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Abstract

Exoskeletons have enormous potential to improve human locomotive performance1–3. However, 

their development and broad dissemination are limited by the requirement for lengthy human 
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tests and handcrafted control laws2. Here we show an experiment-free method to learn a versatile 

control policy in simulation. Our learning-in-simulation framework leverages dynamics-aware 

musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap 

between simulation and reality without human experiments. The learned controller is deployed 

on a custom hip exoskeleton that automatically generates assistance across different activities 

with reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair 

climbing, respectively. Our framework may offer a generalizable and scalable strategy for the 

rapid development and widespread adoption of a variety of assistive robots for both able-bodied 

and mobility-impaired individuals.

Humans possess efficient and versatile mobility that stems from evolution, growth and 

learning4. Precise control of musculoskeletal systems produces natural transitions among 

various locomotion activities. Exoskeletons demonstrated the capability to improve human 

performance during walking for able-bodied individuals1,2 and to restore mobility for 

people with disabilities3. However, their control strategies typically use either a predefined 

assistance profile or hours-long human tests for each participant, even when only developing 

strategies for walking1 (Fig. 1a). Consequently, there is a formidable cost when the 

controller is applied to another participant or another activity. Moreover, handcrafted control 

laws for each activity are often required for several activities. This further complicates 

the controller design as the number of activities increases, making it impractical for the 

widespread adoption of wearable robots2.

One challenge which impedes controller development is the substantial labour and time 

required for human subjects. Laboratory-based testbeds5–7 were developed to apply a 

wide range of assistance profiles to characterize the human response to robotic assistance. 

Human-in-the-loop optimization8 and myoelectric control9 optimized assistive torque to 

minimize metabolic rate, a key metric of human performance. However, this process may 

require more than 30 min per participant during walking8,9. A data-driven method2 enabled 

optimization for outdoor walking in 30 min for each participant. Although these methods 

have shown remarkable reductions in energy expenditure, they still require substantial 

human tests. One recent control method10 took less than 10 min to tune control parameters 

for tracking a predefined hip joint position trajectory, without reductions of metabolic rate. 

Simulation-based learning is a potential solution; however, no simulation has demonstrated 

their benefits in experiments with a physical robot because they either do not incorporate 

controller design11,12 or do not consider human–robot interaction13,14 in the simulation. 

How to develop a controller to enhance human performance purely from simulation remains 

an open question.

A second challenge of controller development pertains to accommodating the distinct 

biomechanics of multigait human locomotion. State-of-the-art algorithms use two levels 

of discrete control which first classify different locomotion activities and then discretize 

the gait cycle into several phases. Different control laws are applied for each segmented 

gait phase15,16 and each control law requires manual tuning of control parameters. Several 

control methods were proposed which directly generate the assistance profile for the full 

gait cycle using the estimated joint moment14,17 or a predefined trajectory18. However, 
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these methods are tailored for discrete locomotion activities and require human training 

data for each activity. In addition, assistive torque produced by these methods can be 

uncomfortable because they are unable to handle transitions among locomotion activities. 

Reinforcement learning enables smooth control owing to its adaptability to environments 

and situations. However, it is primarily studied for robot control19–21 and does not involve 

humans, which poses unique challenges for controller design. A previous study to control 

a human–prosthesis system with reinforcement learning was limited to position tracking of 

a predefined gait kinematics trajectory22. Our previous work imposed predefined kinematic 

trajectories to drive the steady-state walking of a human in simulation23,24, in which the 

virtual human model simulated a person with quadriplegia and had no volitional interaction 

with the robot. Therefore, a compelling need arises for a method capable of learning a 

versatile controller to assist multimodal locomotion without relying on human tests or 

handcrafted rules.

Experiment-free learning-in-simulation framework

Here, we present an experiment-free learning-in-simulation framework which is data-

driven and dynamics-aware, using reinforcement learning to expedite the development 

of exoskeleton controllers for multimodal locomotion assistance (Fig. 1b). First, to 

enable experiment-free learning, the data-driven components of our approach consist of 

three interconnected multilayer perceptron neural networks for motion imitation, muscle 

coordination and exoskeleton control (Fig. 2). Our control framework learns from human 

kinematic trajectory data for walking, running and stair climbing, obtained from a motion 

capture dataset25 (10 s reference data for each activity from one representative subject). 

Subsequently, the neural-network-based exoskeleton controller evolved through millions 

of epochs of musculoskeletal simulation to improve human performance by maximizing 

rewards (that is, the reduction of muscle activations). The training of the control policy 

runs once for 8 h on a graphics processing unit (GPU) (RTX3090, NVIDIA) for the 

controller to learn effective assistance for all three activities (Fig. 1c). Second, to improve 

simulation fidelity and training data-efficiency, the dynamics-aware components of our 

approach incorporate a 50 d.f. full-body musculoskeletal model with 208 skeletal muscles 

of lower and upper limbs (Fig. 2a) and the mechanical model of a custom hip exoskeleton 

used in this study (Fig. 2b). Reinforcement learning is notoriously data hungry26 and is 

thus computationally expensive. By incorporating physics models into the learning process, 

we are able to guide the learning process and improve efficiency. Third, we use a linear 

elastic model27 to simulate realistic human–robot contact to facilitate controller design. The 

musculoskeletal model and exoskeleton controller are trained simultaneously to produce 

high-fidelity biomechanical reactions with exoskeleton assistance, ultimately obtaining a 

unified controller across three activities and their transitions purely in simulation (Fig. 2c).

Our learning-in-simulation framework enables end-to-end control as it maps the sensor 

inputs of a robot to assistive torque without any intermediate steps. The learned controller 

is computationally efficient and consists of a three-layer fully connected network and thus it 

can be implemented on a microcontroller. Compared to human-in-the-loop methods which 

require expensive equipment and extensive human tests to tune of the device, our controller 

requires kinematic measurements which are easy to obtain from portable wearable sensors, 
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that is, one nine-axis inertial measurement unit (IMU) sensor (LPMS-B2, LP-Research) 

on each thigh, and accommodates three activities and transitions automatically without 

handcrafted control (Figs. 1d and 2d). The generated assistive torque profile is adaptive 

to different kinematic patterns (thigh angle and thigh angular velocities) of each user in 

each activity (Fig. 3b). This controller is computationally efficient and effective because 

the control policy was trained and optimized in simulation, which closely resembles the 

dynamics and biomechanics of the physical world. The primary contribution of this work is 

our control approach and its experiment-free efficiency and versatility for three locomotion 

activities obtained by means of learning in simulation. The controller also significantly 

reduced metabolic expenditures in three activities compared to state-of-the-art portable 

exoskeletons (Figs. 1e and 5c). These results highlight the feasibility of our reinforcement 

learning method despite large biomechanics variability among different individuals.

Activity-adaptive versatile control

To demonstrate the controller’s ability to adapt to different locomotion activities, 

we conducted a treadmill experiment (Extended Data Table 1 listed the participants’ 

information) for walking and running at three different speeds. The weights and biases 

in the controller network are taken directly from the simulation and the inputs are thigh 

angles and angular velocities measured from one IMU sensor mounted on each thigh. These 

wearable sensor inputs are used to decode human intention and generate the desired assistive 

torque of the exoskeleton (Fig. 3a). The controller consists of a three-layer neural network 

and is implemented on a desktop computer running Simulink Real-time. Our method does 

not require intermediate activity detection or gait cycle detection. The assistance torque is 

generated in real-time at each time step (100 Hz, namely, 0.01 s) using the current thigh 

angle and thigh angular velocity plus the history data from the past 0.03 s (corresponding to 

three time steps). Through training in the simulation, our controller learned to treat human 

movement as a continuous process and produces appropriate real-time assistance torque 

which is synergistic to the user movement during not only steady-state movements but also 

the transition phases. To facilitate comparison with the literature8,13,15,28–36, we conducted 

treadmill experiments for walking at 0.75, 1.25 and 1.75 m s−1 and running at 2 m s−1. We 

chose to test across gait speeds to demonstrate the generalizability of the control policy. The 

assistive torque generated by the controller learned in the simulation is adaptive to walking 

and running at different speeds. The torque profiles of each participant (n = 8) were slightly 

different in shape for each activity because our controller was adaptive to different kinematic 

locomotion patterns (thigh angle and angular velocity) of each participant (Fig. 3b). The 

magnitude of the torque profile between walking and running also increases with locomotion 

speeds, demonstrating its ability to provide synergistic assistance for activities with different 

intensities (Fig. 3c).

Continuous assistive torque profile

To demonstrate the controller’s ability to generate smooth and synergistic assistance for 

three activities and their transitions, we conducted an activity-varying experiment in the 

real world for one participant. The participant started from slow walking at approximately 

0.8 m s−1, accelerated to running at approximately 2 m s−1, then decelerated and finally 
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began stair climbing (seven stairs) in a smooth manner (Fig. 4a). The same neural network 

controller used in the treadmill experiment was implemented on a hierarchical mechatronics 

architecture with a high-level microcontroller (Raspberry Pi 4) which sent torque commands 

to a low-level microcontroller (Teensy, PJRC) located in a waist-mounted control box. The 

torque profile during walking, running and stair climbing exhibited a distinct change in 

the profile shape as well as the magnitude of the assistance (Fig. 4b). Mechanical power 

of the exoskeleton also varied with the locomotion intensity (Fig. 4c), demonstrating the 

ability of the controller to provide synergistic assistance to the user. Several minor negative 

power peaks are present because readings of the IMU sensors do not precisely reflect the 

actual movement of the thighs because of soft wearable straps. Yet, these negative peaks are 

small (corresponding to an average of 3.47% of total delivered mechanical work for each 

gait cycle) and durations are brief (approximately 0.04–0.08 s, corresponding to 6–8% gait 

cycle), which has a negligible effect on the overall benefit of the exoskeleton assistance.

Versatile assistive control with metabolic rate reduction

Metabolic rate is one key metric used to evaluate human performance during exoskeleton-

assisted locomotion37. The robotic assistance substantially improved the energy economy of 

several participants during walking (n = 8), running (n = 8) and stair climbing (n = 8) for all 

participants, demonstrating the effectiveness of the controller (Fig. 5a, Extended Data Fig. 6 

and Extended Data Table 2). For each activity, we tested three different conditions, namely, 

assist on, assist off and no exoskeleton (no exo). Two nine-axis IMU sensors mounted 

on both thighs were used to measure the joint angles and angular velocities. During level 

walking at 1.25 m s−1 on a treadmill for 5 min, the net metabolic rate (last 2 min) for the no 

exo condition of 2.91 ± 0.26 W kg−1 was reduced to 2.19 ± 0.19 W kg−1 for the assist on 

condition (mean ± s.e.m.). The metabolic rate reduction of the assist on conditions compared 

with the no exo conditions ranges from 19.9% to 30.8%, with an average of 24.3% (Fig. 

5a). During level running at 2.0 m s−1 on the treadmill for 5 min, the net metabolic rate 

(collected for the last 2 min) for the no exo condition of 8.25 ± 0.92 W kg−1 was reduced to 

7.19 ± 0.85 W kg−1 for the assist on condition (mean ± s.e.m.). The metabolic rate reduction 

of the assist on conditions compared with the no exo conditions ranges from 7.6% to 20.8%, 

with an average of 13.1%. During stair climbing at 65 steps min−1 on a step mill for 5 min, 

the net metabolic rate (collected for the last 2 min) for the no exo condition of 5.54 ± 0.24 

W kg−1 was reduced to 4.66 ± 0.22 W kg−1 for the assist on condition. The metabolic rate 

reduction of the assist on conditions compared with the no exo conditions ranges from 8.7% 

to 25.7%, with an average of 15.4% (Fig. 5a). Collectively and to the best of our knowledge, 

these are the highest metabolic rate reductions among the previous literature with portable 

hip exoskeletons for walking, running and stair climbing (Fig. 5b,c).

Discussion

The key challenge in the development of simulation-to-reality (sim-2real) methods for 

wearable robots stems from the challenge of considering the interaction of both the human 

and robot, as well as the formidable sim2real gap which exists when a trained controller 

is deployed on physical robots27,38. We address these challenges with three aspects of our 

learning-in-simulation framework. First, our control neural network is designed to decouple 
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the measurable states (that is, wearable sensor inputs) and unmeasurable states (for example, 

human joint moments and muscle activations) (Extended Data Fig. 1) so that the neural 

network controller only relies on measurable states to directly generate an assistive torque 

profile. Second, the three neural networks in our framework are trained simultaneously in 

the simulation such that the learning process concludes only when the exoskeleton controller 

reduces human effort and the virtual human model performs the desired locomotion while 

keeping balance. Third, we use domain randomization on the kinematic properties of the 

physical models in the simulation so that the learned controller is generalizable to different 

human subjects, thus promoting adaptive assistance.

Our data-driven and dynamics-aware reinforcement learning method with musculoskeletal 

simulation provides a foundation for turnkey solutions in controller development for 

wearable robots. Our simulation-trained end-to-end controller can generate continuous 

assistive profiles for walking, running, stair climbing and their transitions without any 

experimental tuning or handcrafted control laws. The controller produces immediate 

human energy reduction when directly deployed on physical hardware. This learning-in-

simulation method is an important advancement in wearable robotics and potentially 

offers a scalable solution for exoskeletons, overcoming the need for time-consuming 

equipment for rapid deployment in the real world. As a generalized and efficient learning 

framework, this learning-in-simulation control method is applicable for a wide variety of 

exoskeletons including both portable2,32,34,36,39–42 and tethered8,31,40,42,43 versions, hip 

exoskeletons28,31,33,35,36,40, knee exoskeletons41,42,44 and ankle exoskeletons2,43,45. With a 

similar torque density as the state-of-the-art portable exoskeleton46, the increased human 

performance achieved in this work mainly stems from our experiment-free and versatile 

controller with our robot. In addition, our robot produces substantial output torque (18 N 

m) which is beneficial to assist several activities such as running and stair climbing which 

require more assistance than walking.

In this work, our neural-network-based controller generates adaptive assistance torque 

profiles which are specific to the kinematic locomotion patterns of each user (Fig. 3). The 

controller requires simple and easy-to-measure thigh kinematics (angle and angular velocity) 

as inputs through wearable IMU sensors (Figs. 2d and 3a). This level of individualization 

is achieved purely through computer simulation without any online tuning process or 

human subject training with the device. Thus, it facilitates the generalization of our method 

to other activities. The controller in this work was trained for able-bodied individuals 

and is not directly applicable to people with gait impairments or amputation because of 

the substantial biomechanical differences. Because this generalized method can simulate 

both robotic devices and human biomechanics, we can create digital twins of the human 

and robot in the simulation. For human simulation, our method can model humans with 

various gait impairments, making it potentially suitable to assist people with disabilities 

(for example, stroke, osteoarthritis and cerebral palsy) with a reformulation of reward 

functions to account for different gait characteristics such as joint loading or range of 

motion and minor individualized data to address their specific needs. For device simulation, 

our method can be extended to a wide variety of robotic assistive devices (for example, 

exoskeletons and prostheses39,47), aiding both able-bodied individuals with intact limbs as 

well as those with amputation. Our proposed training framework has the potential to adapt 
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the human musculoskeletal model in simulations to account for specific impairments or 

muscle weakness. The effectiveness of such customized controllers for patients, compared to 

their performance with able-bodied individuals, will need to be studied in future work.

This study shows that we can bridge the sim2real gap in wearable robotics by means 

of learning-in-simulation of an end-to-end controller to immediately assist multimodal 

locomotion. Previous studies are limited by intensive human tests, handcrafted rules and 

the inability to adapt to different activities. We demonstrate through steady-state walking 

and running experiments (Fig. 3) and the activity transition experiment (Fig. 4) that our 

controller can generate synergistic assistance to the user’s versatile movements. Although 

the primary contribution of this work is the experiment-free and versatile assistance, the 

experimental results also show that we have achieved the greatest metabolic cost reduction 

for walking, running and stair climbing among state-of-the-art portable exoskeletons 

(Supplementary Table 4). Training such a controller using reinforcement learning in the 

simulation is challenging, especially properly defining the reward function. We found 

that it is crucial to incorporate both dynamics-aware physical equations and data-driven 

learning of three networks into the training process as the physical models facilitated 

the controller to learn an effective policy through millions of epochs of simulation. We 

also found that a reward function which includes tracking of kinematic reference joint 

trajectory, centre-of-pressure-based balance performance and reduction of muscle activations 

produces a controller that was ultimately successful. Previous research demonstrated that 

muscle activation provides a good prediction of metabolic rate48–51 when compared with 

other biological metrics, such as centre-of-mass work and total joint work and optimizing 

leg muscle activations during gait can significantly reduce metabolic costs52. Although it 

might be tempting to directly incorporate the metabolic rate terms into the reward function, 

the metabolic energy simulation involves muscle parameter calibration on hundreds of 

muscles, which poses potential reliability issues for computation. In addition, the complex 

computation of metabolic energy will further elicit non-smooth changes in the reward 

function over time steps, a situation difficult for reinforcement learning applications. Thus, 

further study is warranted because of its notably more complex mechanisms compared to 

muscle activation.

We believe the success of our controller can be attributed to the following factors. 

First, our end-to-end method directly maps human kinematic input to robot assistance 

output without the need for discrete activity classification or gait phase segmentation. 

Second, our framework incorporates the robot controller in the simulation in concert with 

musculoskeletal modelling, closing the loop in simulation for the training process, whereas 

open-loop control is used in state-of-the-art study18. Third, our method only requires low-

dimensional sensor input (one IMU per leg) to infer high-dimensional human kinetics in 

50 joint d.f. in the latent space which are not measurable. However, our controller also has 

limitations. When gaits which dramatically deviate from walking, running or stair climbing 

(that is, the training data used here from a public dataset25) occur, the controller may not be 

able to provide as effective assistance as in the normal case (Supplementary Fig. 5). If the 

gait patterns deviate too much off the limit (that is, the actual hip joint range of motion is 

more than 50% away from that of the reference kinematic trajectory used in the simulation), 

the controller will set the assistance to zero and let the user take full control. Future work 
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may involve an investigation into active intervention from the controller to assist the user in 

recovering from such conditions.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41586-024-07382-4.

Methods

Dynamics-aware modelling of human muscle mechanics

In the muscle coordination neural network, we replicated human muscle mechanics to 

simulate authentic musculoskeletal responses. This approach enables realistic simulations 

of human movements, given that such movements are predominantly driven by muscle 

activations. As the human musculoskeletal model is composed of rigid skeletal segments 

connected by geometrically stretchable muscles, the contraction and relaxation of these 

muscles lead to the rotation of joints and therefore the motion of the whole body. Muscle 

activations that are regulated by the nervous system determine the change of the muscle 

fibre length and further, the change of muscle force. The musculoskeletal model (Fig. 2a and 

Extended Data Fig. 3) was parametrized to be 170 cm in height, 72 kg in weight consisting 

of 50 joint d.f. and 208 musculotendon units for the complete upper and lower body. The 

modelled d.f. included eight revolute joints (tibia, foot and forearm) and 14 ball-and-socket 

joints (femur, talus, spine, torso, neck, head, shoulder, arm and hand, each with 3 d.f.). 

Each musculotendon unit was represented as a polyline which began at the origin of the 

muscle, passed through a sequence of waypoints and ended at the insertion point53. An 

active muscle force was generated by each musculotendon unit through contraction which 

was applied between the two bones at its origin and insertion. When the musculotendon unit 

was fully relaxed (without active contraction), only passive force was produced as a result 

ot its background elasticity. Muscle tension fM was generated by the contraction of muscle 

fibres using a Hill-type model54:

fM = fM L, L̇, a = a × fL L × fv L̇ + fp L

(1)

where L is the muscle length, a is the muscle activation, fL L  and fv L̇  are force–length and 

force–velocity functions and fp L  is the passive force developed by a muscle. The actual 

muscle force was given by:

FM = fM × Fmax

(2)

where Fmax is the maximum isometric force that the muscle cangenerate. The force-length 

relationship fp was specified by an exponential function.
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fp =

ekp
(LM − 1)

e0
M − 1

ekp
− 1

(3)

where kP is a shape factor, e0
M is the passive muscle strain.

Dynamics-aware modelling of human dynamics of motion-imitation network

We modelled the human dynamic response to evaluate the influence of muscle forces 

and exoskeleton assistance on human movements. We used Euler–Lagrangian equations in 

generalized coordinates:

M p p̈ + c p, ṗ = JM
TFM + Jext

TFext

(4)

where p is the vector of joint angles, p̈ is the vector of joint angular accelerations, superscript 

T  is the matrix transpose, Fext is the vector of external forces and FM is the vector of 

muscle forces, which is a function of muscle activations a = a1, a1, ⋯an  for all muscles. 

M p  denotes the generalized mass matrix and c p, ṗ  comprises of Coriolis and gravitational 

forces. JM and Jext are the Jacobian matrices that map the muscle and external forces to the 

joint space, respectively.

Dynamics-aware modelling of human–robot interaction of exoskeleton control network

We modelled human–robot interaction to evaluate the influence of the exoskeleton assistance 

on human movements. As an exoskeleton was not perfectly fixed to the wearer’s body 

because of soft wearables, the actual torque experienced by a wearer was not equal to the 

generated tor que from the actuators. To simulate the interaction forces and moments at all 

wearable strap locations (Fig. 2c), we imported the three-dimensional CAD model of the 

exoskeleton to the simulation environment and connected it to the musculoskeletal model 

by means of linear bushing elements. A linear bushing element represented a bushing (B) 

connecting a Cartesian coordinate frame55 fixed on the exoskeleton to a Cartesian coordinate 

frame fixed on the human wearer with linear translational and torsional springs and dampers. 

During motion, the deviation of the two frames in the translational and torsional directions 

amidst the human and exoskeleton gave rise to bushing forces FB = FB
x , FB

y , FB
z  and moments 

τB = τB
x, τB

y, τB
z  which were given by:

FB = k ⋅ d + c ⋅ ḋ, τB = α ⋅ θ + β ⋅ θ̇

(5)

where d = [dx, dy, dz] is the vector of translational distances along the x, y and z axes 

between the origins of the two frames and θ = [θx, θy, θz] is the vector of x − y − z body-
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fixed Euler angles between the two frames. k = kx, ky, kz  and c = cx, cy, cz  represent the 

translational stiffness and translational damping along the x, y and z directions, respectively. 

α = αx, αy, αz  and β = βx, βy, βz  represent the rotational stiffness and rotational damping 

around the x, y and z axes, respectively. We modelled different resistance strengths of straps 

along different directions. Specific values for each of these parameters are available in 

Supplementary Table 1 and were chosen on the basis of empirical testing.

Data-driven learning of motion-imitation neural network

The motion-imitation neural network πϕ am ∣ sm  (three layers, 256 × 256 × 50 in size) 

(Extended Data Fig. 2) was designed for the human musculoskeletal model to learn walking, 

running and stair climbing motions in the simulation. The network took in the human 

full-body human kinematic states sm (hip joint angle and angular velocity) as the input 

and produces target human joint angle profiles am for each activity. The objective of the 

motion-imitation neural network πϕ was to learn an imitation policy for the human agent that 

maximizes the following discounted sum of reward:

π* = argmaxπEr p π
t = 0

T − 1
γtrt

(6)

where E is the expectation of the reward, T  is the number of time steps in each epoch, 

and t is the time index. We designed the reward function rt, human = wprp + wrootrroot + wcoprcop

as the weighted sum of several subrewards to encourage the human musculoskeletal model 

to imitate a target motion (walking, running and stair climbing) while satisfying a few 

constraints. Parameters rp, rroot and rcop represent the subrewards corresponding to joint 

position error, pelvis position error and centre of pressure (COP) of the musculoskeletal 

model (for detecting balance), respectively. Parameter w denotes the corresponding weight 

for each subreward. The imitation reward rp, rroot  was designed to encourage the human 

agent to minimize the position difference between the actual and reference motion from 

datasets in terms of the joint position phuman and pelvis position proot. We used 10 s(120 

Hz×1,200frames) of reference data from one representative subject in walking, running and 

stair climbing from the public motion capture database25:

rp = exp −σp
j

∥ phuman,desired
j − phuman

j ∥ 2

(7)

rroot = exp −σroot
j

∥ proot,desired
j − proot

j ∥ 2

(8)
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where j is the index of joints, (phuman, desired, proot,desired) are the reference positions of the joints and 

root from the dataset. Parameters phuman and proot are the actual human joint angles.

The term rcop describes how well the controller maintains balance with the exoskeleton 

assistance in terms of movement of the whole system’s CoP. A higher reward was generated 

when the CoP is in a region S around the centre of the foot support (Supplementary Fig. 7):

rcop = exp(−σcop∥ D ccop, S ∥2) if ccop ∈ S; rcop = 0 if ccop ∉ S

(9)

where σcop = 10 is the weight, ∥ D ccop, S ∥ is the Euclidean distance between the CoP and 

the centre of S. The output of this neural network phuman,desired is the desired joint angles at 

the 50 joint d.f. of the human musculoskeletal model to produce the desired locomotion. 

Following that, we used proportional-derivative control to specify the desired joint angles, 

which directly correspo nd to the desired human joint torques τhuman:

τhuman = kp phuman,desired − phuman − kvṗhuman

(10)

where kp = 50 and kv = 14.14 are proportional and derivative gains used to compute the 

desired joint acceleration p̈human,desired respectively. The weights ωp, wroot and ωcop are 

hyperparameters of the neural networks. Grid search is used to find the optimal values for 

hyperparameters. It involves performing an exhaustive search on a specific hyperparameter 

configuration. For example, wp is chosen from [0.25, 0.5,0.75,1] and wroot is chosen from 

[0.1,0.2,0.3,…,0.9,1]. We assessed the overall reward equations (7)–(9) using all weight 

combinations and identified the set of weights that yielded the best overall performance 

during testing: wp = 0.75, wroot = 0.5 and wcop = 0.2.

Data-driven learning of muscle coordination

The muscle coordination neural network πθ a  (four layers, 512 × 256 × 256 × 208 in size; 

Extended Data Fig. 3) was constructed to actuate the human musculoskeletal model through 

modulation of muscle activations. The network took desired human joint torques from the 

motion-imitation neural network as input and output activation values for each of the 208 

muscles. The lower limb muscles (n = 108) are included in the calculation of the reward 

function equation (11) because we assume the assistance to the hip does not affect the upper 

body muscles. During the optimization process using equation (11), all these 108 muscles 

were treated as a whole to minimize the overall muscle activity. The muscle activations 

a were applied to the musculotendon units over the entire body which in turn move the 

skeletal segments that elicit human movements. The objective of this network was to adjust 

the activations of each muscle to best reproduce the target joint torques.

To train the neural network, we formulated it into a supervised learning-based regression 

problem to learn collaboratively with the motion-imitation neural network. A deterministic 

policy was used to minimize the differences between the actuated joint accelerations and 
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the desired human joint acceleration p̈human,desired based on the output of the motion-imitation 

network, which led to the following design of the loss function:

loss = E ∥ p̈human,desired − M−1(JM
TFM + Jext

TFext − c) ∥ 2 + wa ∥ a ∥ 2

(11)

where wa are the weighting factors regularizing the muscle activation effort.

Data-driven learning of exoskeleton control

The neural network of exoskeleton controller πϕ ae ∣ se  (three layers, 128 × 64 × 2 in size) 

(Extended Data Fig. 4) produces high-level real-time assistance torque commands to assist 

the current activity. The network takes proprioceptive history se (joint angles and angular 

velocities from three consecutive previous time steps, 16 × 1 vector) from the IMU sensor 

on each leg as input and consequently outputs joint target positions ae for the exoskeleton 

motors. Our method only takes low-dimensional sensor input to infer high-dimensional 

human kinetics in 50 joint d.f. in the latent space which are not measurable. This is 

because human movement (kinematics data) can encode information about the underlying 

human physiological processes such as metabolic energy2. The objective was to learn a 

continuous control policy for the exoskeleton which maximizes the following discounted 

sum of rewards to improve human performance:

π* = argmaxπEr p π
t = 0

T − 1
γtrt

(12)

rt = wmrm + wτrτ + wprp + wrootrroot + wcoprcop + wasras

(13)

The instantaneous reward rt comprises five subrewards: rm is the muscle work, ras is the action 

smoothness, rτ is the exoskeleton energy consumption, w is the corresponding weight for 

each subreward. The subreward rcop was used to prevent a human model from falling down. 

Parameters rp and rroot correspond to the same subrewards used in the motion-imitation neural 

network. This ensures that the reward of the exoskeleton control neural network achieves its 

maximum only if the human model is able to follow the desired trajectory, thus facilitating 

sim2real transfer by incorporating human response. The reward ras encourages the controller 

to generate a smooth assistance profile to improve the subject comfort. We penalized the 

second-order finite difference derivatives of the actions ae (target joint angle):

ras = exp(−σas ∥ ae t − 2 ae t − 1 + ae t − 2 ∥ 2)

(14)
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In our experiment, wm = 0.5, was = 0.2 and wτ = 0.1. To ensure smooth motion, the output 

from the trained controller neural network was first filtered by a second-order low-pass 

filter before being applied to the exoskeleton. Subsequently, to further obtain responsive 

corrections on the joint torques, a proportional-derivative control loop was used for 

which preprocessed actions ae are specified as proportional-derivative setpoints. The final 

proportional-derivative-based torques applied to the hip joint are determined from:

τexo = kp ae − pexo − kvṗexo

(15)

where kp = 50 and kv = 14.14 are proportional and derivative gains, respectively.

Closed-loop simultaneous training of three neural networks

We developed a decoupled training scheme (Supplementary Tables 1 and 2) using PyTorch 

in which the exoskeleton neural network controller only requires measurable inputs from 

wearable sensors in the physical world (for example, human joint angles and angular 

velocities), whereas the musculoskeletal model had access to more intricate information 

from the model which generally is not available in reality (for example, the activation level 

of each muscle, real-time CoP and so on). However, to ensure a causal relationship between 

the musculoskeletal model and the exoskeleton controller, we incorporated subrewards 

related to muscle work and joint/pelvis position tracking error in the reward function 

equations (12) and (13) of the exoskeleton control neural network so that it achieves high 

reward only if both trainings are successful. Such training setup ensures that the exoskeleton 

control policy incorporates human response during its training process to facilitate real-

world deployment.

It is a well-known challenge to transfer a trained controller from simulation to real-world 

settings while ensuring accuracy and behaviour similar to that in the physical environment 

(for example, individual human properties and robot properties)56–58. Typically, such 

attempts usually result in undesirable performance27,38 (for example, ill-timed robotic 

assistance or unsafe action from the robot) which can in part be attributed to the discrepancy 

in the exoskeleton dynamics between the real world and the simulation. To tackle this 

challenge and bridge the sim2real gap, our solution incorporated domain randomization, a 

machine learning technique that was first proposed by Tobin et al. to facilitate bridging the 

sim2real gap for object localization59. First, we perturbed robot dynamics parameters and 

musculoskeletal dynamics parameters to enhance the robustness of the trained policy to this 

discrepancy. We randomly sampled the dynamics properties of the exoskeleton (for example, 

mass, inertia, centre of mass, friction coefficient and observation latency; Supplementary 

Table 3) from a uniform distribution in each episode to account for the modelling error. 

Second, for musculoskeletal dynamics parameters, the maximum isometric force in the Hill-

type model equations (1)–(3) of all lower limb muscles was randomized within a prescribed 

range to account for muscle strength variability among each individual. Combining these 

two approaches, the optimization objective in equation (12) was then modified to maximize 

the expected reward across a distribution of dynamics characteristics ρ μ :
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π* = argmaxπEμ ρ μ Er p π
t = 0

T − 1
γtrt

(16)

where μ represents the perturbed dynamics parameter values in the simulation. This 

intentionally introduced variability in the simulation, enabling the trained controller to be 

more robust against heterogeneous real-world conditions.

We ran the simulation on a computer equipped with an NVIDIA RTX3090 GPU. The 

simulation was terminated when the reward value of the exoskeleton control network 

converged and stopped increasing at around iteration no. 3,500. With one iteration taking 

around 8 s, the entire simulation took slightly less than 8 h.

Deployment of the learned controller

We evaluated the efficiency and versatility of the trained controller on our portable hip 

exoskeleton60 with quasi-direct drive actuation61 in both indoor and outdoor settings. The 

hip exoskeleton has a total weight of 3.2 kg and can produce a peak torque of 18 N 

m. For fixed-speed experiments on the treadmill, the exoskeleton was connected to a 

target personal computer with Simulink Real-time system (MathWorks) (Supplementary 

Fig. 2) to log both robot and human data (for example, human kinematics, robot states, 

output of each neural network and metabolic rate data). The Simulink system ran both 

a high-level exoskeleton control neural network and a low-level motor control module. 

The deployed exoskeleton control network in the Simulink model imported the network 

parameters directly from the simulation. For outdoor experiments with three activities, we 

implemented the same controller on portable electronics using a microcontroller (Raspberry 

Pi 4) running high-level control in Python which sends the generated torque commands 

to a mid-level microcontroller (Teensy, PJRC) which finally regulates the low-level motor 

control (Extended Data Fig. 5 and Supplementary Fig. 3).
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Extended Data

Extended Data Fig. 1 |. Overview of the learning-in-simulation control framework.
a,b, Schematic illustrations for the learning-in-simulation architecture (a) and the control 

structure for online deployment (b).

Extended Data Fig. 2 |. Motion imitation neural network for versatile activities.
Schematic illustrations for the autonomous learning framework of the reference motions 

(walking, running, stair climbing) from datasets based on human kinematics input and joint 

torque command output.
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Extended Data Fig. 3 |. Muscle coordination neural network.
Schematic illustrations for the muscle coordination neural network based on human joint 

torque input and human muscle actuation output.

Extended Data Fig. 4 |. Exoskeleton control neural network.
Schematic illustrations for the exoskeleton control neural network based on exoskeleton 

state history input and joint torque command output.
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Extended Data Fig. 5 |. Exoskeleton design.
a–c, Overall view of the whole system (a), actuator (b) and electronics (c).

Extended Data Fig. 6 |. Experiment protocol for metabolic rate and kinematic data collection 
during walking, running and stair climbing (also available on Protocol Exchange at: https://
doi.org/10.21203/rs.3.pex-2632/v1).

Extended Data Table 1 |

Participant information

Participant Sex Body mass 
(Kg) Height (cm) Age (year) Activity Exoskeleton 

experience

Participant 1 M 62 179 22 Walking, running, stair 
climbing YES

Participant 2 M 70 174 26 Walking, running, stair 
climbing YES

Participant 3 M 70 178 32 Walking, running, stair 
climbing NO
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Participant Sex Body mass 
(Kg) Height (cm) Age (year) Activity Exoskeleton 

experience

Participant 4 M 85 181 27 Walking, running, stair 
climbing YES

Participant 5 M 109 180 27 Walking, running, stair 
climbing YES

Participant 6 F 50 165 26 Walking YES

Participant 7 F 56 160 30 Walking YES

Participant 8 F 45 158 29 Walking NO

Participant 9 M 80 180 29 Running, stair climbing YES

Participant 10 M 70 176 34 Running, stair climbing YES

Participant 11 M 66 170 30 Running, stair climbing YES

Mean ± SD 69.4 ± 17.7 172.8 ± 8.4 28.4 ± 3.3

Extended Data Table 2 |

Summary of experiments

Activity Participant Scenario Measurement Metric Control 
variables Results

Walking 
(1.25 ms−1) n = 8

Laboratory 
controlled 
condition

Net metabolic 
rate

Metabolic 
reduction (%)

Fixed time to 
5 mins, 

averaged last 
2 mins data

24.3% 
metabolic 
reduction

Running 
(2.0 m s−1) n = 8

Laboratory 
controlled 
condition

Net metabolic 
rate

Metabolic 
reduction (%)

Fixed time to 
5 mins, 

averaged last 
2 mins data

13.1% 
metabolic 
reduction

Stair ascent 
(65 steps 

min1)
n = 8

Laboratory 
controlled 
condition

Net metabolic 
rate

Metabolic 
reduction (%)

Fixed time to 
5 mins, 

averaged last 
2 mins data

15.4% 
metabolic 
reduction

Transition 
from 

walking to 
running (0.8 
to 2 m s−1) 
and to stair-

climbing

One 
representative 

participant
Outdoor

Thigh joint 
angle, angular 
velocity, and 
torque profile

Torque, power 
and 

exoskeleton-
delivered 

mechanical 
work

Changed 
speed about 
every 7 steps

Smooth 
transition 
of torque 

and power, 
gradually 
increased 
delivered 

work

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Experiment-free optimization of exoskeleton assistance through learning in simulation.
a, Existing experiment-based strategies for the controller development and real-world 

deployment of exoskeletons. The post-training column indicates the tuning time needed 

for the controller to be deployed in the real-world application. b, The proposed experiment-

free method is called learning in simulation. c, The controller training based on neural 

networks in simulation for 8 h (left) and the immediate real-world deployment of an 

autonomous learned controller on an untethered exoskeleton without further training (right). 

d, Assistance of walking, running and stair climbing by the learned controller. e, Reduced 

metabolic cost for three activities (walking, running and stair climbing) by the adaptive 

learned controller. Values in e are mean and s.d. (the experiments in e were repeated 

independently; n = 8 for walking, n = 8 for running, n = 8 for stair climbing).
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Fig. 2 |. Learning-in-simulation framework.
a, Full-body musculoskeletal human model consisting of 208 muscles. b, Physics-based 

exoskeleton model. c, Reinforcement learning in a data-driven and dynamics-aware human–

exoskeleton simulation consisting of a motion-imitation neural network for versatile 

activities, a muscle coordination neural network for replication of human muscular 

responses and an exoskeleton control neural network for automatic generation of continuous 

assistance torque profiles. d, Deployment of the learned controller in the physical system.
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Fig. 3 |. Generalizable and adaptive assistive torque by the learned controller.
a, Schematic illustration for the experimental setup. b, Assistive torque profiles (normalized 

by body weight) for walking at 0.75, 1. 25 and 1.75 m s−1 and running at 2 m s−1 

as a function of gait phases. Each line represents the assistance profile of one of the 

eight participants averaged across around 30 strides. c, Maximum assistive torque for 

each activity. In box plots, centre lines represent the median, box limits delineate the 

25th and 75th percentiles and whiskers reflect maximum and minimum values (n = 8; 

individual participants). The experiments in b and c were repeated independently for each 

speed. Results for maximum flexion time, maximum extension torque and gait duration are 

available in Supplementary Fig. 1.
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Fig. 4 |. Representative assistive torque during various activities and locomotion transitions.
a, Snapshots of a representative participant during continuously transitioned activities in one 

trial. b,c, Continuous assistive torque (b) and mechanical power (c) profiles autonomously 

generated by the learned controller during locomotion transitions between walking (about 

0.8 m s−1), running (about 2 m s−1) and stair climbing.
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Fig. 5 |. Reduction in metabolic rate during walking, running and stair climbing.
a, Average net metabolic rate for level walking at 1.25 m s−1, running at 2.0 m s−1, 

stair climbing at 65 steps min−1 under three conditions (assist on, assist off and no 

exoskeleton). b,c, Metabolic rate reduction compared with the state-of-of-the-art portable 

hip exoskeletons13,15,28,30–36 (b) and portable knee41,44 and portable ankle2,45 exoskeletons 

(c) for walking (1.25 m s−1), running (2.5 m s−1) and stair climbing. A full list of 

comparisons is available in Supplementary Tables 4 and 5. In box plot of a, centre lines 

represent the median, box limits delineate the 25th and 75th percentiles and whiskers reflect 
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maximum and minimum values (n = 8 for walking; n = 8 for running; n = 8 for stair 

climbing; individual participants). The experiments in a were repeated independently for 

each activity. Statistical significance and P values are determined by one-sided paired t-test; 

*P ≤ 0.05; **P ≤ 0.01.
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