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Abstract 

Semantic priming involves a combination of automatic proc-
esses like spreading activation (SA) and controlled processes 
like expectancy and semantic matching. An alternative ac-
count for automatic priming has been suggested using attrac-
tor neural networks. Such networks offer a more biologically 
plausible model of real neuronal dynamics but fall short in 
explaining several important effects such as mediated and 
asymmetrical priming, as well as controlled effects. We de-
scribe a new attractor network which incorporates synaptic 
adaptation mechanisms and performs latching dynamics. We 
show that this model can implement spreading activation in a 
statistical manner and therefore exhibit all priming effects 
previously attributed to automatic priming. In addition, we 
show how controlled processes are implemented in the same 
network, explaining many other semantic priming results.   

Keywords: Semantic priming; Attractor networks; Latching 
dynamics  

Introduction 

Semantic priming is one of the most important phenomena 

in the study of word perception and semantic memory. In a 

typical priming experiment (Neely, 1991), subjects are visu-

ally exposed to two words in succession, the prime and the 

target, and are required to silently read the prime and either 

name the target (pronunciation task), or decide whether it is 

a real word or not (lexical decision task). The target could 

either be semantically related or unrelated to the prime (or a 

nonword, in case of the lexical decision task). The priming 

effect is expressed as shorter average reaction times (RT) 

and reduced error rates in the related relative to unrelated 

condition. Sometimes, a neutral prime is used (e.g. a row of 

X’s) to allow the differentiation between response facilita-

tion (in the related condition) and inhibition (in the unre-

lated condition). 

Computational accounts for semantic priming are divided 

between models based on automatic processes and those 

based on controlled processes. The most famous among the 

automatic accounts for priming is the spreading activation 

(SA) theory of Collins & Loftus (1975). This model sug-

gests that concepts in semantic memory are represented by 

nodes that are connected to each other according to their 

semantic relatedness. When a concept is activated (by exter-

nal or internal input) the activity spreads to related concepts 

(see figure 1). In priming experiments, activation of the 

prime concept (e.g. table) leads to activation of its related 

concepts (e.g. chair). This pre-activation facilitates the rec-

ognition of subsequent related targets. If an unrelated or a 

neutral target appears, no such head-start is available. Hence 

spreading activation may account for the facilitation com-

ponent of semantic priming. Automatic priming can also be 

conceived in attractor networks with distributed representa-

tions of concepts (e.g. Mason, 1995). In such models con-

cepts are represented by activity patterns of neurons’ as-

semblies and semantic relationship is implemented as corre-

lation between these representations. When the prime ap-

pears, the network converges on its corresponding activity 

pattern. When the target is then presented, the network 

changes its activity pattern from that of the prime to the one 

corresponding to the target. If the target is related to the 

prime, fewer changes need to take place due to the correla-

tions; therefore, the convergence takes less time and a prim-

ing effect emerges. 

Attractor networks are probably more true to the biologi-

cal nature of real neuronal dynamics which include content-

addressable memories, distributed representations and at-

tractor states. However, they fall short in explaining several 

important priming results. Mediated priming is one example 

(e.g. McNamara, 1992): It was found that word pairs which 

are indirectly related to each other (i.e., related only through 

a mediating word, like lion and stripes, related through ti-

ger) can nevertheless prime each other. Allowing activation 

to spread to more than one step, SA theories could easily 

account for such effects. Attractor networks, on the other 

hand, cannot explain mediated priming since the activation 

patterns of indirectly related pairs are not correlated. Simi-

larly, whereas SA models allow asymmetric connections 

between nodes and therefore allow asymmetric priming (in 

which the magnitude of priming varies according to which 

word in a given pair is designated prime and which is the 

target; e.g. pay-check vs. check-pay), such an effect cannot 
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be obtained by attractor network models because they rely 

on correlation, a symmetric trait by definition.  

Here we present an attractor neural network which im-

plements SA in a statistical manner. By doing so, we bridge 

between SA and attractor models and show how attractor 

networks can exhibit results like mediated and asymmetric 

priming. In addition, we discuss some controlled mecha-

nisms like expectancy (Becker, 1980) and semantic match-

ing (Neely, Keefe & Ross, 1989) and suggest how they may 

be interpreted within the same network. 

 

 
 

Figure 1: The spreading activation theory. (A) Related 

concepts connected in semantic memory. (B) Activation 

spreads through the network 

Computational Model 

Following the traditional separation between stages of 

processing (e.g. Smith et al., 2001), our model consists of 2 

computational layers, lexical and semantic (Figure 2). We 

assume that after a string of letters is analyzed for ortho-

graphic composition, the result is fed to the lexical network 

where word identification occurs.  If the letters form a real 

word, this word is ‘recognized’ by the lexical network and 

its activity is fed forward to the semantic network where the 

word’s meaning is stored. However, the semantic network 

can influence lexical processing on line via feedback. Such 

a top-down effect contributes to semantic priming: when the 

semantic network is a priori ‘tuned’ to a concept with some 

relatedness to the newly arrived word, the lexical network 

recognizes this word quicker because both bottom-up and 

top-down pathways contribute to the recognition process (as 

opposed to the unrelated case, where the top-down pathway 

does not contribute). In the case of a neutral stimulus, none 

of the networks is activated and no transfer of information 

occurs.  

The lexical and semantic networks are modeled as Hop-

field-type attractor neural networks, with sparse representa-

tions and continuous-time dynamics (see Tsodyks, 1990). In 

our simulations, both the lexical and the semantic networks 

are fully connected recurrent networks, each composed of 

500 neurons. Memory patterns (concepts) encoded by each 

network are binary vectors of size 500, with ‘1’ indicating a 

maximally active neuron, and ‘0’ an inactive one. The rep-

resentations are sparse (i.e., a small number of neurons are 

active in each pattern) with p being the ratio of active neu-

rons (p<<1). The connectivity between neurons assures 

stability of these patterns. External inputs to and from the 

network are always excitatory.  

The neurons themselves are analog with activity in the 

range [0,1] and obey a logistic transfer function of their lo-

cal input h(t). The local input itself obeys a linear differen-

tial equation (following Herrmann, Ruppin & Usher, 1993) 

of the form: 
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In (1), τn is the time constant of the neuron, xj(t) the activ-

ity at time t of the j-th neuron (with x indicating average 

over all neurons), Jij is the connectivity weight, N is the 

number of neurons (500 in our case), p is the sparseness of 

the representations, λ a regulation parameter which main-

tains stability of mean activation, and θ is a constant neu-

ronal threshold (See Herrmann et al. for details). The […]+ 

symbol indicates a threshold linear function, such that 

[x]+=0 for x<0, and [x]+=x otherwise. This leads the external 

input to the neuron, Ii
ext

(t), to be consequential only if it 

surpasses the constant external threshold θ
ext

. Finally, ηi is a 

noise term drawn from a Gaussian distribution with some 

temporal correlations. Relatedness between concepts is im-

plemented in the model as correlations between memory 

patterns (reflecting the degree of overlap between them). 

The stronger two concepts are related, the higher is their 

correlation. The correlation of unrelated patterns is negligi-

ble (|c|<0.05 with c being the correlation) 

Two major differences distinguish the lexical from the 

semantic network. First, while the semantic network in-

cludes correlated memory patterns representing semantic 

relations between concepts, there are no correlations in the 

memory patterns of the lexical network. This is not to indi-

cate there are no lexical relations (such relations obviously 

exist), but merely to ensure that they would not influence 

the simulations. Indeed, typical semantic priming experi-

ments do control for such confounds by selecting prime-

target pairs that bare no lexical/phonological relations.  

The second difference is, perhaps, the basic premise of 

our model: Unlike the lexical network (and the majority of 

previous attractor network models), our semantic network is 

associative in nature. Neuronal adaptation mechanisms at 

the synaptic level preclude the network from maintaining 

stability for long; therefore, the network, after converging to 

one attractor, leaves it quickly and jumps to another one. 

This process is stochastic in nature and can continue forever 

as long as no new input interferes. These jumps cannot be 

accurately predicted, but they tend to happen (although not 

necessarily) between correlated patterns. Such network be-

havior was termed ‘latching dynamics’ by Treves (2005). 

Specifically, short-term synaptic plasticity was modeled 

according to Loebel & Tsodyks (2002), with each synaptic 

weight of a neuron decreasing linearly with its activity: 
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In (2), Jij
max is the common Hopfield connectivity weight 

for sparse networks, τr is the time constant of recovery of 

the synaptic efficacy, and U is the utilization of synaptic 
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resources. The term xmax is a hypothetical maximum firing 

rate of a neuron (for example 100 pulses/sec) which adjusts 

the equation to fit a neural firing rate bounded by 1.  

Links between the lexical and semantic networks are 

based on connections between active neurons in correspond-

ing patterns (See figure 2): An active neuron in a certain 

word pattern in the lexical network sends excitatory connec-

tions to all active neurons in the corresponding concept-

pattern of the semantic network, and vice-versa. Since cor-

relations between patterns exist in the semantic network, 

one neuron in that layer could concurrently influence and 

receive input from different neurons activated in different 

patterns in the lexical layer. The lexical network also re-

ceives bottom-up input, representing the visual letter-string, 

which follows the same logic: Neurons belonging to the 

pattern presented to the lexical network receive excitatory 

inputs, while others receive no input. 

 

 
 

Figure 2: Architecture of the model. Two recurrent net-

works connected to each other with excitatory links. The 

semantic network contains correlated representations 

Simulations  

The simulations were run on an Intel Core 2 Quad CPU 

Q6600 with 2.4 Ghz and 2 GB of RAM. Simulations were 

written in Matlab 8a. In all the simulations, one numeric 

step represents 0.66ms. 

Encoded Patterns 

We encoded 17 memory patterns in each network. All pat-

terns were binary vectors with equal mean activity and very 

sparse representations. In the semantic network, the follow-

ing basic correlations between patterns were set: four 

groups, each containing four patterns, formed ‘semantic 

neighborhoods’ (patterns 1-4, 5-6, 9-12 and 13-16):  Each 

pattern in a group was correlated with the other patterns in 

its group, but, with few exceptions (see below), no correla-

tions existed between the groups. Correlations within a 

group had one of two values, representing two levels of di-

rect relatedness. In addition, we also added some correla-

tions between patterns of different neighborhoods to allow 

indirect priming investigations. For example, we added 

some correlation between pattern 2 and pattern 9, which 

resulted in patterns 1 and 9 being indirectly related. The 17
th
 

memory pattern was a ‘baseline’ pattern which the network 

was initialized to at the beginning of each trial, and was not 

correlated to any of the other patterns. In the lexical net-

work, all 17 patterns were unrelated to each other. The 17
th
 

pattern was, again, the initial state for the network, and was 

not linked through top-down or bottom up lexical-semantic 

connections to the baseline pattern in the semantic network 

(thus forming a ‘neutral’ pattern). 

Experimental Procedure and Data Analysis 

Each trial began with the presentation of a binary vector to 

the lexical network, corresponding to one of its patterns (1’s 

in the to-be activated neurons, 0’s in the rest). This vector 

served as “prime”. In neutral trials, pattern 17 (the neutral 

pattern) was presented. Two experiments were conducted. 

The first tested the general performance of the semantic 

network. The prime was presented for 100ms and it was 

always pattern no. 1. The network was allowed to advance 

according to the dynamic equations without further interfer-

ence, for a total period of 3000ms. The procedure was re-

peated for 100 trials. Correlation of the momentary network 

state with each pattern, for each time point in the simulation, 

was averaged offline. The second experiment tested whether 

the performance of the model, when semantic priming oc-

curs, corresponds with predictions based on human studies. 

The prime was presented for 100ms and followed by a tar-

get after 150 ms, hence creating a 250 ms SOA. The time 

interval from target onset until convergence of the lexical 

network indexed the reaction time, providing the network 

converged to the correct attractor. Primes and targets were 

either directly related (i.e., two patterns from the same 

neighborhood), indirectly related (two patterns from differ-

ent neighborhoods but linked through a mediating pattern as 

explained earlier), unrelated (two patterns from different 

neighborhoods with no indirect connections), or neutral (in 

which the prime was the neutral pattern and the target any of 

the ‘real’ patterns). 100 trials were simulated for each relat-

edness condition, with prime-target pairs chosen randomly. 

Mean reaction times and standard errors were computed for 

each condition.  

Results 

Figure 3 presents the typical performance of the two net-

works (for presentation purposes, here we used a 1000ms 

SOA). Correlation of the state of each network with each of 

its stored patterns (including the memories and the neutral 

pattern) during a trial is presented in different colors, with 

convergence to a specific pattern indicated by its number 

appearing on top. The lexical network followed the external 

input, by converging to the corresponding memory pattern 

and keeping stability until a new input arrived. In contrast, 

the semantic network converged to the appropriate memory 

pattern, only to jump to other attractors in a serial manner, 

hence presenting latching dynamics. When a new external 

input arrived, the semantic network stopped its transitions 

and quickly converged to the corresponding memory pattern 
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shortly after the lexical network has done so. As evident in 

Figure 3, most jumps were within the neighborhood, while 

jumps to different neighborhoods occurred less frequently.  

 

Figure 3: Typical behavior of the two networks 

 

 In the first experiment, trials always included pattern 1 as 

the prime. The mean correlation between the state of the 

semantic network and all its memory patterns was computed 

for each time point over trials. Figure 4A presents the corre-

lations for five different time points after the prime onset. 

The x-axis represents different patterns according to their 

relatedness to pattern 1, with pattern 1 itself in the middle. 

Evidently, the mean correlations followed the principle of 

spreading activation: Initially, the concept represented by 

the external input has the strongest activation (correlation), 

its directly related concepts are activated to a smaller de-

gree, and concepts not related to it are not activated at all. 

With time, as semantic transitions occur, the mean activa-

tion of the initial concept is decreasing, while activation in 

its related concepts increases. Indirectly related concepts 

also show some activation, with a delayed peak. Unrelated 

concepts receive no activation at all. After enough time, the 

mean correlation with each of the network’s patterns is di-

vided more or less equally, corresponding to a nearly deac-

tivated state of the whole network (the mean activity would 

have reached near zero values in case more than 16 patterns 

were used). 

In the second experiment, the mean RTs of the lexical 

network were computed and are presented in figure 4B. As 

can be seen, priming occurs for both directly and indirectly 

related pairs, although the effect is stronger in the direct 

case. In addition, weak relations produced smaller priming 

than strong relations. All these effects were significant at p 

< 0.001. There was no significant difference between the 

unrelated and neutral conditions, confirming that only facili-

tation occurred. 

Discussion 

The results of these simulations demonstrated that an at-

tractor neural network with latching dynamics can imple-

ment spreading activation in a statistical manner. In a way, 

one could see the activity of nodes in the original spreading 

activation model as an average manifestation of the correla-

tion in our attractor model. There is, however, an important 

distinction between our model and SA models: In our net-

work, spreading is mixed with relaxation periods which 

correspond to the network reaching an attractor. In other 

words, activation does not spread in a monotonic manner 

like in the original SA model, but rather in jumps which fit 

the dynamical jumps from one attractor to another. 

The results of the second simulation demonstrate how the 

dynamics in the semantic network affects the convergence 

time of the lexical network such that priming effects are 

produced. When the semantic network state is correlated 

with the target pattern at the moment the target word ap-

pears, its top-down influence shorten the lexical network’s 

convergence times. Due to semantic transitions, such corre-

lations may occasionally appear in indirectly related trials 

and produce the mediated priming effect. Although not ex-

plicitly simulated, these jumps can also produce asymmetry 

in priming: Transition probabilities from pattern A to pat-

tern B are not necessarily equal to those from B to A since 

network transitions, in general, are uniquely influenced by 

the other memory patterns A and B are correlated with 

(which can be very different for A and for B). This asymme-

try allows making a distinction between semantic related-

ness (as indicated by correlation) and associative relatedness 

(as indicated by the probability of one pattern leading to 

another pattern). Former attractor models relied solely on 

correlations between prime and target and therefore could 

not produce either mediated priming or asymmetry in prim-

ing.  

Controlled Processes 

When the SOA between prime and target is sufficiently 

long, subjects may decide to engage in specific strategies 

while responding. The general aim of such strategies is to 

shorten reaction times to the target. In contrast to the auto-

matic nature of SA, strategies are considered to be under the 

subject’s cognitive control. 

Figure 4: Simulations results. (A) Statistical spreading 

activation portrayed by the network as mean correlation 

over trials. (B) Mean convergence times of the lexical 

network for the different relatedness conditions 
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A well known example of such strategies is expectancy 

(Becker, 1980). It is assumed that subjects may be able to 

realize that in part of the trials, the target is semantically 

and/or associatively related to the prime and develop a set of 

expected targets from the prime’s semantic “neighborhood”. 

When the target appears, this “expected set” is searched 

first, while the general lexicon is searched only if the target 

is not included in the expected set. Obviously, when the 

target is found in the expected set, its recognition time is 

accelerated. If it is not found there, however, its recognition 

is delayed by this initial screening procedure. Hence, the 

application of an expectancy strategy may account for both 

facilitation and inhibition of the priming effect. Two types 

of this strategy were identified (Becker, 1980): A ‘predic-

tion’ strategy is used when the upcoming target is highly 

predictable. Only one item (or very few) is included in the 

expected set and, consequently, facilitation is robust while 

inhibition is negligible. A ‘general expectation’ strategy is 

used when more than a few items could potentially be tar-

gets and the expected set includes them all. Both facilitation 

and inhibition should result. However, subsequent studies 

have shown that not all conditions yield inhibition (for ex-

ample, pronunciation tasks), which put this later strategy 

into question (Keefe & Neely, 1990). In either case, the re-

quirements for this controlled process to be initiated are 

sufficiently long SOA and a sufficiently salient proportion 

of related pairs in the stimulus set (called the ‘relatedness 

proportion’) which makes such expectancies reasonable. 

Indeed, it was found that the relatedness proportion is posi-

tively correlated with priming, but only at long SOAs 

(Neely, 1991).  

Controlled Processes in the Model 

So far, we implicitly assumed that semantic transitions in 

the network happen automatically. We now turn to a differ-

ent hypothesis: Semantic transitions may be controlled to 

some degree; therefore, while SA is the default behavior of 

the network when no interventions occur, other patterns 

emerge as soon as subjects attempt to control these transi-

tions.  

Controlling transitions can allow our model to implement 

the ‘prediction strategy’ of expectancy, if we consider the 

transition of the semantic network’s state from a given 

prime pattern to another pattern as an ‘expected’ word for 

that prime. By default, such expected word is determined 

according to semantic relatedness principles. However, this 

conceptualization of expectancy makes it no different than 

our implementation of SA. What, then, makes expectancy a 

distinct mechanism? The answer is that expectancy can be 

modeled as the controlled operation of manipulating transi-

tion probabilities according to any information acquired by 

the subject up to that point, as to induce certain transitions 

and avoid others. For instance, expectancy can be realized 

by maintaining just one single transition in the semantic 

network (as opposed to many transitions in the default case). 

Another realization can be by controlling the variability of 

the semantic network’s transitions, such that transitions will 

almost always occur from the prime to its most correlated 

pattern (as opposed to the more stochastic nature of transi-

tions in the default state). The first suggestion can be im-

plemented by allowing the network to make a single jump, 

as usual, but then stop any further transitions by lowering 

the background noise. This means, of course, that noise am-

plitude must be susceptible to cognitive control. We suggest 

that this is the equivalence of ‘focusing attention’ on the 

prediction. The second suggestion can be implemented by 

lowering the amplitude of the temporal correlations of the 

noise, which may be seen as focusing attention on the most 

probable prediction. Each of these two manipulations, as 

well as their combination, may have beneficial results: In 

case they succeed (i.e., the target indeed turns out to be the 

equivalent of the pattern the network has jumped to), an 

increase in priming is to be expected compared to the de-

fault case since all of the activated neurons of the semantic 

network would participate in accelerating the response. 

Without such intervention, the network is much less likely 

to be converged on the ‘right’ pattern when the target ar-

rives, which implies that on average, only a minor set of the 

activated neurons will participate in the acceleration of re-

sponse. Naturally, if the prediction is wrong, the response 

might be delayed compared to the default case. Hence this 

mechanism should be used only when there are good rea-

sons to assume the target is predictable, that is, when the 

relatedness proportion is high. Moreover, the effect of these 

manipulations is expected to be most conspicuous on long 

SOAs, since on short SOAs there is usually not enough time 

for a transition to occur, let alone a series of transitions. 

As an illustrative example, we have repeated simulation 2 

for direct, indirect and neutral primes, for short/long SOAs, 

but this time we manipulated the amplitude of the noise. In 

one condition, the noise was reduced after the first transition 

in the semantic network (implementing the first mechanism 

we suggested for expectancy). In the other condition, no 

such manipulation was conducted. Figure 5 presents the 

results. As can be seen, the manipulation increased the fa-

cilitation effect, echoing the results in the literature (e.g. 

Neely, 1991).  

 

Figure 5: average convergence times of the lexical net-

work with and without an expectancy mechanism  

 

Another controlled process presented in the literature is 

semantic matching (Neely et al., 1989). This process mainly 

involves decision making strategies which occur after lexi-
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cal access to the target is achieved. In principle, it suggests 

that subjects engage in comparison between prime and tar-

get, which enables them to facilitate word and nonword re-

sponses in the lexical decision task (and is also responsible, 

as a by-product, to inhibition in priming) 

While the scope of this paper did not allow us to fully 

model the semantic matching mechanism (which would 

necessitate incorporating a decision making mechanism), we 

would like to point out that any comparison between prime 

and target must depend on the prime being constantly acti-

vated in semantic memory throughout the whole trial, which 

in turn may indicate that no semantic transitions should oc-

cur in the semantic network. This, of course, can be 

achieved in our model by assuming a reduction in the noise 

amplitude immediately after lexical access of the prime (as 

opposed to the expectancy strategy case, where such a re-

duction is applied only after one semantic transition). We 

would therefore expect the usage of semantic matching to 

place severe limitations on spreading activation behavior, 

and specifically eliminate the indirect priming effect. Inter-

estingly, this is exactly the result found in the literature (e.g. 

McNamara, 1992; see Neely, 1991, for a review).  

General Discussion 

Our main goal in the current study was to implement classi-

cal semantic processes related to semantic priming, with an 

emphasis on spreading activation, in a biologically-plausible 

framework of attractor neural networks. The results demon-

strate that the basic characteristics of SA can be embedded 

in attractor dynamics while maintaining the same explana-

tory power of the original process. In addition, we show that 

controlled mechanisms involved in priming such as expec-

tancy can be implemented within the same network,  where 

the definition of ‘controlled’ is narrowed to the subject’s 

influence on some specific parameters of the network. 

Our network implies that real automaticity is the product 

of correlated representations. Direct semantic priming is a 

purely automatic process since, by definition, one pattern 

cannot be activated without partially activating its correlated 

patterns. On the other hand, processes which require a trans-

formation from one representation to another can in princi-

ple be the object of cognitive control. Indirect priming can 

therefore be avoided by eliminating transitions in the se-

mantic network. Spreading activation, by this view, is best 

seen as a default mechanism rather than a process which is 

completely automatic (cf. Smith et al., 2001). 

Finally, a pure mathematical interpretation of the dynam-

ics would suggest that the nature of the transitions between 

patterns in our model takes the form of a Markov-chain, 

with the average correlation of the network with the various 

patterns forming a state vector and the transition probability 

matrix representing word association norms. Controlled 

strategies therefore represent a change in this matrix from 

the default values, based on the subject’s expectations. Fu-

ture inquiries may reveal the exact way by which accumu-

lating data affect these probabilities, with Bayesian infer-

ence principles possibly governing this procedure. 

Conclusion 

Attractor neural networks have traditionally struggled with 

several important aspects of semantic priming compared to 

the more classical views. We have shown that an attractor 

network with latching dynamics can in fact implement some 

of these classical processes and serve as an equally compe-

tent model. The model may also be used to predict the time 

course of priming with SOA, which in turn could be vali-

dated by appropriate experiments. Future work will need to 

specify in a more precise manner the exact ways by which 

strategies may influence our model’s dynamics and how 

priming is affected by them.  
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