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Without his cookies, he’s just a monster:
A counterfactual simulation model of social explanation

Erik Brockbank* (ebrockbank@stanford.edu), Justin Yang* (justin.yang@stanford.edu),
Mishika Govil, Judith E. Fan, Tobias Gerstenberg

Stanford University

Abstract
Everyday reasoning about others involves accounting for why
they act the way they do. With many explanations for some-
one’s behavior, how do observers choose the best one? A large
body of work in social psychology suggests that people’s ex-
planations rely heavily on traits rather than external factors.
Recent results have called this into question, arguing that peo-
ple balance traits, mental states, and situation to make sense of
others’ actions. How might they achieve this? In the current
work, we hypothesize that people rely on counterfactual sim-
ulation to weigh different explanations for others’ behavior.
We propose a computational model of this process that makes
concrete predictions about when people will prefer to explain
events based on the actor’s traits or their situation. We test the
predictions of this model in an experimental paradigm in which
trait and situation each guide behavior to varying degrees. Our
model predicts people’s causal judgments well overall but is
less accurate for trait explanations than situational explana-
tions. In a comparison with simpler causal heuristics, a major-
ity of participants were better predicted by the counterfactual
model. These results point the way toward a more compre-
hensive understanding of how social reasoning is performed
within the context of domain-general causal inference.
Keywords: causal reasoning; explanation; attribution; traits.

Commonsense reasoning about the world around us re-
quires accounting for why things happened the way they did.
Nowhere is this more apparent than in our interactions with
other people. How we explain the behavior of others has been
a central focus in social psychology for nearly 100 years (Hei-
der & Simmel, 1944), yet incorporating prior findings into AI
and applying them to naturalistic scenarios remains a chal-
lenge (Lake et al., 2017). One reason for this is the sheer
diversity of explanations for others’ actions. Consider com-
ing home and finding one’s roommate baking a dessert: this
could be a thoughtful gesture or merely a chance to use up
eggs that will soon go bad. The way we account for peo-
ple’s behavior has consequences for how we treat them and
make plans with them (Carlson et al., 2022; Ho et al., 2022);
in short, explanations for others’ actions are woven into the
fabric of our social lives. Confronted with a range of expla-
nations for others’ behavior, how do we choose the best one?

Inferring traits and mental states from behavior When
accounting for others’ behavior, observers must decide
whether to place the cause within the actor or in contextual
factors external to the actor. Early work exploring this trade-
off found a widespread overreliance on traits as the putative
cause of others’ actions (Gawronski, 2004; Gilbert & Malone,
1995; Ross & Nisbett, 1991). The most common explanation

for this finding has been that people simply overlook or ignore
the degree to which situation causes behavior (the fundamen-
tal attribution error; Jones and Harris, 1967; Ross, 1977).
People seem to infer traits rapidly and spontaneously (Ule-
man et al., 2008; Winter & Uleman, 1984), while our ability
to analyze the broader context in which somebody acted can
be costly and error-prone (Gilbert & Malone, 1995).

However, recent findings have called into question the
ubiquity of this trait bias. A meta-analysis of 173 studies doc-
umenting the fundamental attribution error found mixed evi-
dence for the effect and suggested that it was moderated by
other variables such as social proximity (Malle, 2006). When
people read about others performing a wide range of everyday
activities, they inferred the actors’ intentions and beliefs more
readily than traits (Malle & Holbrook, 2012). And cross-
cultural studies find a large variance in the prevalence and
expression of the bias outside Western cultures (Choi et al.,
1999; Knowles et al., 2001; Miyamoto & Kitayama, 2002).

In an effort to reconcile the trait bias with other causes of
behavior like situation and mental states, recent work has pro-
posed that the extent to which people infer traits from oth-
ers’ actions is flexible (FeldmanHall & Shenhav, 2019; van
Baar et al., 2022). Walker et al. (2022) argue that prior work
showing the fundamental attribution error has assumed trait
and situation are deterministic causes; if traits are instead
treated as probabilistically influencing behavior, results ob-
served in classic fundamental attribution error studies arise
from a model that makes context-sensitive trait inferences.

Explaining behavior with traits and mental states Prior
work suggests that people flexibly infer the traits, mental
states, and situational pressures that could have given rise
to others’ actions. This poses a puzzle: how do we decide
which of these factors offers the best explanation of their be-
havior? There is an important conceptual distinction between
the inferences we draw about others from their actions, and
the explanations we provide for those same actions (Korman
& Malle, 2016). Just as we can infer mental states, traits, or
important situational factors on the basis of others’ actions,
all of these represent plausible causes that we might use to
explain their behavior; in other words, explaining others’ ac-
tions requires selecting from among competing causes.

How do people solve this problem? In scientific and legal
settings, counterfactuals are intimately tied to what makes a
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good explanation (Mackie, 1974); meanwhile, formal tools
for evaluating counterfactuals have been immensely impor-
tant for modern AI (Pearl, 2000). However, the degree to
which people rely on counterfactuals for everyday causal rea-
soning is unclear (Galinsky & Moskowitz, 2000; Mandel,
2003; Mandel & Lehman, 1998). Some have argued that
counterfactual simulation is essential to any account of hu-
man causal reasoning (Kahneman & Miller, 1986; Wells &
Gavanski, 1989). A growing body of work exploring causal
judgments about physical events has found that counterfac-
tual simulations performed with a noisy physics engine accu-
rately predict people’s inferences and even their eye move-
ments (Gerstenberg, 2022; Gerstenberg & Stephan, 2021;
Gerstenberg et al., 2017). Efforts to extend these findings
to social cognition suggest that evaluations of responsibility
and blame involve counterfactual simulation of how an agent
would have behaved under different circumstances (Wu et al.,
2023). Yet simulating complex alternatives can be costly and
difficult, especially when they concern the behavior of oth-
ers. For this reason, it’s been proposed that explanations of
others’ actions may instead recruit simpler proxies for the rel-
evant counterfactuals (Lipe, 1991).

Our approach In the current work, we hypothesize that
to explain others’ actions, people simulate whether the out-
come of those actions would have differed if the causes had
been otherwise. We propose a computational model that
compares trait and situation-based explanations of behavior
through counterfactual simulation of these variables (Figure 1
Top). We test the predictions of the model in an experimental
paradigm that allows for fine-grained control over the role of
trait and situation in downstream outcomes. While prior work
has argued that people eschew counterfactual simulation for
simpler inferences, our model predicts individual judgments
about the cause of others’ actions better than alternatives that
rely on visual features of the environment alone. These re-
sults provide early evidence for the extent to which social ex-
planations draw on domain-general causal reasoning.

Study environment: manipulating trait and
situation as causes of behavior

We examine social reasoning in an environment where
agents’ traits and how much behavior is constrained by the
situation are quantifiable and can be flexibly manipulated.
Participants were shown a series of 10x10 grid worlds whose
cells were populated with 10 berry trees at randomly selected
locations (Figure 2). Each berry tree contained between one
and nine berries (rewards were sampled uniformly). In ev-
ery grid, a number of mystery trees had unknown rewards
(each tree’s visibility was a binomial variable with probabil-
ity p = .75 of being visible). One of two farmer agents har-
vested as many berries as possible in the grid. Agents could
only move up to 10 steps, so they chose their paths carefully.

In this environment, the farmers’ planning is formalized
as a Markov Decision Process (MDP) (Bellman, 1957) in
which the best path is the one that maximizes expected re-
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Figure 1: Model Schematic. (Top) We hypothesize that peo-
ple choose the best explanation for others’ actions by simu-
lating how things would have turned out if trait or situational
causes differed. (Bottom) Our experiment probes judgments
about the outcomes of two farmers that vary in their under-
lying optimism (trait) and harvest from two start locations
(situation). Our model predicts these judgments via counter-
factual simulations of the farmer’s trait and situation.

ward within the steps available. The two farmers differed in
how they computed expected reward. The optimist farmer,
HOPE, expected mystery trees to have a high reward of eight
berries. Meanwhile, PRUDENCE, the pessimist farmer, ex-
pected mystery trees to have a symmetrically low reward of
only two berries.1 As a result, the agents planned their routes
in ways that exhibited systematic, trait-like behavior.

Critically, the farmers’ traits were not the only factors con-
tributing to the outcome of their harvests. To make the causal
role of the situation concrete, the farmers always began har-
vesting from one of two squares on opposite corners of the
grid. As a result, their start location sometimes positioned
them close to high reward trees and sometimes placed them at
a disadvantage. Across a range of grid world environments,
participants were prompted to evaluate the degree to which
the agents’ harvest outcomes were caused by their traits (op-
timism or pessimism) and their situation (start location).

1These expectations can be formalized as beta binomial distri-
butions over the range of possible rewards, but for the current exper-
iment, all that matters is their means of two and eight.
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Counterfactual simulation model of trait and
situational causes

We propose a model of social explanation in which ob-
servers reason about the causes of a farmer’s harvest outcome
through counterfactual simulation (Figure 1). In each grid,
the farmer’s harvest was considered a success if they collected
20 or more berries within the 10 steps allotted.2 To estimate
the causal role that the farmer’s trait played in their outcome,
the model simulates how often the outcome would have dif-
fered if the agent harvesting had the other agent’s trait. For
example, in a plot where the optimistic farmer succeeded, the
model simulates how often they would have failed if they in-
stead harvested like the pessimistic farmer. To estimate the
role that the situation played in a harvest outcome, the model
simulates how the outcome might have differed if the farmer
had instead started from the other start location. The farmer’s
start location is just one situational cause among many (e.g.,
how were rewards distributed across nearby trees?), but al-
lows us to simulate reasoning about situational causes with-
out introducing more complex inferences.

Counterfactual simulation To estimate the counterfactual
probability of the farmer’s outcome changing from the other
start location or with the other farmer’s trait level, the model
samples k paths in proportion to the probability of these paths
in the relevant counterfactual (e.g., the probability of differ-
ent paths taken by the agent from the other start location).
The probability of these counterfactual paths is computed us-
ing the softmax of the expected reward on each possible path;
thus, the paths each agent would have taken reflect their un-
derlying optimism or pessimism. For each sampled path,
the model combines the rewards from visible trees on the
path with mystery tree reward values sampled from the true
uniform distribution. The counterfactual probability of the
agent’s outcome changing is the proportion of the k sampled
paths in which this reward estimate would have changed the
original outcome. We use k = 1,000 sampled paths in all re-
ported results. These paths are sampled in proportion to a log
normal distribution centered at 10 steps and truncated at eight
and 12 with variance σsteps to accommodate the possibility
that counterfactual simulation might sometimes “mis-count”
the steps an agent takes. In addition, the model samples vis-
ible tree rewards in each counterfactual path from a log nor-
mal distribution centered at the tree’s true value with variance
σreward to allow for the possibility that evaluation of how an
agent would have fared may rely on noisy counts.

Our model predicts that judgments about whether an
agent’s trait or start location caused their outcome are a func-
tion of these simulated counterfactuals (i.e., the estimated
probability that their outcome would have changed if their
trait or start location had been otherwise). Our model fur-
ther predicts that people choose the best explanation for an
outcome based on the relative strength of each cause.

2This cutoff was a salient number close to the median total har-
vest in a sample of 1,000 simulated grid worlds; see methods.
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Why did        succeed?

Figure 2: Experiment Overview. Two farmers, one optimistic
and the other pessimistic, try to harvest as many berries as
possible from different grids on their farm. Participants com-
pleted six learning trials to understand how the farmers chose
their paths, followed by 20 evaluation trials in which they
watched a farmer harvest a new plot and answered one of five
counterfactual or causal questions about the farmer’s harvest.

Experiment
The methods and analyses in the current study, along with a
more comprehensive description of experiment stimuli, were
preregistered on the OSF at https://osf.io/d48jk.3

Participants
Participants were recruited on Prolific. We recruited 30 par-
ticipants in each of five between-subjects conditions for a to-
tal of N = 150 participants (age: median = 34, range = 20-
74; gender: 88 female, 58 male, 4 non-binary; race: 101
white, 24 black/African American, 14 Asian, 10 multiracial).
All participants were native English speakers residing in the
US. Participants were paid $5 for an estimated 25 minutes to
complete the study (mean completion time: 18.0 mins). This
study followed the Stanford University IRB protocol and all
participants provided informed consent.

3Experiment code and analyses are available on github at https:
//github.com/cicl-stanford/action abstraction cogsci2024.
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Figure 3: Sample trials. Bar plots show average responses with individual responses overlaid. Large dots show model predic-
tions. All error bars are standard error of the mean (SEM). (A)-(B): Participants and the model both predicted that the farmer’s
outcomes were caused by their respective traits. (C)-(D): People and the model attributed the farmers’ outcomes to their start
location. (E): Participants and the model exhibited a qualitatively similar pattern of uncertainty about the causes.

Stimuli
Even with existing constraints on the size of the grid, the
number of trees, their possible reward values, and their vis-
ibility, the number of possible grid world trials is practi-
cally infinite (roughly 14 trillion based on possible tree loca-
tions alone). To select individual trials for this experiment,
we procedurally generated a sample distribution of 1,000
grid worlds with an assigned agent. For the 1,000 sample
(gridworld, agent) environments, we simulated the agent’s
most likely path, along with relevant counterfactuals such as
their outcome from the other start location and with the other
agent’s trait level. We then selected 20 to serve as experiment
trials by applying a set of predetermined criteria (for example,
a balanced distribution of assigned agent, harvest outcome,
and counterfactual outcomes; see OSF preregistration).

Procedure
Participants were first shown instructions detailing the study
environment and the farmers. They were told that some trees
in each plot would contain visible rewards and that others
would be unknown to them and the farmer harvesting the plot.
They were told that the two farmers had different expecta-
tions about the mystery trees; HOPE was optimistic and rou-
tinely expected mystery trees to contain many berries, while
PRUDENCE was pessimistic and expected mystery trees to
have very few berries. The experiment consisted of a learn-
ing phase and an evaluation phase (Figure 2).

In the learning phase, participants completed six trials in
which their goal was to familiarize themselves with the way
each farmer harvested. Participants were first shown the grid
world and the farmer’s starting location and instructed to click
the trees in the order they thought the farmer would harvest
them. As they clicked, the farmer’s path from one tree to the
next was animated and a counter indicated how many of their

10 steps remained. When there were no more trees accessible
from a predicted tree, participants could submit their predic-
tion. Participants could undo their predictions by clicking
previous trees and revise until they were satisfied with their
answer. Upon submitting their prediction, participants were
shown the farmer’s true path animated over the predicted path
and given feedback on the trees they correctly predicted.

After the learning trials, participants completed a compre-
hension check consisting of two questions in which they were
shown a novel grid world (one for each farmer) and three
possible paths. Participants could not proceed to the evalu-
ation phase until they had selected the correct path in both
questions. Participants then completed 20 evaluation trials.
In these trials, participants first watched an animation of the
farmer’s path through a novel grid world; they were then
shown the outcome of this harvest and prompted to evaluate
the outcome with a slider question.

Across five between-subjects conditions, participants were
shown different prompts that tested predictions of the coun-
terfactual simulation model. Those in the counterfactual sit-
uation condition were asked to indicate how strongly they
agreed that the farmer’s outcome would have differed if they
had started on the other start location, using a slider with
“Not at all” at one end and “Strongly” at the other. Par-
ticipants in the counterfactual trait condition were instead
asked to indicate on the same slider how strongly they agreed
that the farmer’s outcome would have differed if they were
as optimistic or pessimistic as the other farmer. Partici-
pants in the causal situation condition indicated how strongly
they agreed that the farmer’s outcome was caused by their
start location. Participants in the causal trait condition in-
dicated how strongly they agreed that the farmer’s outcome
was caused by their optimism or pessimism. Finally, partic-
ipants in the causal tradeoff condition were shown a slider
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Figure 4: Experiment results. (A)-(B): Relationship between participants’ counterfactual judgments and model predictions.
(C)-(D): Relationship between participants’ counterfactual judgments and causal evaluations. (E): Relationship between causal
tradeoff responses and causal evaluations normalized to predict this tradeoff. Error bars are standard error of the mean (SEM).

with “Start location” at one end and the farmer’s trait at the
other and asked why the farmer succeeded or failed (Figure 2).

The counterfactual simulation model makes concrete pre-
dictions for each of these conditions. We compare partici-
pants’ responses to these predictions to evaluate whether their
behavior is consistent with using counterfactual simulation to
support causal reasoning about the farmers’ behavior.

Results
Participants acquired an accurate predictive model of each
farmer before the evaluation trials. Prediction accuracy on the
learning trials was high overall (mean = 75.8%, sd = 33.2%)
and remained stable over the course of these trials; a mixed
effects model fit to prediction accuracy with random inter-
cepts for both subjects and trial stimuli found no effect of trial
index (χ2(1) = 0.40, p = .70). There was also no difference
in accuracy across conditions (χ2(4) = 0.98, p = .45). The
comprehension check after the learning trials was meant to
provide an additional indication of whether participants un-
derstood each farmer’s harvesting behavior. 74.7% of par-
ticipants answered both comprehension check questions cor-
rectly on their first attempt and 92.0% completed them with
two retries or fewer, leaving only 12 participants who re-
quired three or more retries. The results below focus on be-
havior in the subsequent evaluation trials (see Figure 3).

Counterfactual judgments are consistent with
simulations of situation more than trait
We first assess whether participants’ counterfactual judg-
ments can be predicted by our counterfactual simulation
model (Figure 4A-B). The model has three free parameters:
the softmax temperature τ for sampling counterfactual paths,
and the log normal variance for the step count (σsteps) and
visible berry count (σreward) distributions. We fit these param-
eters using a grid search that minimized the squared error of
average counterfactual judgments on each trial. All results re-
ported here use the best-fitting parameter values. The simula-
tion model’s estimated probability of the start location chang-
ing trial outcomes was strongly correlated with judgments in
the counterfactual situation condition (r = 0.82, p < .001).
Model predictions for the probability of the farmer’s trait

changing their outcome were positively correlated with re-
sponses in the counterfactual trait condition but were not
significant (r = 0.37, p = .11).

To better characterize the simulation model’s prediction
accuracy across counterfactual conditions, we calculated the
reliability of participants’ own counterfactual judgments in
each condition. Participants were split into equal halves and
the average judgments on each trial were correlated across
split halves then corrected using the Spearman-Brown pre-
diction formula (Rouder et al., 2019) to estimate the upper
bound on our model’s correlation with human responses. We
repeated this process for 1,000 random split halves in each
condition. Both counterfactual conditions had similar relia-
bility levels (counterfactual situation mean split-half relia-
bility: 0.93, SD = 0.03; counterfactual trait mean split-half
reliability: 0.87, SD = 0.05). The high split half correla-
tions in both conditions suggests that participants made reli-
able counterfactual judgments about trait and situation across
trials; a substantial amount of the variance in trait counterfac-
tuals therefore remains unexplained by our simulation model.

Causal reasoning reflects the degree to which agent
traits and situation made a difference

The counterfactual simulation model assumes that causal
judgments rely on counterfactual simulation of the possible
causes. We therefore test the degree to which participants’
causal judgments in the causal trait and causal situation con-
ditions can be directly predicted by their counterfactual esti-
mates. Since our model does not strongly capture counter-
factual judgments across conditions, we expect participants’
own judgments in the counterfactual trait and counterfac-
tual situation conditions to better explain their causal judg-
ments. Responses in the causal trait and causal situation
conditions were significantly correlated with responses in the
corresponding counterfactual conditions (situation: r = 0.79,
p < .0001; trait: r = 0.61, p = .004; see Figure 4C-D).
The relationship between the simulation model’s counterfac-
tual estimates and participants’ causal responses was weaker,
though the model was significantly correlated with causal sit-
uation judgments (r = 0.73, p < .001) and positively corre-
lated with causal trait judgments (r = 0.32, p = .17).
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Causal explanations reflect the strength of the
underlying causes

Our counterfactual simulation model predicts that to choose
among competing explanations for the farmer’s outcome,
people weigh the strength of each of the potential causes.
Participants’ normalized responses from the two causal con-
ditions were closely aligned with responses on matched trials
in the causal tradeoff condition (r = 0.87, p < .0001; Fig-
ure 4E). This suggests that answering the why question in this
condition involves comparing the strength of each cause.

Given the relationship between participants’ counterfactual
judgments and their causal judgments, we test whether causal
tradeoff responses can be directly predicted by participants’
counterfactual inferences. There was a significant correlation
between participants’ normalized counterfactual judgments
and causal tradeoff responses (r = 0.61, p = .004). Finally,
the simulation model’s counterfactual estimates, when sim-
ilarly normalized, were significantly correlated with causal
tradeoff responses but to a lesser degree (r = 0.51, p = .02).

Model comparison

In the previous results, we found evidence that causal judg-
ments about the farmers’ outcomes relied on counterfactual
simulation. Here, we consider an alternative account based
on features of the environment that may have provided cues
to the causal strength of trait and situation. We fit a linear
mixed effects regression to participants’ responses in the two
causal conditions with random intercepts and slopes for each
participant. Our counterfactual model used mean responses
for each trial in the corresponding counterfactual conditions
as predictors. Meanwhile, our heuristic model used simple
causal heuristics in place of counterfactual simulation. First,
we used the interaction between outcome and agent to pre-
dict causal trait inferences; this is consistent with reasoning
that covariation between outcome and trait provides evidence
for the causal strength of the trait (Kelley, 1973; Lipe, 1991).
Meanwhile, to approximate the causal role of start location,
we used the interaction between outcome and the average ex-
pected reward of trees in the trial, weighted by their Manhat-
tan distance from the farmer (using a discount factor γ = 0.9
for each additional step). This metric has the property that it
will be larger when there are more high value trees close to
where the farmer started, a simple approximation for whether
the farmer’s start location was beneficial.

Models were fit using brms (Bürkner, 2017) and compared
according to their estimated log predictive density in cross-
validation. Results are shown in Table 1. We calculate the
overall fit across participants, as well as the number of indi-
vidual participants best fit by each model. Intriguingly, we
find that overall, causal judgments about both trait and situ-
ation were better predicted by the heuristic models than par-
ticipants’ counterfactual judgments. However, at the individ-
ual level, a greater number of participants’ causal judgments
were better predicted by counterfactual judgments.

Table 1: Overall fit (∆ elpd: lower values are a worse fit) and
individual subjects best fit by each model.

Model ∆ elpd (se) n best

Trait models
Heuristic 0 (0) 10
Counterfactual simulation -66.5 (11.4) 20
Situation models
Heuristic 0 (0) 8
Counterfactual simulation -37.3 (10.5) 22

Discussion
In the current work, we investigate how people choose the
best explanation for others’ behavior. We hypothesize that
people rely on counterfactual simulation to weigh the pos-
sible causes of the outcome they’ve observed. To test this
hypothesis, we propose a computational model of causal rea-
soning based on counterfactual simulation of trait and situa-
tional causes. We evaluate predictions of the model in a rich
experimental paradigm in which both trait and situation con-
tribute to observed behavior to varying degrees.

Results provide suggestive evidence that people relied on
counterfactual simulation to explain the outcomes they ob-
served, but raise a number of questions for future work.
First, our simulation model closely approximates partici-
pants’ counterfactual judgments about situational variables,
but does not correlate significantly with their trait counterfac-
tuals. Second, in a comparison between participants’ coun-
terfactual judgments and simpler heuristics that approximate
causal judgments without relying on simulation, the heuristic
models provide a better overall account of participants’ causal
judgments, but participants were better fit by the counterfac-
tual model at the individual level.

Beyond resolving the inconsistencies in the current find-
ings, more work is needed to address the broad question of
how people explain the behavior of others in everyday set-
tings. First, an important direction for future work will be
testing our model in more naturalistic conditions. The cur-
rent task employs a highly simplified version of trait and sit-
uational causes, and presents this information to participants
directly at the outset. By making the agents’ mystery tree
reward estimates more graded and responsive to their envi-
ronment, their behavior may reflect a more intuitive notion
of optimism or pessimism. Future work should also consider
other traits closer to those observed in recent empirical work
on trait evaluations (Lin & Thornton, 2023) and present par-
ticipants with the challenge of inferring trait and situational
causes on their own, rather than being provided with them.
Finally, a critical avenue for extending the current findings
lies in considering causes of behavior beyond trait and situ-
ation, such as the tendency to explain others’ behavior using
mental states like beliefs, desires, and goals (Jara-Ettinger et
al., 2020; Korman & Malle, 2016).
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