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Abstract

Humans appear to often solve problems in a new
domain by transferring their expertise from a
more familiar domain. However, making such
cross-domain analogies is hard and often requires
abstractions common to the source and target do-
mains. Recent work in case-based design suggests
that generic mechanisms are one type of abstrac-
tions used by designers. However, one important
yet unexplored issue is where these generic mech-
anisms come from. We hypothesize that they are
acquired incrementally from problem-solving ex-
periences in familiar domains by generalization
over patterns of regularity. Three important is-
sues in generalization from experiences are what
to generalize from an experience, how far to gen-
eralize, and what methods to use. In this paper,
we show that mental models in a famihar do-
main provide the content, and together with the
problem-solving context in which learning occurs,
also provide the constraints for learning generic
mechanisms from design experiences. In par-
ticular, we show how the model-based learning
method integrated with similarity-based learning
addresses the issues in generalization from expe-
riences.

Introduction

Analogy is often believed to play an impor-
tant role in reasoning underlying innovation
and creativity. Analogies can be of different
types: within-problem, cross-problem but within-
domain, and cross-domain. We are interested
in studying cross-domain analogies. Psycholog-
ical research shows that humans use abstractions
in making cross-domain analogies ie.g., Gick &
Holyoak, 1983; Catrambone & Holyoak, 1989).
Some of the issues of interest then are how rea-
soning is mediated by the abstractions (shared
between the source and target domains) and how
those abstractions are learned. We explore the

*This work has been supported by research grants
from ONR (contract N00014-92-J-1234), NSF (grant
C36-688), Northern Telecom, Georgia Tech Research
Corporation, and a CER grant from NSF (grant
CCR-86-19886), and equipment grants and donations
from 1BM, Symbolics, and NCR.
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latter issue in the context of the design of physical
devices such as electric circuits and heat exchang-
ers. Our goal is to build a computational model
that can account for these phenomena and use it
to generate testable predictions about designers’
behavior.

Goel (1989) has proposed models of generic
teleological mechanisms (GTMs), such as cascad-
ing, feedback, and feedforward, as one type of ab-
stract knowledge that designers use in case-based
design. GTMs take as input the functions of a
desired design and a known design, and suggest
patterned modifications to the structure of the
known design that would result in the desired de-
sign. Stroulia and Goel (1992) have shown that
GTMs indeed are useful 1n non-routine adaptive
design. But one important yet unexplored issue
is how these GTMs are acquired. Our hypothe-
sis is that they are acquired incrementally from
problem-solving experiences in familiar domains
by generalization over patterns of regularity. For
instance, a designer may acquire from examples
in the domain of electric circuits a model of cas-
cading, and when and how to cascade a number
of similar components together (i.e., to connect
multiple components to amplify the overall deliv-
ered function). The designer can then use that
model for designing in a different domain such as
the domain of heat exchangers.

Generalization from experiences raises three
important issues. First is the issue of relevance,
that is, the issue of deciding what to generalize
from an experience. We represent in design expe-
riences a designer’s comprehension of how devices
work (i.e., how the structure of a design results
in its output behaviors). We represent this com-
prehension as structure-behavior-function (SBF)
models and represent the models of GTMs as
behavior-function (BF) models. We propose that
the problem-solving context in which learning oc-
curs together with the hierarchical organization of
the SBF model of the device help determine what
to generalize from the model. Further, the SBF
models lead to a typology of behavioral patterns
over which the generalization process can result
in learning GTMs. Second, how far a chosen as-
pect of the device can be generalized. We show
that the similarities in the SBF models of the cur-
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rent design and related designs in a case memory
can help determine how far to generalize. Third,
what methods can be used for generalization. We
show that a typology of the patterns of regular-
ity in SBF models can help to determine what
strategy to use.

The system IDEAL'! implements the proposed
learning method.  We evaluate the learning
method by showing how the GTMs learned in
one domain can faci%it.ate designing in another do-
main.

The Learning Task

The Problem-Solving Context: IDEAL takes
as input a specification of the functional and
structural constraints on a desired design, and
gives as output a structure that realizes the spec-
ified function and satisfies the structural con-
straints; it also gives an SBF model that explains
how the structure realizes that function. A design
case in IDEAL specifies (1) the functions delivered
by the stored design, (i1) the structure of the de-
sign, and (iii) a pointer to the causal behaviors
of the design (the SBF model). IDEAL indexes
its design cases both by functions that the stored
designs deliver and by the structural constraints
they satisfy.

IDEAL's learning task takes as input a de-
sign experience and forms the BF model of a
GTM. The input knowledge structure for the
learning task is the case-specific SBF model of the
given design experience and the output knowl-
edge structure 1s the case-independent BF model
of a GTM. The learned GTM is such that it is
an abstraction over certain patterns of regularity
(explained later) observed in the structure and
behavior of the given SBF model and the model
of the most similar experience in case memory.

Case-Specific SBF Models

IDEAL’'s models of specific devices are repre-
sented in the form of structure-behavior-function
(SBF) models. These models are based on a
component-substance ontology (Bylander, 1991).
In this ontology, the structure of a device 1s
viewed as constituted of components and sub-
stances. Substances have locations in reference
to the components in the device. They also have
behavioral properties, such as voltage of electric-
ity, and corresponding parameters, such as 1.5
volts, 3 volts, etc. This ontology gives rise to a
behavioral representation language (Goel, 1989)
for describing the SBF mgdel of a design that
1s a generalization on functional representation
scheme (Sembugamoorthy & Chandrasekaran,
1986; Chandrasekaran, Goel, & Iwasaki, 1993).
The constituents of the SBF model are described
below.

Structure: The structure of a design is ex-
pressed in terms of its constituent components
and substances and the interactions between

'IDEAL stands for Integrated “DEsign by Anal-
ogy and Learning.”
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Figure 1: Design of A 1.5-volt Electric Cir-
cuit (ECL1.5)



them. Figure 1(a) shows the structure of a
1.5-volt electric circuit (EC1.5) schemat-
ically.
Function: A function is represented as a schema
that specifies the behavioral state the function
takes as input, the behavioral state it gives as out-
put, and a pointer to the internal causal behav
1or of the design that achieves the function. Fig-
ure 1(b) shows the function “Produce Light” of
EC1.5. Both the input state and the output state
are represented as substance schemas. The input
state specifies that electricity at location Bat-
tery in the topography of the device (Figure 1(a))
has the property voltage and the corresponding
parameter 1.5 volts. The output state speci-
fies the property intensity and the correspond-
ing parameter 6 lumens of a different substance,
1'3311., at location Bulb. In addition, the slot by-
behavior acts as an index into the causal behavior
that achieves the function of producing light.
Behavior: The internal causal behaviors of a de-
vice are viewed as sequences of stafe transitions
between behavioral states. The annotations on
the state transitions express the causal, struc-
tural, and functional contezi in which the trans-
formation of state variables, such as substance,
location, properties, and parameters, can occur.
Figure 1(c) shows the causal behavior that ex-
plains how electricity in Battery is transformed
wnto light in Bulb. States is the preceding state of
transitiony_3 and states is its succeeding state.
State, describes the state of electricity at loca-
tion Battery and so does state, at location Bulb.
States however describes the state of light at loca-
tion Bulb. The annotation USING-FUNCTION
in transitions_3 indicates that the transition oc-
curs due to the primitive function “create light”
of Bulb.

The causal behaviors can be specified at dif-
ferent levels of detail. For instance, state; is an
aggregation of a sequence of several states and

state transitions at a different level as shown in
Figure 1(d).

Case-Independent BF Models

Generic Teleological Mechanisms (GTMs) are one
type of knowledge that designers use in adaptive
design, that is, in modifying an old design by in-
sertion of specific patterns of components (or sub-
structures) (Stroulia & Goel, 1992). Examples
of GTMs are cascading, feedback, and feedfor-
ward. GTMs are teleological because they result
in specific functions and are generic because they
are case independent. For example, the cascad-
ing mechanism takes as input the desired function
and the function (with a lesser range) delivered by
an available device, and suggests a structural pat-
tern (i.e., the replication) of the available device
that delivers the desired function. Further, the
cascading mechanism can be instantiated in any
specific device that satisfies its applicability con-
ditions. For instance, one applicability condition
is that the functions delivered by each replicated
device should add up to give the desired func-
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Figure 2: BF Model of the Cascading Mech-
anism

tion (i.e., the replication should be functionally
additive). More precisely, the condition is that
the smaller parametric transformation delivered
by each replicated device should sum up to pro-
vide the desired larger transformation.

The BF model representation of a GTM en-
capsulates two types of knowledge: knowledge
about the difference between the functions of a
known design and a desired design that the GTM
can help reduce; and knowledge about modifi-
cations to the internal causal behaviors of the
known design that are necessary to reduce this
difference. For example, Figures 2(a) & 2(b) re-
spectively show these two types of knowledge for
the cascading mechanism. The model of cascad-
ing indicates that a behavior can be replicated as
much as possible to achieve a desired function and
finally a goal be formed to find a component that
can deliver the residual function. This additional
component is needed when the desired function
is not an integral multiple of the function of each
replicated device.

The Learning Method

Suppose, for instance, IDEAL’s case memory has
the design of EC1.5 shown in Figure 1. Let us
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(a) 3-volt Electric Circuit (EC3)

Note: The behavior "Produce Light" of EC3 at
toplevel is similar to that of EC1.5
except for the parameter values of
volhio and intensity. Also, the slot
BY-BEHAVIOR in state1 points to the
behavior "Deliver 3 volts" of Battery
shown in Figure (b).

ELECTRICITY

l""‘«‘ -1 I loc: Ty

voltage: 0 volits

USING-FUNCTION PUMP electricity of Battery2

ELECTRICITY
loc: T;
volitage: 1.5 voits

el

=

USING-FUNCTION PUMP electricity of Battery1

ELECTRICITY
statey 4 loc: T
voltage: 3.0 volts
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Figure 3: Design of A 3-volt Electric Circuit
(EC3)

now consider the scenario where IDEAL is pre-
sented with a problem of designing a 3-volt elec-
tric circuit (EC3) that delivers the function “pro-
duce light of intensity 12 lumens in the bulb when
the switch is closed, given that there is electricity
with a voltage of 3 volts in the battery” and satis-
fies the structural constraint “the design cannot
have a single 3-volt battery.” IDEAL retrieves
the design case EC1.5 because the given func-
tional specification is similar to the function of
EC1.5. However, IDEAL may know only how to
replace a component in a past design to solve the
current problem. The component-replacement
plan specifies how to replace the component that
1s responsible for the functional difference by a
new component that reduces the functional dif-
ference and thus enables the overall device to de-
liver the desired function. In such cases, IDEAL
fails to solve the current problem due to the
structural constraint specified. Then, if an or-
acle presents the correct solution that both de-
livers the desired function and satisfies the struc-
tural constraint (the schematic of the structure of
the new device is shown in Figure 3(a)), IDEAL
learns how the new device behaves (a segment is
shown in Figure 3(b{) by revising the behavior
of EC1.5. This problem-solving context enables
IDEAL to focus on the substructure that delivers
the required voltage for comparing with the corre-
sponding substructure in the old case EC1.5. By
generalizing over the structural pattern (in this
substructure) and the corresponding behavioral

segments, it learns the cascading mechanism. We
will now focus on the learning of the cascading
mechanism.

The learning method is model-based in that
the SBI' models of the design cases provide the
content for generalizing over the patterns of regu-
larity in the device structure and device behavior.
The representation vocabulary of the SBF mod-
els further leads to several classes of regularity, a
few of which that are relevant to learning cascad-
ing mechanism are: (i) repetition of behavioral
segments, that is, a sequence of state-transitions
repeats several (say, n) times in the overall device
behavior; since a behavior typically corresponds
to a structural part ﬁi.e., a component), the cor-
responding structural regularity is the repetition
of the structural part; (11) repetition of a range
of input-output transformation, that is, the same
amount of parameter transformation repeats sev-
eral (say, n) times in the device behavior. The
two variables of interest for generalization then
are the range of transformation §r) and number
of repelitions of same structure (n). Given the
task of learning from two design cases and that
there are two variables, four different situations
are possible as shown in Table 1. In this paper
we will focus on situation 2 only.

The learning method first traverses each fo-
cused behavior in the given two designs to notice
the above types of regularities, in particular, to
identify the values for n and r. Then it com-
pares the values for the two variables in both the
designs and generalizes over them if any similar-
ity exists. The first step of the learning method
can be facilitated by indexing from the compo-
nent into the behavioral segments in which some
function of the component plays a role.

In the above problem-solving scenario, the
problem-solving context indicates that the behav-
1oral segments to focus on for learning are those
that correspond to the function of Battery in
the two designs, EC1.5 and EC3. Applying the
above learning method, it is easy to identify that
the learning situation here is 2 shown in Table 1.
Generalizing over the number of repetitions and
variablizing the range of parameter transforma-
tion, IDEAL hypothesizes a GTM that would help
in a problem-solving context similar to the cur-
rent one. The model of the learned (more pre-
cisely, hypothesized) cascading mechanism and its
index are shown in Figure 2 (representations in
ga) and the shaded region of (b)); the functional

ifference that the cascading mechanism reduces
is the index for the mechanism.?

IDEAL can revise the hypothesized model into
a more complete one when it solves a new de-
sign problem whose solution has a structural pat-
tern that is an instance of the complete cascading
mechanism. Thus acquiring a complete model of
the cascading mechanism may involve solving a
number of design problems incrementally.

2A new piece of knowledge learned is futile un-
less its applicability conditions (or indices as we call
them) are also learned.



Table 1: Situations of Regularity Between
Similar Components in Two Designs

Situation | Range of Input-Output | Number of Repetitions | What can be Learned?
Transformation in both | in both designs, n
designs, r
1. equal equal None due to lack of variation.
equal not equal Generalization over n.
(e.g., the cascading mechanism)
3 not equal equal Generalization over r.
(e.g., prototypical device models)
4. not equal not equal None due to lack of regularity.
Evaluation

One method for evaluating the learning is to show
how the learned mechanisms can affect IDEAL’s
performance task of designing physical devices.
In particular, does it enable IDEAL to transfer
design knowledge from one domain (say, electric
circuits) to another domain (say, heat exchang-
ers)?

We have tested IDEAL with several designs
from the domain of electric circuits and heat ex-
changers. In one experiment, we gave IDEAL de-
signs of electric circuits such as those illustrated
in this paper. IDEAL learned the mechanism of
cascading, indexed 1t by the applicability condi-
tions of the mechanism, and stored it in its mem-
ory. Then we gave IDEAL a design problem in
the domain of heat exchangers. This problem,
relative to IDEAL’s knowledge, was such that in
order to solve it IDEAL would need to evoke the
cascading mechanism. We observed that IDEAL
noticed the difference between the desired func-
tion and the function of an available device. It
then used the functional difference as a probe into
its memory, retrieved the cascading mechanism,
and solved the new problem by instantiating the
retrieved mechanism. More specifically, Figure 4
illustrates how IDEAL instantiated the cascading
mechanism learned from the two designs, EC1.5
and EC3, in the water pumps in designing a nitric
acid cooler that provides a higher range of cooling
(i.e., Tyi-T2"). (Stroulia & Goel, 1992) provides
more details of the adaptation process.

Together, these experiments indicate the util-
ity and effectiveness of our model-based method
for learning GTMs: the SBF models enable learn-
ing of GTMs in one domain and the learned BF
models of GTMs facilitate designing in another.
We are currently testing IDEAL with design prob-
lems from other domains such as reaction wheel
assemblies, and for other mechanisms such as
feedback and feedforward.

Related Work

This work on IDEAL evolves from our earlier work
on KRITIK (Goel, 1989). IDEAL’s component-
substance ontology, SBF models, and behavioral
representation language all are borrowed from
KRITIK. The problem-solving component of
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IDEAL evolves from KRITIK2 (Stroulia et al.,
1992).

Learning Task: Few computational models of
analogical reasoning have addressed learning of
high-level abstractions. Birnbaum and Collins
(1988) discuss the need for acquisition of ab-
stract strategies that enable transfer of expertise
from one domain to another. Their work uses
explanation-based learning (EBL) techniques in
failure-driven learning of abstract strategies for
game playing (e.g., chess). GTMs in our work are
similar to their abstract strategies in that GTMs
also act as abstract plans for solving design-
adaptation problems. However, Birnbaum and
Collins view the abstract strategies to be useful
only in accessing a relevant experience, that is,
they view cases to be indexed by these abstract
concepts. In contrast, in our theory, abstract
models are useful in both the access and trans-
fer stages of analogical reasoning. Moreover, in



our approach learning is not only failure-driven
but it also occurs from successful experiences.

Learning Method: Our model-based approach
to learning is similar to Winston’s model (1982)
which shows that learning can be done by ana-
logically transferring causal links in the expla-
nation of an example to the target “concept.”
Our approach is also similar to explanation-based
methods such as EBG (Mitchell, Keller, & Kedar-
Cabelli, 1986) and EBL (DelJong & Mooney,
1986) in using explanations (SBF models) to con-
strain the learning of concepts. However, most of
these systems assume some knowledge of the tar-
get concept a priori; our model-based approach
attempts to “discover” them.

Also, our model-based approach differs from
EBG and EBL in the kind of explanations it uses.
First, while the explanations in EBG and EBL are
purely causal, the explanations in SBF models are
functional in nature, 1.e., they not only provide
a causal account but also show how causal pro-
cesses result in the achievement of specific func-
tions. Further, SBF models provide functional,
structural, and behavioral decomposition of de-
vice knowledge. Second, the explanations in EBG
and EBL specify how an example 1s an instance
of a target concept while SBF models are expla-
nations of the functioning of devices.

Conclusions

We have presented a computational model of how
generic mechanisms can be learned from problem-
solving experiences. We have demonstrated in the
context of the design of physical devices that the
generic mechanisms can be acquired incremen-
tally from design experiences by generalization.
Mental models of solutions to problems (i.e., how
a given solution is a solution to the given prob-
lem) provide the content for learning the models
of generic mechanisms. The internal organiza-
tion of mental models (e.g., functional, structural,
and behavioral decomposition) together with the
problem-solving context provides the constraints
for learning by generalization. Further, similari-
ties between regularities in experiences determine
how abstract a learned generic mechanism can be.

Elsewhere we show how our computational
model also accounts for the acquisition of other
types of “abstract concepts,” such as mental mod-
els of physical principles, physical processes, and
device prototypes (Bhatta & Goel, 1992).

Finally, from the computational model we can
predict that if they have the models of specific de-
vices, human designers can easily learn the mod-
els of generic mechanisms from their design expe-
riences and use the learned mechanisms for mak-
ing cross-domain analogies.

Acknowledgments. We thank Eleni Strou-
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this paper.
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