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RNA WORLD

Visualizing primer extension
without enzymes
X-ray crystallography has been used to observe the synthesis of RNA in

the absence of enzymes with atomic resolution.

JOHN C CHAPUT

H
ow life on Earth began remains one of

the greatest scientific mysteries of our

time. According to the phylogenetic

record, all forms of life, both extant and extinct,

are known to store genetic information in DNA

and use proteins as enzymes to catalyze meta-

bolic reactions (Joyce, 2002). However, consid-

erable evidence exists to support the idea that

modern life was preceded by simpler forms that

were based on RNA rather than DNA

(Atkins et al., 2011). This hypothetical period,

commonly referred to as the RNA world, repre-

sents a time when RNA served as the sole

genetic material and RNA enzymes (ribozymes)

were used to catalyze reactions within primitive

cells.

It is well established that RNA can store infor-

mation and catalyze reactions, so it is possible

to envision how modern life could have evolved

from RNA-based life. However, it is less clear

how the RNA world came into being. Research-

ers studying this problem have focused on the

transition from chemistry to biology, which can

be broken down into a number of individual

steps, each with its own set of testable hypothe-

ses (Szostak, 2012). Challenges include finding

plausible prebiotic routes to the building blocks

of life, discovering a mechanism for their assem-

bly into primitive cells, and demonstrating the

emergence of Darwinian behaviors through a

process of RNA replication with heritable

variation.

Recent research advances include the prebi-

otic synthesis of nucleotides, which are the

building blocks of RNA (Powner et al., 2009),

and the synthesis of RNA by RNA polymerase

ribozymes (Horning and Joyce, 2016;

Wang et al., 2011; Wochner et al., 2011). How-

ever, despite this progress, significant gaps

remain in our knowledge of the RNA world. One

major unanswered question is how RNA synthe-

sis happened before the first appearance of an

RNA polymerase ribozyme.

Non-enzymatic chemical synthesis of RNA

offers a possible bridge between prebiotic

chemistry (the molecules and chemical reactions

that lead to the emergence of life) and the RNA

world (Joyce, 1987). For over 30 years,

researchers have used non-enzymatic, template-

directed primer extension reactions to study the

process of RNA synthesis in the absence of

enzymes (proteins or RNA). This approach was

thought to involve the stepwise addition of sin-

gle nucleotides (also known as monomers) to an

RNA primer that was base-paired to an RNA

template. However, recent work has shown that

the critical intermediate is not the monomer, as

had been assumed, but a structure containing

two nucleotides – called the dinucleotide inter-

mediate (Walton and Szostak, 2016).

Preliminary structural insights into the func-

tional role of the dinucleotide intermediate were

initially obtained by X-ray crystallography using

crystals of an RNA primer-template duplex
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bound to a structural analog of the predicted

intermediate (Zhang et al., 2017). However, a

full understanding of the process requires infor-

mation about how the structure of the primer-

template complex and the actual intermediate

changes over time. Now, in eLife, Jack Szostak

of the Massachusetts General Hospital and Har-

vard Medical School and co-workers – Wen

Zhang, Travis Walton, and Li Li – report that

they have used time-resolved X-ray crystallogra-

phy to reveal new details about non-enzymatic

RNA synthesis (Zhang et al., 2018).

Zhang et al. first made crystals of the RNA

primer-template complex with a non-reactive

monomer. Activated monomers were then intro-

duced into the crystal by a process of soaking,

and as the activated monomers replaced the

non-reactive monomers, primer extension

began. The researchers used liquid nitrogen to

freeze the samples at different times and X-ray

crystallography to determine the structures with

atomic resolution. This process provided a

sequence of events that included all the steps of

non-enzymatic RNA synthesis: the activated

nucleotides bind to the template, pairs of

nucleotides form the intermediate and, finally, a

bond is formed between the RNA primer and

the intermediate to extend the primer by one

nucleotide – all without the involvement of any

enzymes.

The observations made by Zhang et al. are

nothing short of amazing and will likely influence

the field of non-enzymatic RNA synthesis for

years to come. In addition to revealing the reac-

tion mechanism, the structures also explain why

the primer reacts more readily with the activated

intermediate than a template-bound monomer.

Namely, pre-organizing the intermediate on the

template reduces the distance between the

primer and the adjacent nucleotide, which ena-

bles the primer to react more rapidly with the

dinucleotide intermediate than it could with an

individual monomer. While further questions

persist, these findings serve as a monumental

achievement and a stepping stone towards

understanding the origin of the RNA world and

the evolution of life on Earth.
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