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Technical report: the design and evaluation of a basin-scale wireless sensor network for 
mountain hydrology 
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Marks3 
 1Department of Civil and Environmental Engineering, University of California, Berkeley 
2Sierra Nevada Research Institute and School of Engineering, University of California, Merced 
3Agricultural Research Service, USDA, Boise 

Abstract 
A network of sensors for spatially representative water-balance measurements was developed and 
deployed across the 2000 km2 snow-dominated portion of the upper American River basin, primarily to 
measure changes in snowpack and soil-water storage, air temperature and humidity. This wireless sensor 
network (WSN) consists of 14 sensor clusters, each with 10 measurement nodes that were strategically 
placed within a 1km2 area, across different elevations, aspects, slopes and canopy covers. Compared to 
existing operational sensor installations, the WSN reduces hydrologic uncertainty in at least three ways. 
First, redundant measurements improved estimation of lapse rates for air and dew-point temperature. 
Second, distributed measurements captured local variability and constrained uncertainty in air and dew-
point temperature, snow accumulation and derived hydrologic attributes important for modeling and 
prediction. Third, the distributed relative-humidity measurements offer a unique capability to monitor 
upper-basin patterns in dew-point temperature and characterize elevation gradient of water vapor-pressure 
deficit across steep, variable topography. Network statistics during the first year of operation demonstrated 
that the WSN was robust for cold, wet and windy conditions in the basin. The electronic technology used 
in the WSN reduced adverse effects, such as high current consumption, multipath signal fading and clock 
drift, seen in previous remote WSNs. 

Index Terms and Keywords: Wireless-sensor network, water-information system, snow observation, 
mountain hydrology, Sierra Nevada. 

1 Introduction 
Currently, in situ measurements of mountain 

water cycles at the basin scale are limited in both 
spatial coverage and temporal resolution, with data 
largely provided by a relatively small number of 
operational precipitation, snowpack, climate and 
stream-gauging stations [Bales et al., 2006; Dozier, 
2011]. In the Sierra Nevada, measurement sites 
supporting operational water-resources decision 
making are also biased to middle and lower 
elevations and flat terrain in forest clearings 
[Molotch and Bales, 2005].  

Hydrologic prediction, particularly when 
constrained by the practical demands of water-
resources management, relies heavily on calibrated 

models to mitigate both limitations in model 
formulation and inadequate data for rigorous model 
testing [Kuczera et al., 2010; Semenova and Beven, 
2015]. There are increasing demands on distributed 
models as predictive tools for situations in which 
lumped models may fall short, such as non-
stationarity in catchment conditions or climate; 
however, their use in water-resources management 
is limited by the level of field data available 
[Refsgaard, 1997]. The need for improved coverage 
by in situ measurements is both local and global, 
and new network designs should complement 
satellite data [Wood et al., 2011]. Ground-based 
sensors provide critical ground truth for remotely 
sensed satellite and aircraft data, and offer a wide 

Key Points: 
– This first basin-scale wireless-sensor network provides reliable, representative measurements in a 

mountain basin.   
– The distributed network better characterizes patterns of key hydrologic variables compared to 

operational networks 
– Used with spatially explicit modeling and other spatial data, the network offers unprecedented 

opportunities for improved hydrologic prediction 
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suite of independent data that can help provide 
much-needed gains in predictive modeling. 
Realizing gains in accuracy from the next 
generation of spatially explicit models at the scale 
of water-resources decision making will require 
both the broad spatial coverage of remotely sensed 
data and the accuracy of in situ measurements 
[Lehning et al., 2009]. An adaptive rather than one-
size-fits-all approach is needed to realize these gains 
[Fenicia et al., 2008]. 

Wireless Sensor Networks (WSNs) are an 
efficient and economical solution for distributed 
sensing. It is often costly and disruptive to create 
networks of spatially representative wired sensors 
at the scale desired since it might require 
kilometers of cables placed either above ground or 
buried. Similarly, access to data for distributed 
sensors with only local logging is limited by the 
need to visit sites to download data.  Reliable 
wireless solutions are now enabled by reduced 
production costs of wireless equipment and by 
advances in networking protocols, effectively 
combining traditionally wired sensors with a 
wireless platform. [Akyildiz et al., 2002; Yick et al., 
2008; Gilbert, 2012].  

A few WSN solutions, using different network 
technologies, were developed specifically for 
applications in hydrology. These studies have not 
provided quantifiable assessments of network 
design, operation and hydrologic results at the river-
basin scale. A review of these prior deployments, 
and a comparison of three existing WSN solutions 
that have been used, is provided in supporting 
information (See text S1) [Digi, n.d.; Bogena et al., 
2010; Pister and Doherty, 2008; Gungor and 
Hancke, 2009; International, 2009; Ritsema et al., 
2010; Simoni et al., 2011; Horvat, 2012; Huang et 
al., 2012; Kerkez et al., 2012; Accettura and Piro, 
2014; Pohl et al., 2014; ZigBee, 2009].  

While sensor networks deployed in headwater 
catchments for short durations offer lessons for 
local-scale WSNs, they provide limited guidance 
for WSN design, performance and hydrologic 
benefits for systems in larger mountain river basins, 
characterized by steep gradients in temperature, 
precipitation, rain-versus-snow fraction, growing 
season, vegetation density and evapotranspiration. 
The proposed approach to scaling WSN 
measurements to larger basins involves strategically 
placing local clusters to capture the variability in 

hydrologically important basin attributes [Welch et 
al., 2013].    

The aim of the research described in this 
technical report was to develop a flexible, robust 
method for measurement of the spatial water 
balance across a seasonally snow-covered mountain 
basin. In doing this, we addressed three questions. 
First, to what extent can a basin-scale distributed 
wireless-sensor network with a limited number of 
sensors arrayed in local clusters sample hydrologic 
variables across a representative range of landscape 
attributes in a seasonally snow-covered mountain 
basin? Second, to what extent can this low-power, 
distributed wireless-sensor network reliably 
provides hydrologic data during harsh winter 
conditions? Third, what types of gains in hydrologic 
information may result from this network? Further 
development and more-detailed analysis of the third 
question is also the subject of subsequent analysis. 

2 Methods 

The network was deployed in the American 
River Hydrologic Observatory (ARHO), in the 
upper, snowdominated portion of the American 
River basin on the western slope of the Sierra 
Nevada in California (36.069 N, 120.583 W). 
The basin is incised with steep river canyons and 
is comprised of three subbasins: the North, 
Middle, and South forks, which combine to form 
a drainage basin of 5311 km2 above the Folsom 
Reservoir, the main impoundment on the river 
(Fig. 1a). Basin elevations range from 15 m at 
Folsom to 3147 m at the Sierra crest, with 
precipitation transitioning from rain to snow at 
about 14001600 m elevation [Raleigh and 
Lundquist, 2012; Klos et al., 2014]. Forty percent, 
or about 2000 km2, of the basin is above 1500 m, 
the lowest elevation for siting our WSNs. About 
0.5% of the basin is above the highest node that 
was sited (2678 m). 

In 2013-2015, 14 clusters of wireless nodes 
were deployed (Fig. 1a), with locations selected to 
represent the range of elevation, aspect, canopy 
coverage, and solar loading in the basin (Fig. 1b and 
S1). Each node had a number of sensors, as 
described in Supporting Information; with air 
temperature, relative humidity and snow depth the 
subject of this report. The number of local clusters 
was based on results of Welch et al. [2013], and 
constrained by project budget. The Welch et al. 
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analysis used spatial time-series data over 11 years 
and a rank-based clustering approach to identify 
measurement locations that will be most 
informative for real-time estimation of snow depth, 
and derived a set of regions that remained relatively 
stable over time. They found a point of marginal 
return at about 15 measurement locations, after 
which placing more local sensor networks did not 
significantly improve estimation performance. The 
Welch et al. study also showed that there is some 
flexibility in placing the local clusters to capture 
representative parts of the basin, and thus all sites, 
except MTL and DOR, were co-located with 
existing snow pillows and met stations. Each cluster 
consists of ten measurement nodes, limited due to 
budget, seven to 35 signal-repeater nodes, and a 
network manager (see Table S1 for details; and Fig. 
S2 for system hierarchy).  

Measurement-node placement consisted of 
three steps. First, major physiographic variables that 
affect snow distribution, and by extension other 
components of the water balance, were 
characterized in a 1-km2 area around each site [Balk 
and Elder, 2000; Erxleben et al., 2002; Anderton et 
al., 2004; Essery and Pomeroy, 2004; Sturm and 
Benson, 2004; Erickson et al., 2005; Marchand and 
Killingtveit, 2005; Bales et al., 2006]. Second, at 
each site ten points representing different 
physiographic attributes were selected by a random-
stratified technique, and the attributes aggregated to 
assess their representativeness in the larger basin 
(See text S2 [Jin et al., 2013]). Rice and Bales [2010] 
showed that a 10-sensor network could capture the 
mean and distribution of snow depths at this scale. 
Third, final location adjustments were made in the 
field to a small subset of sensor nodes, ensuring a 
complete sampling of the physiographic features 
together with a strong WSN connection mesh. See 
Supporting Information for node details (Text S3). 

The network statistics presented were evaluated 
over a period of 7 months. Each node provided 15-
minute data for snow depth, air temperature and 
relative humidity. Hourly and daily products were 
developed for periods where no less than 75% of 
data were present and valid within the averaging 
window. Extreme values in the data were removed 
following Daly et al. [2008]. Operational data were 
downloaded from the California Department of 
Water Resources (http://cdec.water.ca.gov/). Data 
from SNODAS, a gridded national operational 
product that is developed from weather-forecast and 

snowmelt models, plus ground-based and remotely 
sensed data, were used as an additional point of 
comparison with our snow measurements 
(http://nsidc.org/data/). Hourly dew-point 
temperature for each node was computed based on 
an empirical equation [Lawrence, 2005]. 

3 Results 

3.1 WSN performance 
The wireless-network links formed a redundant 

multi-hopped mesh network of sensors and 
repeaters for data transport. Fig. 2 shows the stable 
layout of sensor nodes for the Alpha cluster (ALP), 
and illustrates how repeaters were non-uniformly 
distributed to connect the sensor nodes via at least 
two independent paths to the base station (see Fig. 
S5 for photographs of base station, nodes and 
repeater). During 213 days of consecutive recording 
only 662 out of over 56 million packets were lost in 
transmission. The average number of hops for 
packets to transmit from a node to the base station 
was 3.6 and the maximum seven. The average 
latency of the network, the time it takes from the 
packet being sent until it arrived at the base station, 
was 1.01 second. On average, each node received 
181,000 packets over the period when network 
statistics were gathered.  

Two measures indicate the reliability and 
performance of the network: i) the number of other 
sensor or repeater nodes connected to each node 
and ii) the average received signal strength 
indicator (RSSI). RSSI is closely associated with 
an important network-performance indicator 
called packet delivery ratio (PDR). In aggregate, 
each node was connected to at least two other 
nodes over 95% of the time, and to three or more 
nodes 68% of the time (see Fig. S6). Taking all 
nodes together, RSSI values were above 85 dBm, 
the manufacturer-specified threshold for efficient 
transmission over 54% of the time, with values 
above 80 dBm 33% of the time.  

Environmental factors have been thought to 
impact the performance of WSNs [Boano et al., 
2010; Marfievici et al., 2013]. For our local clusters 
there was no clear influence of environmental 
factors, e.g., temperature, humidity and snow-
induced topographic changes, on network 
performance (Fig. 3). Each node was connected to 
one to five other nodes at each time step (Fig. 3a). 
RSSI values at each node typically fluctuated +5 

http://cdec.water.ca.gov/
http://nsidc.org/data/
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dBm, and the average RSSI (Fig. 3b) depended on 
node location as opposed to temperature (Fig. 3c), 
humidity (Fig. 3d) or topographic changes due to 
snow accumulation (see water-year days 72 and 80, 
Fig. 3e). It was discovered that absolute topography 
influenced connectivity. 

3.2 Temperature, humidity and snow patterns  
Daily air and dew-point temperatures from the 

10 wireless-sensor clusters that were installed prior 
to the 2014 water year showed very similar temporal 
patterns (Fig. 4a), with average temperature 
differences reflecting elevation differences between 
clusters.  Temperatures for all pairs of clusters were 
highly correlated, r > 0.91 for air temperature and 
r >0.86 for dew-point temperature, p < 0.05.  

Daily temperatures were used to derive surface-
level lapse rates, which over the eight-month period 
varied from close to zero to -12oC/km for both air 
and dew-point temperatures (Fig. 4b). The 
respective average lapse rates for the months before 
snow accumulation (Oct-Dec) were -4.6 and -5.7 
oC/km, increasing to -5.5 oC/km for air temperature 
and decreasing to -4.7 oC/km for dew-point 
temperature during the snow season. The day-to-
day variability in lapse rates during the snow-
covered period was also lower than earlier in the 
water year. The transition to a period with less 
variability in lapse rate is also illustrated by the 
higher R2 values starting on water-year day 121, 
when snow started accumulating in the basin (Fig 
4c). Note that less-negative air-temperature lapse 
rates, associated with lower R2 values, were 
associated with temperature inversions. 

Daily mean air and dew-point temperatures 
taken across the ten clusters were adjusted to 2100 
m using the mean daily lapse rates (Fig. 4d). The 
average standard deviation is 3.3 oC for air 
temperature and 3.5 oC for dew-point temperature, 
a variability equivalent to the average difference 
over about 600 m and 545 m elevation based on the 
eight-month average lapse rate of -5.5 oC/km and -
5.0 oC/km, respectively. While any index elevation 
could be used for this comparison, 2100 m is 
generally representative of the upper part of the 
rain-snow-transition elevation zone. 

Mean relative humidity across WSN clusters 
varied from 15 to 100%, with similar patterns across 
all 10 clusters (Fig. 4e). The correlations were 
strong, r = 0.91, p < 0.05, for all pairs of clusters. 
Differences in absolute humidity and vapor-

pressure deficit between clusters were in some cases 
relatively large. The mean water vapor-pressure 
deficit for each cluster ranged from zero to 1.5 kPa 
(Fig. 4f), with daily inter-cluster differences 
between the lowest and highest values as much as 
55%. The highest variability in vapor-pressure 
deficit was associated with periods of higher 
temperature and lower relative humidity, indicating 
a warmer and drier condition. Periods with lower 
variability of inter-site vapor-pressure deficit were 
closely associated with sub-zero temperatures in the 
basin, typically triggered by precipitation events. 

Snow-depth data (Fig. 5) show a clear elevation 
trend, with variability also increasing with elevation. 
One exception was SCN, which has a tighter 
grouping of measured snow depths as compared to 
lower-elevation sites. During the very warm and dry 
WY-2014 snow season, sustained snow cover 
accumulated mainly at elevations above 2100 m.  

Snow depths were also compared with co-
located or nearby snow-course measurements (Fig. 
5). At lower-elevation clusters, due to the timing of 
the snow-course measurements, most surveys 
missed the snow-cover peak accumulation. At ONN, 
snow-course data showed a small amount of snow 
throughout the season, missing the few individual 
peaks. Snow-course values at ECP were generally 
lower than the mean cluster value across the season.  

There were substantial differences between the 
WSN, nearby operational snow-depth sensors, and 
SNODAS snow depth at most clusters. Compared 
to WSN means, nearby operational sensors tended 
to overestimate snow depth during early season (e.g. 
at ECP, CAP, and ALP), and better matched the 
WSN mean at peak accumulation. Nearby 
operational sensors also showed faster melt than 
indicated by cluster means for the same sites. The 
time series of SNODAS values is comparable to the 
WSN data at MTL and SCN for much of the season, 
with similar magnitude and high correlation. 
SNODAS data generally fall within one standard 
deviation of WSN nodes at these sites. At lower-
elevation sites, such as BTP, VAN and DUN, 
SNODAS underestimated snow depth at peak 
accumulation by as much as 50% compared to the 
WSN. At all other sites, SNODAS overestimated 
peak-accumulation snow depth by as much as 80% 
compared to the WSN mean.  
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4 Discussion 

4.1 WSN design and performance 
With 555 sensors across 14 clusters, the WSN 

offers representative, real-time monitoring of the 
meteorological and hydrologic conditions of much 
of the upper reaches of the basin. The size of this 
network, arguably the largest long-term, remote 
wireless-sensor platform deployed for 
environmental monitoring, shows that WSNs are 
now capable of being used for major 
instrumentation projects. Even though some 
aspects of the networks in ARHO share similar 
properties with the prototype installation at the 
Southern California Critical Zone Observatory 
[Kerkez et. al. 2012], the more-recent network 
statistics help to resolve several previously 
unanswered networking questions important to the 
broader wireless communications community as 
well as to field hydrologists. The longer-term 
performance of the networks, subjected to the test 
of a full snow season, showed that WSNs can be a 
viable solution for distributed sensing at this scale. 
ARHO networks showed resilience to factors such 
as humidity and snow-induced topographic 
changes across different part of the basin. The 
positive result is likely due to the combination of 
the Dust Network’s radio technologies such as 
time-synchronized channel-hopping, time-slotted 
mesh protocol (see section S1.2.3 for details of the 
technology), effective network topology, and the 
use of lower-gain antennas.  

A stringent criterion of design was low power 
consumption, requiring the sensor node to be 
powered with a 6-amp-hour battery recharged by a 
10-watt solar panel. The low-power requirement 
constrains radio-power output, so the range of the 
radio limits the size and performance of the network. 
Through iterative design and careful control over 
circuitry we were able to attain our goal. The final 
design is basically two very low-power-
consumption microchips – a Cypress PSoC5 and 
Dust networks radio module. This is useful to the 
community, which by and large uses systems based 
on technology that has 100 or more times the power 
consumption (see Supporting Information). 

Topographic relief is one of the more-serious 
challenges to overcome for good system 
performance. Different from earlier installations, 
the networks in ARHO encountered more-
challenging, steep forested terrain. A lower-gain 4-

dBm gain omni-directional antenna provided 
improved network connectivity due to its “fatter” 
radiation pattern, especially in steep terrain, 
compared to the 12-dBm gain antennas used by 
Kerkez et al [2012] on more-even terrain. Even with 
the improvement, the capability of the network to 
communicate over steep slopes is limited by the 
antenna. The ALP site is a good example of where 
some radio links operated at the edge of the 
acceptable RSSI level due to steep topography. A 
relatively large number of repeaters were installed 
to provide redundant paths to sensor nodes 6, 8, and 
9, where a steep change in slope produced a radio 
path “kink” and reliable network links were 
challenging to establish. The network performance 
was stable but less efficient, indicated by the lower 
PDR values, compared to Kerkez et al. [2012], who 
had shorter data hops.  

4.2 Spatial pattern and variability of hydrologic 
attributes 

The following three examples illustrate how our 
spatially distributed, daily data over complex terrain 
set provides improved estimates of important 
hydrologic attributes, compared to less-dense 
operational measurements. A more-detailed 
analysis will be the subject of a subsequent report.  

4.2.1 Air and dew-point temperature. A widely 
accepted model of near-surface air temperature in 
mountains is the ground-level lapse rate [Dodson 
and Marks, 1997; Rolland, 2003; Huang et al., 2008; 
Kirchner et al., 2013]. Scientists and modelers use 
lapse-rate-derived temperature to evaluate model 
responses due to temperature perturbations 
[Gardner and Sharp, 2009; Bales et al., 2015]. In 
those applications the lapse rate, often averaged 
over a monthly to annual period, is used to 
approximate input temperature for models with a 
much shorter (daily) time increment. This approach, 
however, does not account for short-term variability. 
WSN data show that the day-to-day lapse rate was 
highly variable, particularly before snow 
accumulation (Fig. 4b). Not only does the array of 
sensors provide a more temporally resolved lapse-
rate estimate, we also found that the redundancy of 
sensors provides a more-robust estimate of the 
amplitude. Linear models of daily air temperature 
were constructed with a training set and a cross-
validation set of 60 randomly selected nodes. The 
results were compared with models computed using 
seven nearby met stations.  On average, the cross-
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validation root-mean-square error was reduced from 
1.4 to 1.2 oC using random sets of 60 measurements 
versus data from seven nearby met stations. The 
uncertainty in air temperature was reduced by 16%.  

A one-way analysis of variance (ANOVA) 
analysis was done for a 20-day period around the 
time of peak snow accumulation to assess within-
cluster versus between-cluster variability. On 
average, over 85% of the variability in daily air 
temperature is between clusters, with a peak within-
cluster variability of 24% (Fig. 6a). The within-
cluster variation can be more significant at night, as 
seen by the pattern in the hourly data, when up to 
40% of the variability was within cluster. We also 
considered the difference between daily 
temperatures for operational sites versus cluster 
values. Comparing sensor-node values for nodes 
that have the same landscape features as do 
operational measurements (flat, open) versus other 
nodes shows a 0.8oC difference for one site, and 0-
0.3oC for five other sites; however the values are not 
different at the 95% confidence level (Figure S8a).  

Dew-point temperature complements air 
temperature in providing a reliable estimate of the 
timing and phase of precipitation. The reduction of 
uncertainty in temperature and humidity patterns 
helps to better determine the elevation range of the 
rain/snow transition. Air temperature is 
approximately equal to dew-point temperature, 
indicating saturated air, when precipitation occurs 
(Fig. 4). The phase change from rain to snow 
usually occurs around the 0oC dew-point [Marks et 
al., 2013]. Compared to air-temperature-based 
methods, dew-point temperature is a less 
geographically dependent variable to determine the 
solid or liquid precipitation [Ye et al., 2013]. Due to 
lack of relative-humidity measurements for most 
met stations, calculation of dew-point temperature 
cannot be performed from met-station data alone. 

Feld et al. [2013] assessed various methods of 
estimating daily dew point, and found that a 
weather-forecast model that captured some aspects 
of local topography provided less-biased estimates 
than did simpler constant-lapse-rate or constant-
humidity approaches. Their median dew-point lapse 
rate, based on 15 met stations and 35 hygrochons 
deployed in the North Fork American basin and 
averaged over 3 years, was -5.3 oC/km, comparable 
to our mean of -5.0 oC/km. However, our -5.5 oC/km 
mean air-temperature lapse rate was smaller than 
their 3-year average of -6.3 oC/km. More extensive 

analysis of our seasonal and spatial patterns will be 
the subject of a subsequent report. 

4.2.2. Evaporative potential. Direct measures of 
vapor-pressure-deficit patterns from a dense array 
of ground-based sensors can be important for 
scaling evapotranspiration and assessing forest 
health [Oren et al., 1999, 2001; Bowling et al., 
2002]. Accurately estimating vapor-pressure deficit 
is crucial as the saturation-pressure deficit becomes 
relatively more important in the Penman-Monteith 
equation [Ziemer, 1979]. Despite the importance of 
the variable, reliable field-based estimates of vapor-
pressure deficit in mountains are rare. The 
performance of satellite-based estimates varies, 
with RMSE values from upwards of 0.3 kPa to 1.1 
kPa, limiting their accuracy as estimates of vapor-
pressure deficit across steep terrain [Prince et al., 
1998; Hashimoto et al., 2008]. A WSN with 
relative-humidity measurement at every sensor 
node fills this gap.  

The ANOVA results for daily relative humidity 
are similar to those for temperature, with most of the 
variance being between versus within clusters (Fig. 
6b). There was, however, no clear day-night pattern. 
In addition, there were only small differences in 
humidity between nodes that represent the varying 
landscape attributes of operational sensors, versus 
values for other nodes. One of the 6 sites evaluated 
had a significant difference, reflecting in large part 
the temperature differences (Figure S8b). 

4.2.3 Snow depth. The differences in snow depth 
between WSN and nearby operational sensors can 
be explained by the patterns of snow accumulation. 
Operational snow-depth sensors are typically placed 
near flat meadows or ridge tops free of overhead 
obstructions or hazards, which produce known 
biases [Molotch and Bales, 2006; Ainslie and 
Jackson, 2010; Rice and Bales, 2010]. We placed 
our nodes in both forested and non-forested area to 
produce a more spatially representative 
measurement. Fig. 5 indicates that operational 
snow-depth sensors data had a systematic positive 
bias in snow depth in the early season. During the 
melting season, the canopy acts as a shield, limiting 
energy input to the snowpack [Marks et al., 1998; 
Sicart et al., 2004; Pomeroy et al., 2012]. The 
canopy also shelters the snow surface from wind, 
reducing turbulent heat transfer. The net result is an 
extended melt season recorded by sensor nodes in 
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the forested area compared to the operational snow-
depth sensors. 

The ANOVA results for daily snow depth show 
that both within-cluster and between-cluster 
variability to be important. About 60% of the 
variability was between clusters and 40% within 
clusters immediately after the accumulation event 
ending on water-year day 183, with both values 
converging toward 50% over the next 2 weeks. 
Comparing nodes having landscape attributes like 
those of operational sites (flat, open) versus other 
nodes also shows relatively large within-cluster 
differences between the two sets at most of the six 
sites evaluated (Figure S8c). 

Due to local redundancy of the WSN, the data 
stream is more complete than operational snow-
depth sensors at CAP and BTP. Large sections of 
data were missing from the operational-snow-depth 
sensors from those two sites during the storm 
around water-year day 180 (Fig. 5). This reflects a 
reality of operational water-resources networks, 
namely the inability to respond in a timely manner 
to problems in remote sensors. The redundancy 
provided by our WSNs helps to address this 
constraint. 

The differences in snow depth between 
SNODAS and the WSN were less systematic, as 
there is no apparent trend in the bias across different 
sites. One pronounced difference between WSN and 
SNODAS snow depth was at the steep ECP site, 
where the 1-km2 SNODAS product overestimated 
snow depth compared to our measurements (Fig. 5). 
This follows previous reports that without sufficient 
data, estimates of snow depth under these conditions 
can be difficult and error prone due to the 
underlying variance in elevation within grid 
boundaries [Hedrick et al., 2015]. Clow et al. [2012] 
showed that for over-forested regions of the 
Colorado Rockies, SNODAS estimates of snow 
depth accounted for as much as 72% of the variance 
line (1-km resolution) in forested areas, but 
SNODAS was only able to account for 16% of 
snow-depth variance in areas above the treeline. 

5 Conclusions 

A wireless-sensor network distributed over the 
2000 km2 snow-dominated portion of a mountain 
basin provided effective coverage of watershed 
attributes. With ten measurement nodes per each of 
fourteen clusters, the WSNs reliably provided 

spatially distributed measurements of temperature, 
relative humidity and snow depth every 15 minutes 
over the basin. The WSN also provided 
measurements of the significant within-cluster 
spatial variability of these attributes, which were 
influenced by local topography, possibly through 
cold-air drainage effects on temperature.  

Compared to existing operational sensors, the 
wireless-sensor network reduces uncertainty in 
water-balance measurements in at least three 
distinct ways. Redundant measurements in 
temperature improved the robustness of temperature 
lapse-rate estimation, reducing cross-validation 
error compared to that of using met-station data 
alone. Second, distributed measurements capture 
local variability and constrain uncertainty, 
compared to point measures, in attributes important 
for hydrologic modeling, such as air and dew-point 
temperature and snow precipitation. Third, the 
distributed relative-humidity measurements offer a 
unique capability to monitor upper-basin patterns in 
dew-point temperature and better characterize 
precipitation phase and the elevation of the 
rain/snow transition.  
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Figure 1.  a) Location of American River basin and 14 
sensor clusters deployed in the upper part of the basin. 
b) WSN nodes on hypsometric curve with existing snow 
pillows. 
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Figure 2.  Node layout and steady-state network connections (green lines) at ALP, overlain on Google Map.  Sensor nodes 
are numbered.  Two possible paths of data out from sensor node 5 to the base station are marked with red arrows. 
 

 
Figure 3.  Network performance of sensor nodes 2,7 and 10 at ALP: a) hourly data of network neighbors number, b) the 
corresponding average RSSI, c) average air temperature, d) hourly average humidity, and e) daily average snow depth. 
Shaded periods represent precipitation events. For clarity, data from three sensor nodes are presented. 
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Figure 4.  Data from 10 clusters for 8-month period: a) cluster-mean daily averaged  air (black traces) and dew-point (red traces) 
temperature, b) air and dew-point temperature lapse rates, c) R2 value of daily lapse rates, d) mean (dashed lines) and standard 
deviation (shading) of site air and dew-point temperatures adjusted to 2100 m elevation using the daily lapse rate, e) mean 
daily average relative humidity, and f) mean daily vapor-pressure deficit calculated from mean daily temperature and relative 
humidity of each cluster. Shaded periods represent precipitation events. Data for only 10 of the 14 local clusters are shown, 
as 4 were brought online after the period reported here. 
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Figure 5.  Daily mean (µ) and standard deviation (σ) of snow depth from the WSN clusters and 
SNODAS, including available operational snow-depth-sensor data (blue dashed), and snow 
courses (green diamond). See Figure S4 for calculation of SNODAS mean and standard 
deviation. 
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Figure 6. ANOVA results for 20-day period around peak snow accumulation, for between and within-cluster variations in 
measurements of: a) hourly and daily temperature, b) hourly and daily relative humidity, and c) daily snow depth. See Fig. 
S7 for data used in the analysis. 
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Introduction 

This document includes supporting texts and 
figures and table referenced in the main text. 

Text S1 

S1.1 Prior WSN deployments for hydrology in 
remote areas 

In 2007, a WSN with a few dozen nodes was 
deployed to a golf course near Almkerk 
Netherland to monitor soil moisture. The study 
claimed to be successful but the description and 
discussion of the wireless network infrastructure, 
was very brief [Ritsema et al., 2010]. In 2009, a 
12-station, 4-month deployment in a 20-km2 
catchment in the Swiss Alps measured the spatial 
variability of meteorological forcing, including 
temperature and precipitation. The study was 
conducted over a short time period with rather 
sparsely distributed stations [Simoni et al., 2011]. 
Recently, densely deployed sensor arrays have 
been scaled to a size comparable to the mountain 
areas being studied. Ninety-nine sensor loggers, 
within three 40-180 km2 basins, were deployed to 
monitor snow properties in southern Germany for 
one winter. The system deployed used data 
loggers rather than a WSN [Pohl et al., 2014]. In 
another study, 150 wireless nodes with over 600 
soil-moisture sensors were installed in a forest 
catchment at Westebach, Germany to study the 
spatiotemporal distribution of soil moisture over 
complex terrain [Bogena et al., 2010]. The study 
used a variation of ZigBee motes developed by 
JenNet Ltd. Over 300 sensors hosted by 60 
wireless nodes have been deployed at the 
Southern Sierra Critical Zone Observatory since 
2008 to study heterogeneous interactions of water 
within the snowpack, canopy and soil influence on 
the water cycle [Kerkez et al., 2012]. This 
installation suffered from network optimization 

issues that limited locations of the sensor nodes, 
and hardware problems with the cold. 

S1.2 Present Solutions for Wireless Sensor 
Networks – A comparison of existing 
technologies 

Sensor networks are made up of motes. This 
term, from its definition “a small speck of dust,” 
was coined at UC Berkeley to describe a very small, 
low-power device that incorporates a radio 
transceiver, computational power, data storage, and 
sensors. There are many commercially available 
motes with many different standards. Different 
motes were designed for different purposes such as 
research, education, hobbyists, indoor industrial 
and outdoor monitoring and control applications. 
The question is why pick one hardware solution 
over another? Our primary consideration focuses 
on how well the networking protocols were 
implemented to ensure performance and robustness. 
We also look into the hardware flexibility to satisfy 
needs for interfacing with different sensors. We 
focus on the most popular of motes that comply 
with the IEEE 802.11.15.4 standards for power-
savings reasons and availability. Properties and 
specifications of two main families of motes along 
with our solutions were investigated. 

S1.2.1 Mica-II, Iris, TelosB, Lotus. Memsic Inc. 
provides a number of low-power motes (MICA, 
TelosB, and Lotus) that are 1802.11.5.4 
compatible. The MICA and TelosB design goes 
back almost twenty years to the early UC 
Berkeley work. The LOTUS mote with a Cortex 
M3 processor and ZigBee radio provides the most 
internal memory for the OS and application 
software among Memsic motes. Several operating 
systems (RTOS, MoteRunner and TinyOS) can be 
ported to LOTUS. However, some problems with 
the network-routing protocol and channel-
management protocols remain. Operating on a 
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single channel makes them vulnerable to network 
instabilities resulting from signal interference and 
multi-path effects. The current draw from the 
LOTUS and MDA300 board is estimated to be 
around 17 mA at 3V when transmitting. The mote 
depletes two AA batteries in approximately one 
month when set to transmit for 3 seconds every 3 
min. The data-acquisition board (MDA300) 
provides seven single-ended and one (multiplexed 
to four) differential 12-bit ADC channels; digital 
I/O support is very limited on this board. 

S1.2.2 ZigBee and Xbee. ZigBee-based motes 
represent a popular family of wireless motes that 
share common communication protocols and 
specifications (network layer and application 
layer) by implementing a ZigBee software stack 
[ZigBee, 2009]. In practice ZigBee operates as a 
star network. Although it is theoretically possible 
to form a mesh-like network topology, a subset of 
motes has to be pre-selected and programed as 
dedicated routing nodes to relay data from the 
end/leaf node to the coordinator. The RX channel 
of those router elements has to be constantly 
powered, which results in high overall energy 
consumption [Horvat, 2012]. ZigBee operates on 
a single channel, making it difficult to avoid 
channel interference due to other ISM sources 
such as WI-FI, and multipath [Accettura and Piro, 
2014]. ZigBee networks are also not able to meet 
the reliability and latency requirement for 
industrial applications [Gungor and Hancke, 
2009; Huang et al., 2012].  The October 2016 
DoS attack on the U.S. web was based on 
captured zigbee IoT devices, indicating a severe 
lack of network security. 

Digi International maintains a family of motes 
called Xbee. The XBee 2.4 GHz-band mote has its 
own proprietary protocol called DigiMesh that 
suffers from environmental interference and 
varying effects of multipath because it does not 
implement channel hopping [International, 2009]. 
In order to achieve low power in a DigiMesh 
network, the system needs to enter a synchronized 
sleep mode. Due to the lack of a central network 
coordinator, a subset of the DigiMesh motes needs 
to be constantly running to serve as sleep 
coordinators (i.e., network manager). Those motes 
continuously broadcast sync message to the 
surrounding nodes to keep the network assembled, 
otherwise the message transmitted to a mote during 

the sleeping period will be permanently lost 
[International, 2009]. Another possible issue for 
DigiMesh networks in synchronized sleep mode is 
that when a new mote is added to the network, it 
needs to be physically near a sleep coordinator to 
receive a sync message in order to join the network 
[Xbee-pro and Rf, n.d.]. If a node temporarily drops 
out, it is permanently lost, and an extended trial and 
error installation is difficult to carry out. Xbees are 
commonly interfaced with Arduino single-board 
computers to provide facilities to host sensors, 
compute, and store data. The Arduino Uno R3, 
with no external load from sensors and other 
components, consumes about 40 mA at 5V. The 
Uno R3 uses a slow and outdated Atmega328P (8-
bit/16MHz) microprocessor with a 10-bit analog to 
digital converter that provides only six analog pins 
and fourteen digital pins to interface with the 
sensors and other equipment. Similar issues with 
power and flexibility can be found with solutions 
provided by Raspberry Pi, which consumes 700 
mA at 5V, making it impractical to operate with a 
battery. Systems with Arduino and Raspberry Pi 
are best kept indoors where sufficient power input 
is provided. They are not recommended for long-
term outdoor deployments, as they were designed 
for hobbyist use. 

S1.2.3 Metronome Systems neoMote. 
Metronome Systems provides a comprehensive 
solution for the sensor node called the neoMote, 
which was developed by UC Berkeley 
researchers. It combines the DUST Networks 
Eterna radio module with a Cypress 
Programmable System on Chip (PSoC5) into a 
two-chip mote solution. While DUST Network 
radios provide robust and reliable wireless 
networking capability, PSoC provides full support 
to any sensor or control peripheral. The PSoC 
offers an array of configurable system blocks that 
can be dynamically added to a project for a 
particular application. For instance, the board can 
interface up to 40 analog and/or digital sensors at 
once, providing all analog and digital signal 
conditioning and excitation. The PSoC building 
blocks are available to a drag-and-drop interface 
and are reprogrammable over the radio. The 
neoMote provides 3.3, 5, and 12Vdc excitation to 
sensors. Interfacing with a SD-card slot provides 
additional storage for data and system parameters. 
In addition, the board is ultra-low power. Power 
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consumption is 30 μA, 60 μA in 20-bit A/D mode, 
with transmission adding 10 mA - two to three 
orders of magnitude lower than the previous 
solutions. The network is controlled by a 
Metronome Systems network manager, which also 
interfaces the data with the outside world. It is 
based on a full LINUX computer, while only 
consuming 50 mA at 5V. It runs a full database 
and sends the data out through a variety of 
modems.  

DUST Networks, a division of Linear 
Technology, provides an industrially rated ultra-
low power fully meshed wireless networking 
platform. The dynamic network allows seamless 
joining and rejoining by any mote or hopper. A few 
technical details properties of the DUST mote 
make it superior to other choices. The SmartMesh 
IP software utilizes time synchronized mesh 
protocol (TSMP) that maintains complete network 
synchronization to 10 μs, which minimizes the “on-
time” to listen for the beacon. Incorporating Time-
Slotted Channel Hopping (TSCH) reduces 
interference within the communication channels 
through diversity of frequency at which each 
packet is sent [Pister and Doherty, 2008]. Adding 
diversity to the channel selection reduces the 
adverse effect of multipath fading in wireless 
network. The typical duty cycle of the DUST radio 
module is < 1% while keeping communication 
reliability 99.999%.  The DUST network is unique 
in that it constantly collects a wide variety of 
network statistics, which allows for the later 
optimization of a network. 

The Metronome system provides capability for 
Internet-of-Things functionalities, such that one 
can deliver programs remotely to sensor nodes to 
resync real-time clock settings, change firmware, 
sampling interval, sensor gain, etc. 

S2 Physiographic attributes of cluster 
Elevations were extracted from a 30-m DEM. 

Slopes and aspects were calculated using ArcGIS 

spatial analyst toolbox. Percent canopy cover was 
extracted from NLCD 2011 data layer [Jin et al., 
2013]. Overall, sensor placement reflects a close 
correspondence between site characteristic of the 
sensor nodes and the features within the 1-km2 
areas for most of the sites. Mean site elevations 
range from 1590 to 2680 m, with considerable 
overlap between some sites (Fig. S1a). Some sites 
are relatively flat (e.g. CAP) and some on relatively 
steeper terrain (e.g. MTL, ECP) (Fig. S1b). It was 
possible to get a range of aspect at most sites, with 
the notable exception of TLC and CAP (Fig S1c). 
All other sites have both north and south aspects. 
Sensor placements capture the range of canopy 
covers, shown in Fig. S1d. 

S3 Details of sensor nodes 
Each sensor node (Fig. S3) is equipped with an 

ultrasonic snow-depth sensor (Judd 
Communication Depth Sensor) and a 
temperature/relative humidity sensor (Sensirion 
SHT-15). A selected subset of the nodes at five of 
the sites measure soil moisture and soil temperature 
(Decagon GS3) at depths of 10 and 60 cm. Nine 
sites include measurements of total incoming solar 
radiation using an upward-pointing Hukseflux-
LP02 pyranometer on a separate mast with a 
concrete foundation. The solar-radiation sensors at 
these locations are located in the open, without 
obstruction by either canopy or the terrain to 
capture the total available incoming solar 
irradiance. At nine of the 14 sites, co-located with 
the clear-sky irradiance, solar radiation is measured 
in a partially canopy-covered location, providing 
representative solar irradiance-measurements 
underneath the canopy structure. The accuracy and 
the resolution of the sensors is described in Table 
S2. It should be noted that our wireless nodes are 
not limited to these sensors, which were chosen 
based on past performance, cost and consistency 
with other networks.  
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Table S1. Equipment installed for sites 

Site 
 
Name Lat, Lon 

Temperature, 
relative-humidity Snow depth Soil water 

Solar 
radiation 

SCN Schneiders 38.745,-120.067 10 10 10 2 
ECP Echo Peak 38.848,-120.079 10 10 0 2 
MTL Mt. Lincoln 39.287,-120.328 10 10 0 1 
CAP Caples Lake 38.711,-120.042 10 10 0 2 
LCM Lost Corner 39.017,-120.216 10 10 0 0 
ALP Alpha 38.804,-120.216 10 10 10 1 
DUN Duncan Peak 39.154,-120.510 11 11 10 2 
VVL Van Vleck 38.944,-120.306 10 10 10 1 
DOR Dolly Rice 39.149,-120.369 10 10 0 0 
ONN Onion Creek 39.274,-120.356 10 10 0 2 
RBB Robb Saddle 38.912,-120.379 10 10 0 2 
TLC Talbot Camp 38.944,-120.306 10 10 0 0 
OWC Owens Camp 38.736,-120.241 10 10 0 0 
BTP Bear Trap 39.095,-120.577 10 10 0 0 
 
 

Table S2.  Sensors used for field monitoring 
Sensirion SHT-15 temperature/relative 
humidity sensor 

2% rH accuracy 
12-bit digital resolution rH 
0.3°C temperature accuracy 
14-bit temperature resolution 
factory calibration 
digital interface 

Judd Ultrasonic Depth Sensor 
0.5 to 10 m range 
0.4% distance to target distance 
accuracy 
digital or analog output 
calibrated in the field 

Decagon GS3 Soil Volumetric Water content 
and Temperature Sensor 

± 0.03 m3/m3 (± 3% VWC) volumetric 
water content accuracy 
complex resistivity-type measurement 
technique 
± 1°C soil temperature accuracy 
3.6V TTL output 

Hukseflux LP02 Pyranometer 
second class specifications 
285 to 3000 x 10-9 m spectral range 
15 x 10-6 V/(W/m2) sensitivity 

Figure S1.  Characteristics of individual sites, arranged from lowest 
to highest elevation.  See Table S1 for site abbreviations: a) 
elevation in m, b) slope (o), c) aspect (S to N) and d) canopy cover 
(%).  The central red mark is the median, the edges of the box are 
the 25th and 75th percentiles, the whiskers extended to the 
extreme points not considered outliers, and the blue dots are the 
outliers. 

https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Sensirion_Humidity_Sensors_SHT1x_Datasheet_V5.pdf
http://juddcom.com/
http://www.decagon.com/en/soils/volumetric-water-content-sensors/gs3-vwc-temp-ec/
http://www.hukseflux.com/product/lp02-pyranometer
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Figure S2. American River basin system hierarchy: local WSN 
clusters connect to central server through data links provide by 
cell phone or satellite modems: (1) wireless sensor nodes (a 
neoMote, sensors and external power infrastructure); (2) 
repeater nodes; (3) Metronome network manager/base station; 
(4) external connection to the Internet; (5) central-site data 
server; and (6) real-time visualization engine and data portal. 

 
Figure S3. Sensor node detail. The 4.5 m vertical mast is 
bolted to a U-channel driven into the ground. Sensors are 
either buried under ground or mounted on a 1.2-m long 
cross arm 4 m above ground. 
 

 
Figure S4. Illustration of how a weighted average of 
SNODAS SWE data were calculated for each local cluster, 
for comparison with WSN data. For SNODAS data gridded 
at 1-km spatial resolution, pixels containing nodes for each 
local cluster were extracted and averaged for that local 
cluster. In the example shown, the SNODAS mean of this 
site was calculated as (A+4B+2C+3D)/10. 
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Figure S5. Photos of base station, two sensor nodes, and a repeater node at ALP.  

 

Figure S6. Average daily network performance of sensor nodes at Alp 
for seven-month period.  Top panel shows number of network 
neighbors for each of the 10 sensor nodes, and bottom panel is the 
average received signal strength indicator (RSSI) for each sensor 
node.  A white gap indicates no communication. The data-stream gap 
for node 9 in January 2015 was due to a non-network related 
hardware failure. 
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Figure S7. Data used in ANOVA analysis (Figure 6). From all clusters, all nodes. 
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Figure S8. Comparison of a) temperature, b) absolute humidity and 
snow depth for 6 local clusters with at least 8 nodes reporting for the 
20-day period (water year days 179-199) around peak accumulation.  
Operational refers to the subset of nodes that have landscape 
attributes like those of co-located operational sensors (flat, open); 
and other refers to other sensors in the local cluster that have some 
degree of slope and canopy cover. 
 




