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ABSTRACT OF THE DISSERTATION

Interpreting Actions: The Role of Sensory Encoding of Predictive Cues in the AON

By

Xiaojue Zhou

Doctor of Philosophy in Cognitive Neuroscience

University of California, Irvine, 2023

Professor Emily Grossman, Chair

We examined the role of top-down influences, including predictive coding, in the action obser-

vation network (AON) and extended brain regions. To achieve this, we examined functional

connectivity within the network, multivariate pattern classification of regional representa-

tions, and diffusion modeling to reveal indicators of predictive decision bias. In the first

study, subjects were exposed to three-second action vignettes involving avatars performing

one of two different actions.The participant was cued in advance to attend to the action, the

outcome of the action (goal) or the identity of the actor. The results indicated that attention

could modulate precision with which the actions were encoded in the AON, specifically the

right pSTS and IFG. These findings are consistent with the hypothesis that the IFG pro-

vides top-down feedback to the pSTS and implicates a right-lateralized system in processing

action kinematics. Study 2 seeks to evaluate whether information about anticipated actions

is apparent in the neural signal prior to observation, as a potential source action prediction.

In this second study, in half of the trials subjects were cued as to which action they would

see before observing the action vignettes. The findings revealed that, when given a valid cue,

the right IFG had a higher classification accuracy during cued trials than cued trials (uncor-

rected for multiple comparisons), when measured during the anticipatory interval (prior to

encoding). These results suggest that predictive cues can indeed impact the neural decod-

ing processes within the AON. Study 3 further examines this predictive process in terms of

xii



the association between response time and brain responses. We used hierarchical diffusion

modeling to model trial-wise posterior estimates of decision bias, which showed clear evi-

dence for observer’s using the cue during the anticipatory interval. These studies collectively

demonstrate how top-down influences from the IFG enhance the pSTS’s reconstruction of

action dynamics. These results are also consistent with the proposal that predictive cues

can bias both behavioral responses and neural activity, providing a deeper understanding of

the neural pathways involved in interpreting socially relevant actions.
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Chapter 1

Where are our action predictions?

Action Understanding as a Predictive

Process: Integrative Model And

Neuroimage Evidence

1.1 Introduction

Action understanding guides inferences about our environment and their intentions without

conscious awareness. For example, we perceive hand shape, direction of movement, and

object’s functional properties in object-oriented hand actions. From these cues observers

can extract features that are diagnostic to the performer’s different action goals. Often this

is described as “action understanding”, but in fact it is a very complex task that depends

largely on the goals of the observer.

Initially, action understanding was considered a bottom-up process (Rizzolatti and Matelli,
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2003). From the simulation theory point of view, the anticipated outcomes of observed

actions are derived in a bottom-up fashion based on the observer’s own prior knowledge and

motor experience (Tamir and Thornton, 2018). The main debate about which neural system

supports action understanding revolves around whether mirror neurons, which initially were

proposed to encode action intention, are also necessary to understand action kinematics. In

this view, the observer needs to possess the knowledge of the action-stimulus association in

order to predict action outcomes before understanding the complete action sequences (Csibra

and Gergely, 2007). However, we are capable of predicting outcomes even for new actions

and goals not previously seen. Also, because of the lack of one-to-one mapping between

actions and their outcomes, which means multiple action sequences can achieve the same

goal and vice versa, understanding actions needs more than simple stimuli-action association.

Therefore simulation theory is limited in its ability to explain understanding action goals.

During natural action observation, we are doing causal inference at multiple levels to interpret

actions, predict their outcomes and infer the actor’s goals. For example, participants can

use subtle differences in the hand movement patterns to discriminate between two different

immediate goals when the performers in a movie had just finished lifting the objects but

before they actually reach the immediate end goal – pouring or drinking from the cup

(Koul et al., 2018). This is an example of action goals derived from bottom-up kinematic

cues: identifying goal from perceived action features. On the other hand, we can also use

top-down signals to distinguish actions based on different goals. For example, subjects

correctly identified appropriate actions based on inferences of the physical properties in the

environment such as pushing on the edge or spinning door to easily rotate the heavy door

(Fischer et al., 2016). These two processes usually happen in parallel and indicate the need

for an integrative model about multiple directions of inferences during action observation.

Understanding someone else’s action and its consequences are the foundation of social in-

teraction. Social cognition can be thought of as a causal inference process, such as inferring

2



agent’s transitory states (goals and intentions) from their eye, head, hand and body move-

ments as well as the environmental context (Overwalle, 2009). On the other hand, the reverse

inference is often ignored: predicting other’s behavior from our social knowledge. Under-

standing someone else’s intentional goals can help with predicting the according actions.

These two directions of causal inference: predict action trajectory from goal and predict

action outcome from action kinematics, reflect our knowledge about action during social

interaction, further emphasizing the role of action in daily social inference.

In my dissertation, I am going to discuss why action understanding can be thought of action

prediction in a hierarchical context. Then I am going to introduce two main sources of

predictions: affordances and social perception. Lastly, I will describe how we predict action

trajectories and action outcomes based on our internal models of the affordances and social

perception. This dissertation will include a discussion of the underlying neural mechanisms

and supporting neuroimaging evidence. Most importantly, I am going to integrate this

evidence into a coherent theory about action understanding in theory of mind network and

mirror neuron system.

1.2 Action hierarchy and action prediction

1.2.1 Action Hierarchy

Before talking about the role of prediction in action observation, it is helpful to clarify the

definition of action. When we talked about actions, one could refer to either the kinematics

of how the actions were performed, the objects of the action acted upon, or a series of

actions orchestrated to fulfill the agent’s intention, often aligning with a broader social goals.

Thompson et al. (2019) defined action, goal, and intention identification as three levels in

a action hierarchy. First, an action is identified as a specific set of kinematic features such

3



that the ”selection of motor programs that will produce the same action in observer’s eyes”.

For example, two actions such as kicking and jumping are differentiated by how the body

is shaped and the unique motion features. It is important to note that actions can be

understood in terms of their immediate end goal without further referencing the actor’s

intentions (Rizzolatti et al., 2009). In contrast, goal identification can be generalized across

motor features of the observed actions. For example, the goal to grasp a cup can be achieved

with different actions: a power grip or a precision grip (McDonough et al., 2020), whereas

the actor’s intent in grasping is to drink water. Finally, intention identification answers the

observer’s question about why the actors perform the action. Therefore, inferences about the

actor’s intentions or internal mental states can facilitate the observer to infer the . Lastly,

action understanding is not strictly hierarchical, such that we can understand someone else’s

intention before we defined their action or goal.

With the action hierarchy defined above, action predictions can be further broken down at

different levels. In motor control, the action hierarchy can be described as an overarching

goal of an action broken down into several subgoals and achieved with sequences of steps

until the most precise unit, the individual muscle activations (Kilner, 2011; Csibra, 2008). In

this model, higher and lower level motor modules are connected to each other (Wolpert and

Ghahramani, 2000) such that the lower-level inputs, for example motor codes, can propagate

upward and be used to estimate higher level goals (Wolpert et al., 2003). In contrast, the

constructed higher-level goals propagate downwards to generate motor plans, and therefore

the action mirroring in various motor-related brain regions is predictive for the upcoming

action (Csibra, 2008). Generating actions to achieve a desired outcome is called emulation

in social learning literature (Huang and Charman, 2005) and the predicted motor codes

in turn can also be used for goal inferences (Gallese et al., 1996). Here, action prediction

during motor control is revealed through estimating higher level goals as well as predicting

upcoming actions.
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Does a similar process happen during visual action observation such that instead of motor

activation, visual features of individual action kinematics can be used to draw inferences

about the higher level goals, and the estimation of goals can further generate into visual

expectation of individual action? Under this hierarchical context, understanding an action

means an observer can predict action outcome and infer the underlying intention, as well as

predict an upcoming action.

1.2.2 Action-to-Goal and Goal-to-Action

Observed actions are generally assumed to be goal-directed, even for the actions we can-

not produce ourselves. For example, infants expect that sequentially organized actions are

directed towards a specific goal state. In Onishi et al. (2007)’s experiment, 15 months old

infants used their background knowledge about cups and bottles to predict the pretended

goal and the subsequent drinking action even they were incapable of drinking from or pour-

ing water into a cup. Specifically, infants looked longer at the event when there wasn’t an

imitated pouring action compared to a cup than where there was, indicating that infants

organized action events toward a intended goal state (because most people drink from filled

up instead of empty one, which the pouring action indicated).

Action predictions, as described by Csibra (2008), involves two types of internal representa-

tions that facilitate two predictive processes: anticipating the outcome and the action itself.

Goal attribution not only predicts the intended outcome but also allows for the anticipation

of actions leading to that goal. This predictive process uses the hypothesized goal as input,

enabling an observer to foresee both the final state and the interim actions (Csibra and

Gergely, 2007; Gallese and Goldman, 1998).

Observers make predictions as to the action outcome or intention of an individual when

observing actions on-line. Observers may not have explicit knowledge of an actor’s goals or
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intentions prior to watching the action, but nonetheless can make these inferences from the

visual inputs about kinematic cues and the larger context (de C Hamilton and Grafton, 2008;

Koul et al., 2018). Csibra and Gergely (2007) described this process as “Action-to-Goal”

process: the process to “predict a likely effect of an ongoing action”. In the action to goal

process, subjects generalize from observed action’s low-level features to likely outcomes and

the effect on the environment. This is similar to the forward propagation mentioned above

in motor control model, in which lower-level activation propagates upward to the sensory

consequences of the action (Wolpert and Ghahramani, 2000).

If the visual inputs other than actions enable the observer to identify the actor’s end goal

(e.g. information from the environment), then the observer can use the expected action

outcomes to facilitate visually tracking the action. In other words, the top-down signal

from the environment about the goal helps with predicting the upcoming action kinematics.

This is also called “Goal-to-Action” process: “predicatively tracking of dynamic actions in

real time” (Csibra and Gergely, 2007). Specifically, predicting actions are either inferences

of possible actions or constructing an action repository for an upcoming action based on

available information. That means we can more accurately and quickly predict action from

observing the first few frames of actions and with a limited size of action repository Csi-

bra (2008). In the present work, one action event can be goal, action outcome, intention

or context depending on the inferential process. For example, to drink water from a cup

can be the action performer’s action outcome of grasping a cup as well as intention when

talking about action-to-goal: inferring the action’s achievable state from both observer and

performer’s view. At the same time, to drink water from a cup can be the context for the

observer during goal-to-action: inferring the performer’s action kinematics constrained by

his/her current intentions.

Why do we need to predict actions? First, knowing the goal facilitate action observation

in the following ways by: 1) limiting alternative action sequence choices during action ob-
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servation, 2) improving predictive tracking of dynamic actions in real time, and 3) helping

the acquisition of knowledge related to new means of achieving the goal. Second, in real

life, predicting actions helps the observer to: 1) attribute actions to goals and establish their

causal relationship 2) lead to faster interventions and dealing with unexpected events 3)

learn the physical parameters of objects such as weight, contents, etc., which is inaccessible

to the visual system and has to be learned from either performing actions themselves or

watching someone else’s actions (McDonough et al., 2020; Csibra, 2008).

The simplest example for these predictions was shown in a developmental study where the in-

ferences were based on the observer’s existing action-stimulus association knowledge (Wood-

ward, 1998). Early studies have shown that an infant’s shifts its eye gaze to the target

object before the completion of the movement after establishing the action-stimulus associa-

tion (Woodward, 1998), indicating that the observer retrieving the goal, which is the target

object, is observing unfinished action sequences. This retrieval process can be think of as

a simplest prediction process where the observer can predict the goal and upcoming ac-

tion from matching the observed action sequences to an existing stimulus-action association.

Moreover, infants looked longer when the adults took a new reaching trajectory, indicating

they’ve coded action trajectory with the target objects and was predicting action trajectory

while observing adult’s reaching for a toy.

Other studies also provided evidence for the action predictions. For example, 8 to 9 months

old infants track the adult’s eye gaze and turn their attention to the target where the adults

were attending (Johnson et al., 1998). Eye gaze effect is larger with shorter response time

when the performer’s action is congruent with the target object locations in a context scene

(Perez-Osorio et al., 2015). Also, understanding intentions influences the observer’s eye gaze

tracking. For example, beliefs about another person’s ability to see in turn have strong

top-down effects on gaze processing (Teufel et al., 2010). The observed individual’s eye gaze

has a strong cueing effect on the observer’s attention (Nummenmaa and Calder, 2009) and
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therefore can help the observer use the actor’s eye gaze to locate the target objects and help

observer narrow the actor’s possible end-goals.

1.2.3 Inferences in Action Prediction

While the action prediction output during visuo-motor interaction is the expected sensory

response: motor code (Wolpert and Ghahramani, 2000), prediction during action observation

is perceptual expectation, or the observer’s generated visual prediction to match with the

incoming perceptual input. Prediction from an internal model during action observation is

transforming the internal representation to an external perceptual expectation. In predictive

coding theory, we perceive to confirm our predictions, and perception is about updating the

predictions based on errors (Tamir and Thornton, 2018; Koster-Hale and Saxe, 2013)

Internal models about the world improve our ability to perceive and organize events. In the

case of action perception, internal models include knowledge about the environment and the

people around us (Bach and Schenke, 2017). The most obvious internal models include our

knowledge about the physics of the world, such as gravity and object permanency. This

knowledge is related to how we interact with objects, which is known as affordances, and

will be explained in more detail below.

How do we make predictions from our internal model? First, our internal model about the

world is modeled hierarchically and as a probabilistic mapping between the observed external

behaviors and the hidden internal expectations. The world is experienced as the transitional

probabilities between actions and goals, or analogously our observations of the world and

inferences on other’s mental states (Tamir and Thornton, 2018; Koster-Hale and Saxe, 2013).

Second, we use these probabilistic mappings from our internal knowledge to make behavioral

predictions and test the prediction by observing agent’s action choice. It has been suggested
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that inferring goal from action, and vice versa, can be seen as a Bayesian inference problem

such that we infer the goal from probability (Friston et al., 2011; Baker et al., 2005), which

is proportional to the probability of daily experience of certain outcome associated with a

certain action. For example, we infer familiar actions from an outcome with higher probabil-

ity than rare ones. This is also called associative learning. Monkeys learn to associate goals

with never-seen-before tool actions by observing the experimenters manipulate the tool to

achieve a certain goal (Fogassi et al., 2005).

Finally, actions are predicted hierarchically by breaking down the goals into sub-goals and

eventually predicting the elementary motor acts (Csibra and Gergely, 2007). Whereas some

models propose the causal attribution process to be a strictly hierarchical structure, such

that predicted actions are hierarchically constrained by personal knowledge and then the

current environment (Bach and Tipper, 2007), other models allow direct prediction from

personal knowledge to motor programs Tamir and Thornton (2018). On the other hand,

bothBach and Tipper (2007) and Tamir and Thornton (2018)’s model are organized in a

hierarchical fashion such that predictions can be generated at multiple levels, and people

learn the probabilistic mapping between observed and inferred through statistical learning

(see figure 1.1). Computationally, this has been modeled using observable layer:action, and

hidden layers: state and traits. both observed actions and hidden layers includes expectations

of actions being rational and efficient (Tamir and Thornton, 2018).

One source of knowledge about likely actions and their outcomes comes from the physical

context. Affordance is the action possibilities from the interaction between object properties

and the context, originally defined by Gibson (Gibson, 1979; Sakreida et al., 2016). Affor-

dance reflects our internal models of the physical context and provides us with automatic

action expectation according to the objects and environment’s physical properties.

Another source of knowledge is social in nature and the predictive coding of actions here

is transforming the internal assumptions about the external people and environment into
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Figure 1.1: Hierarchical predictive model. Action is the observable layer. State and Trait
are hidden layers. The arrow indicating probabilistic mapping between two layers. (Tamir
and Thornton, 2018)
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behavioral predictions (Tamir and Thornton, 2018; Bach and Schenke, 2017). Social percep-

tion has been considered as a predictive process (Koster-Hale and Saxe, 2013). We use our

knowledge of social dynamics of other people to predict the actions of other people(Tamir

and Thornton, 2018). One main theory in social cognition, the theory of mind (ToM), has

considered the process of reading someone’s mind as the building of an internal model that

makes causal attributions between actions to intentions (Overwalle, 2009). To consider so-

cial cognition as an active inference, one main assumption is that the actor actively engages

in actions that reflect their goals and intentions (Kelley, 1967). The main function of so-

cial cognition during predictive process is to read the agent’s intention to narrow down the

agent’s possible target objects or planned behavior.

1.3 Action Observation in the brain: The Action Ob-

servation Network (AON)

1.3.1 Neural pathway for action recognition

Studies have identified brain regions recruited during action observation. Action observation

and imitation engage a core action observation network (AON), which includes the bilateral

inferior frontal gyrus (IFG) or BA45, the posterior middle temporal gyrus (pMTG) and

inferior parietal lobule (IPL) (Caspers et al., 2010; Yang et al., 2015). Later, Hafri et al.

(2017) found overlapping regions within AON including bilateral IPL, left premotor cortex

when subjects generalised to action categories irrespective of the low-level feature input and

across different actors, objects, stimuli format, viewpoints, and background.

Biological motion information is mainly processed within STS. Ma et al. (2018) found that

different actions can be discriminated based on the activation patterns within three body
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sensitive regions: EBA and motion sensitive pSTS and hMT+. Giese et al. (2003) intro-

duce a hierarchical neural model for biological motion recognition including one pathway for

body form recognition and one pathway for motion recognition. They are both feed-forward

pathways without any top-down signals. In the ventral form pathway (V1 to V4 to IT to

STS/FA), biological motion is analyzed by sequences of “snapshots” of body shapes. In

the dorsal motion pathway (V1 to MT to STS), biological motion is recognized by ana-

lyzing optic-flow patterns, which are abstract moving patterns of direction and speed of a

group of moving dots. pSTS is also where form and motion features are bound into action

representations of biological motion (Giese et al., 2003).

STS as a social hub

STS, TPJ, and mPFC, the three core regions of ToM network, have been shown in var-

ious studies focusing on individual analysis of social information. TPJ were found to be

the key regions involved in understanding action goals and inferring an actor’s intentions

(Allison et al., 2000; Overwalle and Baetens, 2009). mPFC involved longer social events

(Overwalle, 2009), especially during self versus other-referenced tasks. In fact, mPFC was

part of the network involved in making causal inference from social intentions, as shown in

an computational models (Fleischer et al., 2012).

STS (mostly pSTS) has been shown to respond to different kinds of social features such as

bodies, social interaction, speech comparing to non-social feature (Lahnakoski et al., 2012)

and this effect was also shown in monkey STS neural activity while watching other mon-

key’s interactions (Sliwa and Freiwald, 2017). STS activity was also observed when viewing

abstract shapes interacting (Tavares et al., 2008), as well as when evaluating relationships

between the observed motion and the structure of the surrounding environment (Saxe et al.,

2004). Therefore STS is considered a hub of the social brain.
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STS picks up social cues such as eye, mouth, hands, and body movements and finds the im-

plied motion by others (Allison et al., 2000). Further, STS integrates human movement

perception and represents body parts such as face and limbs with an organized princi-

ple(Grosbras et al., 2012; Weiner and Grill-Spector, 2013). STS also infers intention from

social cues, such as gaze perception (Nummenmaa and Calder, 2009). Single cells in the

superior temporal sulcus (STS) of the macaque brain that are specifically tuned to different

gaze directions have been identified (Perrett et al., 1992).

Expressed emotion elicits response in STS. Bilateral STS BOLD activity increased when

the adult’s expressed emotion that was incongruent with the grasped objects and this effect

was larger over development (Wyk et al., 2012, 2009). Also, right pSTS had a causal role

in recognizing emotion information from biological motion, which is closely related to the

agent’s intentions, in a TMS study (Basil et al., 2017). Studies have also shown that STS is

involved in the visual analysis of the observer’s interpretation of anothers’s actions through

biological-motion cues and facial expression to determine the emotional states of others

(Pelphrey and Morris, 2006; Pelphrey et al., 2011). Lastly, STS was shown in evaluating

interactive stimuli as well as different interactions such as cooperation versus competition

(Walbrin et al., 2018; Isik et al., 2017).

pSTS and fusiform gyrus responded to any cues indicative of animacy, which includes goal-

directed action, facial features, and biological motion (Shultz and McCarthy, 2014). In-

terestingly, these regions responded even without human-like feature but only goal-directed

machine action in sight. Specifically, goal-directed actions activate pSTS and fusiform gyrus

with non-human like machines when the machine either resembles the human or performed

goal-directed action with non-human like motion and form (Shultz and McCarthy, 2012),

indicating that pSTS generalizes across perceptual features instead of faithfully responds to

biological motion.
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1.4 Action Prediction Model: Affordances and Gener-

ative Model

1.4.1 Predictions based on physical inference of objects and envi-

ronment: affordance interacting with context

What is affordance?

The likelihood an action is performed to achieve certain goal can also estimated by teleolog-

ical reasoning (Csibra and Gergely, 2007) such that the observer expects the actions to be

efficient and rational under the current environment (Gergely and Csibra, 2003). Affordance

gives us a specific mechanism for this natural expectation, which provides us the ability to

form action expectations according to the objects and environment’s physical properties.

Affordance matching is evident in children’s action observation. Children around 12 months

old don’t faithfully imitate adult’s action but rather emulate an action to achieve the same

goal only if those motor acts are crucial for achieving the desired goal state (Johnson et al.,

1998; Overwalle, 2009). This is achieved when children match the affordances of the goal

objects with what they observed (Bach et al., 2014).

Affordance was originally defined as an automatic operation within the visual and motor

system in Gibsonian’s view (Gibson, 1979). In this view, encoding and retrieving affordance

didn’t require interpretation of the environment but only retrieving the probabilities of action

acted upon the objects.

However, affordance varies with different contexts instead of as a static property. In this

view, affordance is classified into three kinds: stable, variable, and canonical, depending

on different physical properties of the environment and provides inferences vary in time
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length (Borghi and Riggio, 2009; Sakreida et al., 2016). Stable affordance is the information

about action probabilities from prior knowledge about objects and not changed in a new

environment. An example would be the handle on a coffee cup provides affordance for

two action probabilities: grasping and holding. Object shape guides action selection in the

early action planning phase (Cuijpers et al., 2004) as well as perception of the mass of the

object changes the prior-to-contact grasp kinematics with increased peak grasp aperture and

different finger placement on the objects (Eastough and Edwards, 2007).

Variable affordance, on the other hand, is on-line visual processing of goal-directed object

interaction and varies with context. Action kinematics are different under different context

such as the performer’s intention. One-to-one mapping between sensory stimulus and motor

response therefore cannot capture all the kinematic variations. For example, changing the

prior intentions with Transcranial Magnetic Stimulation (TMS) stimulation results in differ-

ent motor selections (Jacquet et al., 2016). Also, motor sequences are remembered better

with intention-related cue (e.g. music tone) and also better maintain the mental represen-

tation of sensorimotor consequences over long delays (Stöcker and Hoffmann, 2004; Badets

and Osiurak, 2015).

Motor intention affects the action kinematics even when manipulating the same objects. In

other motor control studies, kinematic structure such as fingertip contact points of reach-to-

grasp movements were performed differently according to the performer’s intention of either

to pour from a bottle or to move a bottle (Sartori et al., 2011). Other studies also proved that

actor’s prior intention during action planning influences the hand shaping (Ansuini et al.,

2006) and finger positioning on the object (Ansuini et al., 2008).
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Figure 1.2: Variable and Stable Affordance neural pathway (?)

1.4.2 Neural evidence of affordances interact with context

Retrieve functional knowledge in two streams

How do we retrieve the functional knowledge and infer physical properties from the context?

Tools associated functional actions and achievable goals can be retrieved from seeing a picture

of a tool and the retrieved action is represented in frontoparietal motor regions, while goals

represented in medial temporal gyrus (Chen et al., 2016).

Variable affordance, which is the on-line judgement of an action plan for interacting with an

object, involves F2 and F7 via a dorsal-dorsal pathway through the superior parietal lobule

(SPL) Sakreida et al. (2016) (See Figure 1.2). This neural pathway involves inferring physical

properties and overlaps with brain regions involve action planning and tool use (Sakreida

et al., 2016). On the other hand, stable affordances, which have information about action

probabilities from prior knowledge about either the object or the environment, are involved

in a dorsal-ventral route between visual cortex and F4 and F5 (BA44 in human) (Sakreida

et al., 2016).
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These two pathways are directly related to the two pathways(Binkofski and Buxbaum, 2013)

proposed, which is a bottom-up dorsal dual-route action systems in the human brain for

object-directed hand action. In this action system, one pathway recognizes visual properties

of motor function during online control of ongoing actions in a dorsal-dorsal pathway (V3 to

aIPS to F2/F7), while action understanding happens in ventro-dorsal pathway (MT/MST

to IPL to F5/F4). The ventro-dorsal stream’s function involves space perception and the

recognition of actions made by others.

Two streams interact during object-oriented hand movements. Delayed skilled grasp, a

special case of how functional knowledge guides the action, recruits both dorsal and ventral

streams because it requires both on-line movement control in the dorsal stream as well as

retaining the functional knowledge from visual inputs in the ventral stream (van Polanen

and Davare, 2015).

Afforded actions represented in mirror neurons

Ferrari et al. (2005) found that after training monkeys to have visual experience of watching

tool usage actions, but not having the motor experience to manipulate the tool depicted

in the movie, mirror neurons in their premotor cortex responded to the observation of the

tool after 2 months of training. Interestingly, monkeys’ mirror neurons responded to a non-

executable but effective to achieve the goal action. Also human ventral premotor cortex are

equally activated by possible and impossible actions (Costantini et al., 2005). Therefore,

the mirror neurons are encoding actions that can achieve the end-goal, which in most cases

are afforded action. What’s even more interesting is that monkeys’ mirror neurons do not

respond to actions performed with non-food objects (Gallese et al., 1996). Therefore the

mirror neuron activation is closely related to a desirable end-goal state and not by any

object, which possibly indicates that mirror neurons activate when the observer actively

retrieves the afforded actions.
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Also, when the targeted objects were indicative of the corresponding action, or in other

words, afforded actions were inferred from the target objects, the activations were observed

in mirror neurons in F5 and inferior parietal lobule (IPL) (Jacob and Jeannerod, 2005). In

general, matching the afforded action with the perceived action were proved to be in the

mirror neuron regions (Bach et al., 2014)

Inferring information from context

Iacoboni (2005) indicates that BOLD activation in the right inferior frontal cortex and ventral

premotor cortex (vPMC) were higher when the observer were presented the actions (grasping

a cup) with different context of either to clean up or to drink from a cup. Inferring action

from context during action observation involves STS, TPJ and anterior fronto-median cortex

(Liepelt et al., 2008). Also, inferring physical properties of objects in natural daily scenes

and retrieving relevant knowledge involves bilateral dorsal premotor cortex, SPL, and left

supramarginal gyrus (Fischer et al., 2016).

Conceptual expectation influence physical movement goal processing and the movement

prediction error occurs in IFG and IPL (Ondobaka et al., 2015). If the perceived grip type

(precise or power grip) is incongruent with perceived intentions (i.e., reaching-to-grasp a

mug full of coffee with a precision grip) from the contexts, response patterns in DLPFC and

pMTG are altered differently by CSE stimulation and bias the grip type selection (Amoruso

et al., 2018)

Study looking into the communications between neuron populations using tracing in monkey

provides a strong evidence this information flow in a ventral connection (Nelissen et al., 2011).

They found out that two pathways: one that connects upper STS to ventral premotor

cortex (F5) and one that connects lower STS to AIP to premotor area F5a /b transmit

information about either agent’s intentions or immediate goal (objects) and implied that
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visual information encoded in STS is different according to different end goals and then

forwards to different part of premotor cortex.

1.5 Prediction in the Brain

1.5.1 Predicted action outcome in inferior frontalparietal cortex

I have mentioned above that an action-to-goal is “predicting the likely effect of an ongoing

action” (Csibra and Gergely, 2007) so the observer can infer the action outcome or goal with

visual inputs of the first few kinematics of an action sequence.

Action outcomes from processing visual information during object-oriented action are rep-

resented in the inferior frontal parietal network. BOLD signals in IPL, SPL, IFG, and the

MFG are significantly more active during observing action kinematics toward an action goal

(grasp-to-drink vs grasp-to-pour) that’s unknown to the observer before the action starts.

More importantly, these regions can successfully classify between the two action outcomes

(Koul et al., 2018). When left IFC was being interfered with tDCS, subjects’ performance on

predicting the action outcome (the grasping objects) enhanced when excited and impaired

when inhibited when watching reaching-to-gasped objects action (Avenanti et al., 2017).

Right IFG including BA44 and BA45 is strongly activated when the observer doesn’t know

the communicative intention of the observed hand action (e.g. sign language for “rain”) but

still trying to use the hand action features to understand the action goal (Möttönen et al.,

2016). IFG BOLD activity increases when the subjects answer the differences in action

outcomes, irrespective of whether the subject paid attention to the performer’s intention

or not (de Lange et al., 2008). Also, right IFG, right IPL, and left postcentral sulcus ex-

tending to aIPS responded similarly to the same outcome with different action kinematics

(de C Hamilton and Grafton, 2008). Although there was probably still subtle kinematic
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differences between repeated action kinematics for different action outcomes. Lastly, STS is

sensitive to the action outcome and increase in BOLD signal change when the observer saw

failed action by either human or machine arms(Shultz and McCarthy, 2012).

1.5.2 Irrational Action: action prediction error

So far I have talked about two processes: 1) predicting likely outcomes of actions (cognitive)

and 2) making inferences about intentions (social) but I haven’t talked about evidence for

predicting actions when knowing the actor’s action goal. During action observation, an

agent’s actions are assumed to be efficient and rational. If the observer’s prediction doesn’t

match with what the observer’s perceived action outcome or trajectory, the observer would be

surprised and the perceived action would be categorized as irrational action (at least at first).

In the infant study mentioned above (Woodward, 1998), infants looked longer, indicating

surprise, when watching an adult performing an action with an inefficient reaching trajectory,

indicating they were predicting the action trajectory before the completion of the action.

The top-down signal from other brain regions in which information from the environment is

processed with affordance from physical properties provides an observer with limited action

choices. The observer considered an action as irrational because the perceived actions were

not included in the predicted action choices. In this section, I am going to first look at

studies on irrational actions and the brain regions that respond to these irrational actions.

Then I will further look at how irrational actions are an important direction to test the

prediction models.

mPFC, pSTS or MTG, and IFG were found to be the brain regions that responded to

irrational actions. Specifically, observing reaching actions over barriers violating the efficient

and rational action assumptions increased response in MTG (Jastorff et al., 2011). Inefficient

ball movement animations evoked responses in the observer’s pSTS (Deen and Saxe, 2012).
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Observing inefficient human ball manipulation over a barrier evoked response in aIPS and

after observing the action, the subject’s rationality judgment correlate with response in

mPFC (Marsh et al., 2014). When observing an irrational action movie, in which a whole

body avatar is moving towards a barrier and the avatar is either performing an unnecessary

action or not adjusting the action path over a barrier opening, right supramarginal gyrus,

pSTS, and ventral to MTG, lateral occipital cortex increased in BOLD activity (Shultz and

McCarthy, 2014).

When watching irrational hand-object movements, IFG and IPL activity increases during

incongruent movements with the movement goal, such as the movement goal is to smell but

the movement is to move the object to the ears (Ondobaka et al., 2015). Also, observing

another person grasping the cup to drink using an inefficient power grip is associated with

increased response in lateral occipitotemporal cortex and outstanding goal: moving the cup

to ear is associated with increased activation in IFG (de Lange et al., 2008). Lastly, if the

perceived grip type (precise or power grip) was incongruent with perceived intentions from

the contexts (to drink or to clean), response patterns in DLPFC and pMTG were altered

differently by CSE stimulation and bias the grip type selection (Amoruso et al., 2018).

Also, observing actions violated the biological assumptions evoked activation in frontal-

parietal temporal cortex. Viewing human performers acting robot-like movements evoked

response in bilateral aIPS and left EBA (Saygin et al., 2012; Urgen and Saygin, 2020).

Watching stick-figures perform actions at reduced versus normal gravity is associated with

general OTC, TPJ, and insula (Maffei et al., 2015).

Brain regions (mPFC, pSTS, IFG, and aIPS) responding to irrational action are the regions

overlapping between ToM network, which were hypothesized to be involved in long-term

traits and social inference, and the mirror neuron network, which involves evaluating kine-

matic properties of the target (Rizzolatti and Craighero, 2004). These regions are also where

the top-down signal generated predictions from internal knowledge evaluated with sensory
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inputs, as shown from irrational action studies above, and the sensory inputs here are the per-

ceived action kinematics and outcomes. Understanding irrational action is the step between

basic action understanding and theory of mind (Csibra and Gergely, 2007). Irrational action

study findings reflect this by showing the brain regions involved in irrational action stimuli

engaged both AON and ToM network. In support to this claim, Marsh et al. (2014) found

that mPFC, right IFG, right IPL extending to TPJ, middle occipital gyrus, hippocampus

and cingulate were modulated by action rationality.

The encoded prediction error’s functional role: update internal model and this

updating shows up as the interaction between AON and MZN

The predictive models mentioned above have also tried to incorporate the findings from

irrational action (Koster-Hale and Saxe, 2013; Bach and Schenke, 2017). Action is the

predictive model’s output and testable layer. People use the probabilistic mapping from their

internal knowledge to make behavioral predictions and test their predictions by observing

agent’s action choices. If we consider the increased BOLD activity to irrational action as

an activity signaling prediction error, then we can consider how we process irrational action

as a test for our prediction compared with perceived input. Specifically, Koster-Hale and

Saxe (2013) indicated that the increase in neural responses coded the difference between

the expected stimulus value and the perceived stimuli value, which is revealed through the

difference between expected action outcome and the perceived actual outcome. Further,

Koster-Hale and Saxe (2013) hypothesized that there are two groups of neurons, where

one encoded expectation or prediction and the other one encoded prediction error, and the

relative activation from these two groups of neuron reflects in the BOLD activity. Therefore,

BOLD activity decreased in pSTS when the observer was presented with the same action

outcome (Hamilton and Grafton, 2006; Jastorff et al., 2011) and increased when the observer

perceived irrational actions (Deen and Saxe, 2012; Wyk et al., 2009).
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The prediction errors are further used in these models to revise the internal model (Bach and

Schenke, 2017; Tamir and Thornton, 2018; Amoruso et al., 2018). Bach and Schenke (2017)

proposed a hierarchical model which includes multiple levels; predictions are generated into

a lower level for forthcoming movements, prediction errors occurs when the incoming sensory

stimulation mismatches with the predictions. The model updates in a bottom-up fashion

with the error backpropagating to the upper level in closest proximity and updating the upper

level to minimize the prediction errors (Bach et al., 2014). For example, the prediction errors

from pSTS could be further used to update a situation model, assumed to be in TPJ, and

try to fit a new environment or new goal to re-evaluate the action fit to the environment

first before updating the highest personal knowledge model.

The most likely actions are then selected from the one that minimizes the prediction errors

at all hierarchical levels of action presentation (Kilner and Frith, 2007). In (Kilner, 2011)’s

top-down generative model, the errors were compared at pSTS with the selected mostly

likely action sequences from BA44. TMS study found that AON predicts the concrete levels

of action representations (motor commands and perceptual expectation) while DLPFC was

shown to bias action selection through top-down signal bias (Amoruso et al., 2018).

1.6 Conclusion and specific aims of the current work

By examining action observation as a predictive process within the action observation net-

work, which encompasses brain regions such as the IFG, pSTS, and IPL, and dissecting the

generative model through which observers anticipate action outcomes, our study reveals a

significant indirect connection supported by a body of evidence. This sets the stage for a

more comprehensive analysis of the neural mechanisms involved in the prediction of actions

within the brain.
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Here I will investigate the pSTS, IFG, and IPL’s functional and statistical structure using

the following approaches: To evaluate the coupling between regions of the AON while the

observers are attending to different aspects of action, I will measure how the functional con-

nectivity changes depending on the observer’s cognitive state. Second, to evaluate whether

sensory encoding and representation are altered by prediction of the upcoming visual inputs,

I will create an anticipation of a specific action by cueing the observer, then evaluating in-

formation in the anticipatory interval and stimulus encoding interval separately. Lastly, to

evaluate the hypothesis that prediction differentially strengthens cognitive networks prior to

perceptual brain regions, I will evaluate how directed shifts in effective connectivity are mod-

ulated by the attentive goals of the observer (action kinematics or spatial goal). Findings

in my dissertation will pave the way to develop a better framework for action

processing within AON by including neural mechanisms at different action ob-

servation stages and also at the observer’s different cognitive states.
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Chapter 2

Configuration of the Action

Observation Network Depends on the

Goals of the Observer

1.Introduction

The action observation network (AON) is a large-scale brain network that supports the

perceptual encoding and recognition of actions performed by others (Molenberghs et al.,

2012). Classically characterized as a frontoparietal system specialized for understanding

goal-directed hand actions (Rizzolatti and Matelli, 2003), the complete AON more broadly

supports our ability to represent many types of actions, to predict the likely outcome of

goal-directed actions, and to make inferences as to the goals of others as derived through

that individual’s body movements (Thompson et al., 2019).

Despite the long history implicating the action observation network in action understanding,

the nature of information and connectivity structure within the system is not yet fully clear.
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When observing actions, there are multiple levels of abstraction at which the events can

be represented, from the perceived kinematics to predicted outcomes of the actions or the

hidden intentional state of the observer (Bach and Schenke, 2017; Thompson et al., 2019).

Each of these is linked to distinct nodes within the AON. For example, empirical studies

find evidence for mid-level representations in the left anterior intraparietal sulcus (aIPS) and

inferior frontal cortex (IFC), such as the identification of unique action goals (de C Hamilton

and Grafton, 2008), predicting the likely outcomes of actions (Koul et al., 2018; Möttönen

et al., 2016), and representing violations of anticipated outcomes (de Lange et al., 2008;

Shultz et al., 2011). In contrast, the posterior superior temporal sulcus (pSTS) is proposed

to host lower-level representations that are more perceptually grounded (Masson and Isik,

2021; Pavlova, 2012; Pitcher and Ungerleider, 2021). The pSTS has neural signals that

differentiate different action categories (Kable and Chatterjee, 2006), is viewpoint invariant

(Grossman et al., 2010) and has activation patterns that are qualitatively modulated by the

goals of the observer (Tavares et al., 2008). It is important to note that this distinction

between abstracted and perceptual representations is not fully dichotomous, as previous

studies have also proposed the pSTS to also contribute to representing the hidden states of

others (Pelphrey et al., 2004; Schultz et al., 2004; Osaka et al., 2012).

Given the many possible levels at which actions can be interpreted, an important consid-

eration in characterizing the AON includes the cognitive demands of the task (Kemmerer,

2021; Bach and Schenke, 2017; Vallacher and Wegner, 1987). Evaluating an action with the

focus on how it is being achieved (the kinematics or implementation) versus why that action

is being performed (the intent) alters patterns of brain activation in the AON and lateral

temporal cortex (Spunt et al., 2010, 2016). Whereas evaluating how an action may be imple-

mented strongly activates premotor (PMC), posterior parietal cortex and the left posterior

middle temporal gyrus (pMTG), evaluating intent engages a more right lateralized system

(Overwalle and Baetens, 2009). Moreover, when observers make a deliberate cognitive shift

in the level of abstraction (i.e. from the more concrete how towards the more abstract why),
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this shift in cognitive representation is reflected in the BOLD amplitude of the bilateral

anterior STS (Spunt et al., 2016). Even shifting focus from the more social and intentional

aspects of an action to the spatial properties of the event alters the patterns of activation

along the STS (Tavares et al., 2008). These findings highlight the importance of cognitive

context in action understanding and extend the AON to include brain systems supporting

conceptual and semantic cognitive processes and form the basis for a proposed lateral stream

in action understanding (Wurm and Caramazza, 2021; Pitcher and Ungerleider, 2021).

Therefore one goal of this study is to characterize functional connectivity within the AON

during action observation, and evaluate how connectivity changes in conjunction with the

goals of the observer. In a previous study using multivariate pattern decoding we found

that whole-body actions were decoded more accurately in the right pSTS when attending to

body kinematics (how an action is achieved) versus the actor’s identity (who is performing

the action) or the goals (where are the target objects) (Stehr et al., 2021). Under those

same attentional conditions, connectivity was strengthened between the right pSTS and the

right inferior frontal cortex (IFC). We interpreted these findings as evidence for a sharpening

of perceptual representations in sensory cortex mediated by top-down signals derived from

internal models constructed in prefrontal cortex (Geng and Vossel, 2013; Sokolov et al., 2018;

Patel et al., 2019; Kilner and Frith, 2007). The current study seeks to identify at a more

granular level those regions within the IFC and also AON, including extended connected

regions of the lateral temporal lobe that are modulated by shifting attention between the

kinematics (the ”how”) or goals (the ”why) during action recognition (Spunt et al., 2010).

A secondary goal of this study is to more carefully characterize the functional systems modu-

lated by top-down goals of the participant during action observation. The IFC is a function-

ally heterogeneous region, with a gradient of specialization throughout as revealed through

a meta-analysis across task domains (Hartwigsen et al., 2018). While the more dorsal and

anterior aspects of the IFC are more strongly engaged during cognitive tasks, posterior as-
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pects are more closely related to somatomotor networks, and ventral aspects are more closely

driven by social cognitive and emotional processing. With specific regards to action recog-

nition, evidence shows the more concrete aspects of actions (i.e. how an action is achieved

as conveyed through body kinematics) are represented on the more posterior IFC, whereas

action goals (i.e. why an action is being executed) are associated with the more anterior

extent (Kilner, 2011). Likewise, posterior parietal cortex has distinct hubs within which

concrete somatomotor representations are different from the semantic and executive systems

(Nummenmaa and Calder, 2009). Gradients of abstraction in the AON may reflect distinct

targets of information pathways specialized for online visuomotor representations of actions

versus the more durable ventral conceptual pathway (Rizzolatti and Matelli, 2003; Buxbaum

and Kalénine, 2010; Binkofski and Buxbaum, 2013; Wurm et al., 2016).

Moreover, a large-scale effort is underway to reduce the complexity of brain networks to a

small set of core functional networks that account for a significant proportion of the variance

in brain states, as assessed in the resting state and often applied as network labels during

task-related fMRI (Yeo et al., 2011; Schaefer et al., 2018; Kong et al., 2021). Using this

approach, previous studies have identified dominant functional systems and topographic or-

ganizations within the inferior frontal cortex and posterior parietal lobe (Hartwigsen et al.,

2018; Numssen et al., 2021). In this analysis we therefore adopt an atlas parcellation scheme

that subdivides large regions of interest in the AON into small atomic parcels, assign func-

tional networks labels to those parcels labels according to standardized functional network

organization and draw inferences as to the larger functional systems that are modulated

during goal-direction action observation.
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2. Methods and Materials

2.1 Participants

Twenty-four healthy adults (8 male, 17 female) ranging in age from 21 to 42 years old

(mean=24.7, SD=3.6) with normal or correct-to-normal vision were recruited from the Uni-

versity of California, Irvine campus and surrounding community. All participants gave writ-

ten informed consent and all experimental procedures were approved by the University of

California, Irvine Institutional Review Board. One participant was excluded from the anal-

ysis due to excessive motion during scanning.

2.2 Image Acquisition and Preprocessing

Full details on image acquisition and preprocessing can be obtained in Stehr et al. (2021).

Briefly, images were acquired on a 3 Tesla Siemens Prisma MRI scanner (Siemens Medical So-

lutions) equipped with a 32-channel receive-only phased array head coil. T1-weighted images

(1x1x1 mm) were reconstructed into native surface-based representations using FreeSurfer’s

recon-all algorithm (http://surfer.nmr.mgh.harvard.edu/). Functional images were ac-

quired with in-plane resolution = 2x2x2 mm (no gap) using multiband (multiband accel-

ration factor = 4), interleaved slice acquisition. Functional scans designed to localize the

pSTS were acquired with TR = 2000 ms (69 axial slices) and scans designed to capture

task-related modulations in functional connectivity were acquired with TR = 1500 ms (68

axial slices). Functional images were slice-time corrected, 3D motion corrected, temporally

high-pass filtered (.01Hz cutoff) and field-map distortion corrected in BrainVoyager 20.6

(Brain Innovations, Inc.).
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2.3 Stimuli and Experiment

Participants viewed 3 sec action animations depicting one of two avatars (a boy or a man)

approaching a shelf, then crouching down or jumping up to reach a target box (Figure 2.1).

The vignettes were viewed under one of three task instructions: attend to the actor’s actions,

attend to the actor’s goal or attend to the actor’s identity. Each vignette was constructed

from 10 viewing angles, ranging from 80 degrees (left) to 280 degrees (right), with a 20-degree

increment. The duration of the cue was 1s, followed by a 0.5 sec blank interval between cue

and stimuli onset, with a 2.5 sec response period after the movie encoding.

Crouching

Jumping

Attention Cue Blank

Action Vignettes

Response

0.5s

3s

2.5s1s

Figure 2.1: Schematic of trial sequence. Participants were cued as to which aspect of the
vignette to attend (attend to action, goal or identity). The three second vignette depicted an
open room as an avatar approaches a shelf, directs their gaze to one of the two boxes, then
either jumps or crouches to retrieve an object. Participants were prompted to discriminate
the action (jump or crouch), the goal (the box positioned high or low) or the actor (man or
boy) in accordance with the attention cue.

Trials were separated by a 3, 4.5 or 6-s ITI, pseudorandomized within each run such that the

hemodynamic response associated with each trial could be estimated independently using

the least sum of squares (LSS) modeling approach (Mumford et al., 2012; Turner et al.,

2012). Participants completed 24 trials per scan, with eight trials per attention condition

per scan, and a total of eight scans.
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2.4 Regions of Interest

The right pSTS region of interest (ROI) served as the seed for functional connectivity

analysis because of its importance as the perceptual hub for the AON and the ease with which

it can be identified using independent localizers (Pitcher and Ungerleider, 2021; Iacoboni

et al., 2001; Grossman et al., 2010). In separate scans, observers viewed 18 sec blocks of

point-light biological motion animations (1 sec each with .5 sec intertrial interval), alternating

with 18 sec blocks of motion-matched control animations. The pSTS was identified as the

region on the superior temporal sulcus with a significantly stronger BOLD response (FDR,

q < 0.005) for intact vs scrambled biological motion, identified using a group-level random-

effects GLM (Figure 2.2a).

IFC, PPC and STS+ were identified using a data-driven approach as the vertices on each

subject’s surface that were functionally connected to the seed right hemisphere pSTS during

observation of the action vigenettes (all attention conditions). Connectivity was computed

with the beta-series method (described below) using all trials unlabeled for the attention

condition, derived from functional data that was projected onto the smooth white matter

surface in native subject space. The individual subject functional connectivity maps were

Fisher r-z transformed then projected into a common standardized vertex space, constructed

using group cortex-based alignment in BrainVoyager (Frost and Goebel, 2012). The group t-

score maps were thresholded at an uncorrected p > 0.05 with z > 1.96, which was deliberately

conservative to be inclusive of all possible connected vertices on the surface.

The group functional connectivity map was then subjected to dimensional reduction into re-

gions of interest using the 360 atom Glasser atlas parcellation, which specifies labels for Brod-

mann’s areas 44, 45, 45b, and 47 in the IFC (Glasser et al., 2016) (Figure 2.2b). The atlas was

applied to native surfaces using Freesurfer’s mris ca label then imported into BrainVoyager

using custom library tools (https://github.com/tarrlab/Freesurfer-to-BrainVoyager), which
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allowed custom selection of the native functional volumes within the atlas parcels. Addition-

ally, atlas parcels in posterior parietal cortex (PPC), inferior frontal, or lateral and anterior

temporal cortex (combined within an STS+ ROI) were included if they contained vertices

with significant functional connectivity to the pSTS. To avoid any potential bias derived

from the alignment procedure, the overlap between functional connectivity maps and the

atlas parcellation was conducted on a template pilot subject that was not included in any

subsequent analysis.

c) 

b) 

trial 1 

trial 2

... ...

IFG ROI

pSTS ROI

a) 

x
Beta Estimates

Correlation Coefficients

Glasser et al. 2017 Schaefer et al. 2018

Identity

Goal

Action

Attend to:

pSTS

Figure 2.2: Defining ROI and Connectivity Method. a) The pSTS is identified using an
independent localizer and a mixed effects model that treated individual subjects as random
effects. The GLM analysis was conducted on vertices in a cortex-based aligned surface
space. b) Functional connectivity to the seed identified large regions of interest, each of
which was further divided into smaller parcels as defined by Glasser et al. (2016). Functional
systems labels for each parcel were defined using the modal network system as defined by
Schaefer et al. (2018). The 17 networks in that classification were combined into eight for
simpler interpretation (i.e. the dorsal attention A and B were combined into a single dorsal
attention). c) Functional connectivity between two parcels was calculated using the beta-
series approach in which the connectivity was computed as the correlation (circles) between
the timeseries of trialwise beta estimates (rectangles). Regions of interest used this approach
with trials unlabeled by task condition. The main connectivity analysis further split the trials
into unique types based on the task labels.
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2.5 Functional Connectivity Analysis

Functional connectivity was conducted using the beta-series method (Rissman et al., 2004)

which derives trial-based estimates of BOLD activity across the duration of the scan and

is particularly robust when applied in event-related designs with short ITI and stimulus

duration, as in the current study (Cisler et al., 2014). Trial estimates of neural activity were

calculated using least sum of squares (LSS) design (Mumford et al., 2012; Turner et al.,

2012) with all functional scans z-scored and concatenated. Trialwise beta estimates were

computed using a fixed effects general linear model that iteratively modeled the predicted

neural activity for one trial (a boxcar function for the 3 sec duration of movie watching

for that trial, convolved with a hemodynamic response function). The design matrix also

captured the predicted brain response for all other trials using a single regressor modeling the

expected BOLD response for all the other trials except for the current trial being modeled.

The design matrix also included the following nuisance regressors: all six rigid body motion

realignment parameters and their Volterra expansion, and global signal as measured from

the white matter and ventricles. Trials that contained volumes with instantaneous motion

(FD) greater than 0.4 mm were censored (Power et al., 2014).

Functional connectivity between regions of interest were correlations computed at the parcel

level separately for three conditions: attending to action, attending to goal and attending to

identity (the baseline condition in which attention is directed away from the action features).

Correlations were computed between the beta-series of any two parcels (Figure 2.2c), within

each subject. The task-specific correlations were then Fisher r-z transformed and a pairwise

t-test at the group level tested for significant differences in parcel-parcel connectivity as

function of task.
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2.5 Functional Network Assignment

Functional network assignment was achieved using the 17-network atlas labels (Yeo et al.,

2011), which we consolidated to 8 networks (i.e. Default A, B, C combined into one network:

Default). Note that there is no direct mapping between these labels and the Glasser et al.

(2016) atlas. We therefore parcelled each native anatomy using the 1000 atom Schaefer

system (Schaefer et al., 2018), which yields a high resolution parcellation with the associated

functional system labels (Figure 2.2b). Because there are unique boundaries and vertex

assignments between the Glasser et al. (2016) and Schaefer et al. (2018) atlases, functional

labels were assigned based on the majority network within each parcel computed using

custom scripts in Matlab R2017 (Mathworks, Inc.). Additionally, any parcel without a

majority network accounting for 60% or more of the vertices was identified as a “multi”

system parcel. See Hartwigsen et al. (2018) and Numssen et al. (2021) for a similar data-

driven approach.

3. Results

3.1 Functional Connectivity to right pSTS seed

The right pSTS, which has been identified as a proposed input for the AON (Iacoboni et al.,

2001), represents the transition from low-level sensory to higher-level cognitive representa-

tions (Pitcher and Ungerleider, 2021; Patel et al., 2019) and has the advantage of being

easily identified using independent functional localizers (Grossman et al., 2010). We there-

fore localized the right pSTS using independent scans and identified additional regions of the

AON using beta-series functional connectivity method with the right pSTS as a seed. This

approach revealed three large bilateral regions of cortex with significant connectivity to the
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pSTS during all task manipulations: 1) the inferior frontal cortex (IFC), 2) a region on the

lateral and anterior STS (STS+) and 3) the posterior parietal cortex (PPC) (Figure 2.3).

Because the regions of interest are large and likely reflect many unique cognitive processes

within, we subdivided each ROI into smaller anatomical parcels based on a template atlas

applied to individual subjects. In summary, there were 23 IFC parcels, 14 STS+ parcels and

6 PPC parcels identified in each hemisphere.

IFC

pSTS

PPC

STS+

pSTS

Figure 2.3: ROI Identification. Left: Group-level maps of functional connectivity (z
>= 1.96, p < 0.05 uncorrected) of the whole brain using the right pSTS (purple) as a
seed. All trials regardless of attention manipulation were included in this analysis, which
served to localize large regions of interest that were further subdivided into parcels. Right:
Connectivity maps divided into regions of interest: inferior frontal cortex (IFC), posterior
parietal cortex (PPC) and lateral and anterior superior temporal sulcus (STS+).

We found that many of the parcel connectivity strengths within the AON were modulated

by the observer’s task such that connectivity was strengthened when attending to actions

as compared to the other tasks (Figure 2.4, red bars). A binomial exact test comparing

the functional connectivity to the pSTS when attending to action versus identity revealed

significantly more parcels with stronger connectivity in the IFC (p < 0.001) and the STS+

(p = 0.02), but no significant modulations in functional connectivity between the pSTS and

parietal cortex (p = .51). The comparison of attending to goal versus identity did not result

in consistently modulated connectivity in any of the ROIs (binomial exact test, p > 0.05 for

all)(Figure 2.4, blue bars).

Similarly, in a direct comparison of attending to the action (the how) versus the goal (the

why), we found the vast majority of parcels in the IFC and the lateral and anterior STS
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Figure 2.4: Modulation of Connectivity from pSTS between pairs of tasks (attend
to action, goals or identity) in the pSTS (the seed ROI) and the other ROIs.
Each bar indicates the magnitude of the difference in functional connectivity strength in
a single parcel, computed across participants using the pair of conditions as indicated on
the left. Right and left sides of each polar plot indicate connectivity to the right and left
hemisphere pSTS, respectively. Top and bottom quadrants in each polar plot specify left and
right hemispheres of the target ROIs. Top row: Attending to action (red) vs identity (gray).
Middle row: attending to actions (red) versus goals (blue). Bottom row: attending to goals
(blue) versus identity (gray) of the actors. Dashed line indicates the statistical significance
threshold (p < 0.05).
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increased connectivity to the pSTS when the participant attended to the agent’s actions

as compared to the agent’s goals (binomial exact test, IFC: p < 0.001; STS+: p < 0.05;

Figure 2.4, middle row). Those parcels with significant modulations in connectivity (t >

1.71, p < 0.05) were most frequently found between the right pSTS and right IFC (Bottom

right quadrants of the polar plot). All but one parcel in the STS+ (right A4) that reached

significance were more strongly connected when attending to actions as compared to goals.

3.2 Functional Systems connected to the pSTS

The IFC and STS+ are large ROIs that can be subdivided into many parcels and exhibit a

wide range of functional heterogeneity (Hartwigsen et al., 2018). Therefore to gain deeper

insights into these more complex functional regions of interest, we further characterized the

parcels exhibiting modulated connectivity using the functional system labels as assigned by

the updated Yeo et al. (2011) functional network system (Schaefer et al., 2018).

Among those parcels with significantly modulated functional connectivity between the pSTS

and IFC (shown in Figure 2.5a), the dominant functional networks engaged were executive

systems, including the frontal-parietal control network, the ventral attention network and

the default mode network (Figure 2.5b). The parcels with connectivity between the pSTS

and STS+ that were modulated by the task were more diverse, and included fronto-parietal

control networks, the default mode network, somatomotor and limbic systems.

3.3 Functional Connectivity between the IFC, PPC and STS+

In addition to examining the connectivity to the seed pSTS, we extended our investigation

to explore the modulated connectivity between IFC and PPC, as well as the lateral temporal

STS+. Notably, these regions are characterized by large ROIs that can be subdivided into
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Figure 2.5: Functional Network of the Modulated Connectivity. Panel a) IFC and
STS+ parcels with significant modulation in the strength of functional connectivity when
attending to actions versus goals. Panel b) The magnitude of functional connectivity mod-
ulation (as shown in Figure 2.4), colored by functional network assignment as derived from
Schaefer et al. (2018). Bars with solid border have magnitude indicating stronger connec-
tivity during actions versus goals. Bars with dashed borders indicates parcels with strong
connectivity during goals as compared to actions.

many parcels, and exhibit a much wide range of functional heterogeneity as compared to

pSTS (Hartwigsen et al., 2018; Numssen et al., 2021).

To assess the modulated functional connectivity between each parcel from the ROI pairs,

we calculated and organized the connectivity results according to the functional system.

Figure 2.6 shows the connectivity modulations between the parcels in the IFC and the

STS+ and PPC. Among those many parcels, connections that were modulated by attention

(action identification greater than goal inferences) were dominated by the executive fronto-

parietal control network and ventral attention system in the IFC and right PPC, with some

engagement of the temporal parietal network and default mode networks in the STS+.

Modulated connectivity between these regions was strongly bilateral in the IFC, but more

right lateralized in the STS+ when attending to actions.
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Figure 2.6: Chordgram showing the functional system engaged between IFC,
STS+, and PPC ROIs when subjects attend to actions more than goals (left) and attend
to goals more than actions (right). Each strand represents the proportion of connections be-
tween two functional networks that are significantly modulated (p < 0.1) by the attentional
instruction. In each of the chordgram, colors of the strand represent the functional network
as assigned from the IFC (shown on the bottom ring). Target strands are ordered as STS+
(central) to PPC (peripheral).

3.4 The univariate BOLD response

To determine whether the increase in functional connectivity observed during action obser-

vation reflects strengthening of connections within the AON or the recruitment of additional

neural populations for that task, we also evaluated the univariate response modulations

for each of the parcels in our regions of interest, relative to a mean MR signal baseline

(Figure 2.7). We found the BOLD responses in three of the regions of interest to have am-

plitudes that differed when attending to goals versus actions, with all three more strongly

activated by goals (right PPC: t = 3.06, p < 0.01; left PPC: t = 1.84, p < 0.05; right IFC:

t = 2.19, p < 0.05). It is worth noting that although univariate response in right IFC is

significantly stronger during goal inference comparing to action, this difference is mainly

driven by two parcels out of 23 parcels, while the univariate response in parietal cortex is

more consistent throughout the ROI (See Figure 2.8). There was no effect of task on the

univariate BOLD in the left IFC, bilateral pSTS or STS+.
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Figure 2.7: Univariate Analysis Results. Univariate response modulation within each
region of interest, all parcels combined. The BOLD modulation is computed as the dif-
ference in beta amplitude on trials with attention directed to goals versus action, and vice
versa. Amplitude above zero indicates a stronger BOLD response for trials with attention di-
rected to the goals versus actions in the vignettes. Scores below zero scores indicate stronger
BOLD when attending to actions (versus goals). Each bar reflects the average ROI univari-
ate response across all subjects and parcels within the ROI. Lighter colored bars show the
univariate response in the left hemisphere and the darker colored bars show the BOLD re-
sponse in the right hemisphere. Asterisks (*) indicated significant modulation of the BOLD
response by the attention condition (in the bilateral PPC and right IFC ROIs).

Table 2.1: Univariate results table showing the repeated measures t test tat compares the
average BOLD response between the two attention tasks. A: action, G: goal, I: identity.

A > G G > I A > I
Hemisphere ROI p-value t p-value t p-value t
LH STS+ 0.13 -1.16 <0.01 * -3.61 <0.01 * -5.86

IFC 0.07 -1.5 0.96 1.88 0.80 0.842
PPC 0.04 * -1.84 1 4.01 1.00 2.93
pSTS 0.45 -0.12 <0.01 * -3.66 <0.01 * -3.81

RH STS+ 0.24 -0.709 <0.01 * -6.34 <0.01 * -6.6
IFC 0.02 * -2.19 0.38 -0.317 0.03 * -2.02
PPC <0.01 * -3.06 0.92 1.44 0.174 -0.959
pSTS 0.21 -0.83 0.90 1.29 0.727 0.612

4. Discussion

The goal of this study was to characterize how connectivity within the action observation

network changes depending on the cognitive goals of the observer. We identified three large

regions of interest, all functionally connected to the pSTS during action observation: the
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Figure 2.8: Univariate response results in PPC, IFC and STS+ ROI. each bar represent one
parcel and the color indicates whether the response is stronger for action(red) or goal(blue).

IFC, PPC and STS+. The PPC and IFC are core components of the action observation

network commonly also identified as having mirror neuron properties (Caspers et al., 2010).

The lateral temporal lobe, which is included as part of STS+ in our current study, is not

traditionally considered part of the AON. However, the lateral STS is associated with in-

creasing levels of abstraction in action understanding (Spunt et al., 2016) and narrative

understanding in context of naturalistic viewing, both of which are relevant to this study.

The lateral STS+ is included in recent proposals of a conceptually-driven lateral pathway

in the temporal lobe supporting semantic knowledge for action understanding, most appar-

ent when actions are directed towards manipulating objects (Pitcher and Ungerleider, 2021;

Wurm and Caramazza, 2021; Buxbaum and Kalénine, 2010).

We found that connectivity within this extended AON was modulated by the cognitive state

of the observer, consistent with our previous report of sharpened representations in the

pSTS when attending to kinematics (Stehr et al., 2021). The present results found that the

majority of the parcels within these large regions of interest were more strongly connected

when attention was directed to how the action was being accomplished (action kinematics)

versus why the action was taken (actor’s goal). These modulated connections between pSTS

and the IFC and STS+ largely reflected the engagement of default mode network (DMN)

and frontoparietal control networks, emphasizing the importance coordinated activity of the
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AON with executive systems to support the observer’s goals.

We do not interpret our results as evidence for more neural engagement during the dif-

ferent attention conditions. Stronger connectivity to the pSTS was true despite no task-

related univariate modulations in the pSTS, left IFC or STS+. Only the IPL and right IFC

had univariate activations modulated by task, and in both cases these regions were more

strongly activated by attention directed to goals (consistent with Hamilton and Grafton,

2006; de C Hamilton and Grafton, 2008). This finding highlights how coactivation and con-

nectivity reflect two unique mechanisms of engagement, with the former reflecting robustness

of the neural response and the latter reflecting coordinated network activity (Bressler and

Menon, 2010). Attending to actions strengthens subpathways within the AON that target

the pSTS and relevant executive control networks, and this connectivity is independent from

the size of the neural population localized to each region of interest (as assessed by the uni-

variate BOLD). Together our findings demonstrate that the cognitive state of the observer

is a powerful modulator of the functional architecture of the action observation network.

In the brain, the AON is closely associated with sensorimotor neurons in premotor cortex

(PMC) and the anterior intraparietal sulcus (aIPS), both implicated in observing reaching

and grasping movements. The AON also includes neurons in the inferior frontal cortex

that represent action concepts and goals (Grafton and Tipper, 2012; Orban et al., 2021;

Molenberghs et al., 2012; Cook et al., 2014). In addition, the AON includes brain regions that

support the recognition of non-grasping effectors (i.e. faces and whole bodies) and actions

that are intransitive (i.e. not directed towards objects), which includes the anterior region

IFC and dorsal region IPL, in addition to the posterior superior temporal sulcus (pSTS) and

the posterior middle temporal gyrus (pMTG)(Caspers et al., 2010; Overwalle, 2009). These

more posterior regions lack motor properties and instead have neural populations tuned

to body and face kinematics (Pitcher and Ungerleider, 2021) and, in the left hemisphere,

represent conceptual action information that generalizes broadly across stimulus formats
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(Wurm and Caramazza, 2021). These more perceptual and conceptual representations are

proposed to serve as input to the frontoparietal systems such that they facilitate action

prediction, recognition and understanding (Rizzolatti et al., 2014; Iacoboni, 2005; Cook

et al., 2014).

Here we find that the regions of the IFC more closely linked to action observation are

parcels in the fronto-parietal, ventral attention networks and the default mode networks.

Rather than motor function, we infer our results to reflect the coactivation of the AON with

cognitive-executive functions of the IFC, perhapse serving as a controller for binding relevant

subnetworks within AON (Spreng et al., 2010). The nature of the connectivity depends on the

subject’s goals and therefore the attended features during the action vignettes, which implies

that the coordination of the systems promotes binding of information across established

representations (Cole et al., 2013).

Our findings are consistent with the proposed dual pathway models of the action observation

system (Rizzolatti and Matelli, 2003; Buxbaum and Kalénine, 2010; Wurm and Caramazza,

2021). In these models, online visuomotor transformations are supported by a dorso-dorsal

pathway that is distinct from knowledge-based representations of actions, objects and their

affordances. The ventral “conceptual” pathway for action understanding is linked to semantic

and conceptual knowledge representations (Binder and Desai, 2011), relating that conceptual

knowledge to object affordances (Wurm and Caramazza, 2021), and to social communication

more generally (Pitcher and Ungerleider, 2021). In the current study, we found the ventral

conceptual pathway to be more strongly engaged by directing attention on the kinematics

of the observed actions rather than attending to the actor’s goals in the vignettes.

One important distinction between the proposed models of conceptual action pathways and

the results obtained here is in the difference in laterality. While in our current study we

found modulated pathways more strongly in the right hemisphere, in dual pathway models

the ventral pathway is hypothesized to be left lateralized. For example, the left aIPS is
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proposed to serve as a hub for integrating visuomotor and object affordance information

when observing hand-object interactions (Orban et al., 2021). Similarly, the left posterior

temporal cortex is linked to action representations that generalize across verbal and visual

modalities, particularly in the context of grasping actions directed towards tools (Wurm and

Caramazza, 2019). In contrast, the results from this study using whole-body action vignettes

is more consistent with findings of right-lateralized activation in the pSTS when observing

animations of bodies in action versus left-lateralized when reading action verbs (Bedny et al.,

2008).

The lateral STS is not typically considered part of the canonical AON, and so we believe

that there is an importance of a naturalistic context in our findings. Action animations

viewed in more naturalistic settings, such as during movie watching or while listening (or

reading) a narrative, are associated with bilateral activation on the lateral STS (for review,

see Jääskeläinen et al., 2021). These brain regions are also among those characterized by

neural populations with long temporal integration windows such that the information repre-

sented within reflects the accumulation of context extracted over long durations rather than

moment-to-moment changes within a scene (Hasson et al., 2008; Chen et al., 2016; Yeshurun

et al., 2017). These features are consistent with evidence that the bilateral lateral STS has

neural signals that capture the essential meaning of narratives that make up episodic scenes

(Baldassano et al., 2017). Related work shows that distinct regions of the bilateral lateral

temporal lobe weight differentially on the unique multimodal features that carry this episodic

information (Derderian et al., 2021), including actions (Lahnakoski et al., 2012). Further

studies are required to more closely link the neural mechanisms of episodic narratives with

the action observation network.

In conclusion, the current study reveals that goals of the observer alter the network struc-

ture of the AON, both in terms of functional connectivity and univariate BOLD responses.

We found that the bilateral IFC and pSTS, STS+ and bilateral pSTS had strengthened
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functional connectivity when subjects attended to action kinematics, while the magnitude

of neural activity in the bilateral parietal cortex and right IFC was larger when attending

to goals. These findings reveal two different neural mechanisms in the AON during ac-

tion observation, co-activated networks versus localized changes in neural activation within

regions of interest. Further, the modulated connectivity we observed was strongly right lat-

eralized and largely involved fronto-parietal control network, indicating the importance of

cognitive-executive functions in the AON. These results also suggest that the cognitive goals

of the observer may strengthen cross-network connectivity between the AON with neural

mechanisms that encode naturalistic action viewing in the temporal cortex.

In considering the findings of this study, it is important to acknowledge several limitations

that may have influenced the results. First, our research is restricted to the use of only

two types of actions, both of which involved whole bodies and were directed towards an

object target. This narrow selection of actions potentially impacts the observed connectivity

patterns and may limit the generalizability of our findings to a broader range of actions. It is

worth noting that not all observed actions possess a specific target or object. For instance,

actions like walking do not have a designated target, while social actions such as waving

or hugging are directed towards living beings. This distinction between mentalizing and

action should be taken into account when interpreting the results, as it may have influenced

the connectivity patterns observed in our study (i.e. Overwalle, 2009). Another caveat

to consider is the limited range of actors used, particularly the gender representation. The

predominance of one gender in avatars portrayed may introduce biases or confounding factors

that could influence the observed connectivity effects. Lastly, the use of avatars in our study,

may have implications for the generalizability of our findings to real-world contexts. Future

research should aim to address these limitations by incorporating a more diverse range of

actions, considering a balanced gender representation, and employing stimuli that are more

naturalistic in reflecting real-world social interactions
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Chapter 3

Neural Decoding and the Influence of

Predictive Cues on Action

Observation Network as Revealed by

Multivariate Pattern Analysis

3.1 Introduction

Neuroimaging studies find that attention directed to action goals, rather than the actions

themselves, increase univariate activity in IFG and IPL (de C Hamilton and Grafton, 2008;

Zhou et al., 2023), and that the spatial activation patterns in these regions have information

that classifies anticipated action goals prior to observing the final action outcome (Koul et al.,

2018). Likewise, univariate studies show that the brain regions in the action observation

network (AON), including pSTS, IFG, and IPL, have increased BOLD responses when the

perceived action kinematics are contrary to the expected action trajectories or outcomes
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Shultz et al. (2011); ?); Wyk et al. (2009). Together this implies that the viewer is actively

constructing a mental model based on available contextual information at different stages of

action observation.

One approach for constructing that mental model is action prediction. The action prediction

theory is a theoretical framework about an observer’s mental model such that the observer

generates internal visual predictions of the upcoming actions and action outcomes to later

match with the incoming perceptual input (Tamir and Thornton, 2018; Bach and Schenke,

2017). Using this the constructed predictions, the viewer encounters surprise if the perceived

actions violate the predictions. These prediction errors are the signals indicating the need

for the observer to re-evaluate the expected action into a new environment. The action

prediction theory is prevalent in research studying motor response such that the constructed

higher-level goals propagate downwards to generate motor code and therefore the action

mirroring in various motor-related brain regions is predictive for the upcoming action (Csibra,

2008).

In the action prediction model, the pSTS is hypothesized to be influenced by IFG through

a top-down generative process Kilner (2011); Zhou et al. (2023), much in the same way that

conceptual expectations influence motor planning and goal processing during physical move-

ments Ondobaka et al. (2015); Amoruso et al. (2018). In one specific implementation of this

model, the pSTS is hypothesized to be influenced by IFG through a top-down generative

process (Stehr et al., 2021). Indeed, when observers direct their attention to specific ac-

tions, functional connectivity between the right hemisphere IFG and pSTS increases (Zhou

et al., 2023). This is true despite the univariate response being stronger in the IFG when

participants attend to the goals of the action being performed.

To date there have not been studies that systematically evaluate the neurophysiological

basis of prediction process separate from action observation. One of the reasons may be

because the prediction and perceptual encoding processes often co-occur rapidly therefore
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the neural response for each of these two processes may be blended. In this study I examined

information available in the neural representations during the mental planning phase, before

sensory coding, in different regions of AON.

We independently measured information available in the neural representations during the

mental planning phase, before sensory coding and evaluated the information in the prediction

interval and compared it to sensory encoding interval’s. Recent findings by Monaco et al.

(2019) have shown that neural information indicative of upcoming hand actions is encoded

before the action itself is observed. Similarly, Hudson et al. (2018) established that when

subjects are aware of the validity of predictive cues, the intention-action prediction effect

intensifies. Complementary research by Avenanti et al. (2017) demonstrated that modulating

the left IFC enhances the prediction of action outcomes, with intentions for forthcoming

actions being decoded in the dorsal and ventral visual streams, including the ventral premotor

(vPM), parietal, and left lateral STS.

In the current study we gave subjects the cue of the upcoming whole body action performed

by an avatar, and then the subjects responded as quickly as possible when the stimuli

started. Advance cues have the potential to set the stage for the neural population encoding

(Kok et al., 2012) or alternatively could impact post-sensory processes in decision-making

(Summerfield and Egner, 2009). On the basis of previous evidence for improved classification

accuracy in the pSTS with directed attention (Stehr et al., 2021), we hypothesized that the

cue will improve the neural representations during the sensory encoding interval. Here we

hypothesized that action classification accuracies can be classified stronger in the perceptual

areas such as right pSTS and also hypothesized that IFG and other AON regions might

demonstrate predictive coding by showing the action can be classified when cued during the

mental planning phase.
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3.2 Methods

Subjects and Stimuli. 30 subjects participated in the current study. All subjects were

given and signed a written consent form before the experiment. The protocol was approved

by the University of California, Irvine Institutional Review Board. Subjects viewed brief

(2 seconds) action vignettes depicting one of two types of action: jumping up or crouching

down 3.1. These two action categories were chosen because previous studies have successfully

associated these actions with unique neural populations in the pSTS and IFG (identified

through multivariate decoding or rapid adaptation; Ariani et al. (2015); Grossman et al.

(2010); Kable and Chatterjee (2006); Stehr et al. (2021). Prior to viewing the vignette,

subjects were cued with the upcoming action, with cues having a 83% reliability (figure

3.1). Trials proceeded with an extended delay interval (2, 3.5 or 5 sec) where an anticipatory

BOLD response could be measured independently from the encoding interval Mumford et al.

(2012). Subjects then were shown the action vignettes and were asked to report as quickly

as possible whether the perceived action matched the cue or not. Trials were preceded by

an extended delay interval (3-6 sec anticipatory interval) in which the BOLD response could

be measured independently from the encoding interval for each trial. In total participants

completed 8 runs with 24 trials in each run (10 validly cued, 2 invalidly cued, 12 uncued

trials, all pseudo-randomized), resulting in a total of 192 trials for each participant.

Neuroimaging. Participants were scanned at the Facility for Imaging and Brain Re-

search at the University of California, Irvine, on a 3 Tesla Siemens Prisma MRI scanner

(Siemens Medical Solutions) equipped with a 32-channel receive-only phased array head

coil. High-resolution anatomical images were collected using a single T1-weighted magne-

tization–prepared rapid acquisition gradient echo (MPRAGE) sequence with 176 sagittal

slices and 1 mm isovoxel resolution. Functional images were acquired using a T2*-weighted

gradient recalled echoplanar imaging multi-band pulse sequence (cmrrmbep2dbold) from the

University of Minnesota Center for Magnetic Resonance Re- search (CMRR). Scans were ac-
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Figure 3.1: Stimuli and Design For each trial, participants were first given a cue about
the upcoming actions during cued trials, and empty circle for uncued trials. Anticipatory
interval was the time window following the cue and lasted from 3 to 6 seconds pseudo-
randomized for each trial. After the anticipatory interval, participants then watched a 2s
action vignette with 83% of the trials depicted action correspond to the cue given in the
current trial. Participants responded with button to the action depicted in the stimuli both
during the stimuli and after the stimuli if they haven’t responded. At the end of each trial,
the intertrial interval was randomly assigned between 3 to 6s.

quired with the resolution = 2 x 2 x 2 mm (TR = 1500 ms TE = 30 ms, multi-slice acquisition

factor = 3) and multiband factor = 4. EPI images with opposite phase- encoding direction

were also acquired to correct for suscep- tibility distortions in each participant’s functional

data.

Preprocessing. Anatomical and functional data were preprocessed using fmriprep (citation,

see appendix/supplementary materials). In brief, cortical reconstructions were produced

using FreeSurfer’s recon-all and the BOLD time-series were resampled onto the fsaverage

standard surfaces for future analysis.

Regions Of Interest We defined the AON using parcels as identified in our previous

study (Zhou et al., 2023) which includes IFG, pSTS, IPL and the lateral STS, which is
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Figure 3.2: MVPA analysis in AON ROI A) Multivariate pattern analysis (MVPA) was
trained and test to classify the actions depicted in the stimuli for activation patterns during
anticipatory interval and perceptual encoding interval separately. B) Regions of Interest in
the current study includes bilateral pSTS, bilateral aSTS, bilateral IFG, and bilateral IPL.
Each region was further divided into smaller parcels defined by Glasser et al. (2016)

not traditionally included with the AON but is relevant to action semantics and narratives

(Pitcher and Ungerleider, 2021; Lahnakoski et al., 2012; Yeshurun et al., 2017) (Figure 3.2

B). These regions were first defined using whole brain functional connectivity from pSTS

during the action observation in an independent set of subjects. Since regions varied in size

and also these regions are complex, we applied an atlas parcellation (Glasser et al., 2016) to

divide and define the ROI. In the current study, we look at the action information both at

the parcel level and also at the whole ROI level.

Univariate analysis To elucidate the variations in BOLD activation levels among different

cueing conditions, we employed a General Linear Model (GLM) to quantify these activation

levels. Each cueing condition—uncued, valid cue, and invalid cue—was modeled by convolv-

ing a boxcar functions specifying the duration of the post-cue interval (anticipatory) and the

duration of the movie interval (encoding) with a standard hemodynamic response function

(hrf). Condition-specific betas were estimated for each subject and region of interest (ROI).

Statistical significance of the differences between cueing conditions was evaluted using paired

t-tests.

MVPA methods. The time series from each voxel in the ROIs was first z scored across

time (see Figure 3.2). The trial-by-trial activation patterns of BOLD response in each brain
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regions were derived using the least squares separate (LSS) design (Mumford et al., 2012;

Turner et al., 2012). In the design matrix, any trials in which too much head motion occurred

with a threshold of FD > 0.4 were annotated as outliers and scrubbed from further analysis

(Power et al., 2014). Trial betas were mean centered within each run (Lee and McCarthy,

2016) and averaged within each run to have one estimated beta for each action label.

To assess the statistical structure within the Action Observation Network (AON), the pri-

mary analysis evaluated the potential benefits of cues during the perceptual encoding in-

terval. In this process, two types of actions were classified during the anticipatory interval

for both cued and uncued trials. Support vector machine (SVM) analyses were carried out

separately for each subject within regions of interest (ROI) including the posterior superior

temporal sulcus (pSTS), inferior parietal lobule (IPL), and inferior frontal gyrus (IFG). The

SVM used a linear kernel and a constant cost value of 1 to classify the actions (jump or

crouch) depicted in the movie regardless of what subjects answered. The classification was

performed using a 8-fold leave-one-run out cross-validation. The resulted cross-validated

classification accuracies were made from the held-out test set with one test data for each

label. Subsequently, the classification accuracies were first averaged across the 8 folds and

all the classification accuracies for each subjects were compared across 30 subjects for each

ROI.

Statistical analysis. To evaluate the effect of the cue on classification accuracy, we com-

pared the differences in classification accuracy when subjects were given a cue vs not, within

each subject and ROI. Statistical significance of the differences between cued and uncued

classification accuracies was assessed using paired t test with a single-tailed significance level

of p < 0.05 (uncorrected). Also, in order to evaluate whether the classification ability of

each ROI, a one sample t-test for the null hypothesis of classification accuracy greater than

0.5 was used.
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Figure 3.3: Hypothesis Hypothesis of the current study. Left: During the anticipatory
interval, we expect the sensory driven right pSTS to not be able to classify the actions but
right IFG would have the action represented. Right: During the movie interval, we expect
that the right pSTS would classify the action and even better when given a valid cue. We
also expect improved classification for validly cued trials in the right IFG, but less than the
pSTS due to the specifity of action representations in the pSTS.

3.3 Results

Movie encoding and anticipatory interval. Based on previous reports (Stehr et al.,

2021), we hypothesized that the classification accuracy for labeling the actions in the cued

trials would be superior to that of uncued trials in the pSTS (see Figure 3.3). First we

conducted the analysis for each ROI, such that we classify two classes of actions being

depicted in the movie during the movie interval. The classification were performed using the

parcels within the ROI as features in the classifiers (for example, if right pSTS consists of 2

Glasser parcels, then the classifier was trained on 2 features). The results showed that the

improvement in classification accuracy in the left pSTS was significant (repeated measures

t test, t = 2.02, p < 0.05, uncorrected) when subjects were given a valid cue comparing to

uncued trials. This effect, however, is in the context of relatively poor classification of the

actions overall (Figure 3.4 Right). A t-test on action classification accuracy against chance

(with cued and uncued trials pooled) revealed none of the ROI to have classification accuracy

significantly above 50% (Figure 3.4 Right).
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Figure 3.4: MVPA Results. Left: Classification accuracies during the anticipatory interval
for cued trials, including valid and invalid cues, and for uncued trials. Classifiers trained
on each ROI using the parcels within the ROI as features. Right: Classification accuracy
during the perceptual encoding interval. Here the left pSTS showed significant difference
between cued and uncued trials but note the uncued condition did not classify significantly
above chance.

We then evaluated the patterns within each parcel in the ROI and conducted the same classi-

fication in the traditional MVPA analysis such that each vertex in the parcel was considered

a feature in the SVM classifiers. Statistical significance between the two conditions was

assessed with a repeated measured t-test for each parcel and a one sample t-tests evaluated

whether overall classification accuracy (using both cued and uncued trials) was above 50%

(p < 0.05, uncorrected). Figure 3.5 displays the parcels that reached statistical significance

for both tests, indicating that these parcels not only had the classification accuracies that

meaningful improved by the cue, but also across the cueing condition the classification ac-

curacies were significantly above 50% across all the subjects. Results showed that during

anticipatory interval, the parcels AVI and FEF in right IFG, and STV in lateral STS and

during perceptual encoding interval one parcel p9-46v in right IFG showed significance.

To evaluate the trends within each ROI, we averaged classification results from each of the

parcels within the ROI (Figure 3.6). Here the results revealed both the averaged classification

accuracies and also differences between cue and uncued conditions within each subjects.

During the perceptual encoding interval, this analysis revealed improved classification during

55



Figure 3.5: Univariate Analysis Results. MVPA results for each parcel. Figure shows the
parcels in which the the MVPA classifiers trained on the activation patterns both classified
the actions above chance across both cueing conditions and also the classification accuracies
that were significantly higher during the cued trials than uncued trials by testing the within
subject differences using a paired t test (p < 0.05, uncorrected). These parcels are p9-46v
during the perceptual encoding interval. AVI, FEF in the right IFG, and STV in the lateral
left STS during anticipatory interval.

uncued condition versus cued condition in the right pSTS only (t = 2.04, p < 0.05). During

the anticipatory interval, left lateral STS (t = 1.94,p < 0.05) and right IFG (t = 2.27,p <

0.05) had improved classification accuracy during cued versus uncued condition.

Independence between anticipatory and encoding interval. We computed the corre-

lation between the BOLD activation patterns (trial-wise beta estimates) during the anticipa-

tory and perceptual encoding intervals, following the poor classification observed during the

anticipatory phase. This was done with the aim of investigating whether there is an inde-

pendent pattern of information processing during the anticipatory and perceptual encoding
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Figure 3.6: MVPA Results. Left: Average classification results when the classifiers were
trained and tested in each parcel using the vertices within the parcel as the features in
the classifiers. The cross-validated classification accuracies were then averaged across the
subjects and parcels in each ROI. The asterisks indicate ROIs with significant differences
between the classification accuracy for the validly cued and uncued conditions, evaluated
using a paired t-test. The tilde indicates ROIs in which classification accuracy (across all
conditions) is significantly above chance (0.5). Right: Average classification accuracy across
all the parcels with the classifiers trained and tested on each parcel independently and then
averaged across all the subjects and parcels.

intervals. The results revealed a median correlation within each parcel of approximately

-0.5, suggesting that the beta estimates from the anticipatory interval and the perceptual

encoding interval might have significant overlap.

Univariate response. We further conducted the univariate analysis to compare the BOLD

response magnitude difference between different cueing conditions (see Figure 3.7). A com-

parison of the the magnitude of the normalized BOLD activation level indicated the subjects’

activation level is higher during perceptual encoding interval across all the AON regions than

during anticipatory interval. Among the 8 ROIs, paired t-test showed that the BOLD ac-

tivation was significantly higher during invalidly cued trials than uncued trials in the left

IFG (t28 = 2.85, p < 0.01) and left Parietal (t = 1.87, p < 0.1) (Figure 3.7 right). Re-

peated measure t-tests showed that BOLD activation was significantly higher during validly

cued trials as compared to the uncued trials in left IPL (t = 2.82, p < 0.01), right IPL

(t = 2.41, p < 0.05), higher during invalidly cued trials than uncued trials in left IFG
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(t = 2.52, p < 0.05), and higher during invalidly cued trials than validly cued trials in left

pSTS (t = 2.1, p < 0.05).

Figure 3.7: Univariate Analysis Results. Left: BOLD response during anticipatory
interval for different cueing conditions. Right: BOLD response during perceptual encoding
interval.

3.4 Discussion

We are intersted in predictive coding during action observation such that the and we tried

to look into the mental planning stage before sensory encoding stage. In the current study,

we used a cue with 83% of validity to prompt subjects as to the upcoming action, and then

asked the subjects to make a perceptual judgement of the action being depicted during a

whole body movie stimulus. Results showed that in the action observation network, the

cue improved classification accuracy in the left pSTS as compared to the than uncued trials

during the perceptual encoding interval. Further analysis looking into individual parcels

within each ROI found that during the perceptual encoding stage, majority of the regions in

the right pSTS increased in classification accuracy during uncued trials as compared to the
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cued trials. Only the left lateral STSm and right IFG had a marginal increase in classification

accuracy when subjects were given a cue than when they weren’t given a cue. These brain

regions located at the left upper bank of STS, and the inferior frontal gyrus and premotor

area, respectively. Moreover, the univariate results during the perceptual encoding interval

showed that the BOLD activation increased during validly cued trials than uncued trials in

the bilateral parietal, uncued than invalid trials in the left IFG and valid to invalid trials in

the pSTS.

Our preceding studies have explored the encoding interval, focusing on how subjects’ at-

tention towards different features of stimuli influences neural activation and functional con-

nectivity (Stehr et al., 2021; Zhou et al., 2023). Our current research aims to dissect these

anticipatory and sensory encoding stages within the action observation network (AON). Our

results show the cue was effective to have subjects expect the upcoming action, showing by

the difference in BOLD response during cued trials than uncued trials during the perceptual

encoding interval.

Our study sought evidence for action prediction with the AON, and found some potential

evidence in the overall increased of neural response in the left parietal and left pSTS during

cued trials than uncued trials. Also, when averaged across all the parcels and subjects,

neural activation patterns were more distinguishable in the right IFG and left lateral STS

in the time following the cue (the anticipatory interval).

The action prediction theory proposed observer generates a mental model of the anticipated

action outcomes. This theory is supported by the pSTS’s encoding variability Grossman et al.

(2010). Also, studies looking at AON regions during motor action outcome representations

found that IFG and Parietal predicting the likely outcomes of actions (Koul et al., 2018;

Mo tto nen et al., 2016). Also found pSTS supporting the contextual updating and social

interaction guidance (Geng and Vossel, 2013; Patel et al., 2019).
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Additionally, literatures on action prediction error during action observation has shown

that BOLD response increased when subjects perceptual inputs violates the expectation

in pSTS (Shultz et al 2011) and IFG (de Lange et al 2008), which align with the current

study results that shown increased BOLD response during invalid trials. Also enhanced

neural representations could possibly explained by effective connectivity studies showed that

showed that PMv feedback connection to IPL when violating biological aspect of motion

(Urgen and Saygin, 2020).

One limitation of this study was lack of classifier’s power, as reflected by the scores while fit-

ting SVM, which was classifiers’ distance to decision boundaries. Low classification certainty

was noted when using each brain parcel as a feature with SVM scores near e-10, contrasting

with higher scores at e-1 when using individual vertices as feature in the classifiers. This

suggests a potential improvement strategy of utilizing all vertices within each ROI for train-

ing and testing to enhance classifier performance and preserve neural pattern information.

Another improvement could be made by analyzing the data only for the shorter anticipatory

interval (2 or 3.5s) since it might become harder for subjects to maintain the cue over a

long period of time. However, this also has the potential difficulty to disentangle the BOLD

response between anticipatory and perceptual encoding intervals.
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Chapter 4

Diffusion Model Insights into

Evidence Accumulation During

Action Prediction: The Role of

Predictive Cues Brain Responses

within the Action Observation

Network

4.1 Introduction

Understanding the cognitive processes underlying action observation has been a critical en-

deavor in cognitive neuroscience. Previous studies, including our own, have revealed that,

when cued, information about upcoming actions is present in the neural signal before the
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arrival of perceptual inputs, with right IFG and left lateral STS showing weak evidence

during cued trials (Koul et al., 2018). This is an example of action prediction, as proposed

as generative models by Kilner and Frith (2007); Bach and Schenke (2017), such that the

observers form mental models to anticipate future actions and outcomes, matching these in-

ternal predictions with incoming perceptual cues, and adjusting them as needed when faced

with prediction errors. Prediction is proposed to increase the efficiency with which the antic-

ipated actions are encoded and giving subjects access to action information before directly

observing the actions (Friston et al., 2011).

Our interest in subjects’ action prediction processes prior to action observation is twofold.

Firstly, it acknowledges the existence of an action prediction process, as posited by mental

models of action observation (Bach and Schenke, 2017) and internal model of affordance

Sakreida et al. (2016), which suggests that observers collect evidence from the context and

the environment before observing the action with the predicted kinematics. Secondly, it

addresses the challenge of measuring these implicit processes, which are not directly observ-

able through behavior. Thus the predictive nature of this cognitive processing is central to

our investigation. To navigate this challenge, we turn to diffusion models, which provide an

indirect approximation of the underlying cognition during the decision-making process.

To evaluate for evidence of predictive signals in action cueing, we used diffusion modeling

to identify latent parameters reflecting components of the decision-making process (Gold

and Shadlen, 2007; Ratcliff and McKoon, 2008). Diffusion model takes into account the

stochastic accumulation of evidence over time during decision making leading to a decision

boundary with parameters for drift rate (v), initial bias in starting point (z) and time to

make a decision (t). These parameters model different processes underlying the decision

making process. Hierarchical drift diffusion models (HDDM), in particular, allow us to

model posterior distributions at the subject and trial level (?). This allows for the dissection

of cognition on a finer scale, revealing how individual differences and trial-by-trial variations
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contribute to the observed behaviors. By using HDDM, we can investigate not only the

average tendency of decision-making across subjects but also the nuanced fluctuations that

occur within subjects across different trials Turner et al. (2013); Nunez et al. (2017).

These models have been recently advanced to integrate neurophysiological data into cogni-

tive modeling, as demonstrated by Turner et al. (2015), who used a hierarchical Bayesian

framework to incorporate single-trial brain activity into diffusion model parameters. Past

research, including studies by Nunez et al. (2017); Koul et al. (2019), has employed HDDM

to demonstrate that trial-by-trial fluctuations in brain regions can predict measurements

derived from diffusion models. These studies contribute to a growing understanding of how

pre-stimulus brain activity can inform models of response accuracy and timing.

We hypothesize that by examining the bias parameter (z) in diffusion modeling—reflecting

the starting location on the evidence accumulation scale—we can shed light on the antic-

ipatory decision-making process. This bias parameter offers a quantifiable measure of the

extent to which predictive cues influence decision-making at the onset of perceptual encoding,

reflecting the amount of evidence accumulated during action observation.

With this foundation, our study aims to explore the link between predictive cues, as reflected

in bias parameters from diffusion models, and neural measurements within the action ob-

servation network including brain region pSTS, IFG, IPL and extended brain region lateral

STS. We anticipate that this approach will provide a novel perspective on the neural basis

of action prediction and the cognitive abstractions it entails.

4.2 Methods

This study analyzes the data from the Chapter 3 study and therefore the detailed experiment

design and neuroimaging methods can be found in Chapter 3. In brief, 29 participants

63



completed the study in which participates were cued (validly or invalidly) or not cued as to

the upcoming action. During the cued trials, subjects were first given a written cue of either

jump or crouch. For the valid cued trials, the cued actions were consistent with the action

being depicted in the stimuli, while during the invalid cued trials, the cued actions are the

opposite of the depicted actions. In each scan there were 12 uncued trials where subjects

were shown a blank circle in the cue interval, and 10 validly cued trials and 2 invalidly

cued trials. These 24 trials were assigned randomly, and following the cue there was a brief

anticipatory interval of 2, 3.5 or 5s prior to the onset of the stimuli.

In the current study we measured subject response time for a two-alternative forced choice

judgment on the observed action. Subjects were instructed to report as quickly as possible

which of two actions was being shown using button press. The response time was the time

from the onset of the stimuli until the time subjects made a button response. Responses

were labeled as incorrect if the participant either mislabeled the action or did not make a

response from the movie onset until after the additional 3s response time window.

Response time analysis. In order to evaluate whether subject used the cue to modify

their decision process, we first modeled the response time distributions for the different

cueing condition using a Gaussian distribution to model the response time and conducted

the statistical test using gamlss R package to test if the mean response time was different

during validly cued versus uncued trials after fitting the response time with a Gaussian

distribution.

Hierarchical diffusion modeling (HDDM). In the current study we used the HDDM

package implemented in Python to analyze the response time data. According to the previous

literature of parameters about prior information about action and goals (?), we structured the

HDDM to include both the bias (z) and non-decision time (t) parameters, which are critical

for understanding the starting point of the evidence accumulation and the time consumed by

processes other than decision-making, respectively. We also allowed the z initial bias to varied
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between different cueing conditions (validly cued, invalidly cued, uncued), providing insights

into how different types of cues could influence the starting point of evidence accumulation.

We also allowed the model to account for the random effects across subjects and therefore

estimate the parameters individually for each subject.

Finally, in order to investigate the underlying brain regions that support the hidden cognition

examined by the HDDM model, we used the posterior samples of bias in starting point

(n=2000, with the first 100 burn to initialize the process), generated with Gibbs sampling and

differential evolution with MCMC (Markov Chain Monte Carlo simulation), varied by cueing

condition to correlate with various brain measurements including the scores from MVPA

classifications from above. To formally test the hypothesis that whether the significant

difference in the bias parameters z under different cueing conditions can be linked to the

neural measurements, we used linear mixed effect modeling from lme4 in R. The model was

constructed as follows:

z estimates = Cue condition + average neural measurements for each subjects +

cue*neural measurements + random effect of Subjects

In this model, we are interested in the interaction fixed effect cue*neural measurements after

accounting for the individual subject differences in the baseline of bias z.

4.3 Results

We found that the mean reaction time for the uncued trials was significantly longer than

the mean reaction time during cued trials (t = 3.75, p < 0.001). Validly cued trials also had

shorter response time than invalidly cue trials (t = 5.65, p < 0.001). There was no difference

in reaction times between uncued and invalid trials (t = 0.7, p = 0.5).
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HDDM modeling. Figure 4.1 shows the posterior distribution of the initial bias (z), fitted

using a HDDM for response times in the valid cue, invalid cue, and uncued conditions across

all the subjects and trials. Results showed that that cued trials have larger initial bias

toward the correct response and lowest for invalid trials (Figure 4.1 left). The posterior test

indicated significance such that the probability of the bias in starting point was different

between validly cued and uncued trials, validly cued trials and invalidly cued trials were

greater than 99%.

Figure 4.1: Hierarchical Diffusion Modeling Results. Left: The posterior distribution
of bias in starting point according to each cueing condition. Right: Posterior distributions
of bias in starting point according to each cueing condition and also the length of the antic-
ipatory interval.

In a second analysis, we evaluated the effect of the duration of the anticipatory delay (2,

3.5 or 5 sec) on the initial bias. We hypothesized that the longer anticipatory interval

might challenge the subjects sustained working memory when remembering the cue, therefore

resulting in a lower bias. Alternatively, however, a longer delay could instead give the

participate the opportunity to strengthen the cue effect, perhaps by allowing more samples

to be drawn from memory during the anticipatory interval (Bornstein Hanks, xx).

In Figure 4.1, the posterior estimates of the bias in the starting point (z) revealed that when

the anticipatory interval was extended to 5 seconds, there was a notable reduction in bias

for the cued trials with shorter anticipatory intervals (illustrated in pink, blue, and pinkish-
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purple). However, the length of the anticipatory interval did not impact the initial starting

point in uncued trials. There was a trend for weaker bias for invalidly cued trials, although

note that there were fewer of these trial types and thus the posterior distribution has more

variance. Together these things are consistent with the hypothesis of decay of the cue during

longer anticipatory intervals. There was some indication of

Figure 4.2: Hierarchical Diffusion Modeling with Neural Measurements. a) and
b) show the distribution plot of difference (Cued - Uncued) in BOLD activation during the
anticipatory interval in right IFG and right pSTS against the difference between posterior
estimates of bias in starting point fitted from the HDDM models for each subjects. c) and d)
show the distribution plot of difference (Cued - Uncued) in MVPA classification accuracies
when classifying the action cues during the anticipatory interval in right IFG and right pSTS
against the difference between posterior estimates of bias in starting point fitted from the
HDDM models for each subjects.

Initial bias and neural metrics. Lastly, we examined whether the neural measurements in

the right pSTS and right IFG correlated with the behavioral indicators of bias. We compared

the BOLD activation and also the classification accuracy for classifying the action cues given

to the subjects with the bias in starting point.
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We found no significant correlation in the right IFG and pSTS between the cue’s effect on

bias (as indicated by the starting poing derived from the diffusion model for the difference

between cued vs uncued trials in individual subjects) and the effect of the cue on classification

accuracy or BOLD response (Figure 4.2). Although there is a plausible trend towards a

positive relationship in the difference of right IFG BOLD response during the anticipatory

interval (r2 = 0.198, p = 0.136) to the difference in the bias in starting point. Likewise, when

evaluating the classification accuracies, we found a positive relationship in the anticipatory

interval between the effect of the cue on behavioral bias and classification accuracies in the

right pSTS (r2 = 0.241, p = 0.192). These results are suggestive that the cue may modulate

the initial neural state in the right pSTS and IFG during the anticipatory interval.

4.4 Discussion

In our hypothesis, we proposed that giving individuals a cue as to the upcoming action

would serve to facilitate later encoding of that action. We hypothesized that would be

apparent in the bias parameter (z), which would serve as a quantitative indicative of the

cue’s influence on each individua’s decision-making. Therefore, the cueing paradigm was

designed to intentionally shift subjects’ biases in the upcoming action.

Results indicated that subjects were more biased towards the correct answer when the cue

was valid, markedly more so than in both uncued and invalidly cued trials, with initial biases

being significantly greater in validly cued trials over 99% of the time. Furthermore, upon

examining brain responses in right IFG and right pSTS, which based on the previous chapters

were proposed to support top-down influence, we found that during the anticipatory interval,

a larger BOLD response magnitude corresponded to a higher bias in the cued condition within

the right IFG and higher classification accuracies in the pSTS.
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The results from this study confirm that prior information can effectively shift subjects’ biases

during action observation, demonstrating a form of action prediction when viewing whole-

body action. The variance in the length of the anticipatory interval further substantiated

the cueing effect. The length of the anticipatory interval only altered the bias when subjects

were given a cue, with no change in bias for uncued trials. Our findings also suggest that

the longer anticipatory intervals might challenge subjects’ retention of the cue information,

potentially due to the higher cognitive load or energy demands as per the theory of working

memory decay.

In the current study, the cue served as an approximation for the action prediction the observer

formed when witnessing an action before making a decision on the action’s outcome. Subjects

were shown a visual word cue to anticipate a whole body action movie stimulus depicting

an avatar either jumping up or crouching down. The cue, therefore, provided a manipulable

perceptual expectation of the forthcoming kinematics, with 83% of valid cues aiding subjects

in making a more accurate initial decision.

Regarding brain measurements, the BOLD magnitude in right IFG during the anticipatory

interval increased in those subjects with a larger bias towards the correct answer across

subjects when the subjects given a cue. Also, the classification accuracies of action cues in the

right pSTS during the anticipatory interval increased when subjects’ initial bias in starting

point were higher. Together the increased magnitude in BOLD response was suggestive that

the cue prepared the neural population for the upcoming action. This preparatory effect

in sensory neural populations is consistent with those found in V1 using a cued orientation

discrimination task (Kok et al., 2012, 2017).

Our results are consistent with previous findings of effective connectivity in the AON. Those

earlier studies demonstrated that when observing biological motion, feedback connectivity

between the IFG and IPL is strengthened when predictions are violated (Urgen and Saygin,

2020), that connectivity between pSTS and IFG is strengthened when observing actions in
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visually degraded conditions that would benefit from prior information (Sokolov et al., 2018).

These studies suggest a top-down feedback information flow between the AON brain regions

when the top down expectations were violated. In our current study, the cue increased

the bias towards and thereby could be explained by within the AON, higher-level regions

transferred prediction information to lower-level regions.

It’s worth noting that the analyses relating brain measurements to diffusion modeling bias

parameters were limited in that the correlation were not strong. Therefore, future analyses

should test hypotheses at a trial-by-trial level proposed by (Nunez et al., 2017). Improve-

ments can be further made by employing neural measurements as prior information to en-

hance the drift diffusion models (Turner et al., 2013; Nunez et al., 2017). Additional brain

measurements, particularly functional connectivity strength between different brain regions

during cued trials, may show how strengthened connectivity correlates with increases in bias

at the starting point. However, the analyses in the current study still provide a hint of the

plausible existence of action prediction in the brain using HDDM and neuroimaging, and

future analyses should investigate this relationship more closely.

In summary, we have demonstrated that subjects’ behaviors vary according to cueing con-

ditions and that these differences are attributable to the initial bias subjects hold about the

forthcoming action. The action prediction evidence accumulated in subjects, with cues effec-

tively aiding in the identification of the upcoming action. This effect could probably relate

to the top-down influence between the right IFG and the right pSTS suggesting neurons

coding expectations within the action observation network.
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Chapter 5

Conclusion

These studies collectively demonstrated how top-down influences from the IFG enhance the

pSTS’s reconstruction of action dynamics. These results are also consistent with the pro-

posal that predictive cues can bias both behavioral responses and neural activity, providing

a deeper understanding of the neural pathways involved in interpreting socially relevant

actions.
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Appendix B

Appendix

Results included in this manuscript come from preprocessing performed using fMRIPrep

21.0.1 (Esteban et al. (2018); Esteban et al. (2018); RRID:SCR 016216), which is based on

Nipype 1.6.1 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR 002502).

Preprocessing of B0 inhomogeneity mappings A total of 1 fieldmaps were found avail-

able within the input BIDS structure for this particular subject. A B0 -nonuniformity

map (or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI)

references with topup (Andersson et al. (2003); FSL 6.0.5.1:57b01774).

Anatomical data preprocessing A total of 1 T1-weighted (T1w) images were found

within the input BIDS dataset.The T1-weighted (T1w) image was corrected for inten-

sity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), dis-

tributed with ANTs 2.3.3 (Avants et al., 2008, RRID:SCR 004757), and used as T1w-

reference throughout the workflow. The T1w-reference was then skull-stripped with

a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs),

using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal

fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-
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extracted T1w using fast (FSL 6.0.5.1:57b01774, RRID:SCR 002823, Zhang et al.,

2001). Brain surfaces were reconstructed recon-all (FreeSurfer 6.0.1, RRID:SCR 001847,

Dale et al., 1999), and the brain mask estimated previously was refined with a custom

variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmenta-

tions of the cortical gray-matter of Mindboggle (RRID:SCR 002438, Klein et al., 2017).

Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym)

was performed through nonlinear registration with antsRegistration (ANTs 2.3.3),

using brain-extracted versions of both T1w reference and the T1w template. The fol-

lowing template was selected for spatial normalization: ICBM 152 Nonlinear Asymmet-

rical template version 2009c [Fonov et al. (2009), RRID:SCR 008796; TemplateFlow

ID: MNI152NLin2009cAsym].

Functional data preprocessing For each of the 11 BOLD runs found per subject (across

all tasks and sessions), the following preprocessing was performed. First, a reference

volume and its skull-stripped version were generated using a custom methodology

of fMRIPrep. Head-motion parameters with respect to the BOLD reference (trans-

formation matrices, and six corresponding rotation and translation parameters) are

estimated before any spatiotemporal filtering using mcflirt (FSL 6.0.5.1:57b01774,

?). The estimated fieldmap was then aligned with rigid-registration to the target EPI

(echo-planar imaging) reference run. The field coefficients were mapped on to the ref-

erence EPI using the transform. BOLD runs were slice-time corrected to 0.696s (0.5

of slice acquisition range 0s-1.39s) using 3dTshift from AFNI (Cox and Hyde, 1997,

RRID:SCR 005927). The BOLD reference was then co-registered to the T1w reference

using bbregister (FreeSurfer) which implements boundary-based registration (Greve

and Fischl, 2009). Co-registration was configured with six degrees of freedom. Several

confounding time-series were calculated based on the preprocessed BOLD : framewise

displacement (FD), DVARS and three region-wise global signals. FD was computed

using two formulations following Power (absolute sum of relative motions, Power et al.
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(2014)) and Jenkinson (relative root mean square displacement between affines, Jenk-

inson et al. (2002)). FD and DVARS are calculated for each functional run, both using

their implementations in Nipype (following the definitions by Power et al., 2014). The

three global signals are extracted within the CSF, the WM, and the whole-brain masks.

Additionally, a set of physiological regressors were extracted to allow for component-

based noise correction (CompCor, Behzadi et al., 2007). Principal components are

estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete

cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor)

and anatomical (aCompCor). tCompCor components are then calculated from the top

2% variable voxels within the brain mask. For aCompCor, three probabilistic masks

(CSF, WM and combined CSF+WM) are generated in anatomical space. The imple-

mentation differs from that of Behzadi et al. in that instead of eroding the masks by

2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that

likely contain a volume fraction of GM. This mask is obtained by dilating a GM mask

extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not

extracted from voxels containing a minimal fraction of GM. Finally, these masks are

resampled into BOLD space and binarized by thresholding at 0.99 (as in the original

implementation). Components are also calculated separately within the WM and CSF

masks. For each CompCor decomposition, the k components with the largest singular

values are retained, such that the retained components’ time series are sufficient to

explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or tem-

poral). The remaining components are dropped from consideration. The head-motion

estimates calculated in the correction step were also placed within the corresponding

confounds file. The confound time series derived from head motion estimates and

global signals were expanded with the inclusion of temporal derivatives and quadratic

terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5

mm FD or 1.5 standardised DVARS were annotated as motion outliers. The BOLD
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time-series were resampled into standard space, generating a preprocessed BOLD run

in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped

version were generated using a custom methodology of fMRIPrep. The BOLD time-

series were resampled onto the following surfaces (FreeSurfer reconstruction nomencla-

ture): fsnative, fsaverage. All resamplings can be performed with a single interpola-

tion step by composing all the pertinent transformations (i.e. head-motion transform

matrices, susceptibility distortion correction when available, and co-registrations to

anatomical and output spaces). Gridded (volumetric) resamplings were performed

using antsApplyTransforms (ANTs), configured with Lanczos interpolation to min-

imize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface)

resamplings were performed using mri vol2surf (FreeSurfer).

Many internal operations of fMRIPrep useNilearn 0.8.1 (Pedregosa et al., 2011, RRID:SCR 001362),

mostly within the functional processing workflow. For more details of the pipeline, see the

section corresponding to workflows in fMRIPrep’s documentation.

Copyright Waiver

The above boilerplate text was automatically generated by fMRIPrep with the express in-

tention that users should copy and paste this text into their manuscripts unchanged. It is

released under the CC0 license.
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