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On fast radial propagation of parametrically excited geodesic acoustic mode

Z. Qiu1, L. Chen1,2 and F. Zonca3,1
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of Physics, Zhejiang University, Hangzhou, P.R.C

2Department of Physics and Astronomy, University of California, Irvine CA 92697-4575, U.S.A.

3 ENEA C. R. Frascati, C. P. 65-00044 Frascati, Italy

The spatial and temporal evolution of parametrically excited geodesic acoustic mode

(GAM) initial pulse is investigated both analytically and numerically. Our results show

that the nonlinearly excited GAM propagates at a group velocity which is, typically, much

larger than that due to finite ion Larmor radius as predicted by the linear theory. The

nonlinear dispersion relation of GAM driven by a finite amplitude drift wave pump is also

derived, showing a nonlinear frequency increment of GAM. Further implications of these

findings for interpreting experimental observations are also discussed.

I. INTRODUCTION

Geodesic Acoustic Modes (GAM) [1, 2] are finite-frequency components of zonal structures

(ZS) [3, 4] unique in toroidal plasmas, which could be spontaneously excited by microscopic drift

wave (DW) type turbulence [5], including drift Alfvén waves (DAW); and in turn, are capable

of scattering DW/DAW into stable short radial-wavelength domain [2, 6–9]. Therefore, GAM

may regulate the turbulence intensity and the associated wave-induced transports [10, 11]. The

excitation of GAM by DWs can be described by parametric decay instability [12, 13], where the

DWpump (ω0,k0) decays into a DW lower sideband (ωS,kS) and a GAM (ωG,kG), and selection

rules of frequency and wavenumber matching conditions are satisfied.

It is known that GAM has a finite linear group velocity due to finite ion Larmor radius (FILR)

effects, and this linear group velocity is typically radially outward, consistent with GAM continuum

due to radial temperature profiles. For GAM with krρi ≪ 1, its linear group velocity is VG =

CGωGkrρ
2

i , with the linear dispersion relation given as ω2 = ω2

G(1 + CGk
2
rρ

2

i ) [2]. Here, ωG =
√

Te/Ti + 7/4vti/R0 is the local GAM frequency in the fluid limit, vti ≡
√

2Ti/mi the thermal ion

velocity, R0 is the major radius of the torus, kr is the radial wavevector, ρi = micvti/(eB0) is the

ion Larmor radius, and CG is an order unity coefficient. This linear group velocity of GAM has

been discussed in several works [2, 14, 15], and is shown to have important consequences on the

nonlinear excitation of GAM by DWs and change the absolute/convective nature of the parametric

instability [8, 16]. Radial propagation of GAM has been observed in several experiments [17–19],

and qualitative agreement between the experimental results and linear theory has been obtained

[19, 20]. However, in-depth analysis of the experimentally obtained dispersion relation leads to the

conclusion that, even though a quadratic dependence of GAM frequency on its radial wavevector,

qualitatively consistent with linear theory of KGAM [19], is indeed obtained, the coefficient for

http://arxiv.org/abs/1504.02318v1
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FILR effects is much larger than that predicted by linear theory [14, 21]. This discrepancy has

also been found in numerical simulations [15], where the measured radial propagation velocity of

the DW driven GAM is used to determine the coefficients of FILR effect, and is found to be much

larger than unity. Up to now, there is no first-principle-theory-based explanation of this “enhanced

FILR effect”, although a general theoretical framework exists to formulate it with all necessary

physics ingredients [8]. In fact, we will show in this work, that this discrepancy could be due to

nonlinear effects.

We note that, GAM is an n = 0/m ≃ 0 mode, with m = ±1 sidebands and possibly higher order

ones (depending on the perpendicular wavelength [2]), such that it is generally not driven unstable

by expansion free energy of the plasma. Here, m and n are, respectively, the poloidal and toroidal

mode numbers in the Fourier mode structure representation adopting straight field line toroidal

flux coordinates [22]. Thus, GAM, in general, could be observed when it is nonlinearly driven

by ambient turbulence, and in this case, the spatial-temporal evolution of GAM is significantly

affected by the DW nonlinear drive. It has been pointed out in Ref. 8 that the nonlinearly driven

GAM propagates at a much larger nonlinearly-coupled group velocity in the presence of DW. As a

result, the propagation of GAM and experimental observations should also be interpreted taking

nonlinear effects into account. In this work, we shall further study the spatial-temporal evolution

of the nonlinearly coupled DW-GAM system more in details in order to analyze its implications to

experimental observations. The rest of the paper is organized as follows: the theoretical model used

in this work is presented in Sec. II, which is then solved in Sec. III for the spationtemporal evolution

of the coupled GAM-DW system. The possible applications of our theory to interpretation of

experimental observations and numerical results are also presented. Finally, a brief summary is

given in Sec. IV.

II. THEORETICAL MODEL

The equations describing the nonlinear interactions between GAM and DW are derived using

gyrokinetic theory [2, 8]. Assuming that the DW is constituted by a constant-amplitude pump

wave and a lower sideband with a much smaller amplitude due to GAM modulation, the normalized

coupled nonlinear equations describing GAM excitation by DW are then given as equations (9)

and (10) of Ref. 8:

(

∂t + γS + iωP − iω∗ − iCdω∗ρ
2

i ∂
2

r

)

AS = Γ∗
0
E , (1)

(

∂t(∂t + 2γG) + ω2

G − CGω
2

Gρ
2

i ∂
2

r

)

E = iωGΓ0∂
2

rAS . (2)

Here, E ≡ ∂rAG/α is related with the GAM electric field with α ≡ i(αiωPTe/Ti)
1/2 and αi ≡

1 + δP⊥/(en0δφP ) an order unity coefficient [23], δP⊥ is the perturbed perpendicular pressure

due to the DW pump scalar potential δφP in the k⊥ρi ≪ 1 limit [23]. Meanwhile, AG, AP

and AS are, respectively, the radial envelopes of GAM, DW pump and lower sideband, Γ0 ≡
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(αiTi/ωPTe)
1/2ckθ,PAP /B is the normalized pump wave amplitude. Furthermore, γS and γG are

the Landau damping rates of DW sideband and GAM, ωP is the pump DW frequency and ω∗ is

the diamagnetic drift frequency. The kinetic term in equation (1), i.e., the term proportional to

Cd, comes from finite radial envelope variation due to the coupling between neighboring poloidal

harmonics. The expression for Cd can be derived from equation (19) of Ref. 24, and one has

Cd ∼ O(ǫ/(n2q′2ρ2i )) with q being the safety factor, q′ = dq/dr its radial derivative and ǫ = r/R0.

On the other hand, the kinetic term in equation (2); i.e., the term proportional to CG, comes

from FILR of GAM. Thus, CG ∼ O(1) and its detailed expression can be obtained from equation

(9) of Ref. [21]. Other notations are standard. We note that, the governing equations (1) and

(2) are derived from quasi-neutrality condition assuming both GAM and DW are predominantly

electrostatic perturbations. Electrons respond adiabaticly to k‖ 6= 0 perturbations, i.e., DW and

m 6= 0 poloidal sidebands of GAM; while ion responses are solved assuming q ≫ 1, k⊥ρi ≪ 1 and

|ω0| ∼ |ω∗| for DW. We note that, even though turbulence usually refers to a broad spectrum of

nonlinearly interacting DWs, in the present analysis we have considered the nonlinear interactions

of GAM with a single-n DW in order to elucidate the nonlinear effects on the radial propagation

of GAM due to interaction with finite-amplitude DWs. Since for each DW with toroidal mode

number n, the interactions with the corresponding GAM is coherent, we may expect that in the

presence of DW turbulence consisting of multiple-n modes, the net nonlinear effects would be an

appropriate sum/integral of the nonlinear effects of individual-n mode sconsidered here. System

nonuniformities in equations (1) and (2), which may affect qualitatively the convective/absolute

nature of the parametric process as shown in Ref. 8, are also ignored here in order to focus on the

radial propagation of the parametrically excited GAM pulse.

III. SPATIALTEMPORAL EVOLUTION OF THE COUPLED DW-GAM SYSTEM

Equations (1) and (2) can be solved using two-spatial two-temporal scales expansion of E and

AS , i.e., AS = ÂS(τ, ζ) exp(ik0r− iω0t) and E = Ê (τ, ζ) exp(ik0r− iω0t) such that ∂t = −iω0 + ∂τ

and ∂r = ik0 + ∂ζ , with τ and ζ denoting the slow temporal and spatial variations. In order

to delineate the physics of GAM propagation, we can assume that the system is well above the

excitation threshold [2]. Thus, we can ignore γS and γG in equations (1) and (2); and the coupled

nonlinear equations reduce to

(∂τ + VS∂ζ) ÂS = Γ∗
0
Ê , (3)

(∂τ + VG∂ζ) Ê =
1

2
Γ0(k

2

0
− 2ik0∂ζ)ÂS . (4)

Here, VS = 2Cdω∗ρ
2

i k0 and VG = CGωGρ
2

i k0 are, respectively, the linear group velocities of DW

sideband and GAM. We note that VS and VG have the same sign for typical tokamak parameters

[2, 8], such that the excitation of GAM by DWs is a convective amplification process, ignoring

system nonuniformities [16, 26]. Furthermore, in deriving equations (3) and (4), the following
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frequency and wavenumber matching conditions for resonant decay are applied

− ω0 + ωP − ω∗ + Cdω∗k
2

0
ρ2i = 0,

−ω2

0 + ω2

G + CGω
2

Gk
2

0ρ
2

i = 0,

from where (ω0, k0) can be solved for.

Moving into the wave frame by taking ξ = ζ−Vcτ , with Vc = (VS+VG)/2, the coupled nonlinear

equations, (3) and (4), can be combined to yield the following equation describing the nonlinear

spatialtemporal evolution of the parametrically excited GAM

(

∂2

τ − V 2

0 ∂
2

ξ

)

Ê =
1

2
k20Γ

2

0Ê − ik0Γ
2

0∂ξÊ . (5)

Here, V0 = (VS − VG)/2. Letting Ê = exp(iβξ)A(ξ, τ), with β = k0Γ
2
0
/(2V 2

0
), equation (5) reduces

to

(

∂2

τ − V 2

0 ∂
2

ξ

)

A =

(

1

2
k20Γ

2

0 + βk0Γ
2

0 − β2V 2

0

)

A ≡ η̂2A. (6)

Physically, β can be interpreted as nonlinear modification to the GAM wave vector, which also

affects the GAM frequency as shown below. Equation (6) can be solved, and yields the following

unstable solution

A =
Â0√
π∆k0

∫ ∞

−∞
dkI exp

(

− k2I
∆k2

0

)

exp

[

ikIξ +
√

η̂2 − k2IV
2
0
τ

]

. (7)

This solution corresponds to the initial condition

A = Â0 exp

(

−∆k2
0
ξ2

4

)

at τ = 0. We note that this is the typical wave packet initial structure for parametrically excited

GAM, with a spectrum width ∆k0. Assuming |Vc∂ξ| ≪ |∂τ |, i.e., convective damping due to FILR

effects are higher order corrections to the temporal growth [2, 27], the general solution, equation

(7), can then be reduced to the following time asymptotic solution:

A =
Â0

∆k0λτ
exp

(

η̂τ − ξ2

4λ2
τ

)

. (8)

Here, λ2
τ = (1/∆k2

0
+V 2

0
τ/(2η̂)), and it corresponds to GAM initial pulse broadening in time. The

time asymptotic solution of GAM electric field is then

E =
Â0

∆k0λτ
exp

(

η̂τ + iβ(ζ − Vcτ)−
1

4λ2
τ

(ζ − Vcτ)
2

)

. (9)

One then readily has from equation (9) that the nonlinearly excited GAM is characterized by

a nonlinear radial wavevector

kNL = k0 − i∂ζ ln E = k0
(

1 + Γ2

0
/(2V 2

0
)
)

, (10)
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i.e., the wavevector increases with pump DW amplitude, and is larger than that predicted from

frequency/wavenumber matching conditions.

The real frequency of the excited GAM can also be obtained from equation (9)

ωNL = ω0 + i∂τ ln E = ω0 +
k0Γ

2
0
Vc

2V 2
0

. (11)

ω0(k0) can be solved from the matching conditions, which can then be substituted into equation

(11), and yield:

ωNL = ωG +
k0Γ

2
0
Vc

2V 2
0

+
1

2
CGωGk

2

0
ρ2i

= ωG +
k0Γ

2
0
Vc

2V 2
0

+
CGωGρ

2

i k
2

NL

2(1 + Γ2
0
/(2V 2

0
))2

. (12)

This is the nonlinear dispersion relation of the parametrically excited GAM. We note that, both

V0 and Vc are proportional to k0, and thus, the nonlinear frequency shift due to the modulation of

DW, k0Γ
2
0
Vc/(2V

2
0
), is independent of k0. Thus, finite amplitude DW will increase the frequency of

the nonlinearly driven GAM. The frequency increment, can be expressed as (eδφ/T )2(Ln/ρi)
2 from

our theory, which indicates an order of unity frequency increment for typical tokamak parameters.

This may explain the existence of the higher frequency branch of the “dual-GAM” observed in

HT-7 tokamak [19], which oscillates at a frequency much higher than other branch with the usual

GAM frequency (The frequencies of the two co-existing “dual - GAMs” are respectively 12 and 21

kHz in shot 113901 [19]). Another finding of the HT-7 experiment is the coefficient of FILR effect

is O(102) larger than that predicted by linear theory [28]. On the other hand, equation (12) shows

that the coefficient for kinetic dispersiveness is, in fact, decreased by a factor (1 + Γ2
0
/(2V 2

0
))2.

The reason why experimental analysis found an “increased” coefficient is that, in the analysis of

experimental data, one employed the linear dispersion relation of GAM and used the expression

(ωobs − ωloc)/(ωlock
2

obsρ
2

i ) to determine the coefficient CG [28]. Here, the subscript “obs” denotes

experimental observation, and “loc” denotes local continuum frequency of GAM. As we have shown

in equation (12), “ωobs−ωloc” contains the kinetic dispersiveness as well as the order one nonlinear

frequency increment k0Γ
2
0
Vc/(2V

2
0
); which, thus, can lead to an over-estimation of the coefficient

CNL
G [28]. The effective coefficient obtained in this way is, C∗

G ∼ (eδφ/T )2(Ln/ρi)
2/(k2Gρ

2

i ) ∼
O(102) for typical tokamak parameters; which is significantly larger than that predicted by linear

theory. Our nonlinear theory, thus, provides a possible explanation of experimental observations. It

can also be used to explain the O(102) increase of the FILR coefficient from numerical simulations

[15].

The coupled GAM and DW sideband wavepacket, propagates at a nonlinear group velocity

Vc = (VS + VG)/2, which is much larger than the linear group velocity of GAM due to |VS | ≫ |VG|
(|ωP | ≃ |ω∗| ≫ |ωG| for resonant decay). Thus, to interpret the propagation of GAM nonlinearly

excited by DW turbulences including DAW, linear theory of KGAM [2, 21] is not adequate, and
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FIG. 1: Nonlinear wavenumber kr v.s. pump amplitude

Γ0

one must instead, apply nonlinear theory. We note also that, while both the real frequency and

wavevector of the excited GAM depend on the amplitude of the pump DW, the nonlinear group

velocity is determined by k0 from matching conditions, and is independent of the pump amplitude.

Thus, for the comparison of experimentally observations with analytical theory, the nonlinear group

velocity may be a better candidate.

The coupled nonlinear GAM and DW sideband equations, equations (1) and (2), are solved

numerically. Here, we fix Cd = CG = 1, ωG = 0.1, ωP = ω∗ = 1, and study the coupled nonlinear

equations by varying Γ0. The dependence of the nonlinear wavenumber kr on pump amplitude

is given in Fig. 1, where the dots are the wavenumbers from numerical solution, the diamonds

are the wavenumbers obtained from equation (10); and the solid curve is obtained from matching

condition. For the parameters we have here, the wavevector solved from matching conditions is

k0 = 0.32. We may see from Fig. 1 that our nonlinear theory fits well with the numerical results;

and it reduces to k0 as Γ0 approaches 0. The comparison of the numerically measured nonlinear

group velocity with our theory, is presented in Fig. 2, where the dots are numerical results and

the diamonds are obtained from Vc = (VS + VG)/2, and VS and VG are defined with k0. We

note that, for the parameters we used in numerical solution, VS = 0.64, VG = 0.032 and Vc =

(VS + VG)/2 = 0.34 ≫ VG. Very good agreement between numerical results and analytical theory

(< 3% discrepency) are obtained here, suggesting that experimentally observed radial propagation

of GAM must be understood using nonlinear theory.

The nonlinear frequency of GAM is given in Fig. 3, where the dots are numerical results

and the diamonds represents ωNL from equation (11). Note that, for the parameters we use

here, ω0 = 0.105, and the nonlinear frequency from numerical solution increases with pump DW

amplitude as predicted by our theory.
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IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, equations describing the spatialtemporal evolution of parametrically excited GAM

initial pulse are studied both analytically and numerically. It is found that the parametrically

excited GAM propagates at a nonlinear group velocity, which is the mean of the linear group

velocities of GAM and DW, and is much larger than that predicted by linear theory of kinetic

GAM. The wavevector of the excited GAM has a quadratic dependence on the amplitude of the

constant-amplitude pump DW. On the other hand, the nonlinear group velocity is independent of

the pumpDW amplitude; suggesting it as a good candidate for the comparison between experiments

and analytical theory. Our nonlinear theory, further shows that there is a nonlinear upshift in

the GAM frequency. Implications of the present theoretical findings to the HT-7 experimental

observations are also important. Our results demonstrate that one must include nonlinear effects
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in order to properly analyze numerical simulations and/or experimental observations of GAM.

We note that, while the ambient turbulence in experiments consists of a whole spectrum of

nonlinearly interacting DWs, we have, in the present analysis, considered the modification of the

GAM dispersion relation due to a single-n DW with finite amplitude. This can be justified, since

DW interactions with ZS, e.g. GAMs, have two components: a coherent part due to the interaction

with the self-generated ZS, and a random contribution due to interaction with ZS produced by other

incoherent components of the fluctuation spectrum [25]. In both cases, the coupling coefficient is

proportional to DW intensity and, therefore, we focus here on the coherent GAM-DW interaction

[2]. Effects of system nonuniformities, which are shown to play important roles on the nonlinear

interactions between GAM and DWs are also ignored here. This will limit the applications of our

nonlinear theory. To properly interprete global numerical simulations and/or experimental results,

more in-depth investigations taking into account system nonunifomities will be needed.
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