
UC Irvine
UC Irvine Previously Published Works

Title
Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework

Permalink
https://escholarship.org/uc/item/6b9364md

Authors
Naeini, Matin Rahnamay
Yang, Tiantian
Sadegh, Mojtaba
et al.

Publication Date
2018-06-01

DOI
10.1016/j.envsoft.2018.03.019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6b9364md
https://escholarship.org/uc/item/6b9364md#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

lable at ScienceDirect

Environmental Modelling & Software 104 (2018) 215e235
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL)
optimization framework

Matin Rahnamay Naeini a, Tiantian Yang a, b, *, Mojtaba Sadegh a, c, Amir AghaKouchak a,
Kuo-lin Hsu a, Soroosh Sorooshian a, Qingyun Duan d, Xiaohui Lei e

a Center for Hydrometeorology and Remote Sensing (CHRS) & Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
b Deltares USA Inc., Silver Spring, MD, USA
c Department of Civil Engineering, Boise State University, Boise, ID, USA
d Beijing Normal University, Faculty of Geographical Sciences, Beijing, China
e China Institute of Water Resources and Hydropower Research, Beijing, China
a r t i c l e i n f o

Article history:
Received 12 October 2017
Received in revised form
23 March 2018
Accepted 24 March 2018
Available online 2 April 2018

Keywords:
Shuffled Complex Evolution (SCE)
Hybrid optimization
Evolutionary Algorithm (EA)
Reservoir operation
Hydropower
* Corresponding author. Center for Hydrometeor
(CHRS) & Department of Civil and Environmental En
fornia, Irvine, CA, USA.

E-mail address: tiantiay@uci.edu (T. Yang).

https://doi.org/10.1016/j.envsoft.2018.03.019
1364-8152/© 2018 Elsevier Ltd. All rights reserved.
a b s t r a c t

Simplicity and flexibility of meta-heuristic optimization algorithms have attracted lots of attention in the
field of optimization. Different optimization methods, however, hold algorithm-specific strengths and
limitations, and selecting the best-performing algorithm for a specific problem is a tedious task. We
introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid Evo-
Lution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel
computing scheme. SC-SAHEL explores performance of different EAs, such as the capability to escape
local attractions, speed, convergence, etc., during population evolution as each individual EA suits
differently to various response surfaces. The SC-SAHEL algorithm is benchmarked over 29 conceptual test
functions, and a real-world hydropower reservoir model case study. Results show that the hybrid SC-
SAHEL algorithm is rigorous and effective in finding global optimum for a majority of test cases, and
that it is computationally efficient in comparison to algorithms with individual EA.

© 2018 Elsevier Ltd. All rights reserved.
Software availability

Name of software: SC-SAHEL
Developer: Matin Rahnamay Naeini
Contact address: rahnamam@uci.edu
Program language: MATLAB
Year first available: 2018
Availability: Freely available to public at http://chrs.web.uci.edu/

resources.php and MathWorks website
Software requirements: MATLAB 9.0
1. Introduction

Meta-Heuristic optimization algorithms have gained a great
deal of attention in science and engineering (Blum and Roli, 2003;
ology and Remote Sensing
gineering, University of Cali-
Boussaïd et al., 2013; Lee and Geem, 2005; Maier et al., 2014;
Nicklow et al., 2010; Reed et al., 2013). Simplicity and flexibility of
these algorithms, along with their robustness make them attractive
tools for solving optimization problems (Coello et al., 2007; Lee and
Geem, 2005). Many of the meta-heuristic algorithms are inspired
by a physical phenomenon, such as animals social and foraging
behavior and natural selection. For example, Simulated Annealing
(Kirkpatrick et al., 1983), Big Bang-Big Crunch (Erol and Eksin,
2006), Gravitational Search Algorithm (Rashedi et al., 2009),
Charged System Search (Kaveh and Talatahari, 2010) are inspired by
various physical phenomena. Ant Colony Optimization (Dorigo
et al., 1996), Particle Swarm Optimization (Kennedy, 2010), Bat-
inspired Algorithm (Yang, 2010), Firefly Algorithm (Yang, 2009),
Dolphin Echolocation (Kaveh and Farhoudi, 2013), Grey Wolf
Optimizer (Mirjalili et al., 2014), Bacterial Foraging (Passino, 2002),
Genetic Algorithm (Golberg, 1989; Holland, 1992), and Differential
Evolution (Storn and Price, 1997) are examples of algorithms
inspired by animal's social and foraging behavior, and the natural
selection mechanism of Darwin's evolution theorem. According to
the No-Free-Lunch (NFL) (Wolpert and Macready, 1997) theorem,

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:rahnamam@uci.edu
http://chrs.web.uci.edu/resources.php
http://chrs.web.uci.edu/resources.php
mailto:tiantiay@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2018.03.019&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2018.03.019
https://doi.org/10.1016/j.envsoft.2018.03.019
https://doi.org/10.1016/j.envsoft.2018.03.019

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235216
none of these algorithms are consistently superior to others over a
variety of problems, although some of themmay outperform others
on a certain type of optimization problem.

The NFL theorem has been a source of motivation for developing
optimization algorithms (Mirjalili et al., 2014; Woodruff et al.,
2013). It has encouraged scientists and researchers to combine
the strengths of different algorithms and devise more robust and
efficient optimization algorithms that suit a broad class of problems
(Qin and Suganthan, 2005; Vrugt and Robinson, 2007; Vrugt et al.,
2009; Hadka and Reed, 2013; Sadegh et al., 2017). These efforts led
to emergence of multi-method and self-adaptive optimization al-
gorithms such as Self-adaptive DE algorithm (SaDE) (Qin and
Suganthan, 2005), A Multialgorithm Genetically Adaptive Method
for Single Objective Optimization (AMALGAM-SO) (Vrugt and
Robinson, 2007; Vrugt et al., 2009) and Borg (Hadka and Reed,
2013). They all regularly update the search mechanism during the
course of optimization according to the information obtained from
the response surface.

Here, we propose a new self-adaptive hybrid optimization
framework, entitled Shuffled Complex-Self Adaptive Hybrid Evo-
Lution (SC-SAHEL). The SC-SAHEL framework employs multiple
Evolutionary Algorithms (EAs) as search cores, and enables
competition among different algorithms as optimization run pro-
gresses. The proposed framework differs from other multi-method
algorithms as it grants independent evolution of population by
each EA. In this framework, population is partitioned into equally
sized groups, so-called complexes; each assigned to different EAs.
Number of complexes assigned to each EA is regularly updated
according to their performance. In general, the newly developed
framework has two main characteristics. First, all the EAs evolve
population in a parallel structure. Second, each participating EA
works independent of other EAs. The architecture of SC-SAHEL is
inspired by the concept of the Shuffled Complex Evolution algo-
rithm - University of Arizona (SCE-UA) (Duan et al., 1992). The SCE-
UA algorithm is a population-evolution based algorithm (Madsen,
2003), which evolves individuals by partitioning population into
different complexes. The complexes are evolved for a specific
number of iterations independent of other complexes, and then are
forced to shuffle.

The SCE-UA framework employs Nelder-Mead simplex (Nelder
and Mead, 1965) technique along with the concept of controlled
random search (Price, 1987), clustering (Kan and Timmer, 1987),
competitive evolution (Holland, 1975) and complex shuffling (Duan
et al., 1993) to offer a global optimization strategy. By employing
these techniques, the SCE-UA algorithm provides a robust optimi-
zation framework and has shown numerically to be competitive
and efficient comparing to other algorithms, such as GA, for cali-
brating rainfall-runoff models (Beven, 2011; Gan and Biftu, 1996;
Wagener et al., 2004; Wang et al., 2010). The SCE-UA algorithm has
been widely used in water resources management (Barati et al.,
2014; Eckhardt and Arnold, 2001, K. Ajami et al., 2004; Lin et al.,
2006; Liong and Atiquzzaman, 2004; Madsen, 2000; Sorooshian
et al., 1993; Toth et al., 2000; Yang et al., 2015; Yapo et al., 1996),
as well as other fields of study, such as pyrolysis modeling (Ding
et al., 2016; Hasalov�a et al., 2016) and Artificial Intelligence (Yang
et al., 2017).

Application of the SCE-UA is not limited to solving single
objective optimization problems. The Multi-Objective Complex
evolution, University of Arizona (MOCOM-UA), is an extension of
the SCE-UA for solvingmulti-objective problems (Boyle et al., 2000;
Yapo et al., 1998). Besides, the SCE-UA architecture has been used to
develop Markov Chain Monte Carlo (MCMC) sampling, named
Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) and
the Multi-Objective Shuffled Complex Evolution Metropolis
(MOSCEM) to infer posterior parameter distributions of hydrologic
models (Vrugt et al. 2003a, 2003b). The Metropolis scheme is used
as the search kernel in the SCEM-UA and MOSCEM-UA (Chu et al.,
2010; Vrugt et al. 2003a, 2003b). There is also an enhanced
version of SCE-UA, which is developed by Chu et al. (2011) entitled
the Shuffled Complex strategy with Principle Component Analysis,
developed at the University of California, Irvine (SP-UCI). Chu et al.
(2011) found that the SCE-UA algorithm may not converge to the
best solution on high-dimensional problems due to “population
degeneration” phenomenon. The “population degeneration” refers
to the situation when the search particles span a lower dimension
space than the original search space (Chu et al., 2010), which causes
the search algorithm to fail in finding the global optimum. To
address this issue, the SP-UCI algorithm employs Principle
Component Analysis (PCA) in order to find and restore the missing
dimensions during the course of search (Chu et al., 2011).

Both SCE-UA and SP-UCI start the evolution process by gener-
ating a population within the feasible parameters space. Then,
population is partitioned into different complexes, and each com-
plex is evolved independently. Each member of the complex has
the potential to contribute to offspring in the evolution process. In
each evolution step, more than two parents may contribute to
generating offspring. To make the evolution process competitive, a
triangular probability function is used to select parents. As a result,
the fittest individuals will have a higher chance of being selected.
Each complex is evolved for a specific number of iterations, and
then complexes are shuffled to globally share the information
attained by individuals during the search.

The Competitive Complex Evolution (CCE) and Modified
Competitive Complex Evolution (MCCE) are the search cores of the
SCE-UA and SP-UCI algorithm, respectively. The CCE and MCCE
evolutionary processes are developed based on Nelder-Mead
(Nelder and Mead, 1965) method with some modification. The
evolution process in the SCE-UA is not limited to these algorithms.
In fact, several studies have incorporated different EAs into the
structure of the SCE-UA algorithm. For example, the Frog Leaping
(FL) is developed by adapting Particle Swarm Optimization (PSO)
algorithm to the SCE-UA structure for solving discrete problems
(Eusuff et al., 2006; Eusuff and Lansey, 2003). Mariani et al. (2011)
proposed an SCE-UA algorithm which employs DE for evolving the
complexes. These studies revealed the flexibility of the SCE-UA in
combination with other types of EAs; however, the potential of
combining different algorithms into a hybrid shuffled complex
scheme has not been investigated.

The unique structure of the SCE-UA algorithm along with the
flexibility of the algorithm for using different EAs, motivated us to
use the SCE-UA as the cornerstone of the SC-SAHEL framework. The
SC-SAHEL algorithm employs multiple EAs for evolving the popu-
lation in a similar structure as that of the SCE-UA, with the goal of
selecting the most suitable search algorithm at each optimization
step. On the one hand, some EAs are more capable of visiting the
new regions of the search space and exploring the problem space,
and hence are particularly suitable at the beginning of the opti-
mization (Olorunda and Engelbrecht, 2008). On the other hand,
some EAs are more capable of searching within the visited regions
of the search space, and hence boosting the convergence process
after finding the region of interest (Mirjalili and Hashim, 2010).
Balancing between these two steps, which are referred to as
exploration and exploitation (Moeini and Afshar, 2009), is a chal-
lenging task in stochastic optimization methods (�Crepin�sek et al.,
2013). The SC-SAHEL algorithm maintains a balance between
exploration and exploitation phases by evaluating the performance
of participating EAs at each optimization step. EAs contribute to the
population evolution according to their performance in previous
steps. The algorithms' performance is evaluated by comparing the
evolved complexes before and after evolution. In this process, the

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 217
most suitable algorithm for the problem space become the domi-
nant search core.

In this study, four different EAs are used as search cores in the
proposed SC-SAHEL framework, including Modified Competitive
Complex Evolution (MCCE) used in the SP-UCI algorithm, Modified
Frog Leaping (MFL), Modified Grey Wolf Optimizer (MGWO), and
Differential Evolution (DE). To better illustrate the performance of
the hybrid SC-SAHEL algorithm, the framework is benchmarked
over 29 test functions and compared to SC-SAHEL with single EA.
Among the 29 employed test functions, there are 23 classic test
functions (Xin et al., 1999) and 6 composite test functions (Liang
et al., 2005), which are commonly used as benchmarks in
comparing optimization algorithms.

Furthermore, the SC-SAHEL framework is tested for a conceptual
hydropower model, which is built for the Folsom reservoir located
in the northern California, USA. The objective is to maximize the
hydropower generation, by finding the optimum discharge from
the reservoir. The study period covers run-off season in California
from April to June, in which reservoirs have the highest annual
storage volume (Field and Lund, 2006). Using the proposed
framework, we compared different EAs' capability of finding a near-
optimum solution for dry, wet, and below-normal scenarios. The
results support that the proposed algorithm is not only competitive
in terms of increasing power generation, but also is able to reveal
the advantages and disadvantages of participating EAs.

The rest of the paper is organized as follow. In section 2,
structure of the SC-SAHEL algorithm and details of four EAs are
presented. Section 3 presents the test functions, settings of the
experiments, and results obtained for each test function. Section 4
introduces the reservoir model and the optimization results for the
case study. Finally, in section 5, we draw conclusion, summarize
some limitations about the newly introduced framework, and
suggest some directions for future work.

2. Methodology

The SC-SAHEL algorithm is a parallel optimization framework,
which is built based on the original SCE-UA architecture. SC-SAHEL,
however, differs from the original SCE-UA algorithm by using
multiple search mechanisms instead of only employing the Nelder-
Mead simplex downhill method. In this section, we first introduce
the main structure of SC-SAHEL. Then, we present four different
EAs, which are employed as search cores in the SC-SAHEL frame-
work. These algorithms are selected for illustrative purpose only
and can be replaced by other evolutionary algorithms. Some
modifications are made to the original form of these algorithms, to
allow fair competition between EAs. These modifications are
detailed in appendix A-D.

2.1. The SC-SAHEL framework

The proposed SC-SAHEL optimization strategy starts with
generating a population with a pre-defined sampling method
within feasible parameters' range. The framework supports user-
defined sampling methods, besides built-in Uniform Random
Sampling (URS) and Latin Hypercube Sampling (LHS). The popu-
lation is then partitioned into different complexes. The partitioning
process warrants maintaining diversity of population in each
complex. In doing so, population is first sorted according to
(objective) function values. Then, sorted population is divided into
NGS equally-sized groups (NGS being the number of complexes),
ensuring that members of each group have similar objective func-
tion values. Each complex subsequently will randomly select a
member from each of these groups. This procedure maintains di-
versity of the population within each complex. The complexes are
then assigned to EAs and evolved. In contrast to the original
concept of the SCE-UA, the complexes are evolved with different
EAs rather than single search mechanism. At the beginning of the
search, an equal number of complexes is assigned to each evolu-
tionary method. For instance, if population is partitioned into 8
complexes and 4 different EAs are used, each algorithmwill evolve
2 complexes independently (2-2-2-2). After evolving the com-
plexes for pre-specified number of steps, the Evolutionary Method
Performance (EMP) metric (Eq. (1)) will be calculated for each EA,

EMP ¼ meanðFÞ �meanðFNÞ
meanðFÞ ; (1)

in which, F and FN are objective function values of individuals in
each complex before and after evolution, respectively.

The EMP metric measures change in the mean objective func-
tion value of individuals in each complex in comparison to their
previous state. A higher EMP value indicates a larger reduction in
the mean objective function value obtained by the individuals in
the complex. The performance of each evolutionary algorithm is
then evaluated based on the mean value of EMP calculated for each
evolved complex. EAs are then ranked according to the EMP values.
Ranks are in turn used to assign number of complexes to each
evolutionary method for the next iteration. The highest ranked
algorithm will be assigned an additional complex to evolve in the
next shuffling step, while, the lowest ranked evolutionary algo-
rithmwill lose one complex for the next step. For instance, if all the
EAs have 2 complexes to evolve (2-2-2-2 case), the number of
complexes assigned to each EA can be updated to 3-2-2-1. In other
words, this logic is an “award and punishment” process, in which
the algorithm with best performances will be “awarded” with an
additional complex to evolve in the next iteration, while the worst-
performing algorithm will be “punished” by losing one complex.

It is worth mentioning that as some of the algorithms may have
poor performance in the exploration phase, theymight lose all their
complexes during the adaptation process. This might be trouble-
some as these algorithms may be superior in the exploitation
phase. If such algorithms are terminated in the exploration phase,
they cannot be selected during the convergence steps. Hence, EAs
termination is avoided to fully utilize the potential of EAs in all the
optimization steps and balance the exploration and exploitation
phases. The minimum number of complexes assigned to each
evolutionary method is restricted to at least 1 complex in this case.
If the lowest ranked EA has only 1 complex to evolve, it won't lose
its last complex. If an algorithm outperforms others throughout the
evolution of complexes, the number of complexes assigned to the
superior EA will be equal to the total number of complexes minus
the number of EAs plus one. In this case, all other algorithms are
evolving one complex only. As all algorithms are evolving at least
one complex, they have the chance to outperform other EAs and
gain more complexes during the optimization process, and to
potentially become the dominant search method as the search
continues toward exploitation phase. Fig. 1 briefly shows the
flowchart of the SC-SAHEL algorithm, pseudo code of which is as
follows:

Step 0 Initialization. Select NGS >1 and NPS (suggested
NPS > 2nþ1, where n is dimension of the problem), where
NGS is the number of complexes and NPS is the number of
individuals in the complexes. NGS should be proportional to
the number of evolutionary algorithms so that all the
participating EAs have an equal number of complexes at the
beginning of the search.

Step 1 Sample NPT points in the feasible parameter space using a
user-defined sampling method, where NPT equals to

Fig. 1. The SC-SAHEL framework flowchart.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235218
NGS�NPS. Compute objective function value for each
point.

Step 2 Rank and sort all individuals in the order of increasing
objective function value.

Step 3 Partition the entire population into complexes. Assign
complexes to the participating EAs.

Step 4 Monitor and restore population dimensionality using PCA
algorithm (Optional).

Step 5 Evolve each complex using the corresponding EA.
Step 6 After evolving the complexes for a pre-defined number of

iterations, calculate the mean EMP for each EA.
Step 7 Rank the participating EAs according to themean EMP value

of each evolutionary method. The highest ranked method
will get additional complex in the next iteration, while the
worst evolutionary method will lose one.

Step 8 Shuffle complexes and form a new population.
Step 9 Check whether the convergence criteria are satisfied,

otherwise go to step 3.

SC-SAHEL allows for different settings that can influence the
performance of the algorithm. Careful consideration should be
devoted to the selection of these settings, including number of
complexes, number of individuals within each complex, number of
evolution steps before each shuffling, and stopping criteria
thresholds. Some of these settings are adopted from the suggested
settings for the SCE-UA. For instance, the number of individuals
within each complex is set to 2dþ 1, where d is dimension of the
problem. However, some of the suggested settings cannot be
applied to the SC-SAHEL framework due to use of different EAs.
These settings can be changed according to the complexity of the
problem and the EAs employedwithin the framework. For instance,
the number of complexes, the number of points within each
complex, and the number of evolution steps before each shuffling
are problem dependent.

The SC-SAHEL framework employs three different stopping
criteriawhich are adopted from SCE-UA and SP-UCI. These stopping
criteria include number of function evaluations, range of samples
that span the search space, and improvement in the objective
function value in the last m shuffling steps. These criteria are
compared to pre-defined thresholds, which can in turn be tuned
according to the complexity of the problem. Improper selection of
these thresholds may lead to early or delayed convergence.

2.2. Evolutionary algorithms employed within SC-SAHEL

In this paper, we employ four different EAs to illustrate the
flexibility of the SC-SAHEL framework in adopting various EAs and
show the algorithms competition. These algorithms are briefly
presented here. The pseudo code and details of these algorithms
can be found in Appendix A-D.

2.2.1. Modified Competitive Complex Evolution (MCCE)
The MCCE algorithm is an enhanced version of CCE algorithm

used in the SCE-UA framework; which provides a robust, efficient,
and effective EA for exploring and exploiting the search space. The
MCCE algorithm is developed based on the Nelder-Mead algorithm,
however, Chu et al. (2011) found that the shrink concept in the
Nelder-Mead algorithm can cause premature convergence to a local
optimum. Interested readers can refer to (Chu et al., 2010, 2011) for
further details on MCCE algorithm. The pseudo code of the MCCE
algorithm is detailed in Appendix A. SC-SAHEL has similar perfor-
mance to SP-UCI, when the MCCE algorithm is used as the only
search mechanism and PCA and resampling settings of SP-UCI are
enabled. For simplification and comparison, SC-SAHEL with the

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 219
MCCE algorithm as search core is referred as SP-UCI, hereafter.
2.2.2. Modified Frog Leaping (MFL)
The Frog Leaping (FL) algorithm uses adapted PSO algorithm as a

local search mechanism within the SCE-UA framework (Eusuff and
Lansey, 2003). FL has shown to be an efficient search algorithm for
discrete optimization problems, and can find optimum solution
much faster as compared to the GA algorithm (Eusuff et al., 2006).
In order to adapt the FL algorithm to the SC-SAHEL parallel
framework, we introduce a slightly modified version of FL algo-
rithm entitled MFL. Further details and pseudo code of the MFL can
be found in Appendix B. The original FL algorithm and theMFL have
four main differences. First, the original FL is designed for discrete
optimization problems, however, the MFL is modified for contin-
uous domain. Second, the modified FL uses the best point in the
subcomplex for generating new points, however, in the original FL
framework new points are generated using the best point in the
complex and the entire population. The reason for this modification
is to avoid using any external information by participating EAs. In
other words, the amount of information given to each EAs is limited
to the complex assigned to the EAs. Third, as the MFL algorithm
only uses the best point within the complex for generating the new
generation, two different jump rates are used. The reason for
different jump rates is to allowMFL to have a better exploration and
exploitation ability during optimization process. These jump rates
are selected by trial and error andmay need further investigation to
achieve a better performance by MFL algorithm. Fourth, when the
generated offspring is not better than the parents, a new point is
randomly selected within the range of individuals in the sub-
complex. This process, which is referred to as censorship step in the
FL algorithm (Eusuff et al., 2006), is different from the original al-
gorithm. TheMFL algorithm uses the range of points in the complex
rather than the whole feasible parameters range. Resampling
within the whole parameter space can decrease the convergence
speed of the FL algorithm. Hence, the resampling process is carried
out only within the range of points in the complex. Hereafter, the
SC-SAHEL with MFL algorithm as the only search core is referred as
SC-MFL.
2.2.3. Modified Grey Wolf Optimizer (MGWO)
The Grey Wolf Optimizer is a meta-heuristic algorithm inspired

by the social hierarchy and hunting behavior of grey wolves
(Mirjalili et al., 2014, 2016). Grey wolves hunting strategy has three
main steps: first, chasing and approaching the prey; second,
encircling and pursuing the prey, and finally attacking the prey
(Mirjalili et al., 2014). The GWO process resembles the hunting
strategy of the grey wolves. In this algorithm, the top three fittest
individuals are selected and contribute to the evolution of popu-
lation. Hence, the individuals in the population are navigated to-
ward the best solution. The GWO algorithm has shown to be
effective and efficient in many test functions and engineering
problems. Furthermore, performance of GWO is comparable to
other popular optimization algorithms, such as GA and PSO
(Mirjalili et al., 2014). GWO follows an adaptive process to update
the jump rates, to maintain balance between exploration and
exploitation phases. The adaptive jump rate of the GWO is removed
here and 3 different jump rates are used instead. The reason for this
modification is that the information given to each EA is limited to
its assigned complex. Similar to MFL algorithm, the modified GWO
(MGWO) algorithm uses the range of parameters to resample in-
dividuals, when the generated offspring are not superior to their
parents. Details and pseudo code of the MGWO algorithm can be
found in Appendix C. Hereafter, the SC-SAHEL with MGWO algo-
rithm as the only search core is referred as SC-MGWO.
2.2.4. Differential Evolution (DE)
The DE algorithm is a powerful but simple heuristic population-

based optimization algorithm (Qin and Suganthan, 2005; Sadegh
and Vrugt, 2014) proposed by Storn and Price (1997). In 2011,
Mariani et al. (2011) integrated the DE algorithm into SCE-UA
framework and showed that the new framework is able to pro-
vide more robust solutions for some optimization problems in
comparison to the SCE-UA. Similar to the work by Mariani et al.
(2011), we use a slightly modified DE algorithm based on the
concepts from Qin and Suganthan (2005), in order to integrate the
DE algorithm into the SC-SAHEL framework. As the DE algorithm
has slower performance in comparison to other EAs used here, we
have added multiple steps to the DE. Here, the DE algorithm uses
three different mutation rates in three attempts. In the first
attempt, the algorithm uses a larger mutation rate. This helps
exploring the search space with larger jump rates. In the second
attempt, the algorithm reduces the mutation rate to a quarter of the
first attempt. This will enhance the exploitation capability of the
EA. If none of these mutation rates could generate a better offspring
than the parents, in the next attempt the mutation rate is set to half
of the first attempt. Lastly, if none of these attempts generate a
better offspring in comparison to the parents, a new point is
randomly selected within the range of individuals in the complex.
The pseudo code of the modified DE algorithm is detailed in
Appendix D. The SC-SAHEL algorithm is referred to as SC-DE, when
the DE algorithm is used as the only search algorithm.

3. Conceptual test functions and results

3.1. Test functions

The SC-SAHEL framework is benchmarked over 29 mathemat-
ical test functions using single-method and multi-method search
mechanisms. This includes 23 classic test functions obtained from
Xin et al. (1999). The name and formulation of these functions
along with their dimensionality and range of parameters are listed
in Table 1. We selected these test functions as they are standard and
popular benchmarks for evaluating new optimization algorithms
(Mirjalili et al., 2014). The remaining 6 are composite test functions,
cf1�6, (Liang et al., 2005), which represent complex optimization
problems. Details of the composite test functions can be found in
the work of Liang et al. (2005) and Mirjalili et al. (2014). Classic test
functions have dimensions in the range of 2e30, and all the com-
posite test functions are 10 dimensional. Figs. 2 and 3 show
response surface of the test functions which can be shown in 2-
dimension form. The SC-SAHEL settings used for optimizing these
test functions are listed in Table 2 for each test function. Number of
points in each complex and number of evolution steps for each
complex are set to 2dþ 1 and max(dþ1,10), respectively, where d is
the dimension of the problem. The number of evolution steps is set
to max(dþ1,10), to guarantee that EAs evolve the complexes for
enough number of steps, before evaluating the EAs. In the high-
dimension problems, the maximum number of function evalua-
tion should be selected with careful consideration.

Several experiments were conducted to find an optimal set of
parameters for the SC-SAHEL setting. These experiments revealed
that a low number of evolutionary steps before shuffling the
complexes, may not show the potential of the EAs. On the other
hand, using a large value for the number of evolution steps may
shrink the complex to a small space, which cannot span the whole
search space (Duan et al., 1994). Maximum number of function
evaluation is determined according to the complexity of the
problem and is different for each of the test cases. In addition to the
maximum number of function evaluation, the range of the pa-
rameters in the population and the improvement in the objective

Table 1
The detailed information of 23 test functions from Xin et al. (1999), including mathematical expression, dimension, parameters range and global optimum value (fmin).

Function
Number

Name Function Dim Range fmin

f1ðxÞ Sphere Model f ðxÞ ¼ Pn
i¼1x

2
i

30 [�100,100] 0

f2ðxÞ Schwefel's Problem 2.22
f ðxÞ ¼ Pn

i¼1jxij þ
Yn
i¼1

jxij
30 [�10,10] 0

f3ðxÞ Schwefel's Problem 1.2 f ðxÞ ¼ Pn
i¼1ð

Pi
j¼1xjÞ2 30 [�100,100] 0

f4ðxÞ Schwefel's Problem 2.21 f ðxÞ ¼ maxifjxij;1 � i � ng 30 [�100,100] 0
f5ðxÞ Generalized Rosenbrock's

Function
f ðxÞ ¼Pn�1

i¼1 ½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2� 30 [�30,30] 0

f6ðxÞ Step Function f ðxÞ ¼ Pn
i¼1ðPxi þ 0:5RÞ2 30 [�100,100] 0

f7ðxÞ Quartic Function f ðxÞ ¼Pn
i¼1ix

4
i þ random½0;1Þ 30 [�1.28,1.28] 0

f8ðxÞ Generalized Schwefel's Problem
2.26

f ðxÞ ¼Pn
i¼1 � xi sinð

ffiffiffiffiffiffiffijxij
p Þ 30 [�500,500] �12569.5

f9ðxÞ Generalized Rastrigin's
Function

f ðxÞ ¼Pn
i¼1½x2i � 10 cosð2pxiÞþ 10� 30 [�5.12,5.12] 0

f10ðxÞ Ackley's Function
f ðxÞ ¼ � 20 exp

0
@� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
Pn

i¼1x
2
i

q 1
A� exp

1
n
Pn

i¼1cosð2pxiÞ
!
þ 20þ e

30 [�32,32] 0

f11ðxÞ Generalized Griewank Function
f ðxÞ ¼ 1

4000
Pn

i¼1x
2
i �

Yn
i¼1

cos
�
xiffiffi
i

p
�
þ 1

30 [�600,600] 0

f12ðxÞ Generalized Penalized
Functions

f ðxÞ ¼ p
n f10sin2ðpyiÞþ

Pn�1
i¼1 ðyi � 1Þ2½1þ 10sin2ðpyiþ1Þ� þ ðyn � 1Þ2gþPn

i¼1uðxi;10;100;4Þ;yi ¼ 1þ 1
4 ðxi þ 1Þ;uðxi;a;k;mÞ ¼8<

:
kðxi � aÞm; xi > a
0; �a � xi � a
kð�xi � aÞm; xi < � a

30 [�50,50] 0

f13ðxÞ Generalized Penalized
Functions f ðxÞ ¼ 0:1

(
sin2ð3px1Þ þ

Pn�1
i¼1 ðxi � 1Þ2�1þ sin2�3pxiþ1

� �þ ðxn � 1Þ2�1þ sin2ð2pxnÞ
�)þPn

i¼1uðxi;5; 100;4Þuðxi;a;k;mÞ ¼
8<
:

kðxi � aÞm; xi > a
0; �a � xi � a
kð�xi � aÞm; xi < � a

30 [�50,50] 0

f14ðxÞ Shekel's Foxholes Function
f ðxÞ ¼

2
4 1
500 þ

P25
j¼1

1
jþ
P2

i¼1ðxi�aijÞ6

3
5�1 2 [�65.536,65.536] 1

f15ðxÞ Kowalik's Function

f ðxÞ ¼P11
i¼1

2
4ai � x1ðb2

i þbix2Þ
b2
i þbix3þx4

3
5
2 4 [�5,5] 0.0003075

f16ðxÞ Six-Hump Camel-Back Function f ðxÞ ¼ 4x21 � 2:1x41 þ 1
3x

6
1 þ x1x2 � 4x22 þ 4x42 2 [�5,5] �1.0316,285

f17ðxÞ Branin Function
f ðxÞ ¼

�
x2 � 5:1

4p2x21 þ 5
px1 � 6

�2

þ 10
�
1� 1

8p

�
cosðx1Þþ 10

2 [�5,10]� [0,15] 0.398

f18ðxÞ Goldstein-Price Function f ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22Þ� � ½30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22Þ� 2 [�2,2] 3

f19ðxÞ Hartman's Family f ðxÞ ¼ �P4
i¼1ciexp½ �

P4
j¼1aijðxj � pijÞ2� 4 [0,1] �3.86

f20ðxÞ Hartman's Family f ðxÞ ¼ �P4
i¼1ci exp½ �

P6
j¼1aijðxj � pijÞ2� 6 [0,1] �3.32

f21ðxÞ Shekel's Family f ðxÞ ¼ �P5
i¼1½ðx� aiÞðx� aiÞT þ ci��1 4 [0,10] �10.1532

f22ðxÞ Shekel's Family f ðxÞ ¼ �P7
i¼1½ðx� aiÞðx� aiÞT þ ci��1 4 [0,10] �10.4028

f23ðxÞ Shekel's Family f ðxÞ ¼ �P10
i¼1½ðx� aiÞðx� aiÞT þ ci��1 4 [0,10] �10.5363

M
.Rahnam

ay
N
aeini

et
al./

Environm
ental

M
odelling

&
Softw

are
104

(2018)
215

e
235

220

Fig. 2. Classic test functions in 2-dimension form.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 221

Fig. 3. Composite test functions in 2-dimension form.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235222
function values are used as convergence criteria. The optimization
run is terminated if the population range is smaller than 10�7% of
the feasible range or the improvement in (objective) function value
is smaller than 0.1% of the mean (objective) function value in the
last 50 shuffling steps. The LHS mechanism is used as the sampling
algorithm of SC-SAHEL for generating the initial population. The
framework provides multiple settings for boundary handling,
which can be selected by user. SC-SAHEL uses reflection as the
default boundary handling method. Other initial sampling and
boundary handlingmethods are also implemented in the SC-SAHEL
framework. Sensitivity of the initial sampling and boundary
handling on the performance of the SC-SAHEL algorithm is not
studied in this paper. The aforementioned settings can be applied to
a wide range of problems.
3.2. Results and discussion

Table 3 illustrates the statistics of the final function values at 30
independent runs on 29 test functions using the hybrid SC-SAHEL
and individual EAs, with the goal to minimize the function values.
The best mean function value obtained for each test function is
expressed in bold in Table 3. Results show that the hybrid SC-SAHEL
achieved the lowest function values in 15 out of 29 test functions,
compared to the mean function values achieved by all individual
algorithms. It is noteworthy that in 20 out of 29 test functions, the
hybrid SC-SAHEL was among the top two optimization methods in
finding the minimum function value. A two-sample t-test (with 5%
significance level) also showed that the results generated with the
SC-SAHEL algorithm is generally similar to the best performing
algorithms. Comparing among single-method algorithms, in gen-
eral, the statistics obtained by SP-UCI are superior to other
participating EAs. In 12 out of 29 test functions, the SP-UCI algo-
rithm achieved the lowest function value. SC-MFL, SC-MGWO, and
SC-DE were superior to other algorithms in 6, 10, and 11 out of 29
test functions, respectively. In test functions f6, f16, f17, f18, f19, f20,
and f23, the single-method and multi-method algorithms achieved
same function values on average in most cases. In these cases, ac-
cording to the statistics shown in Table 3, the SP-UCI and SC-SAHEL
algorithms offer lower standard deviation values and show more
consistent results as compared to other EAs. The low standard
deviation values obtained by SP-UCI and SC-SAHEL indicate the
robustness and consistency of these two algorithms in comparison
to other algorithms.

In the test functions that the hybrid SC-SAHEL algorithmwas not
able to produce the best mean function value, the achieved mean
function values deviation from that of the best-performing

Table 2
List of the settings for the SC-SAHEL algorithm for classic and composite test func-
tions. NGS is the number of complexes, NPS denotes the number of points in each
complex and I is the maximum number of function evaluation.

Function NGS NPS I

f1 8 61 100,000
f2 8 61 100,000
f3 8 61 300,000
f4 8 61 300,000
f5 8 61 500,000
f6 8 61 100,000
f7 8 61 200,000
f8 8 61 200,000
f9 8 61 200,000
f10 8 61 200,000
f11 8 61 200,000
f12 8 61 300,000
f13 8 61 400,000
f14 8 10 100,000
f15 8 10 100,000
f16 8 10 100,000
f17 8 10 100,000
f18 8 10 100,000
f19 8 10 100,000
f20 8 13 100,000
f21 8 10 100,000
f22 8 10 100,000
f23 8 10 100,000
cf1 8 21 100,000
cf2 8 21 100,000
cf3 8 21 100,000
cf4 8 21 100,000
cf5 8 21 100,000
cf6 8 21 100,000

Table 3
The mean and Standard deviation (Std) of function values for 30 independent runs on 29
search mechanisms.

Function SC-SAHEL (MCCE, MFL,
MGWO, DE)

SP-UCI (SC-MCCE) SC-MFL

Mean Std Mean Std Mean

f1 3.68E-11 1.60E-11 1.68E-11 1.18E-11 2.13E-06
f2 3.14E-06 3.92E-07 3.00E-06 5.94E-07 6.38E-04
f3 2.11E-10 6.08E-11 8.95E-10 4.37E-10 1.86E-09
f4 4.89E-06 7.88E-07 8.98E-05 4.60E-05 3.50E-01
f5 7.81E-09 3.15E-09 2.54E-08 1.52E-08 1.33
f6 0 0 0 0 6.33E-01
f7 1.09E-03 5.33E-04 4.78E-04 3.44E-04 2.08E-03
f8 ¡9.87Eþ03 6.14Eþ02 �5.09Eþ03 2.27Eþ02 �9.75Eþ
f9 8.29E-01 1.73 3.32E-02 1.82E-01 2.67Eþ01
f10 1.49E-06 2.43E-07 1.08E-06 2.55E-07 1.42
f11 8.05E-11 2.08E-11 1.77E-10 5.19E-11 1.42E-02
f12 1.58E-13 5.02E-14 5.27E-13 3.38E-13 3.11E-02
f13 3.66E-04 2.01E-03 2.55E-12 8.69E-13 3.97E-03
f14 9.98E-01 1.40E-16 9.98E-01 1.27E-16 1.99
f15 3.07E-04 5.61E-17 1.19E-03 3.80E-03 2.98E-03
f16 ¡1.03 1.37E-15 ¡1.03 7.61E-16 ¡1.03
f17 3.98E-01 1.47E-15 3.98E-01 0 3.98E-01
f18 3.00 2.20E-14 3.00 1.25E-14 3.00
f19 ¡3.86 2.08E-15 ¡3.86 2.12E-15 ¡3.86
f20 ¡3.32 2.17E-02 ¡3.32 2.17E-02 �3.31
f21 �9.16 2.58 �5.92 3.28 �8.97
f22 �1.02Eþ01 9.63E-01 �9.64 2.31 �9.35
f23 ¡1.05Eþ01 1.93E-13 �1.03Eþ01 1.22 �9.64
cf1 6.67 2.54Eþ01 3.33 1.83Eþ01 1.35E-11
cf2 2.00Eþ01 4.84Eþ01 1.23Eþ02 6.79Eþ01 3.14Eþ01
cf3 1.32Eþ02 9.33Eþ01 1.33Eþ02 8.22Eþ01 1.28Eþ0
cf4 2.71Eþ02 6.67Eþ01 2.93Eþ02 8.38Eþ01 2.63Eþ0
cf5 1.70Eþ01 3.77Eþ01 9.75Eþ01 1.83Eþ01 1.10Eþ01
cf6 6.71Eþ02 2.00Eþ02 8.72Eþ02 6.59Eþ01 6.38Eþ02

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 223
algorithms are marginal. For instance, on the test functions f2, f4,
f10, and f22, the statistics of the values obtained by SC-SAHEL are
similar to that achieved by the best-performingmethods, which are
SP-UCI, and SC-MGWO. In general, the hybrid SC-SAHEL algorithm
is superior to algorithms with individual EA on most of the test
functions, although on some test functions, the SC-SAHEL algo-
rithm is slightly inferior to the best-performing algorithmwith only
marginal differences. The performance of the SC-SAHEL in these
test functions can be attributed to two main reasons. First, in the
hybrid algorithm, all the EAs are involved in the evolution of the
population. Hence, if one of the algorithms have poor performance
in comparison to other EAs, it still evolves a portion of the popu-
lation. As the complexes are evolved independently, the poor-
performing EAs may devastate a part of the information in the
evolving complex. On the other hand, when the algorithms are
used individually in the SC-SAHEL framework, the EA utilizes the
information in all the complexes and the whole population. In this
case, better result will be achieved in comparison to the hybrid SC-
SAHEL, if the EA is the fittest algorithm for the problem space.
Second, some of the EAs are faster and more efficient in a specific
optimization phase (exploration/exploitation) than others. How-
ever, they might not be as effective as other EAs for other optimi-
zation phases. Hence, dominance of these algorithm during the
exploration or exploitation phases can mislead other EAs and cause
early (and premature) convergence. Engagement of other algo-
rithms in the evolution process may prevent early convergence in
these cases. Generally, the performance criteria, EMP, is responsible
for selecting the most suitable algorithm in each optimization step,
however, the criteria used in the SC-SAHEL is not guaranteed to
perform well in all problem spaces. The performance criteria are
problem dependent and need further investigations based on the
problem space and EAs. However, the EMP metric seems to be a
test functions using the SC-SAHEL algorithmwith single-method and multi-method

SC-MGWO SC-DE

Std Mean Std Mean Std

2.98E-06 4.29E-11 1.01E-11 5.92E-05 5.51E-05
5.26E-04 2.35E-06 2.75E-07 4.12E-03 1.27E-03
1.48E-09 4.50E-10 9.15E-11 1.22Eþ03 2.16Eþ03
2.35E-01 3.65E-06 5.43E-07 5.26E-06 5.59E-07
1.91 2.58Eþ01 2.85E-01 1.28Eþ01 1.85
6.69E-01 0 0 3.33E-02 1.83E-01
8.93E-04 1.37E-03 6.36E-04 1.34E-02 4.90E-03

03 6.41Eþ02 �4.36Eþ03 2.90Eþ02 �4.91Eþ03 3.75Eþ02
4.57Eþ01 1.60Eþ01 9.78 2.01Eþ02 1.19Eþ01
4.98E-01 1.52E-06 2.00E-07 5.47E-06 5.34E-07
1.51E-02 1.61E-04 8.81E-04 7.21E-03 1.15E-02
7.77E-02 1.31E-01 8.80E-02 1.06E-12 1.80E-13
6.59E-03 7.15E-02 8.94E-03 1.62E-11 3.31E-12
1.51 2.53 3.13 9.98E-01 2.16E-16
6.93E-03 1.08E-03 3.68E-03 3.07E-04 8.87E-14
1.18E-15 ¡1.03 6.28E-07 ¡1.03 9.51E-15
0.00 3.98E-01 2.05E-04 3.98E-01 7.63E-15
1.72E-14 3.00 1.81E-05 3.00 7.30E-14
1.97E-15 ¡3.86 5.46E-05 ¡3.86 1.61E-15
4.11E-02 �3.31 3.03E-02 �3.25 5.92E-02
2.18 ¡9.69 1.75 �9.48 1.75
2.46 ¡1.04Eþ01 4.56E-04 ¡1.04Eþ01 5.05E-13
2.35 ¡1.05Eþ01 6.96E-06 ¡1.05Eþ01 5.00E-13
5.66E-12 1.00Eþ01 3.05Eþ01 9.41E-12 3.42E-12
5.39Eþ01 7.76Eþ01 4.59Eþ01 3.94Eþ01 1.44Eþ01

2 3.83Eþ01 2.80Eþ02 3.16Eþ01 3.00Eþ02 4.21Eþ01
2 3.20Eþ01 3.46Eþ02 1.47Eþ01 3.30Eþ02 4.15Eþ01

3.05Eþ01 3.05Eþ01 4.33Eþ01 3.37 1.83Eþ01
1.86Eþ02 7.80Eþ02 1.85Eþ02 5.40Eþ02 1.23Eþ02

Fig. 4. The success rate of the SC-SAHEL algorithm using multi-method and single-method search mechanism for 30 independent runs for 29 test functions.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235224
suitable metric for a wide range of problems.
To further evaluate the performance of the hybrid SC-SAHEL

algorithm, we present the success rate of the algorithms in Fig. 4.
The success rate is defined by setting target values for the function
value for each test function. When the function value is smaller
than the target value, the goal of optimization is reached, and
therefore, the algorithm is considered successful. A higher success
rate resembles a better performance. We use same target value for
all algorithms in order to have a fair comparison. According to Fig. 4,
in 16 out of 29 test functions, the hybrid algorithm achieved 100%
success rate. In other cases, the success rates achieved by the pro-
posed hybrid algorithm are comparable to the best-performing
algorithm with single EA. For instance, on the test function f9, the
SC-MGWO, SC-DE and SC-MFL are not successful in finding the
optimum solution (success rates are 0%, 0%, and 10%, respectively).
However, the hybrid SC-SAHEL algorithm has similar performance
(80% success rate) to SP-UCI (97% success rate). On the test function
f21, the success rate of the hybrid SC-SAHEL algorithm (87%) is close
to the SC-MGWO (93%), which is themost successful algorithm. The
hybrid SC-SAHEL algorithm also achieved a higher success rate than
SP-UCI algorithm (33%) in this test function. According to Fig. 4, the
average success rate of SC-SAHEL is about 80% over all 29 test
functions, and it is the highest compared to the average success rate
of other EAs, i.e., 73%, 58%, 58%, and 54% for SP-UCI, SC-DE, SC-
MGWO, and SC-MFL algorithm, respectively.

In some situations, the poor performing EAs may mislead other
EAs and cause early (and premature) convergence. For instance, on
the test function cf5, the hybrid algorithm achieved 57% success
rate, which is still better success rate than SP-UCI, SC-MFL and SC-
MGWO, which are 0%, 10%, and 50%, respectively. On this test
function (cf5), the performance of the hybrid SC-SAHEL is less
affected by the most successful algorithm (DE). This may be due to
the low evolution speed of the DE algorithm, as the SC-SAHEL al-
gorithm maintains both convergence speed and efficiency during
the entire search. The hybrid SC-SAHEL presents promising per-
formance on the test functions cf2 and cf3. On test functions cf2 and
cf3, the success rate of hybrid SC-SAHEL is significantly higher than
other EAs, most of which have 0% success rates. For test function cf2,
the SC-DE algorithm achieved the lowest objective function value
and the highest success rate (37%) among single-method algo-
rithms. However, when EAs are combined in the hybrid form, the
objective function value and the success rate are significantly
improved. This shows that SC-SAHEL has the capability of solving
complex problems by utilizing the potentials and advantages of all
participating algorithms and improving the search success rate.

In Table 4, we present the mean and standard deviation of the
number of function evaluation, which indicates the speed of each
algorithm. The lowest mean number of function evaluation is
expressed in bold in Table 4. As one of the stopping criteria in SC-
SAHEL framework is the maximum number of function evalua-
tion, some algorithms may terminate before they show their full
potential. For instance, the SC-DE and the SC-MFL, usually reach the
maximum number of function evaluations, while other algorithms
satisfy other convergence criteria in much less number of function
evaluations. In this case, the objective function value doesn't
represent the potential of the slow algorithms. To give a better
insight into this matter, the mean and standard deviation (Std) of
the number of function evaluations are compared in Table 4. The
goal is to compare the speed of the individual EAs and the hybrid
optimization algorithm. According to Table 4, in most of the test
cases, the SP-UCI algorithm has the least number of function
evaluations, regardless of the objective function value achieved by
the EAs.

Comparing the success rate and the number of function

Table 4
The mean and Standard deviation (Std) of the number of function evaluation for 30 independent runs for 29 test functions using the SC-SAHEL algorithmwith single-method
and multi-method search mechanisms.

Function SC-SAHEL (MCCE, MFL,
MGWO, DE)

SP-UCI (SC-MCCE) SC-MFL SC-MGWO SC-DE

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 32,816.33 723.0532 26,877.93 609.7676 100,199.9 129.6894 33,012.97 284.4416 100,325.5 144.6016
f2 39,298.4 917.7627 29,333.33 674.156 100,193.7 126.3259 35,876.77 344.1018 100,307.9 168.2884
f3 91,746.23 2288.806 73,474.5 5435.367 226,848.3 20,135.41 239,199.9 31,109.82 241,449.1 90,118.79
f4 50,197.6 1761.589 82,183.67 19,213.58 300,252.9 121.2331 37,987.4 1170.002 227,316.4 5488.107
f5 335,364.2 8102.236 401,124.8 14,599.33 439,093.2 47,901.23 118,900.7 38,671.69 500,310.9 163.5498
f6 40,293.63 377.0177 32,537.93 151.8836 66,102.9 3708.332 43,063.63 1463.074 90,205.23 5773.92
f7 69,779.5 23,763.53 69,823.27 24,314.74 78,895.43 24,205.89 81,421.53 22,877.8 117,468.4 33,083.6
f8 71,834.83 9826.963 54,020 17,225.97 65,629.77 5201.429 45,254.8 15,104.68 62,555.83 21,579.07
f9 59,710.57 12,460.93 33,949.6 996.5881 100,705.8 22,607.84 85,055.73 20,771.06 90,930.3 34,180.61
f10 33,765.77 887.3708 27,116.33 379.9873 77,520.6 15,528.44 33,181.03 416.0297 165,489.4 4726.909
f11 35,504.9 629.8192 30,623.53 860.8274 117,357.6 13,250.36 38,652.4 19,330.05 155,148.6 16,730.48
f12 55,908.07 4735.601 39,264.23 3125.88 141,722.1 31,245.81 88,234.23 28,948.91 181,820.6 5132.966
f13 54,148.7 3949.577 32,262.23 851.2965 123,903.4 20,354.81 72,334.73 22,345.94 170,930.5 3295.191
f14 5216.333 443.942 5708.433 764.8273 4829.2 841.1355 14,986.77 3537.605 4530.2 322.0474
f15 9059.8 551.1741 6517.167 2358.518 8144.667 1151.183 66,441.3 35,455.39 18,813.63 659.7369
f16 3700.133 1115.033 2746.3 747.3937 3491.933 574.5392 8549.4 1494.076 3490.733 556.9577
f17 3665.533 601.3615 2910.633 624.4692 3552.267 538.6385 11,453.13 2592.687 5115.367 2082.727
f18 2837.933 308.7723 2000.633 151.8512 2899.567 299.5645 8405.933 1320.571 2833.5 111.3877
f19 4225.733 424.8389 2852.2 95.83,045 4233.4 238.4404 13,183.77 519.0798 4983.9 179.5704
f20 8915.833 1069.182 5645.567 268.4028 8858.967 300.0987 17,143.33 1316.025 12,691.67 1818.526
f21 7455.033 1741.525 7377.533 3260.208 7471.4 1554.087 18,771.33 2996.925 10,755.57 1573.865
f22 6370.5 869.9209 4512.433 1290.258 7541.433 1582.216 17,466.23 834.9485 8728.7 927.622
f23 6200.133 614.6406 4084.233 464.9113 6823.7 327.7709 17,351.87 861.8541 8398.067 599.0103
cf1 15,049.43 875.8969 10,293.43 233.9694 21,663.47 921.1805 74,089.17 17,803.2 28,321.6 678.283
cf2 16,527.63 1432.21 10,586.8 464.8359 20,285.83 2346.093 36,617.1 13,118.85 30,686.4 9354.096
cf3 25,991.03 8041.928 16,021.5 3833.203 23,801.2 3604.495 19,323.13 6052.813 29,496.9 9113.814
cf4 22,873.87 4414.168 16,510.13 4052.642 21,121.93 2417.582 23,841.93 8026.638 35,134.33 14,468.31
cf5 17,044.53 1350.845 13,512.2 746.6731 21,400.57 1759.215 53,551.43 23,577.95 39,200.77 4125.908
cf6 13,779.33 2279.744 10,518.1 2977.194 14,967.5 2820.062 22,265.8 15,340.72 27,734.83 4606.317

Fig. 5. Number of complexes assigned to EAs during the entire optimization process for test functions f1-f10.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 225

Fig. 6. Number of complexes assigned to EAs during the entire optimization process for test functions f11-f20.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235226
evaluation for different EAs shows that SP-UCI achieved 100%
success rate with the lowest number of function evaluation, in 15
out of 29 test functions. The SC-MGWO algorithm only achieved
100% success rate with the lowest number of function evaluation in
one test function. Although the hybrid SC-SAHEL algorithm is not
the fastest algorithm, its speed is usually close to the fastest algo-
rithm. This is due to the contribution of different EAs in the evo-
lution process and the EAs behavior on different problem spaces.
For instance, DE algorithm is slower in comparison to MCCE (SP-
UCI) algorithm in most of the test functions. Hence, when the al-
gorithms are working in a hybrid form, the hybrid algorithmwill be
slower than the situation when the MCCE (SP-UCI) algorithm is
used individually.

Figs. 5e7 compare the average number of complexes assigned to
each EA for the 29 employed test functions during the course of the
search. The variation of the number of complexes assigned to each
EA indicates the dominance of each EA during the course of the
search. Hence, the performance of EAs at each optimization step
can be monitored. In many test cases, MCCE (SP-UCI) algorithm has
a relatively higher number of complexes than other EAs during the
search. This shows that MCCE is a dominant search algorithm on
most of the test functions. However, in some other cases, MCCE is
only dominant in a certain period of the search, while other EAs
have demonstrated better efficiency during the entire search. For
example, on test functions f7 and f20, MCCE algorithm appears to be
dominant only during the beginning of the search. In the test
function f7, the exploration process starts with the dominance of
the MCCE and shifts between MGWO and MFL after the first 20
shuffling steps. In some of the test functions, such as f7, a more
random fluctuation is observed in the number of complexes
assigned to each EA. The reason for this behavior is the close
competition of EAs in these shuffling steps. Due to the noisy
response surface of the test function f7, most of the EAs cannot
significantly improve the (objective) function values during the
exploitation phase. On test functions f8 and f18, the MFL and DE
algorithms are the dominant search methods, respectively, during
the beginning of the run, while MCCE algorithm becomes dominant
only when the algorithm is in exploitation phase. Lastly, on test
functions f9, f22, cf1, and cf4, the variations of the number of com-
plexes and the precedence of different EAs as the most dominant
search algorithm are observed.

It is worth mentioning that, Figs. 5e7 show the number of
complexes assigned to each EA for a single optimization run. Our
observation of each individual run results (not shown herein)
shows variation of the number of complexes among different runs
is similar to each other for most test cases. The observed variation
for individual runs follows a specific pattern and is not random. The
similarity of the EAs dominance pattern indicates that the selection
of the EAs by the SC-SAHEL framework only depends on the char-
acteristics of the problem space and the EAs employed. This also
indicates that different EAs have pros and cons on different opti-
mization problems.

As a summary of our experiments on the conceptual test func-
tions (Tables 3 and 4, and Figs. 4e7), the main advantage of the SC-
SAHEL algorithm over other optimization methods is its capability
of revealing the trade-off among different EAs and illustrating the
competition of participating EAs. Different optimization problems
have different complexity, which introduces various challenges for
each EA. By incorporating different types of EAs in a parallel
computing framework, and implementing an “award and punish-
ment” logic, the newly developed SC-SAHEL framework not only
provides an effective tool for global optimization but also gives the

Fig. 7. Number of complexes assigned to EAs during the entire optimization process for test functions f21-f23 and cf1-cf6.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 227
user insights about advantages and disadvantages of participating
EAs on individual optimization tasks. This shows the potential of
the SC-SAHEL framework for solving different class of problems
with different level of complexity. Besides, the hybrid SC-SAHEL
algorithm is superior to shuffled complex-based methods with
single searchmechanism, such as SP-UCI, in an absolute majority of
the test functions.

4. Example application and results

In this section, we demonstrate an example application of the
newly developed SC-SAHEL algorithm. A conceptual reservoir
model is developed with the goal of maximizing hydropower
generation on a daily-basis operation. The model is applied to the
Folsom reservoir in Northern California.

4.1. Reservoir model

A conceptual model is set up based on the relationship between
the hydropower generation, storage, water head and bathymetry of
the Folsom reservoir. Daily releases from the reservoir in the study
period are treated as the parameters of the model, which in turn
determines the problem dimensionality. The model objective is to
maximize the hydropower generation for a specific period. The
total hydropower production is a function of the water head dif-
ference between forebay and tailwater and the turbine flow rate.
The driving equation of the model is based on mass balance (water
budget), which is formulated as,

St ¼ St�1 þ It � Rt±Mt ; (2)
where St is storage at time step t, It and Rt signify total inflow and
release from the reservoir at time t, respectively.Mt is total outflow/
inflow error which is derived by setting up mass balance for daily
observed data. The objective function employed here is,

OF ¼
XN
t¼1

1� Pt
Pc
; (3)

where Pc is total power plant capacity in MW and Pt is total power
generated in day t in MW. For each day Pt is derived as follow,

Pt ¼ hrgQtHt ; (4)

where h signifies turbine efficiency, r is water density (Kg/m3), g is
gravity (9.81m/s2) and Qt is discharge (m3/s) at time step t. Ht is
hydraulic head (m) at time step t, which is defined as,

Ht ¼ hf � htw; (5)

where hf and htw are water elevation in forebay and tailwater,
respectively. hf and htw are derived by fitting a polynomial to
reservoir bathymetry data.

In the reservoir model coined above, multiple constraints are
considered for better representation of the real behavior of the
system. These constraints include power generation capacity,
storage level, spill capacity, and changes in the daily hydropower
discharge. Total daily power generation is compared to maximum
capacity of the hydropower plant. Also, rule curve is used to control
reservoir storage level during the operation period. Besides, final
simulated reservoir storage is constrained to 0.9e1.1 of the
observed storage. In another word, 10% variation from the

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235228
observation data is allowed for the final simulated storage level.
This constraint adds information from real reservoir operation into
the optimization process. This constraint can be replaced by other
operation rules for simulation purposes. The spill capacity of dam is
calculated according to thewater level in the forebay and compared
to simulated spilled water. A quadratic function is fitted to the
water level and spill capacity data, to derive the spill capacity at
each time step. The change in daily hydropower release is also
constrained to better represent actual hydropower discharge and
avoid large variation in a daily release.

The reservoir model used here is non-linear and continuous. The
constraints of the model render finding the feasible solution a
challenging task for all the EAs. The SC-SAHEL framework is used to
maximize the hydropower generation by minimizing the objective
function value. The settings used for the SC-SAHEL is similar to the
settings used for the mathematical test functions. However, the
maximum number of function evaluations is set to 106. Lower
bound of the parameters' range varies monthly due to the opera-
tional rules; however, upper bound is determined according to the
hydraulic structure of the dam.

4.2. Study basin

Folsom reservoir is located on the American river, in Northern
California and near Sacramento, California. Folsom dam was built
by US Army Corps of Engineers during 1948e1956, and is a multi-
purpose facility. The main functions of the facility are flood control,
water supply for irrigation, hydropower generation, maintaining
environmental flow, water quality purposes, and providing recre-
ational area. The reservoir has a capacity of 1,203,878,290m3 and
the power plant has a total capacity of 198.7MW. Three different
periods are considered here. The first study period is April 1st, 2010
to June 30th, 2010. The year 2010 is categorized as below-normal
period according to California Department of Water Resources.
The same period is selected in 2011 and 2015, as former is cate-
gorized by California Department of Water Resources as wet, and
latter is classified as critical dry year. The input and output from the
reservoir are obtained from California Data Exchange Center
Fig. 8. Boxplots of objective function values for successful runs among 30 independent ru
values is shown with pink marker. (For interpretation of the references to colour in this fig
(http://cdec.water.ca.gov/). Note that demand is not included in the
model because demand data was not available from a public data
source.

4.3. Results and discussion

The boxplot of the objective function values is shown in Fig. 8 for
the Folsom reservoir during the runoff season in 2015, 2010, and
2011, which are dry, below-normal, and wet years, respectively. The
presented results are based on 30 independent optimization runs;
however, infeasible objective function values are removed. The
feasibility of the solution is evaluated according to the objective
function values. Due to the large values returned by the penalty
function considered for infeasible solutions, such solutions can be
distinguished from the feasible solutions. For wet year (2011) case,
SC-MGWO, and SC-DE didn't find a feasible solution in 2, and 4 runs
out of 30 independent runs, respectively. The hybrid SC-SAHEL
found feasible solutions in all the cases; however, some of these
solutions are not global optima. On average, the hybrid SC-SAHEL
algorithm is able to achieve the lowest objective function value as
compared to other algorithms during dry and below-normal
period. During dry and below-normal periods, SC-SAHEL, SP-UCI,
and SC-DE show similar performance. In the wet period, the SP-UCI
algorithm achieved the lowest objective function value. The SC-
SAHEL algorithm ranked second, comparing the mean objective
function values. In this period, the results achieved by the SC-DE is
also comparable to SC-SAHEL and SP-UCI. The results show that
overall, the hybrid SC-SAHEL algorithm has similar or superior
performance in comparison to the single-method algorithms. Also,
the results achieved by SC-SAHEL and SP-UCI algorithms has less
variability in comparison to other algorithms, which show the
robustness of these algorithms. The worst performing algorithm is
the SC-MGWO, which achieved the least mean objective function
value in all the study periods.

In Fig. 9, boxplot of the number of function evaluations is pre-
sented for successful runs from the 30 independent runs during
dry, below-normal and wet period years. Although the SC-MGWO
algorithm satisfied convergence criteria in the least number of
ns, for dry (A), below-normal (B) and wet period (C). The mean of objective functions
ure legend, the reader is referred to the Web version of this article.)

http://cdec.water.ca.gov/

Fig. 9. Boxplots of number of function evaluations for successful runs among 30 independent runs for dry (A), below-normal (B) and wet period (C). The mean number of function
evaluation is shown with pink marker. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 10. The average number of complexes assigned to each EA at each shuffling step for 30 independent runs for dry (A), below-normal (B), and wet (C) period.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 229
function evaluation, the SC-MGWO was not successful in achieving
the optimum solution in many cases. The SP-UCI algorithm is the
second fastest method among all the algorithms. The hybrid SC-
SAHEL, SC-MFL, and SC-DE are the slowest algorithm for satis-
fying the convergence criteria, in almost all cases. The slow per-
formance of the hybrid SC-SAHEL is due to the fact that 2 out of 4
(DE and MFL) participating EAs have very slow performance over
the response surface. Fig. 10 demonstrates the number of
complexes assigned to each EA during the search, which indicates
the dominance of the participating algorithms, and the “award and
punishment” logic in the reservoir model. As seen in Fig. 10, the
MGWO algorithm is dominant in the beginning of the search;
although, it is not capable of finding the optimum solution in most
cases. The reason for the dominance of the MGWO is the speed of
the algorithm in exploring the search space. MGWO is superior to
other EAs in the beginning of the search, however, after a few

Fig. 11. Simulated storage for dry (A), below-normal (B), and wet (C) period.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235230

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 231
iterations, the MCCE algorithm took the precedence and become
the dominant algorithm over other EAs. MGWO and DE are less
involved in the rest of the optimization process after the initial
steps. However, competition between MCCE and MFL continues.
Although contribution of MGWO and DE are at minimum in the rest
of the optimization process, they are utilizing a part of information
within the population. This can affect the speed and performance of
the SC-SAHEL algorithm. In both the wet and below-normal cases,
the hybrid SC-SAHEL algorithm is mostly terminated by reaching
the maximum number of function evolution. However, the mean
objective function value obtained by the hybrid SC-SAHEL is still
superior to most of the algorithms.

The performance of the SC-SAHEL can be affected by the settings
of the algorithm. Different settings have been tested and evaluated
for the reservoir model. The results show that the number of evo-
lution steps before shuffling can influence the performance of the
hybrid SC-SAHEL algorithm. In the current setting, the number of
evolution stepswithin each complex is set to dþ1 (d is dimension of
the problem). Although this setting seems to provide acceptable
performance for a wide range of problems, it may not be the op-
timum setting for all the problems spaces and EAs. In the reservoir
model, as the study period has 91 days, the model evolves each
complex for 92 steps. This number of evolution steps allows the
algorithms to navigate the complexes toward local solutions and
increase the total number of function evaluations without specific
gain. Decreasing the number of evolution steps allows the algo-
rithms to communicate more frequently, so they can use the in-
formation obtained by other EAs. Here, for demonstrative purposes,
the same setting has been applied to all the problems. However,
better performance is observed for the hybrid SC-SAHEL algorithm
when the number of evolution steps are set to a value smaller than
92. The algorithm is less sensitive to other settings for the reservoir
model, however they can still affect the performance of the
algorithm.

In Fig. 11, we present the simulated storage for different study
periods achieved by different EAs. During the dry period, not only
the SC-SAHEL algorithm achieved the lowest objective function
value, but also the storage level is higher than the observed storage
level in most of the period. This is due to the fact that, power
generation is a function of water height, as well as discharge rate.
During below-normal period, SC-SAHEL, SP-UCI, and SC-DE algo-
rithms show a similar behavior in terms of the storage level. During
wet period, storage level simulated by SP-UCI and SC-SAHEL algo-
rithm is lower than all other algorithms. It is worth noting that,
during wet period, SC-SAHEL and SP-UCI algorithms are able to find
optimum solution (which objective function value is 0) in some of
the runs. However, the simulated storage by these algorithms show
some level of uncertainties (Fig. 11). This shows equifinality in
simulation, which means that same hydropower generation can be
achieved by different sets of parameters (Feng et al., 2017). This
equifinality can be due to deficiencies in the model structure, or the
boundary conditions (Freer et al., 1996). The wet period seems to
offer a more complex response surface for the reservoir model.
During the wet period, some algorithms, such as SC-DE, are not
capable of finding a feasible solution in some of the runs. In this
period, the large input volume and the rule curve added more
complexity to the optimization problem.

The results of the real-world application show the potential of
the newly developed SC-SAHEL framework for solving high
dimension problems. In general, the hybrid algorithm was more
successful in finding a feasible solution in comparison to single-
method algorithms. In some cases, the hybrid SC-SAHEL was
terminated due to the large number of function evaluations.
However, the performance of the hybrid SC-SAHEL is always
comparable to the best performing method. This shows the
potential of the SC-SAHEL for solving a broad class of optimization
problems. Besides, the framework provides insight into the per-
formance of the algorithms at different steps of the optimization
process. This feature of the SC-SAHEL algorithm can aid user to
select the best setting and EA for the problem.

5. Conclusions and remarks

We developed a hybrid optimization framework, named Shuf-
fled Complex Self Adaptive Hybrid EvoLution (SC-SAHEL), which
uses an “award and punishment” logic in junction with various
types of Evolutionary Algorithms (EAs), and selects the best EA that
fits well to different optimization problems. The framework pro-
vides an arsenal of tools for testing, evaluating and developing
optimization algorithms. We compared the performance of the
hybrid SC-SAHEL with single-method algorithms on 29 test func-
tions. The results showed that the SC-SAHEL algorithm is superior
to most of single-method optimization algorithms and in general
offers a more robust and efficient algorithm for optimizing various
problems. Furthermore, the proposed algorithm is able to reveal
the characteristics of different EAs during entire search period. The
algorithm is also designed to work in a parallel framework which
can take the advantage of available computation resources. The
newly developed SC-SAHEL offers different advantages over con-
ventional optimization tools. Some of the SC-SAHEL characteristics
are:

- Intelligent evolutionary method adaptation during the optimi-
zation process

- Flexibility of the algorithm for using different evolutionary
methods

- Flexibility of the algorithm for using initial sampling and
boundary handling method

- Independent parallel evolution of complexes
- Population degeneration avoidance using PCA algorithm
- Robust and Fast optimization process
- Evolutionary algorithms comparison for different types of
problems

Although the presented results support advantage of the hybrid
SC-SAHEL to algorithms with individual EAs, there are multiple
directions for further improvement of the framework. For example,
EAs' performance metric for evaluating the search mechanism. In
the current algorithm, the complex allocation to different EA is
carried out by ranking the algorithm according to the EMP metric.
The performance criteria can change the allocation process and
affect the performance of the algorithm. Depending on the appli-
cation a more comprehensive performance criterion may be
necessary for achieving the best performance. However, the current
EMP criterion does not affect the conclusion and comparison of
different EAs. In addition, the current SC-SAHEL framework is
designed to solve single objective optimization problems. A multi-
objective version can be developed to extend the scope of the
application. This paper serves as an introduction to the newly
developed SC-SAHEL algorithm. We hope that more investigation
on the interaction among different EAs, boundary handling
schemes and response surface in different case studies and opti-
mization problems reveal the advantages and limitations of SC-
SAHEL.

Acknowledgments and data

This work is supported by U.S. Department of Energy (DOE
Prime Award # DE-IA0000018), California Energy Commission (CEC
Award # 300-15-005), NSF CyberSEES Project (Award CCF-

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235232
1331915), NOAA/NESDIS/NCDC (Prime award NA09NES4400006
and NCSU CICS and subaward 2009-1380-01), and the U.S. Army
Research Office (award W911NF-11-1-0422). The Folsom reservoir
bathymetry information used here is provided by Dr. Erfan
Goharian from UC Davis, who also helped us for setting up the
reservoir model. The authors would like to thank the comments of
the editors and four anonymous reviewers which significantly
improved the quality of this manuscript.
Appendix A. Modified Competitive Complex Evolution (MCCE)

MCCE algorithm pseudo code is as follow:

Step 0 Initialize i¼ 1, and get maximum number of iteration
allowed, I.

Step 1 Sort individuals in order of increasing objective function
value. Assign individuals a triangular probability (except for
the fittest point) according to:
p ¼ 2ðNPSþ 1� nÞ
NPSðNPSþ 1Þ ; (A1)

where NPS is the number of individuals in the complex and n is the
rank of the sorted individuals.
Step 2 Select dþ1 individuals (d is problem dimension) from the

complex including the fittest individual in the complex.
Step 3 The selected individuals are then stored in S, forming a

simplex. Generate offspring according to following steps.

I. Sort individuals in S according to their objective func-
tion value. Find centroid, c

.
, of the first d individuals.

II. Reflection: Reflect the worst individual in S, w
.

, across
the centroid to generate a new point, r

.
, according to

following equation:
. . .

r ¼ 2 c � w: (A2)
Evaluate objective function for the new point, fr . If
f1 < fr < fd set offspring, o

. ¼ r
.
, and go to (VII).

III. Expansion: If fr < f1, reflect c
.

across r
.

and generate e
.
,

. . .

e ¼ 2 r � c : (A3)
Evaluate objective function for the new point, fe. If fe < fr ,
set o

. ¼ e
.

and go to (VII); otherwise, o
. ¼ r

.
and go to

(VII).
IV. Outside contraction: If fd � fr < fw, calculate the outside

contraction point,
. .
	
. .

oc ¼ c þ 0:5 r � c : (A4)
Evaluate the outside contraction point, foc. If foc < fr set
o
. ¼ oc

.
and go to (VII); otherwise, o

. ¼ r
.

and go to (VII).
V. Inside contraction: If fw < fr calculate inside contraction

point,
. 	

ic ¼ c

.þ 0:5 w
.� c

.
: (A5)
Evaluate inside contraction point, fic. If fic < fr set o
. ¼ ic

.

and go to (VII); otherwise continue to (VI).
VI. Multinormal sampling: If the steps above, did not

generate a better offspring, an individual will be drawn
with a multinormal distribution defined by simplex and
replace the worst individual in the simplex, regardless
of objective function value. The multinormal sampling
is as follow,

a. Calculate the covariance matrix, R, for the simplex

and store diagonal of matrix in D
.
.

b. Modify D
.

as follow
Dm
. ¼ 2

�
D
.þ mean

�
D
.
��

: (A6)

.

c. Generate a new covariance matrix R0, with Dm as

diagonal and zeroes everywhere else.
d. Sample a point with multinormal distribution with

mean of c
.

and covariance of R0 and store in o
.
.
.

VII. Replace the worst individual in the complex with o . Let
i ¼ iþ 1: If i � I, go to (Step 1); otherwise sort the points
in the complex and return the evolved complex.
Appendix B. Modified Frog Leaping (MFL)

Modified FL (MFL) algorithm is as follow,

Step 0 Initialize i¼ 1, and get maximum number of iteration
allowed, I.

Step 1 Sort individuals in order of increasing objective function.
Assign individuals a triangular probability using following
equation:
p ¼ 2ðNPSþ 1� nÞ
NPSðNPSþ 1Þ ; (B1)

where NPS is the number of individuals in the complex and n is the
rank of the sorted individuals.
Step 2 Select dþ1 individuals (d is problem dimension) from the

complex.
Step 3 The selected individuals are stored in S, forming a sub-

complex. Generate offspring according to following steps.

I. Generate a new point with the worst point in S, w

.
and

best point b
.

in the subcomplex, as follow,
�
.

�

nb
. ¼ w

.þ ð 0:5� Rþ 1:5Þ b � w
.

; (B2)

where R is a random number in the range of [0,1]. Evaluate objec-
tive function for the new point and get fb. If fb < fw; set o

. ¼ nb
.

and
go to (IV).
II. If fw < fb, generate a new point with the worst point in S,
w
.

and best point b
.

in the subcomplex, as follow,
�
.

�

nB
. ¼ w

.þ 0:5 � R b � w
.

; (B3)
Evaluate objective function for the new point and get fB.
If fB < fw set the offspring set o

. ¼ nB
.

and go to (IV).
III. Censorship step: If fw < fB, randomly generate the

offspring, o
.

by sampling within the range of individuals
in the subcomplex.

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 233
IV. Replace the worst individual in the complex with the
offspring, o

.
. Let i ¼ iþ 1: If i � I, go to (Step 1); other-

wise sort the points in the complex and return the
evolved complex.
Appendix C. Modified Grey Wolf Optimizer (GWO)

Modified Grey Wolf Optimizer is as follow:

Step 0 Initialize i¼ 1, and get maximum number of iteration
allowed, I.

Step 1 Sort the individuals in the order of increasing objective
function value. Assign individuals a triangular probability
(except for the fittest point) using following equation:
p ¼ 2ðNPSþ 1� nÞ
NPSðNPSþ 1Þ ; (C1)

where NPS is the number of individuals in the complex and n is the
rank of the sorted individuals.
Step 2 Select dþ1 individuals (d is problem dimension) from the

complex, with triangular probability, including the fittest
point in the complex and store them in S.

Step 3 Select the best three points in the S and store them in a
.
, b
.

and g
.
, respectively. The worst point in the S, is stored in w

.

Step 4 For each of a
.
, b
.

and g
.

, evolve individuals according to the
following procedure,

.

I. Derive A and C as follow for a, b and g ,
.

A ¼ 4� r

.
1 � 2; (C2)

.

C ¼ 2� r

.
2: (C3)

where r1
.

, r2
.

are two independent random vectors, which have
d dimensions and values in range of (0,1).

. . . .

II. Derive D, for a, b and g as follow,
.
��. .

�� .
��. .

�� .

Da ¼ ��Ca � Xa � w

.��; Db ¼ ��Cb � Xb � w
.��; Dg

¼
����Cg. � Xg

. � w
.
����:

(C4)

. .

III. Derive Z , for a

.
, b and g

.
as follow,
. . .
�

.
�

. . .
�

.
�

.

Za ¼ Xa � Aa : Da ; Zb ¼ Xb � Ab : Db ; Zg

¼ Xg

. � Ag

.
:

�
Dg

.
�
: (C5)

. .

IV. Generate new point by finding the centroid of Za , Zb

and Zg
.

,

. . .
C
. ¼ Za þ Zb þ Zg

3
: (C6)
V. Calculate and store objective function value for the new
point, fC . If the new point is better than the worst point
among the selected points, fC < fw, set o
. ¼ C

.
, go to step

7.
.

Step 5 If fC > fw, go to step 4, and use a smaller range for A. In this
step, A

.
is calculated as follow:

.

A ¼ 2� r

.
1 � 1; (C7)

Step 6 If the newly generated individual is worse than the worst
individuals in subcomplex, generate a new point with uni-
form random sampling within the range of individuals in
the complex. Store the new point in o

.
.

Step 7 Replace the worst individual among selected points in the
complex with the offspring, o

.
. Let i ¼ iþ 1: If i � I, go to

(Step 1); otherwise sort the points in the complex and re-
turn the evolved complex.
Appendix D. Modified Differential Evolution (DE)

Modified differential evolution algorithm is as follow:

Step 0 Initialize i¼ 1, and get maximum number of iteration
allowed, I.

Step 1 Sort the individuals in the order of increasing objective
function value. Assign individuals a triangular probability,
using following equation:
p ¼ 2ðNPSþ 1� nÞ
NPSðNPSþ 1Þ ; (D1)

where NPS is the number of individuals in the complex and n is the
rank of the sorted individuals.
Step 2 Select dþ1 points (d is problem dimension) from the com-

plex with the assigned probability and store them along
with the fittest point in the complex in S.

Step 3 The selected individuals are sorted and stored in S, forming
a subcomplex. Generate offspring according to following
steps.

I. Generate a new point with the worst point in S, w

.
and

using the top three individuals in the subcomplex,
. 	
 	

V1 ¼ w

.þ 2f s1
. � w

. þ 2f s2
. � s3

.
; (D2)

where w
.

is the worst point in the S, s1
.

, s2
.

, and s3
.

are three
selected individuals. Then mutation, and crossover operator is
applied to the w

.
and V1

.
to generate Vn1

.
. The objective function

value for the new point is calculated and stored in fn1. If fn1 < fw; set
o
. ¼ Vn1

.
and go to (V).
II. If fw < fn1, generate a new point with theworst point in S,
w
.

and using the top three points in the subcomplex as
follow,
. 	
 	

V2 ¼ w

.þ 0:5f s1
. � w

. þ 0:5f s2
. � s3

.
; (D3)

.

After mutation, crossover operator is applied to the w
and V2

.
to generate Vn2

.
. Then, the objective function for

the new point is derived and stored in fn2. If fn2 < fw; set
o
. ¼ Vn2

.
and go to (V).

III. If fw < fn2, generate a new point with theworst point in S,
w
.

and using the top three points in the subcomplex as
follow,

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235234
V
. ¼ w

.þ f
	
s
. � w

.

þ f
	
s
. � s

.

; (D4)
3 1 2 3
After mutation, crossover operator is applied to the w
.

and V3
.

to generate Vn3
.

. The objective function value is
calculated and stored in fn3. If fn3 < fw; set o

. ¼ Vn3
.

and
go to (V).

IV. If the newly generated point is worse than the worst
point in subcomplex, generate a newpoint fromuniform
random distribution within the range of points in the
complex. Store the new point in o

.
.

V. Replace the worst point in the complex with the
offspring, o

.
. Let i ¼ iþ 1: If i � I, go to (Step 1); other-

wise sort the points in the complex and return the
evolved complex.
Abbreviations

AMALGAM-SO A Multialgorithm Genetically Adaptive Method for
Single Objective Optimization

CCE Competitive Complex Evolution
DE Differential Evolution
EA Evolutionary Algorithm
EMP Evolutionary Methods Performance
FL Frog Leaping
GWO Grey Wolf Optimizer
LHS Latin Hypercube Sampling
MCCE Modified Competitive Complex Evolution
MCMC Markov Chain Monte Carlo
MFL Modified Frog Leaping
MGWO Modified Grey Wolf Optimizer
MOCOM-UA Multi-Objective Complex evolution, University of

Arizona
MOSCEM Multi-Objective Shuffled Complex Evolution Metropolis
NFL No Free Lunch
PCA Principal Component Analysis
PSO Particle Swarm Optimization
SaDE Self-adaptive Differential Evolution
SCE-UA Shuffle Complex Evolution-developed at University of

Arizona
SCEM-UA Shuffled Complex Evolution Metropolis algorithm-

developed at University of Arizona
SC-SAHEL Shuffle Complex-Self Adaptive Hybrid EvoLution
SP-UCI Shuffled Complex strategy with Principal component

analysis-developed at University of California, Irvine
URS Uniform Random Sampling
References

K. Ajami, N., Gupta, H., Wagener, T., Sorooshian, S., 2004. Calibration of a semi-
distributed hydrologic model for streamflow estimation along a river system.
J. Hydrol. 298 (1), 112e135.

Barati, R., Neyshabouri, S.S., Ahmadi, G., 2014. Sphere Drag Revisited Using Shuffled
Complex Evolution Algorithm.

Beven, K.J., 2011. Rainfall-runoff Modelling: the Primer. John Wiley & Sons.
Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: overview and

conceptual comparison. ACM Comput. Surv. 35 (3), 268e308.
Boussaïd, I., Lepagnot, J., Siarry, P., 2013. A survey on optimization metaheuristics.

Inf. Sci. 237 (Suppl. C), 82e117.
Boyle, D.P., Gupta, H.V., Sorooshian, S., 2000. Toward improved calibration of hy-

drologic models: combining the strengths of manual and automatic methods.
Water Resour. Res. 36 (12), 3663e3674.

Chu, W., Gao, X., Sorooshian, S., 2010. Improving the shuffled complex evolution
scheme for optimization of complex nonlinear hydrological systems: applica-
tion to the calibration of the Sacramento soil-moisture accounting model.
Water Resour. Res. 46 (9) n/a-n/a.
Chu, W., Gao, X., Sorooshian, S., 2011. A new evolutionary search strategy for global
optimization of high-dimensional problems. Inf. Sci. 181 (22), 4909e4927.

Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., 2007. Evolutionary Algorithms for
Solving Multi-objective Problems. Springer.

�Crepin�sek, M., Liu, S.-H., Mernik, M., 2013. Exploration and exploitation in evolu-
tionary algorithms: a survey. ACM Comput. Surv. 45 (3), 35.

Ding, Y., Wang, C., Chaos, M., Chen, R., Lu, S., 2016. Estimation of beech pyrolysis
kinetic parameters by Shuffled Complex Evolution. Bioresour. Technol. 200,
658e665.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26 (1), 29e41.

Duan, Q., Sorooshian, S., Gupta, V., 1992. Effective and efficient global optimization
for conceptual rainfall-runoff models. Water Resour. Res. 28 (4), 1015e1031.

Duan, Q.Y., Gupta, V.K., Sorooshian, S., 1993. Shuffled complex evolution approach
for effective and efficient global minimization. J. Optim. Theor. Appl. 76 (3),
501e521.

Duan, Q., Sorooshian, S., Gupta, V.K., 1994 Jun 15. Optimal use of the SCE-UA global
optimization method for calibrating watershed models. J. Hydrol. 158 (3e4),
265e284.

Eckhardt, K., Arnold, J.G., 2001. Automatic calibration of a distributed catchment
model. J. Hydrol. 251 (1e2), 103e109.

Erol, O.K., Eksin, I., 2006. A new optimization method: big bangebig crunch. Adv.
Eng. Software 37 (2), 106e111.

Eusuff, M.M., Lansey, K.E., 2003. Optimization of water distribution network design
using the shuffled frog leaping algorithm. J. Water Resour. Plann. Manag. 129
(3), 210e225.

Eusuff, M., Lansey, K., Pasha, F., 2006. Shuffled frog-leaping algorithm: a memetic
meta-heuristic for discrete optimization. Eng. Optim. 38 (2), 129e154.

Feng, M., Liu, P., Guo, S., Shi, L., Deng, C., Ming, B., 2017. Deriving adaptive operating
rules of hydropower reservoirs using time-varying parameters generated by the
EnKF. Water Resour. Res. 53 (8), 6885e6907.

Field, R., Lund, J.R., 2006. Operating Reservoirs in Changing Conditions,
pp. 205e214.

Freer, J., Beven, K., Ambroise, B., 1996. Bayesian estimation of uncertainty in runoff
prediction and the value of data: an application of the GLUE approach. Water
Resour. Res. 32 (7), 2161e2173.

Gan, T.Y., Biftu, G.F., 1996. Automatic calibration of conceptual rainfall-runoff
models: optimization algorithms, catchment conditions, and model structure.
Water Resour. Res. 32 (12), 3513e3524.

Golberg, D.E., 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addion wesley 1989, p. 102.

Hadka, D., Reed, P., 2013. Borg: an auto-adaptive many-objective evolutionary
computing framework. Evol. Comput. 21 (2), 231e259.

Hasalov�a, L., Ira, J., Jahoda, M., 2016. Practical observations on the use of Shuffled
Complex Evolution (SCE) algorithm for kinetic parameters estimation in py-
rolysis modeling. Fire Saf. J. 80, 71e82.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. Univ. of Mich. Press,
Ann Arbor.

Holland, J.H., 1992. Adaptation in Natural and Artificial Systems, 1975. University of
Michigan Press, Ann Arbor, MI.

Kan, A.R., Timmer, G.T., 1987. Stochastic global optimization methods part I: clus-
tering methods. Math. Program. 39 (1), 27e56.

Kaveh, A., Farhoudi, N., 2013. A new optimization method: Dolphin echolocation.
Adv. Eng. Software 59, 53e70.

Kaveh, A., Talatahari, S., 2010. A novel heuristic optimization method: charged
system search. Acta Mech. 213 (3), 267e289.

Kennedy, J., 2010. In: Sammut, C., Webb, G.I. (Eds.), Encyclopedia of Machine
Learning. Springer US, Boston, MA, pp. 760e766.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing.
Science 220 (4598), 671e680.

Lee, K.S., Geem, Z.W., 2005. A new meta-heuristic algorithm for continuous engi-
neering optimization: harmony search theory and practice. Comput. Meth.
Appl. Mech. Eng. 194 (36), 3902e3933.

Liang, J.J., Suganthan, P.N., Deb, K., 2005. Novel Composition Test Functions for
Numerical Global Optimization, pp. 68e75.

Lin, J.-Y., Cheng, C.-T., Chau, K.-W., 2006. Using support vector machines for long-
term discharge prediction. Hydrol. Sci. J. 51 (4), 599e612.

Liong, S.-Y., Atiquzzaman, M., 2004. Optimal design of water distribution network
using shuffled complex evolution. J. Inst. Eng. Singapore 44 (1), 93e107.

Madsen, H., 2000. Automatic calibration of a conceptual rainfallerunoff model
using multiple objectives. J. Hydrol. 235 (3), 276e288.

Madsen, H., 2003. Parameter estimation in distributed hydrological catchment
modelling using automatic calibration with multiple objectives. Adv. Water
Resour. 26 (2), 205e216.

Maier, H.R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L.S., Cunha, M.C., Dandy, G.C.,
Gibbs, M.S., Keedwell, E., Marchi, A., Ostfeld, A., Savic, D., Solomatine, D.P.,
Vrugt, J.A., Zecchin, A.C., Minsker, B.S., Barbour, E.J., Kuczera, G., Pasha, F.,
Castelletti, A., Giuliani, M., Reed, P.M., 2014. Evolutionary algorithms and other
metaheuristics in water resources: current status, research challenges and
future directions. Environ. Model. Software 62 (Suppl. C), 271e299.

Mariani, V.C., Justi Luvizotto, L.G., Guerra, F.A., dos Santos Coelho, L., 2011. A hybrid
shuffled complex evolution approach based on differential evolution for un-
constrained optimization. Appl. Math. Comput. 217 (12), 5822e5829.

Mirjalili, S., Hashim, S.Z.M., 2010. A New Hybrid PSOGSA Algorithm for Function
Optimization, pp. 374e377.

http://refhub.elsevier.com/S1364-8152(17)31087-3/sref1
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref1
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref1
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref1
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref2
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref2
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref3
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref3
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref4
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref4
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref4
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref5
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref5
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref5
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref6
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref6
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref6
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref6
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref7
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref7
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref7
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref7
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref8
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref8
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref8
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref9
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref9
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref10
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref10
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref10
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref11
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref11
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref11
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref11
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref12
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref12
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref12
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref13
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref13
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref13
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref14
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref14
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref14
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref14
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref15
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref15
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref15
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref15
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref15
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref16
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref16
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref16
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref16
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref17
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref17
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref17
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref17
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref18
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref18
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref18
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref18
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref19
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref19
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref19
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref20
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref20
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref20
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref20
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref21
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref21
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref21
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref22
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref22
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref22
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref22
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref23
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref23
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref23
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref23
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref24
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref24
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref25
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref25
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref25
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref27
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref27
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref27
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref27
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref27
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref28
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref28
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref29
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref29
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref30
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref30
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref30
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref31
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref31
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref31
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref32
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref32
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref32
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref33
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref33
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref33
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref34
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref34
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref34
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref35
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref35
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref35
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref35
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref36
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref36
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref36
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref37
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref37
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref37
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref38
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref38
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref38
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref39
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref39
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref39
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref39
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref40
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref40
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref40
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref40
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref41
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref41
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref41
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref41
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref41
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref41
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref41
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref42
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref42
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref42
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref42
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref43
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref43
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref43

M. Rahnamay Naeini et al. / Environmental Modelling & Software 104 (2018) 215e235 235
Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Adv. Eng. Software
69, 46e61.

Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho, L.d.S., 2016. Multi-objective grey wolf
optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl.
47 (Suppl. C), 106e119.

Moeini, R., Afshar, M., 2009. Application of an ant colony optimization algorithm for
optimal operation of reservoirs: a comparative study of three proposed for-
mulations. Sci. Iran Trans. A Civ. Eng. 16 (4), 273e285.

Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. Comput. J.
7 (4), 308e313.

Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A.,
Karamouz, M., Minsker, B., Ostfeld, A., Singh, A., Zechman, E., 2010. State of the
art for genetic algorithms and beyond in water resources planning and man-
agement. J. Water Resour. Plann. Manag. 136 (4), 412e432.

Olorunda, O., Engelbrecht, A.P., 2008. Measuring Exploration/exploitation in Particle
Swarms Using Swarm Diversity, pp. 1128e1134.

Passino, K.M., 2002. Biomimicry of bacterial foraging for distributed optimization
and control. IEEE Contr. Syst. Mag. 22 (3), 52e67.

Price, W., 1987. Global optimization algorithms for a CAD workstation. J. Optim.
Theor. Appl. 55 (1), 133e146.

Qin, A.K., Suganthan, P.N., 2005. Self-adaptive Differential Evolution Algorithm for
Numerical Optimization, vol. 1782, pp. 1785e1791.

Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2009. GSA: a gravitational search
algorithm. Inf. Sci. 179 (13), 2232e2248.

Reed, P.M., Hadka, D., Herman, J.D., Kasprzyk, J.R., Kollat, J.B., 2013. Evolutionary
multiobjective optimization in water resources: the past, present, and future.
Adv. Water Resour. 51 (Suppl. C), 438e456.

Sadegh, M., Vrugt, J.A., 2014. Approximate bayesian computation using Markov
chain Monte Carlo simulation: dream (abc). Water Resour. Res. 50 (8),
6767e6787.

Sadegh, M., Ragno, E., AghaKouchak, A., 2017 Jun 1. Multivariate copula analysis
toolbox (MvCAT): describing dependence and underlying uncertainty using a
bayesian framework. Water Resour. Res. 53 (6).

Sorooshian, S., Duan, Q., Gupta, V.K., 1993. Calibration of rainfall-runoff models:
application of global optimization to the Sacramento soil moisture accounting
model. Water Resour. Res. 29 (4), 1185e1194.

Storn, R., Price, K., 1997. Differential evolution e a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11 (4), 341e359.

Toth, E., Brath, A., Montanari, A., 2000. Comparison of short-term rainfall prediction
models for real-time flood forecasting. J. Hydrol. 239 (1), 132e147.

Vrugt, J.A., Robinson, B.A., 2007. Improved evolutionary optimization from
genetically adaptive multimethod search. Proc. Natl. Acad. Sci. Unit. States Am.
104 (3), 708e711.

Vrugt, J.A., Gupta, H.V., Bastidas, L.A., Bouten, W., Sorooshian, S., 2003a. Effective
and efficient algorithm for multiobjective optimization of hydrologic models.
Water Resour. Res. 39 (8) n/a-n/a.

Vrugt, J.A., Gupta, H.V., Bouten, W., Sorooshian, S., 2003b. A Shuffled Complex
Evolution Metropolis algorithm for optimization and uncertainty assessment of
hydrologic model parameters. Water Resour. Res. 39 (8) n/a-n/a.

Vrugt, J.A., Robinson, B.A., Hyman, J.M., 2009. Self-adaptive multimethod search for
global optimization in real-parameter spaces. IEEE Trans. Evol. Comput. 13 (2),
243e259.

Wagener, T., Wheater, H., Gupta, H.V., 2004. Rainfall-runoff Modelling in Gauged
and Ungauged Catchments. World Scientific.

Wang, Y.-C., Yu, P.-S., Yang, T.-C., 2010. Comparison of genetic algorithms and
shuffled complex evolution approach for calibrating distributed rainfallerunoff
model. Hydrol. Process. 24 (8), 1015e1026.

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1 (1), 67e82.

Woodruff, M.J., Reed, P.M., Simpson, T.W., 2013. Many objective visual analytics:
rethinking the design of complex engineered systems. Struct. Multidiscip.
Optim. 48 (1), 201e219.

Xin, Y., Yong, L., Guangming, L., 1999. Evolutionary programming made faster. IEEE
Trans. Evol. Comput. 3 (2), 82e102.

Yang, X.-S., 2009. In: Watanabe, O., Zeugmann, T. (Eds.), Stochastic Algorithms:
Foundations and Applications: 5th International Symposium, SAGA 2009,
Sapporo, Japan, October 26-28, 2009. Proceedings. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 169e178.

Yang, X.-S., 2010. In: Gonz�alez, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N.
(Eds.), Nature Inspired Cooperative Strategies for Optimization (NICSO 2010).
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 65e74.

Yang, T., Gao, X., Sellars, S.L., Sorooshian, S., 2015. Improving the multi-objective
evolutionary optimization algorithm for hydropower reservoir operations in
the California OrovilleeThermalito complex. Environ. Model. Software 69,
262e279.

Yang, T., Asanjan, A.A., Faridzad, M., Hayatbini, N., Gao, X., Sorooshian, S., 2017. An
enhanced artificial neural network with a shuffled complex evolutionary global
optimization with principal component analysis. Inf. Sci. 418, 302e316.

Yapo, P.O., Gupta, H.V., Sorooshian, S., 1996. Automatic calibration of conceptual
rainfall-runoff models: sensitivity to calibration data. J. Hydrol. 181 (1), 23e48.

Yapo, P.O., Gupta, H.V., Sorooshian, S., 1998. Multi-objective global optimization for
hydrologic models. J. Hydrol. 204 (1e4), 83e97.

http://refhub.elsevier.com/S1364-8152(17)31087-3/sref44
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref44
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref44
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref45
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref45
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref45
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref45
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref46
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref46
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref46
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref46
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref47
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref47
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref47
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref48
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref48
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref48
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref48
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref48
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref49
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref49
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref49
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref50
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref50
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref50
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref51
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref51
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref51
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref52
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref52
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref52
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref53
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref53
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref53
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref54
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref54
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref54
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref54
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref55
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref55
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref55
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref55
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref56
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref56
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref56
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref57
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref57
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref57
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref57
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref58
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref58
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref58
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref58
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref59
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref59
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref59
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref60
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref60
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref60
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref60
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref61
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref61
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref61
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref62
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref62
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref62
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref63
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref63
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref63
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref63
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref64
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref64
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref65
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref65
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref65
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref65
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref65
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref66
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref66
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref66
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref67
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref67
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref67
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref67
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref68
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref68
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref68
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref69
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref69
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref69
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref69
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref69
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref70
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref70
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref70
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref70
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref70
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref71
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref71
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref71
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref71
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref71
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref71
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref72
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref72
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref72
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref72
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref73
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref73
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref73
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref74
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref74
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref74
http://refhub.elsevier.com/S1364-8152(17)31087-3/sref74

	Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework
	1. Introduction
	2. Methodology
	2.1. The SC-SAHEL framework
	2.2. Evolutionary algorithms employed within SC-SAHEL
	2.2.1. Modified Competitive Complex Evolution (MCCE)
	2.2.2. Modified Frog Leaping (MFL)
	2.2.3. Modified Grey Wolf Optimizer (MGWO)
	2.2.4. Differential Evolution (DE)

	3. Conceptual test functions and results
	3.1. Test functions
	3.2. Results and discussion

	4. Example application and results
	4.1. Reservoir model
	4.2. Study basin
	4.3. Results and discussion

	5. Conclusions and remarks
	Acknowledgments and data
	Appendix A. Modified Competitive Complex Evolution (MCCE)
	Appendix B. Modified Frog Leaping (MFL)
	Appendix C. Modified Grey Wolf Optimizer (GWO)
	Appendix D. Modified Differential Evolution (DE)
	Abbreviations
	References

