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RESEARCH ARTICLE Open Access

A unified resource for transcriptional
regulation in Escherichia coli K-12
incorporating high-throughput-generated
binding data into RegulonDB version 10.0
Alberto Santos-Zavaleta1, Mishael Sánchez-Pérez1, Heladia Salgado1, David A. Velázquez-Ramírez1,
Socorro Gama-Castro1, Víctor H. Tierrafría1, Stephen J. W. Busby2, Patricia Aquino3, Xin Fang4,
Bernhard O. Palsson4,5, James E. Galagan3 and Julio Collado-Vides1,3*

Abstract

Background: Our understanding of the regulation of gene expression has benefited from the availability of high-
throughput technologies that interrogate the whole genome for the binding of specific transcription factors and
gene expression profiles. In the case of widely used model organisms, such as Escherichia coli K-12, the new
knowledge gained from these approaches needs to be integrated with the legacy of accumulated knowledge from
genetic and molecular biology experiments conducted in the pre-genomic era in order to attain the deepest level
of understanding possible based on the available data.

Results: In this paper, we describe an expansion of RegulonDB, the database containing the rich legacy of decades
of classic molecular biology experiments supporting what we know about gene regulation and operon
organization in E. coli K-12, to include the genome-wide dataset collections from 32 ChIP and 19 gSELEX
publications, in addition to around 60 genome-wide expression profiles relevant to the functional significance of
these datasets and used in their curation. Three essential features for the integration of this information coming
from different methodological approaches are: first, a controlled vocabulary within an ontology for precisely
defining growth conditions; second, the criteria to separate elements with enough evidence to consider them
involved in gene regulation from isolated transcription factor binding sites without such support; and third, an
expanded computational model supporting this knowledge. Altogether, this constitutes the basis for adequately
gathering and enabling the comparisons and integration needed to manage and access such wealth of knowledge.

Conclusions: This version 10.0 of RegulonDB is a first step toward what should become the unifying access point
for current and future knowledge on gene regulation in E. coli K-12. Furthermore, this model platform and
associated methodologies and criteria can be emulated for gathering knowledge on other microbial organisms.
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Background
Similar to the role that the elucidation of the structure
of DNA had in the foundation of modern genetics, the
concepts more recently revealed about transcription fac-
tor binding sites (TFBSs) and their effects on the activity
of promoters that transcribe transcription units, op-
erons, and regulons serve as the foundation for how we
think about gene regulation in microbial organisms, and
with some modifications, in higher organisms as well.
These concepts were the product of research in Escheri-
chia coli K-12 during the second half of the twentieth
century. They underlie the computational infrastructures
for electronic databases on microbes, such as Regu-
lonDB, to encode and populate all knowledge that mo-
lecular biologists have generated, from the time of the
seminal works by Jacob and Monod to today. Over
20 years of continued curation have resulted in the
placement of every binding site, promoter, transcription
factor (TF) and its active conformation, or any other
piece of published knowledge on gene regulation, in
their corresponding coordinates of the updated complete
genome sequence of this bacterium.
However, the emergence of “postgenomic methodolo-

gies” has changed the game. We now have whole-gen-
ome expression profiles for thousands of different
conditions (e.g., the COLOMBOS and M3D databases
[1, 2]) and whole-genome identification of binding sites
for around 65 TFs; these numbers continue to increase.
During the last decade, we have seen a sharp increase in
the number of studies on transcriptional regulation in E.
coli K-12 involving different high-throughput (HT) ap-
proaches (Fig. 1), and it is likely that we are transitioning
to high-throughput (HT) approaches dominating re-
search, as opposed to the more directed molecular

biology experiments already deposited in RegulonDB. See
the variety of novel HT methodologies shown in Table 1.
In the midst of the accelerated pace of generation of

data and experimental information in the genomic era, da-
tabases and other electronic resources are the major in-
struments with which to integrate and facilitate access to
the tsunami of data otherwise only incompletely captured
by individual investigators. Table 2 lists the major data-
bases and repositories with information about the biology
of E. coli K-12. The two up-to-date manually curated data-
bases are RegulonDB [3] and EcoCyc [4]. Our team is in
charge of curating transcriptional regulation for these two
databases. On the other hand, COLOMBOS is the only
database with microarray data specific for E. coli, and it
also contains similar data for a few other microorganisms
[1]. Otherwise, HT data are found in the general reposi-
tories GEO and ArrayExpress (Table 1).
Years ago, there were efforts in the USA to organize

HT data for E. coli. These included EcoliHub and its
subsequent PortEco version, in addition to EcoliWiki;
none of these is currently actively maintained [5]. Therefore,
an investigator interested in gathering what is currently
known about a particular regulatory system in E. coli has to
spend time searching these different resources.
Given that HT methodologies enrich our knowledge

on gene regulation and gene expression, expanding the
current model beyond RegulonDB is a natural next step.
However, this is not a straightforward task. HT data
sometimes challenge the Jacob and Monod paradigm,
such as when there is supporting evidence for a binding

Fig. 1 Number of publications studying transcriptional regulation in
E. coli K-12, using either classic molecular biology or HT technologies
through the years

Table 1 Search results by methods

Method PubMed search Datasets

ChIP-chip 30 34

ChIP-seq 15 34

ChIP-exo 8 12

Selex 35 23

RNA-seq 160 102

Microarrays 1188 749

Hi-C 8 1

IPOD 1 1

NET-seq 2 2

TraDIS 3 0

ChAP-seq 2 0

CLIP-seq 1 1

Bisulfite-seq 1 0

Genotyping n.d. 10

RIP-seq n.d. 2

Others 0 157

Total 1454 1128
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site far from any promoter, or when a promoter site is
found in a non-coding region between two convergent
ends of genes, where no transcription initiation is
expected to occur. HT methodologies generate large
amounts of what sometimes appears as disconnected
pieces of data. For instance, a single study might reveal
≈ 14,000 candidate transcription start sites (TSSs), of
which more than 11,000 occur within the coding regions
(≈ 5500 in the sense strand and ≈ 5400 in the antisense
strand) [6]. Similarly, it is no longer surprising to find
binding sites within the coding regions in HT binding
experiments. The number of these TSSs or binding sites
that are either non-functional or that participate in roles
not directly related to gene regulation is still an open
question.
As a result, we need a mixed model that can ac-

commodate both the complete picture of a transcrip-
tion unit with its promoter and binding sites where
objects and their interactions make sense, as well as
plausible but disconnected objects. First, the data
should be available in a structured way when possible,
but with enough flexibility to allow users to make
their own decisions. Second, we need to implement
tools and criteria to identify experiments performed
under similar conditions. An ontology and its corre-
sponding controlled vocabulary for precisely defining
growth conditions are part of our efforts in this direc-
tion [7]. This is the basis for merging our classic cur-
ation with the one presented here for HT binding
experiments, together with the expression profiles to
identify the effects of binding, to construct a regula-
tory interaction. Third, we need to define additional
evidence codes for different types of HT experiments,

together with the limits that define when there is suf-
ficient information to include a new regulatory inter-
action or any other piece of evidence that contributes
to plausible regulatory processes, as opposed to scat-
tered elements without enough support for their in-
terpretation as functional elements of gene regulation.
Finally, we have to define the features of and how to
display HT-generated binding sites and regulatory in-
teractions in a way consistent with those that already
exist. Altogether, this constitutes the basis for adequately
gathering and enabling the comparisons and integration
needed to manage the vast current knowledge about tran-
scriptional regulation in E. coli. We present here the first
version of a more complete integration of HT binding ex-
perimental results (from chromatin immunoprecipitation
[ChIP] experiments and genomic systematic evolution of
ligands by exponential enrichment [gSELEX] data) with
the previously curated literature.

Methods
Search of literature and datasets involving HT
technologies
A literature search was focused in PubMed. We collected
publications involving the HT methodologies shown in
Table 1. Searches were performed looking for the term
“coli” in the title or in the abstract and the name of the
method or different synonyms or keywords related to the
method in all fields of publications. This strategy usually
resulted in repeated studies; thus, we filtered the unique
results. We read the abstracts and discarded all those pa-
pers not reporting experiments explicitly performed in E.
coli. Finally, we filtered once again the repeated studies

Table 2 Resources for gene regulation in E. coli K-12

Source Type of knowledge URL Updated Reference

RegulonDB Transcriptional regulation, operons, regulons, gensor units http://regulondb.ccg.unam.mx Yes [3]

EcoCyc Regulation, transport, metabolism https://ecocyc.org Yes [4]

COLOMBOS Expression compendia of bacterial organisms http://colombos.net Yes [1]

STRING Protein-protein interaction network http://string-db.org Yes [20]

GEO Genomics HT data repository https://www.ncbi.nlm.nih.gov/geo/ Yes [21]

ArrayExpress Repository of HT functional genomics experimental results https://www.ebi.ac.uk/arrayexpress/ Yes [22]

PortEco Next-generation data for Escherichia coli http://porteco.org No [5]

GenExpDB Expression compendia https://genexpdb.okstate.edu No –

EcoGene E. coli K-12 genome and proteome information http://ecogene.org No [23]

GenProtEC Functions encoded by the Escherichia coli K-12 genome http://genprotec.mbl.edu No [24]

EchoBASE Information from postgenomic experiments https://www.york.ac.uk/res/thomas/ No [25]

Bacteriome Integrates physical (protein-protein) and functional interactions http://www.compsysbio.org/bacteriome/ – [26]

EcoProDB Integrates protein information http://eecoli.kaist.ac.kr/main.html – [27]

M3D Resource for microbial gene expression data http://m3d.mssm.edu No [2]
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among all considered techniques, obtaining 1454 unique
studies (Table 1 and Fig. 1).
Of the 1454 papers related to HT, 1188 belong to micro-

arrays, leaving only 248 papers related to ChIP-X (either
ChIP-seq, ChIP-exo, or ChIP-chip), gSELEX, and
RNA-seq, in addition to 18 papers with a variety of HT
techniques (see Table 1). Fortunately, essentially all micro-
array datasets are incorporated in the COLOMBOS data-
base. Fifty-one papers were processed in order to extract
all peak sequences or regions identified by HT methods.
Frequently, these papers include additional experimental
characterization for a subset of sites based on the results of
electrophoretic mobility shift assays, footprinting analysis,
and bioinformatics tools, primarily via the use of position
weight matrices (PWMs) for the TFBSs to precisely identify
the binding sites in the sequences of the peak regions. Cur-
ation of the literature extracted from each publication in-
cluded the following metadata: the strain; growth
condition; number of targets; name of the TF; methodology
used ChIP-X, gSELEX, or RNA-seq and its evidence code;
additional techniques used to further identify the binding
sites; and links to the files, when available, in the reposi-
tories of GEO or ArrayExpress. As mentioned above, the
growth condition and strain are described using the con-
trolled vocabulary defined by Tierrafría et al. preprint [7].
As explained in the section on the curation of HT litera-
ture, the products of curation are added to RegulonDB ei-
ther together with the classic curation or as a separate
dataset. For those added to the classic curation, the infor-
mation includes on the one hand information about the
binding such as coordinates for the peak and method-
ology, coordinates or sequence for TFBS, growth condi-
tions, evidence and reference, and information about the
regulatory interaction: target genes, methodology, growth
condition contrast (frequently comparing expression of
overexpressed TF vs its mutant knockout), effect or func-
tion, evidence, and reference of the regulatory effect. In
the case of regulatory interactions identified in the E. coli
K-12 substr. W3110, we verified that the TFBS sequence
is conserved with E. coli K-12 substr. MG1655, before
adding it in RegulonDB. A schematic of the overall flux of
our process is shown in Fig. 2, also found under in the an-
notation process under about RegulonDB [8].
We also indicate if the effect was identified by the au-

thors (with their corresponding thresholds of change of
expression), and we specify the regulated gene. Informa-
tion on peak sequences is contained in the datasets. It is
important to keep in mind that once the DNA sequences
identified by a particular antibody are sequenced, these
are then mapped to the genome sequence, and the se-
quence peaks or regions are defined; in these experiments,
these regions are usually in the range of 200 to 500 nucle-
otides. We refer to them as peak sequences. A subsequent
step is the identification of potential precise binding sites

for the given TF. Most often, this is currently done via al-
ternative bioinformatics methods that use known PWMs
within those regions, such as MEME [9] or dyad analysis
or other similar methods [10], although alternative
methods also exist [11, 12]. We gather information on the
method used by the authors, as well as the evidence
according to the notation used in RegulonDB, which ex-
pands that reported by the Gene Ontology Consortium,
see the page of evidence classification on Regulon DB [8].
In several cases, the sequences that result from the

peak-calling algorithms were provided without identifi-
cation of a precise binding site. In those cases, the cur-
ator team used the PWM available in RegulonDB (under
external data, in the matrix alignments [8]) for the given
TF to search among the peak sequences by using the
threshold parameters adequate for each TF. The selec-
tion of the threshold was decided using the score distri-
bution matrix [13] using the separation between the
empirical and theoretical distribution. All data for TF
motif matrix are available on RegulonDB in the matrix
alignment page [8].

Results
This paper is focused on the literature from HT binding
experiments. Our curation focused on identifying the ob-
jects (sites, promoters, interactions) that satisfy a set of
criteria regarding confidence and interpretability (see
below), in order to upload them in RegulonDB together
with all existing knowledge. When these criteria are not
satisfied, then we simply offer the data as datasets (search-
ing for downloads [8]), which are not equally browsable or
displayed within RegulonDB, as explained below. We cu-
rated a total of 51 papers with HT approaches out of
which we added 1048 new regulatory interactions of 9
TFs, in addition to 107 existing regulatory interactions
that have been found by these methods. These papers gen-
erated 16,609 interactions of 36 TFs and sigma factors that
have some missing information and therefore are included
only as datasets. Note that we distinguish regulatory inter-
actions from plain “interactions,” for which no evidence is
yet available supporting their regulatory role.

Curation of HT literature in RegulonDB
As reported in our publications describing our progress with
RegulonDB, we have curated some papers from past HT ex-
periments. The first datasets we included were for TSSs
identified by Illumina sequencing of 5′-triphosphate-en-
riched transcripts by the group of Morett [14]. In 2015, we
initiated the curation of binding sites obtained via gSELEX
(CRP, H-NS, and LeuO) and ChIP-exo (GadE, GadW, GadY,
OxyR, and SoxS), as well as the dataset of TSSs reported by
the group of Storz [6]. We are now including curated sites
and have made a separate section so that the user can easily
identify the datasets coming from HT experiments, together
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and/or separated from those coming from classic methods.
Furthermore, we have initiated important modifica-
tions to the computational model of RegulonDB, to-
gether with a controlled vocabulary for growth
conditions which, taken together, prepare us for a
constant and eventual up-to-date curation of all of
this literature’s content. We have extracted publicly
available information for 43 different TFs from exper-
iments performed in E. coli K-12 by ChIP (ChIP-chip,
ChIP-seq, and ChIP-exo) or gSELEX by the group of
Ishihama; their experiments were performed in E. coli
strain K-12 sub-strain W3110 [15] (this is noted in

RegulonDB), as well as RNA-seq and microarray in-
formation contained in those papers. Curation of this
literature included extracting the metadata (see the
“Methods” section) that contain all relevant informa-
tion of the biology (TF and growth conditions) as
well as links to the data if found in standard reposi-
tories, and also relevant information as detailed in the
“Methods” section. A total of 51 new papers were cu-
rated of which 19 are papers with gSELEX data, 17
from ChIP-chip data, 8 from ChIP-seq data, and 7
from ChIP-exo data. The summary of all curated
knowledge from HT methodologies currently available

Fig. 2 Diagram of the annotation process. We collect publications in PubMed involving the HT methodologies. Searches were made for the term
“coli” in the title or in the abstract and the name of the method or different synonyms or keywords related to the method in all fields of
publications. The results were filtered to get unique results. We read the abstracts and eliminate all those papers not reporting experiments
performed in E. coli. Frequently, the papers include additional experimental characterization for a subset of the sites based on classic methods.
Metadata are extracted from each publication. For more detail see main text. The growth condition and strain are described using the controlled
vocabulary defined by Tierrafría et al. [7]. The products of curation are added to RegulonDB either together with the classic curation or as a
separate dataset. Image from RegulonDB [8]
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in RegulonDB is shown in Table 3. While this is an
important first step, additional data are continually
curated in order to reach an up-to-date level equal to
that of the classic literature.

Criteria to combine classic and HT-supported data
When curating knowledge on gene regulation in E. coli,
the best decision we can make is to offer users the best
possible integration of data and information, clearly indi-
cating the corresponding experimental method and ref-
erence. The challenge of the classic paradigm of gene
regulation with the scattered data from HT experiments
is solved in practice by separating two sets as the prod-
uct of our curation: those pieces of knowledge (TFBSs)
with enough additional evidence to support their func-
tional role in gene regulation are added to the bulk of
existing knowledge (see Table 4), whereas those binding
sites for which not enough information is known about
the bound TF and its role in gene regulation are kept in
separate datasets (see Table 5). Additionally, experiments
kept in datasets are those that support a given DNA re-
gion in the genome that is usually much larger than
TFBSs, such as peak regions or regions from SELEX ex-
periments, but for which a precise TFBS has not been
identified.
Users can download and combine the information

available within the classic model of RegulonDB with
any of the available datasets, and we plan on implement-
ing additional tools in the future that will facilitate their
comparison, visualization, and processing. As these tools
are implemented, the decision as to what information
gets added to the core of knowledge and what remains
as datasets will be less relevant in practice.
Our curation strategy involves two phases. First, we

curate all of what is reported in a single paper. We start

by identifying all those binding sites showing evidence
of a role in gene regulation, including additional experi-
ments reported to strengthen selected cases. In the sec-
ond phase, we search in other publications and datasets
in order to find evidence needed to suggest effects on
regulation, activation, or repression of transcription for
additional binding sites. We specifically combine data
from gene expression generated by RNA-seq and/or
microarray experiments with data from TF
DNA-binding experiments. To do so, we use our paral-
lel work of mapping growth conditions in RegulonDB
with growth conditions reported in COLOMBOS. Such
a mapping and definition of a controlled vocabulary is
an enormous task that is ongoing, but in our coordi-
nated work, we have made sure that the conditions
present in our meta-curation for HT experiments are
included, for details, see Tierrafría et al. preprint [7].
The central question then is what is the minimal evi-

dence that supports a site found to have a functional
role in gene regulation, based on either any ChIP type
of experiment (ChIP-seq, ChIP-exo, or ChIP-chip) or
by gSELEX. First, the binding site sequence has to be
identified; otherwise, the TF target gene could be an in-
direct target. The stronger cases are those with a se-
quence identified for binding of a TF, frequently
identified by a computational search in the peak se-
quence, and the effect on regulation suggested by an
observed change in gene expression. We assign the ef-
fect (activator, repressor, or dual effect) determined for
the regulated gene or transcription unit. If the regula-
tory interaction and TFBS are not already present in
RegulonDB, this information is added as a new site and
a new regulatory interaction. If the data already exist in
the database, then the new evidence is added to the
existing regulatory interaction(s) (Table 4).

Table 3 Summary of all curated knowledge available in RegulonDB that was obtained via HT methodologies

Methodologies Number of articles Number of TFs Name of the TFs

gSELEX 2, previous work 3 CRP, H-NS, and LeuO

19, this work 18 AscG, BasR, CitB, Cra, CsgD, Dan, DpiA, LeuO, Lrp, NemR, OmpR, PdhR, PgrR,
RcdA, RstA, RutR, SdiA, and SutR

ChIP-chip 1, previous work 1 PurR

17, this work 15 ArcA, ArgR, CRP, Fis, FNR, H-NS, IHF, LexA, Lrp, NsrR, RpoD (Sigma70), RpoH
(Sigma32), RutR, Rho, and TrpR

ChIP-exo 2, previous work 6 GadE, GadW, GadX, OxyR, SoxS, and SoxR

7, this work 4 ArgR, Fur, OmpR, and UvrY

ChIP-seq 8, this work 8 CsiR, FNR, Fur, H-NS, Nac, OmpR, RpoD (Sigma70), and RpoS (Sigma38)

Methodologies Number of articles Number of TSSs Dataset in RegulonDB

TSS determination 2, previous work 5197 http://regulondb.ccg.unam.mx/menu/download/high_throughput_datasets/ [8]

1806 http://regulondb.ccg.unam.mx/menu/download/high_throughput_datasets/ [8]

1, previous work 14000 http://regulondb.ccg.unam.mx/menu/download/high_throughput_datasets/ [8]
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In cases where the authors have not identified the precise
TFBS, we use the PWMs in RegulonDB and search for a
binding site in the sequence, and only when a site is found,
the information is added as a regulatory interaction.
The following cases are considered to have insufficient

information to conclude whether they play a role in gene
regulation. We exclude those where a binding site is
identified but has no evidence with which to assign an
effect and a regulated gene. In other cases, the corre-
sponding expression experiment has been performed but
there is no evidence of change in expression of the
downstream gene. Some possible reasons for this could
be an inactive conformation of the TF or coregulation
missing under the conditions studied, or the protein ef-
fectively binds but has no role in transcriptional regula-
tion. Furthermore, for now, we have decided that peak
sequences with or without a binding site that fall in re-
gions of the genome where no transcription is expected,
such as within a coding region or within a convergent
region surrounded by the ends of two genes, are not fur-
ther analyzed; information for such sequences can be
accessed only as datasets. We are aware that additional
work can be done, for instance, by searching for nearby
TSSs, curating antisense transcription (currently avail-
able in datasets), and curating cases of TFBSs within
genes with a regulatory effect (see the site for Nac inside
the gadE gene and Tables 3 and 4 in Aquino et al. [16]).
In addition to the evidence code and the method, our

classification of evidence is reported as either confirmed,
strong, or weak. Evidence codes come from the Gene
Ontology Consortium, which is shared in our curation

of both RegulonDB and EcoCyc. In order to facilitate
the processing of the diversity of evidence codes by the
user, in RegulonDB, we describe them in three classes:
“confirmed” when they have more than one independent
solid evidence, “strong” for cases supported by physical evi-
dence, and “weak” in other cases (such as a computational
prediction). Objects with multiple independent weak evi-
dence entries are upgraded to strong. A detailed explan-
ation for this process is found on the evidence classification
page in RegulonDB [8], which was the subject of reference
[17]. Note that we always include the precise evidence
codes for added detail, in the event that users do not like
the classification of types of evidence unique to RegulonDB.
A summary of the results of this curation is shown in Ta-
bles 4 and 5. We call HT-supported regulatory interactions
those sites that satisfy the minimal criteria outlined, and
HT binding sites are those left as datasets.

Display in RegulonDB
All these curated HT-supported regulatory interactions
are now present within RegulonDB version 10.0 and can
be found on the regulon page of the corresponding TF.
The most direct way to access them is to type the TF
name followed by “regulon,” go to the link of the regu-
lon, and display the TF regulon page. On that page,
there is a table with all TFBSs, which now includes those
derived from HT experiments. Table 4 describes all TFs
with HT-supported regulatory interactions in the current
version of the database. Furthermore, via the “Down-
loads” main page menu, HT datasets and any of the
TF-specific HT binding datasets can be selected. Both of

Table 4 Summary of curated HT-generated regulatory interactions. The total of new RIs is 1048 and those RIs already existing
are 107

Complete data uploaded in RegulonDB

Datasets Regulatory interactions

TF Total number
of peaks

Sites with missing
information

New Known
(added in
evidence)

PMID HT methodology Reference

ArgR 122 37 67 18 25735747 ChIP-exo, qPCR, and microarray [28]

ArgR 48 34 10 4 22082910, this work ChIP-chip and microarray [29], this work

ArcA 278 143 115 20 24699140 ChIP-chip, qPCR, and microarray [30]

CsiR 126 0 126 0 28061857 ChIP-seq and RNA-seq [16]

FNR 224 186 29 9 24699140 ChIP-chip, qPCR, and microarray [30]

FNR 53 0 29 24 23818864 ChIP-seq and microarray [31]

Fur 144 87 39 18 25222563 ChIP-exo and RNA-seq [32]

Fur 134 119 12 3 26670385, this work ChIP-seq and microarray [33], this work

Lrp 143 67 68 8 19052235 ChIP-chip and microarray [34]

Nac 534 0 531 3 28061857 ChIP-seq and RNA-seq [16]

OmpR 41 31 10 0 26332955 gSELEX [35]

OmpR 41 30 11 0 28526842 ChIP-exo and RNA-seq [36]

TrpR 8 7 1 0 22082910, this work ChIP-chip and microarray [29], this work

Santos-Zavaleta et al. BMC Biology  (2018) 16:91 Page 7 of 12



Table 5 Summary of interactions curated in datasets

TF interactions within datasets

TF Number of
interactions

PMID HT methodology Reference

ArcA 143 24699140 ChIP-chip [30]

ArgR 426 22082910 ChIP-chip [29]

ArgR 38 25735747 ChIP-exo [28]

AscG 9 19633077 gSELEX [37]

BasR 99 22442305 gSELEX [38]

CitB 15 18997424 gSELEX [39]

Cra 14 16115199 gSELEX [40]

Cra 234 21115656 gSELEX [41]

CRP 39 16301522 ChIP-chip [42]

CsgD 31 21421764 gSELEX [43]

CsiR 126 28061857 ChIP-seq [16]

Dan 176 20156994 gSELEX [44]

DpiA 15 18997424 gSELEX [39]

Fis 228 16963779 ChIP-chip [45]

FNR 137 17164287 ChIP-chip [46]

FNR 796 23818864 ChIP-seq and ChIp-chip [31]

FNR 186 24699140 ChIP-chip [30]

Fur 473 26670385 ChIP-seq [33]

Fur 91 25222563 ChIP-exo [32]

H-NS 1501 23818864 ChIP-chip [31]

H-NS 101 16963779 ChIP-chip [45]

H-NS 53 21097887 ChIP-seq [47]

IHF 1020 23818864 ChIP-chip [31]

IHF 155 16963779 ChIP-chip [45]

LeuO 17 19429622 gSELEX [48]

LexA 69 16264194 ChIP-chip [49]

Lrp 67 19052235 ChIP-chip [34]

Lrp 296 28348809 gSELEX [50]

Nac 537 28061857 ChIP-seq [16]

NemR 6 18567656 gSELEX [51]

NsrR 83 19656291 ChIP-chip [52]

OmpR 68 28061857 ChIP-seq [16]

OmpR 30 28526842 ChIP-exo [36]

OmpR 31 26332955 gSELEX [35]

PdhR 14 17513468 gSELEX [53]

PgrR 82 23301696 gSELEX [54]

RcdA 39 23233451 gSELEX [55]

RstA 34 17468243 gSELEX [56]

RutR 20 18515344 ChIP-chip [57]

RutR 9 17919280 gSELEX [58]

SdiA 212 24645791 gSELEX [59]

SutR 15 25406449 gSELEX [60]
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them (individual HT-supported TFBSs and specific data-
sets) can be browsed by searching for growth conditions,
for example, using their contrasting experimental vs
control condition change(s). Additionally, as already
mentioned, a search using the controlled vocabulary for
growth conditions will show both the structured data as
well as the link to the datasets. We are working to display
any dataset as a track in our browser, which will enable
the direct comparison with, for instance, information
coming from classic experiments and with any other an-
notations available in RegulonDB.

Discussion
As mentioned above, we do not want to dilute the pre-
dominantly high-confidence knowledge that has come
from classic experimental methods, aimed at identifying
individual objects or interactions, with the massive but
more fragmented knowledge that HT methodologies pro-
duce [3], which by its nature involves several layers of ex-
perimental treatments and subsequent processing by
bioinformatics and statistical methods. Thus, not only do
experimental methodologies vary but also the bioinfor-
matics programs and the selection of thresholds used in
the different processing steps vary. Nonetheless, as shown
in Fig. 1, the tendency of the literature is the continuous
and more dominant use of HT-based methods in research,
which has led to the urgent need for the expansion of Reg-
ulonDB we have described here. This requires the modifi-
cation of several components of our system, starting with
a computational model with a more precise encoding of
the distinct, almost elementary components that consti-
tute the knowledge of gene regulation. We now require
evidence, methods, and reference for the binding site of a
given TF and for its effect on a regulated gene or pro-
moter, and we need to indicate the expression profile ex-
periment that supported a change in expression of the
(candidate) regulated gene. We also distinguish which

piece of information comes from the literature and which
one comes from our own active curation. It is important
to note that even classic experiments generate, by the na-
ture of the experimental work, pieces of evidence that are
gradually constructed to generate a more or less complete
picture. For instance, the gene regulated by a TF is fre-
quently identified by transcriptional constructions with a
reporter gene. Strictly speaking, this evidence only sup-
ports the fact that RNAP proceeds into transcription
downstream of the promoter; whether it transcribes in
vivo, only the first downstream gene or the complete tran-
scription unit requires identification of such a transcript
under precisely the same control and regulated
conditions.
Our controlled vocabulary and collection of features,

generically called “growth conditions,” also contribute to
higher precision, by annotating the strain or genetic
background used in the experiment as well as growth
conditions minimally required for their replicability. We
believe that as we advance in this deconstruction to the
“elementary pieces of knowledge” from experiments
(Fig. 3), we will be better prepared to incorporate experi-
mental findings obtained via new methodologies that
will continue to emerge in the future. This expanded
model affects the internal structure, the tools for cur-
ation, and the display for users to access the data. In this
paper, we have focused essentially on HT alternatives
that identify binding sites for transcriptional regulators
at a genomic level. These experiments identify the
bound sites in the genome, some of which may have a
role in vivo affecting gene regulation, but others may
have no role at all affecting transcription, and therefore,
even the name “transcription factor binding sites” may
be misleading in those cases.
The strategy used both in the computational model

and in the display of knowledge enables users to decide
if they want to see either the knowledge that comes from

Table 5 Summary of interactions curated in datasets (Continued)

TrpR 17 22082910 ChIP-chip [29]

UvrY 288 26673755 CHIP-exo [61]

Sigma factors and Rho interactions within datasets

Sigma factors and Rho Number of
interactions

PMID HT methodology Reference

RpoD (Sigma70) 1214 16109958 ChIP-chip [62]

RpoD (Sigma70) 528 16301522 ChIP-chip [42]

Rho 260 19706412 ChIP-chip [63]

RpoD (Sigma70) 6350 23818864 ChiP-seq [31]

RpoH (Sigma32) 82 16892065 ChIP-chip [64]

RpoH (Sigma32) 44 20602746 ChIP-chip [65]

RpoS (Sigma38) 91 26020590 ChiP-seq [66]
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molecular biology experiments, that from HT-based
methods, or from both types.

Conclusions
We consider the work presented here to be a first ver-
sion of what we envision will be a long-term project to
integrate the different elements involved in gene regula-
tion. Certainly, there is plenty of room for improve-
ments. Many more analyses can be implemented in
cross-comparisons of the increasing volume of HT data-
sets, so that new correlations may emerge. In this sense,
the curation presented here has only used the assign-
ment of the effect of TFBSs by searching the biologically
adequate expression profile (the comparable growth
condition and strain) to see if a change of expression of
the downstream gene was observed. In fact, many more
analyses can be performed. For instance, it will be useful
to offer datasets that provide partial knowledge regard-
ing the regulation of gene expression by unknown mech-
anisms, such as those occurring within coding regions
[16]. Additional programs need to be implemented to
search for all binding sites if there are TSSs found
nearby, including the thousands present in our datasets.
The relative distance between a TFBS and its regulated
TSS is known to be correlated with the activating or
repressing function [18, 19]; some sigma factors are asso-
ciated with particular conditions, like stress or heat shock.
All of this information (and more) provide seeding for
pipelines to be implemented for a more automatic and
periodic update in the generation of evidence for gene
regulation. This suggests a new type of “bioinformatics

biocuration,” a more active process gathering evidence
across multiple publications and experiments to recon-
struct the different elements and interactions required for
our understanding of the regulation of transcription initi-
ation and to distinguish those elements involved in gene
regulation by unknown mechanisms as well as those that
may have different roles associated with their binding in
yet unknown processes in evolution.
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