𝐼&$_+,-, 𝐼!_+,-, 𝑅#_+,-, 𝑅#$_+,-, 𝑛+,-) 418 
parameters are shown in Fig. 9 and Fig. 10. The details on the estimation error of each parameter are 419 
given in Section F of the SI. 420 
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  421 
Fig. 9 (a) Example of module temperature (Tm) with random noise and the three metrics of estimated SDM and I-V 422 

parameters with Tm under different random noise levels. The noise level refers to the variance of the normal 423 
distribution added to the Tm. (b) Example of Tm with systematic error introduced and the three metrics of 424 

estimated SDM and I-V parameters with Tm under different systematic error levels. The dotted lines refer to the 425 
mean value of all the five SDM or five I-V parameter errors, while the filled area outlines the standard deviation of 426 

the parameter errors. 427 
For Fig. 9, it is apparent that I-V parameters are better estimated than SDM parameters for both types 428 
of Tm noises. The estimation errors of the SDM parameters exhibit large variations. This is mainly 429 
caused by the poor estimation performance of 𝐼! (detailed in Section F of SI, also observable from Fig. 430 
8 and Table 2).  Globally, the relative RMSE and r2 score are less impacted by random noise of 𝑇% 431 
but increase when large systematic measurement errors are introduced into the input data. Notably, 432 
the degradation rate errors of the parameters on average are relatively stable to both types of 𝑇% noise, 433 
especially the I-V parameter estimations.  434 

 435 

  436 

(a) (b)Impact of Tm random noise Impact of Tm systematic errors

r2 r2

r2 r2

(a) (b)Impact of G random noise Impact of G systematic errors

r2 r2

r2r2
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Fig. 10 (a) Example of irradiance (G) with random noise and the three metrics of estimated SDM and I-V parameters 437 
with G under different random noise levels. The noise level refers to the variance of the normal distribution added 438 

to the G. (b) Example of G with systematic error and the three metrics of estimated SDM and I-V parameters with G 439 
under different systematic error levels. The dotted lines refer to the mean value of all the five SDM or five I-V 440 

parameter errors, while the filled area outlines the standard deviation of the parameter errors.  441 
 442 
It is observed from Fig. 10 that the RMSE and r2 score of I-V and SDM parameters all increase with 443 
the random noise or systematic error of 𝐺 . Similar to the results from Fig. 9, the estimation 444 
performance of I-V parameters is better than that of SDM parameters. Overall, the degradation rate 445 
error of I-V and SDM parameters on average is relatively insensitive to both noise types of	𝐺, which 446 
demonstrates the robustness of PVPRO on the estimated degradation rate.  447 

 448 
3.3 Impact of the presence of faults 449 
In addition to measurement noise or errors, various faults may occur in fielded PV modules, causing 450 
changes in module performance and the corresponding SDM parameters. In this section, we add some 451 
sudden changes to specific parameters to simulate the occurrence of faults in the PV array and 452 
evaluate PVPRO under these conditions. We select two SDM parameters (𝐼&$_+,- and 𝑅#_+,-) for study. 453 
A decrease is set for 𝐼&$_+,-, which is usually caused by shading (Pachauri et al., 2020) or soiling 454 
(Qasem et al., 2014). For 𝑅#_+,-, an increase is set, which is generally due to the solder band failure 455 
(Asadpour et al., 2020). To approximate the field measurement, a certain amount of measurement 456 
noise is also added to G and Tm (G: 2% random noise level, 3W/m2 systematic error; Tm: 1% random 457 
noise level, 0.5°C systematic error). 458 
 459 
The severity of the fault depends on the duration or magnitudes of change. Here, we addressed four 460 
patterns of change with different duration or magnitudes, as detailed in Table 3. The duration of the 461 
fault is set as multiples of the time window. When the duration is shorter than the window length, 462 
PVPRO will average the results or identify them as outliers. Therefore, PVPRO is tested for detecting 463 
anomalies with longer duration than the time window. If the user wants to track anomalies of short 464 
durations, the length of the analysis time window should be correspondingly adjusted. 465 
 466 

Table 3 Definition of the four cases of fault with different duration and magnitude 467 
 Duration Magnitude 

Case short-small Short (1x time window)* Small (5%)à 
Case short-large Short (1x time window) Large (25%) 
Case long-small Long (10x time window)  Small (5%) 
Case long-large Long (10x time window) Large (25%) 

* The duration of fault is synchronized with the time window for analysis (here, 1 time window = 2 weeks) 468 
à The magnitude is a relative value based on the initial value of the parameter 469 

 470 
 471 
To illustrate this procedure, the evolution trends of the parameters estimated by PVPRO when 𝐼&$_+,- 472 
presents an abnormal decrease under the case short-small (defined in Table 3) are presented in Fig. 473 
11. 474 
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  475 
Fig. 11 Estimated parameters when 𝐼$% decreases due to a modeled fault. The decrease of 𝐼$% is reflected in the 476 

change of 𝐼&', 𝐼#$, and 𝑉('. 477 
It is observed in Fig. 11 that there is a nearly constant shift between the PVPRO results and the true 478 
value, which is primarily due to the measurement error added on G and Tm. Despite this error, PVPRO 479 
can closely capture the sudden decrease of 𝐼&$_+,- with a relative RMSE of 0.65% and the r2 score of 480 
0.97. Furthermore, when 𝐼&$_+,- decreases, the related I-V parameters (𝐼#"_+,-, 𝐼%&_+,-, and 𝑉!"_+,-) will 481 
also correspondingly change, as seen from the curves of true values in Fig. 11. For these parameters, 482 
the abnormal change is also well captured by PVPRO.  483 
 484 
The other patterns of change listed in Table 3 are also tested with the results presented and compared 485 
in Fig. 12.  486 

 487 
Fig. 12 (a) Four cases of 𝐼$% decreases, (b) r2 of parameters under the four cases. We can observe that the estimated 488 

parameters catch well all the cases of change with the r2 score larger than 0.99. 489 
It is depicted in Fig. 12 that all the cases of 𝐼&$_+,- change are well captured by PVPRO with an r2 490 
score >0.97. Among the 𝐼&$_+,--impacted parameters, the performance of 𝐼#"_+,- and 𝐼%&_+,- are better 491 
than that of 𝑉!"_+,- since they are all the current-related parameters and thus more sensitive to the 492 
change of 𝐼&$_+,-. Under all the cases, the parameters estimated by PVPRO present a near perfect 493 
match to the true trend with the average r2 score higher than 0.98. 494 
 495 

Case Short-Small

Year Year

(a) (b)Case Short-Large

Case Long-Small Case Long-Large
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Similar studies are performed for 𝑅#_+,- with the results shown in Fig. 13 and Fig. 14. Regarding the 496 
change of 𝑅#_+,-, 𝑉%&_+,- and 𝑃%&_+,- are the affected parameters as presented in Fig. 13.  497 

  498 
Fig. 13 Estimated parameters when 𝑅&_*+, increases. The increase of 𝑅&_*+, causes the change of 𝑉#$_*+, and 499 

𝑃#$_*+,. 500 

 501 
Fig. 14 (a) Four cases of 𝑅&_*+, increases, (b) r2 of parameters under the four cases. It is shown that estimated 𝑅&_*+, 502 
could substantially catch the sudden jumps but with oscillation and a better estimation is achieved for 𝑉#$_*+, and 503 

𝐼#$_*+,. 504 

Given Fig. 13 and Fig. 14, it is noticed that the r2 values are relatively independent of fault duration or 505 
magnitude. Similar to the previous results in Fig. 8, oscillations occur in the estimated 𝑅#_+,- trend, 506 
which lowers the r2 score. Nevertheless, the related I-V parameters (𝑉%&_+,- and 𝐼%&_+,-) can still be 507 
well estimated with the r2 score higher than 0.99. In short, all the cases of the increasing 𝑅#_+,-	could 508 
be well captured by PVPRO with the average r2 score higher than 0.87 in the presence of noise.  509 
 510 
The results of this study of temporary 𝑅#_+,- increase demonstrate an exciting possibility for on-line 511 
maintenance. PV connector fires can occur if the PV connector develops high resistance due to 512 
improper construction or installation (PVEL, 2022). Therefore, with further improvements to data 513 
quality, PVPRO has the potential to detect incipient failures of the PV connector.  514 

 515 

4 Demonstration with field datasets 516 
To evaluate the in-field performance of PVPRO, the NIST-ground array dataset (Boyd et al., 2017) is 517 
selected. The PV array is located in Gaithersburg, Maryland, USA (39°07'54.8"N 77°12'52.5"W), is 518 
ground mounted and has a fixed tilt angle of 20° (Fig. 15). A total of 1152 modules (Sharp NU-U235F2, 519 
235W, sc-Si) are installed in this array, yielding 271 kW output. The operation and environmental data 520 

Case Short-Small

Year Year

(a) (b)Case Short-Large

Case Long-Small Case Long-Large
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are continuously recorded with a time step of 1 minute with the data from 2015 to 2019 available for 521 
analysis. The output DC power of the array over time is plotted in Fig. 16. The plane-of-array irradiance 522 
is measured by a reference cell and the module temperature by a probe attached to the back sheet of 523 
the PV module. Besides, a weather station is also configured to measure meteorological data like 524 
diffuse/global horizontal irradiance, wind speed, and ambient temperature.  525 

 526 
Fig. 15 NIST-ground array with 1152 PV modules yielding 271 kW. The operation and environmental data from this 527 

array are used to evaluate PVPRO. 528 

 529 
Fig. 16 Heatmap of the output DC power of the PV array from 2015-2019. Invalid data are presented in white. 530 

PVPRO is applied to this dataset following the pipeline presented in Fig. 1. The identified operation 531 
condition of the PV array over time is presented in Fig. 2. To validate the modeling performance of 532 
PVPRO, the measured operation data (𝑉'(  and 𝐼'( ) are compared with the ones modeled at the 533 
measured environmental condition using the SDM parameters estimated by PVPRO. An example of 534 
the comparison is depicted in Fig. 17. 535 

 536 
Fig. 17 Comparison of the estimated and measured PV array production data on 2015-1-1. It is shown that the 537 

estimated 𝑉!"  and 𝐼!" 	using PVPRO match the measured ones. 538 
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It is shown in Fig. 17 that the estimated 𝑉'( and 𝐼'( show a good match with the measured ones. For 539 
all the operation data from 2015-2019, the average relative error of 𝑉'( and 𝐼'( is under 1%, which 540 
validates the SDM used in PVPRO for the parameter estimation and modeling.  541 
 542 
The time-evolution trends of the I-V and SDM parameters extracted by PVPRO are presented in Fig. 543 
18. The YOY trend is calculated based on the energy composition of time-series data with a 90% 544 
Monte Carlo-derived confidence interval by adopting the Rdtools function (Jordan et al., 2018). It 545 
should be noted that an accurate ground truth of these parameters under STC for the array is difficult 546 
to obtain. Thus, a quantifiable evaluation of the estimation performance is not performed in this case 547 
study; rather, we can conclude that the SDM parameters fit by PVPRO are consistent with the 548 
measured 𝑉'( and 𝐼'(. 549 

 550 
Fig. 18 Estimated parameters using NIST-ground dataset. The upper and lower bounds of the YOY trend are based 551 

on the 90% confidence level. All parameters show a degradation over time with some parameters exhibiting a 552 
seasonal variation. A sharp decrease in the final year for the current-related parameters is identified. These results 553 

extracted by PVPRO may potentially be helpful for the O&M of this PV system. 554 
As plotted in Fig. 18, reasonable degradation trends are observed for all the estimated parameters. 555 
The 1.3%/year degradation of 𝑃%&_+,-  is revealed to be mainly due to the degradation of 𝐼&$  at 556 
1.1%/year, which also similarly impacts the 𝐼%&_+,- and 𝐼#"_+,-. The seasonality (the yearly-repeated 557 
difference between summer and winter time (Victoria et al., 2021)) is identified for parameters like 558 
𝑉%&_+,-, 𝑉!"_+,-, and 𝐼%&_+,-. For 𝑉%&_+,- and 𝑉!"_+,-, the degradation rate is mild, with the magnitude 559 
of YOY rate of change < 0.2%/year. Regarding 𝑅#_+,- and 𝑅#$_+,-, the rates fall within the common 560 
range reported in the literature (Aghaei et al., 2022; Kahoul et al., 2021). As for current-related 561 
parameters (𝐼%&_+,-, 𝐼#"_+,-, 𝐼&$_+,-, and 𝑉%&_+,-), the rate is moderate, around 1%/year. However, it is 562 
noteworthy that a similar sharp decrease occurs in the final year of measurement for these parameters, 563 
which is also observed for 𝑅#$_+,-. This is potentially due to accelerated accumulation of crystal defects 564 
in the PV cell leading to a quickly degraded 𝑅#$_+,-. It will require further effort and perhaps more 565 
detailed characterization of the NIST ground array modules to further trace the root cause.  566 
 567 
To conclude, the modeling performance of PVPRO is validated on the field PV operation data. PVPRO 568 
can extract the time-evolution trends of both SDM and I-V parameters. This allows the analysis of the 569 
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degradation pattern and the identification of the abnormal parameters, which will substantially facilitate 570 
the root cause tracking and effective O&M planning for PV systems. 571 
 572 

5 Discussion 573 
PVPRO estimates the five SDM parameters by minimizing the errors of two parameters (operation 574 
voltage and current) at a variety of temperature and irradiance conditions. Thus, this fitting process 575 
may not always guarantee a good estimation of all the five parameters simultaneously, as observed 576 
from the oscillation of 𝑅#_+,- and 𝑅#$_+,-. More sophisticated fitting techniques may be applied in the 577 
future considering the prior probabilities for the variation of parameters and the fitting order of the five 578 
SDM parameters. Furthermore, more investigation may be needed into cases where the SDM is not 579 
a good match to the system, e.g., as in the case of cell mismatch, and whether such conditions can 580 
be detected by PVPRO. 581 
 582 
It should be noted that the degradation of a PV array on the order of ~1%/year is similar to the 583 
uncertainties with which many parameters can be measured over one year. For example, these 584 
uncertainties can be from the infrequent cleaning of the pyranometer or reference cell and the 585 
measurement error of the operating voltage and current. However, the error of measurement devices 586 
is typically expected to be constant with time, or slowly changing with time bounded to under a few 587 
percent. Therefore, the analysis of longer-term data sets can be made with higher confidence for 588 
PVPRO. In addition, the quality of the available field data is also essential to the PVPRO’s performance. 589 
Thus, for the field application, the readings and drift magnitude from multiple sensors in a PV array 590 
should be validated and the cases like sensors are swapped for maintenance or calibration should be 591 
also well handled. 592 
 593 
Finally, PVPRO is published as an open-source Python package (https://github.com/DuraMAT/pvpro), 594 
which may be integrated with other common PV analysis packages (e.g., pvlib (Holmgren et al., 2018), 595 
solar-data-tools (Meyers et al., 2022)) for further customization.  596 
  597 

6 Conclusion 598 
This paper proposes a methodology (PVPRO) for estimating the PV circuit model parameters from 599 
routine PV operation data. On synthetic datasets, PVPRO achieves an excellent estimation of both 600 
the single-diode model (SDM) and the I-V parameters (open-circuit voltage, short-circuit current, 601 
maximum power, etc.) with an average error of 0.55%. Degradation trends are also accurately 602 
identified with a coefficient of determination (r2) of 0.99. Notably, the estimated degradation rate of 603 
parameters, especially for the I-V parameters, is generally robust to the varying random or systematic 604 
measurement noise. In the presence of faults on SDM parameters, PVPRO can also closely capture 605 
the trends with r2 higher than 0.86. In addition, PVPRO is evaluated on a field PV dataset (271kW PV 606 
array). The modeling performance is validated with errors less than 1% between the measured and 607 
estimated operation data for the directly fitted quantities, although validation of extracted SDM 608 
parameters was not possible in this study. The extracted degradation trends of the SDM and I-V 609 
parameters effectively facilitate the identification of abnormal parameters and tracing root causes for 610 
PV operation and maintenance. PVPRO is published as an open-source Python package 611 
(https://github.com/DuraMAT/pvpro). Future work aims to further evaluate PVPRO on more large-612 
scale field PV datasets closer to production environments. 613 
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