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Abstract of the Dissertation

Electronic properties of organic

photovoltaic materials

by

Christopher David Arntsen

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2014

Professor Daniel Neuhauser, Chair

Organic solar cells have gained much attention as an inexpensive alternative

to traditional inorganic cells. While experimental efforts have steadily improved

the efficiency of organic devices, a large portion of the improvements have been

the result of trial-and-error. Therefore, it would be ideal to be able to use the-

ory to predict which types of materials would produce the most efficient devices.

This dissertation presents a series of theoretical studies designed to improve under-

standing of what makes certain solar cells perform well and to serve as a predictive

tool to screen potential new materials.

First, a study of electron transfer in pentacene dimers is presented. The study

compares several methods for calculating the electronic transfer integral, including

time-dependent density function theory, a time dependent semi-empirical method,

and several static calculations. The results demonstrate that at large separations,

static calculations can underestimate the strength of coupling.

Next, electronic coupling in fullerenes is calculated. In this section, a method

for mimicking bulk chemical environments in film through the use of solvation and

application of electric fields is developed. The method is a applied to a number

of fullerenes used in organic solar cells, and compared with experimental data on
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local and bulk electron mobilities. Comparing the theory and experiment allows

one to identify beneficial self-assembly behavior in the fullerenes studied.

This method is then extended to a calculation method we have termed direct

delocalization. In this method, a field is applied directly to the Fock matrix in

order to delocalize frontier orbitals across a dimer. Once this is accomplished,

electronic transfer time is calculated within the standard Marcus theory frame-

work. The results are compared to the more thorough methods described above,

and found to be in agreement.

Next, the formulation of a stochastic approach to the GW approximation is

presented. In this section, a method for calculating the polarization self-energy

with stochastic orbitals is introduced. The method is highly efficient, achieving

near linear scaling with respect to system size, compared with the theoretical

fourth order scaling. The method is applied to large silicon clusters and several

fullerenes to accurately calculate quasiparticle energies.

Finally, in the last two chapters, several methods for studying plasmons are

presented. The first presents a method for studying the interaction between

molecules and plasmonic materials. The method interfaces a semiempirical quan-

tum mechanical calculation (to study the molecules) with a finite-difference time-

domain (FDTD) calculation (to study the plasmonic material). The study shows

that plasmon propagation can be heavily influenced by the presence of a molecule.

In the last section, an alternative FDTD method is presented. This method, la-

beled near-field, is a time-dependent version of the quasistatic frequency-dependent

Poisson algorithm. This approach is advantageous in that it allows for much large

time steps in the propagation, greatly expediting the calculation.
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Introduction

Organic photovoltaics

Organic solar cells have gained much attention lately as an inexpensive alternative

to traditional inorganic cells. As the maximum efficiency in organic photovoltaic

(OPV) devices has increased, they have steadily been getting closer to being eco-

nomically viable [10]. The maximum efficiency of current state-of-the-art devices

is now over 10% [11], though typical high performing devices are in the range of

5-7% [12, 13]. Therefore, much needs to be accomplished in order for OPVs to

be truly competitive with inorganic counterparts.

The active, light-harvesting region of an OPV device most typically consists

of a polymer donor and a fullerene acceptor blended into a film. Upon irradiation

with light, an electron on the polymer is promoted from the highest occupied

molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO).

The electron is then transferred to the fullerene acceptor, leaving a hole on the

polymer. Ideally, the electron and hole are then shunted to the electrodes through

an interconnected network of fullerene and polymer, respectively (see schematic

in Fig. 0.1).

There are many factors limiting the the power conversion efficiency (PCE) of

a solar cell, such as electron and hole mobilities, energy level matching of the

donor and acceptor, morphology, and interface with electrodes [5, 14]. There has

been extensive effort to improve the maximum PCE, inlcuding thermally anneal-

ing fabricated devices, solvent annealing active layers, adding solvent additives,

and simply changing the donor and acceptor materials used [12, 15–27]. While

the device performance has steadily increased, understanding of specifically what

types of materials should produce an efficient solar cell is limited.
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HOMO

LUMO

HOMO

LUMO

donor

acceptor

Figure 0.1: Schematic diagram of electron transfer process in OPVs. A photon

excites an electron in the donor, which is then transferred to the acceptor. The

electron and hole travel to the electrodes via a series of “hops”, generating current.

Application of theoretical methods to organic semiconductors

While much of the experimental effort to improve the efficiency of solar cells has

been quite successful, more tailored fabrication of devices would be ideal. Theory

can therefore be a useful tool to gain understanding of why certain materials yield

more efficient devices than others. There are several general theoretical methods

commonly used to study various properties of organic photovoltaics, including the

drift-diffusion model, density functional theory (DFT), and molecular dynamcs

(MD).
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Each method offers a useful framework for studying photovoltaics: the drift-

diffusion model is capable of reproducing highly accurate current-voltage curves in

real devices; DFT is used to study the quantum states of systems (i.e. the orbitals);

and MD can be used to study phase separation and morphological properties of

materials. This dissertation focuses primarily on the use of DFT to study the

properties of materials used in organic photovoltaics. The intent of much the work

is to provide an efficient predictive tool which can be used to screen materials prior

to their use in actual devices.

One of the most useful theoretical tools used to understand OPV materials is

Marcus theory [28]. Marcus theory can be used to calculate the electron transfer

rate between states A and B:

ket =
2π

~
|HAB|2

1√
4πλkbT

exp

(

−(λ+ ∆Go)2

4λkbT

)

where ket is the electron transfer rate, HAB is the transfer integral, λ is the re-

organization energy, and ∆Go is the free energy difference between states A and

B. The most important quantity in the Marcus theory formula is the transfer

integral:

HAB = 〈ψA|H|ψB〉.

The challenge can be accurately describing the wave function associated with

states A and B. The Schrödinger equation can be used to generate the appropri-

ate states, where the Hamiltonian is determined using density functional theory

(DFT):

[

−1

2
∇2 + v(r) + vH(r) + vxc(r)

]

ψi = ǫiψi

where the first term is the kinetic energy, v(r) is the external potential, vH(r)
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is the Hartree potential, describing the classical electrostatic interactions of the

electrons,

vH(r) =

∫

n(r′)

|r − r′
dr′,

vxc(r) is the exchange-correlation potential, and n(r) is the electron density. Fi-

nally, φi and ǫi are the orbitals (eigenvectors of the above Hamiltonion) and orbital

energies (eigenvalues), respectively. With the Hamiltonian, orbitals, and energies

of the system, one can perform a large number of calculations describing the

particular electronic properties of a system (such as Marcus theory rates, as men-

tioned above). The work described in this dissertation utilizes these tools. For

example, the electronic coupling is calculated using the Hamiltonian and wave

functions described above.

Synopsis of dissertation

A short summary of the chapters of the dissertation is outlined below. Chapter 1

presents a study of electron transfer in fullerene dimers. The study compares

several methods for calculating the electronic transfer integral, including time-

dependent density functional theory (TDDFT), a time-dependent semi-empirical

method, and static calculations, as well as the use of neutral vs. anionic sys-

tems. Compared with time-dependent methods, static calculations underestimate

the transfer integral, particularly at large separations. The time-dependent semi-

empirical method employed, TD-ZINDO, also underestimates the transfer inte-

gral, but a scaling factor can be applied to reproduce TDDFT results. In such a

case, TD-ZINDO shows the same fall-off behavior as TDDFT at a fraction of the

cost.

Chapter 2 presents a study of static coupling in various fullerene dimers. The

main difficulty with these systems is that if environmental effects are ignored,
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the orbitals involved in electron transfer can be artificially localized on an indi-

vidual molecule. Two methods to overcome this difficulty are presented: first,

solvating the dimer with point charges in order to mimic the local chemical en-

vironment. Second, we apply an electric field to the systems to delocalize the

orbitals across the dimer. The electric field method reproduces the solvation

method at a fraction of the cost. The calculations are compared to several ex-

perimental measurements including device performance, time-resolved microwave

conductivity (TRMC), and space-charge-limit current (SCLC). Comparing exper-

iment with theory provides insight into how to why higher efficiency solar cells

perform better.

Chapter 3 presents a modified study of static coupling. In the previous chapter,

an electric field was used to delocalize the frontier orbitals across the dimer, re-

quiring many self-consistent DFT calculations (one for each electric field strength

tested). The method developed in this chapter circumvents the need to per-

form many DFT calculations by applying a delocalizing bias directly to the Fock

matrix. The magnitude of this delocalizing bias is solved self-consistently. The

electronic coupling calculated using this method is compared with the aforemen-

tioned methods, and is found to be consistent. The method is then applied to

numerous fullerene dimers.

Chapter 4 develops a stochastic formulation of the GW approximation (sGW)

to many-body perturbation theory (MBPT). GW is used to calculate quasipar-

ticle energies with very high accuracy. However, because GW has a theoretical

fourth order scaling, it’s application to large systems is not possible. The method

presented, through the use of stochastic orbitals, scales near-linearly. To illustrate

the performance and accuracy of the method, sGW is applied to hydrogen pas-

sivated silicon nanocrystals of over 3000 electrons (or roughly 5 nm in diameter)

as well as several fullerene materials. As shown in the chapter, the method yields

highly accurate calculations of quasiparticle energies in the fullerenes tested as
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compared with experiment.

Chapter 5 presents a method for combing quantum mechanical and classical

simulations in order to understand the effect of molecules on plasmon transport

between nanoparticles. The simulations describe a system containing three lin-

early arranged nanoparticles, with a molecule centered between the second and

third nanoparticles . x-polarized current is initiated on the first nanoparticle, and

x- and y-polarized current is measured on the third. The molecule rotates much

of the x-polarized current into the y-direction.

Finally, the development of a finite-difference time-domain method, labeled

near-field (NF), is presented in Chapter 6. NF is essentially a time-dependent

version of the quasistatic frequency-dependent Poisson algorithm. We assume

that the electric field is longitudinal, and hence propagates only a set of time-

dependent polarizations and currents. For near-field scales, the time step (dt) is

much larger than in the usual Maxwell FDTD approach, as it is not related to

the velocity of light; rather, it is determined by the rate of damping and plasma

oscillations in the material, so dt = 2.5 a.u. was well converged. The method

agrees well with Mie-theory in the limit of small spheres. The NF algorithm is

especially efficient for systems with small scale dynamics.
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CHAPTER 1

Time-dependent electron in pentacene dimers

using TDDFT and TDZINDO

1.1 Introduction

Accurately computing electron transfer rates and probabilities is crucial for un-

derstanding a wide range of devices and effects, including many types of chemical

reactions [29,30], solar cells [31,32], nanoelectronics [33], and molecular electron-

ics [34–37]. For example, in fullerene-based organic photovoltaics (OPVs), after

photo-excitation of the light harvesting polymer, a charge-separated electron is

first transferred to a nearby fullerene molecule, then subsequently shuttled to the

electrode via a series of “hops” from one fullerene to another adjacent one. The

success of an OPV often hinges on how readily electrons can be shunted from

polymer to electrode without recombination with a hole. In general, this is a

function of both the device morphology and also the electron transfer probabil-

ity between two fullerene molecules. Increasing device efficiencies by optimizing

transfer between fullerene pairs (e.g., via functionalization) thus offers a tanta-

lizing opportunity. Unfortunately, predictive calculations of transfer probabilities

are often elusive as electron transfer in these systems is a complicated process

involving coupling between electronic and nuclear motion, in addition to the cou-

pling with environment.

Electron transfer calculations on model systems and simple analogues offer a

path forward. There has been much recent progress in modeling electron transfer
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between isolated molecules. The electron transfer reaction A−B → AB− is well

established in principle using Marcus theory (for overview see Ref. [28]), where the

transfer is computed in the non-adiabatic regime, i.e., weak electronic coupling the

donor and acceptor means that inter-conversion from the donor to the acceptor

diabatic potential energy surface can be computed semi-classically. Here, two

potential surfaces (reactants and products) are required as functions of molecular

coordinates, and the transfer probability is computed from three main ingredients:

∆G0 , the free energy difference between the two states; λ, the energy required to

reorganize the system, possibly including a solvent shell, from initial to final state

without actually transferring charge; and J , the electronic coupling between the

initial and final states. While any number of theoretical approaches can be used

within the Marcus framework (e.g., from semi-empirical to correlated methods),

density functional theory (DFT) has been the most popular recently, due to good

accuracy and modest computational cost [35, 37–41].

For DFT, the main challenge lies in determining proper initial and final states

in the transfer integral J in the Marcus formalism

J = |〈ψF |H|ψI〉| (1.1)

where |ψI〉 and |ψF 〉 are the initial and the final states, and H is the electronic

coupling Hamiltonian (for more details, see review by Hsu [42]). Although at

first glance this is straightforward, extreme care must be taken in choosing these

states to avoid non-physical effects. For example, if one picks |ψI〉 = A−B and

|ψF 〉 = AB− the resulting dynamics could be dominated by electronic relaxation

rather than charge transfer.

This issue of correct choice of initial and final states can be bypassed by simply

comparing the LUMO and LUMO+1 of the neutral pair, which also gives a rough

measure of the coupling. The picture, however, is only qualitative as in reality
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the transfer involves the coupling of a negatively charged molecule with a neutral

one; this often consists of a significantly perturbed electronic structure from the

neutral case.

For predictive calculations, however, the transfer integral J must be computed

as accurately as possible, with proper choice of |ψI〉 and |ψF 〉. To this end, we

recently presented a new approach to electron transfer calculations named time-

dependent split (TD-split), where the transfer integral is calculated using the

vertical excitation energy of a negatively charged dimer from a fully delocalized

ground state [43]; this excitation energy can be computed using virtually any

time-dependent method. A related method is generalized Mulliken-Hush (GMH),

which computes the coupling using the vertical excitation energy and transition

dipole moment between two charge-localized states [44]. In TD-split the nuclear

degrees of freedom are frozen, the reaction coordinate is the degree of charge

localization, and the resulting transfer integrals are associated with the rate of

electron transfer for particular system geometry. This is contrast to traditional

Marcus-type calculations, which includes the effect of the vibrational degree of

freedom.

Marcus theory gives essentially the exact result (in the non-adiabatic limit)

when the electronic transfer integrals are known. For large-scale systems, where

the transfer integrals are almost always calculated by DFT, Hartree-Fock (HF),

or semi-empirical methods, most of the electronic degrees of freedom are frozen in

the calculation. Put differently, the possibly crucial effect of the other electrons

on the transfer is neglected in such single-particle static calculations, and TD-split

corrects this omission. Therefore, in the non-adiabatic limit the result of TD-split

can be viewed as the transfer integral in Marcus theory; when the distortion is

weak and the vibrational degrees of freedom do not contribute, TD-split directly

yields the transfer rate.

As a first step towards modeling charge transfer in OPVs, in this paper we use
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Figure 1.1: Static B3LYP splitting (dashed) and TD-B3LYP energies (solid) for

a range of basis sets. Larger separations require a basis set with diffuse functions

(e.g., 6-31++G and POL1) to avoid non-phyical super-exponential falloff.

TD-split in conjunction with time-dependent density functional theory (TDDFT)

and time-dependent ZINDO [43,45] to study electron transfer across a pentacene

dimer consisting of two planar stacked pentacene molecules with an intermolecular

separation ranging from 3.5 Å to 6.0 Å (see Fig. 1.2). The rest of the chapter is

structured as follows: In Section 1.2 we briefly review the approach and discuss

computational details, in Section 1.3 we present calculations on a pentacene dimer

model system, and in Section 1.4 we summarize the results and offer some outlooks

on future directions.
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1.2 Methodology

1.2.1 Static splittling

In this section, we briefly discuss both the TD-split (dynamic) and static ap-

proaches to computing the Marcus coupling term J . In the static picture, one

assumes that the charge distribution for the neutral combination is not perturbed

(dynamically or statically) by adding an extra electron. If that assumption is cor-

rect, the difference in energy between the LUMO+1 and LUMO for the neutral

pair AB is equivalent to the Marcus factor for identical dimers with delocalized

orbitals. Transition requires that the LUMO and LUMO+1 are delocalized over

both fragments, otherwise the splitting will be high but there will be no transition;

this effect is easily included with an additional weight term which measures the

delocalization of the LUMO and LUMO+1.

1.2.2 Dynamic splitting

In the dynamic picture (TD-split), rather than use the LUMO+1-LUMO of the

neutral system to compute the splitting (and thus the charge transfer rate), we

instead use the vertical excitation energy (VEE) of the -1 charged dimer from a

delocalized ground state, where the extra electron is equally shared between the

two fragments. In a Marcus-like picture, this delocalized ground state is akin to

an electronic transition state for the transferred electron; i.e., the intermediate

situation between the charge on one fragment and the charge on the other, and

the VEE is thus the electronic coupling between the two diabatic surfaces. Since

the nuclear geometries are fixed, this does not correspond to the Marcus inter-

mediate state, but rather to the halfway point in the electron transfer for the

given geometry. By using the VEE of the -1 charged dimer from its delocalized

ground state, you have carefully chosen the initial and final states in the transfer

integral J to exclude non-physical re-arrangement of the electrons due to local-
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ization on one fragment or the other. In contrast, if you instead compute the

transfer starting from a system with the extra electron localized on one fragment

you will have added an indeterminate amount of energy; the calculation will thus

give non-physical results since the localized charge perturbs the electronic density

on the other fragment, and the resulting dynamics from this initial state will be

dominated by electronic relaxation rather than transfer. An alternate approach is

to use an isolating potential to create initial states with well-defined energies [46].

When the vibrational degrees of freedom are weakly coupled, TD-split corresponds

directly to the transfer rate. Note that when the system is not completely sym-

metric, the rate of transfer can still be obtained using the TD-split approach from

a flux-flux time-dependent calculation which starts with the system in its ground

anionic state (delocalized to a certain extent, depending on the degree of asym-

metry) and then propagates the fluxes [43]. The flux-flux result is the equivalent

of the |HAB|2 term in Marcus theory.

Schematically, the TD-split approach can be expressed as

δA ≡ 〈Ψ(t)|A|Ψ(t)〉 (1.2)

where |Ψ(t)〉 is a perturbed ground state for the entire charged system (including

donor, acceptor, and the extra delocalized electron), and A is the perturbation

operator. The time-dependent dynamics are thus directly associated with trans-

port since the added charge is delocalized. In this method, the initial state is the

ground static density matrix for the entire (donor and acceptor) charged system.

A time-dependent excitation is applied and the response to this excitation is a

measure of electron transfer rate. As formulated, this method is linear-response

in nature. This type of calculation is dynamic in the sense that it goes beyond

simply using the static eigenvalues of the single-particle Hamiltonian and instead

accounts for electronic structure changes during the excitation. For example, in

TDDFT this corresponds to correcting the static Kohn-Sham DFT eigenvalue dif-
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ferences with the electron-hole response. As will be shown later, these effects are

crucial for properly capturing the separation dependence of the charge transfer.

1.2.3 Compuational details

Both the static and dynamic approaches are flexible, as the orbital energies

(LUMO, LUMO+1) and the vertical excitation energies can be computed via

any number of static and time-dependent approaches, such as coupled cluster

(e.g., equation of motion coupled cluster [47,48]), linear-response [49] or real-time

TDDFT [50–54], or time-dependent semi-empirical methods [45, 55]. In this pa-

per, we use DFT and ZINDO to compute the static splitting and VEEs of a -1

charged pentacene dimer. All DFT/TDDFT calculations were performed with

atom-centered Gaussian basis sets using a development version of the NWChem

software package [56]. Since these methods are commonplace, we omit the details.

The ZINDO and TD-ZINDO results were obtained by using a modified version

of ZINDO-MN package [57]. In a nutshell, in ZINDO only the valence electrons are

treated, which is done via semi-empirical one-body (i.e., nuclear and core) param-

eters hij and two-body interaction parameters vijkl, which are fit to experimental

data,

Fij = hij +
∑

kl

vijklPij, (1.3)

where P is the density matrix in the atomic orbital basis. The time-dependent

response is computed using explicit time propagation via the von Neumann equa-

tion,

i
∂P

∂t
= [F ′(P ′(t)), P ′(t)], (1.4)

where the prime denotes quantities in the molecular (orthogonal) basis. The actual
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propagation was carried out using a linear response von Neumann operator

LZ ≡ dZ

dt
= −i [F

′(P ′
0 + ηZ), P ′

0 + ηZ] − [F ′(P ′
0), P

′
0]

η
(1.5)

where Z(t) ≡ P (t)−P0 is the deviation of the MO density matrix from the initial

state, and η is a small parameter ensuring linearity. Z(t) is propagated from a

dipole perturbed ground state Z0 = −i[D,P ′
0] via a Chebyshev expansion, and

the Fourier transform of the resulting time-dependent dipole moment yields the

absorption spectrum, and thus the vertical excitation energies. For all TD-ZINDO

simulations, the time step was 0.4 a. u. (0.01 fs) and the ZINDO parameters were

taken from the original ZINDO-MN package. For a more complete discussion of

the TD-ZINDO approach see Ref. [45].

1.3 Results

1.3.1 Convergence with basis set

The large separations in these systems can pose a serious problem for atom-

centered basis sets, so as a first step we confirmed that the TDDFT and static

splitting (LUMO+1-LUMO for the neutral dimer) results were all converged with

basis.

Fig. 1.1 shows the B3LYP TDDFT VEE for the negatively charged dimer, and

the difference in energy between the LUMO and LUMO+1 for the neutral dimer

for the 3-21G, 6-31G, 6-31++G, and POL1 basis sets. For shorter separations (R

< 4.5 Å), both the static and TDDFT energies are relatively insensitive to basis

set, whereas there is a pronounced deviation from exponential behavior at larger

separations for the 3-21G and 6-31G basis sets. The super-exponential falloff

(nonlinear in log plot) is a non-physical consequence of the insufficient physical

extent of the smaller basis sets. The POL1 basis, which is highly diffuse and
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optimized for response properties, retains the correct exponential falloff, as does

the 6-31++G basis, which is a 6-31G basis with extra diffuse functions. The

TDDFT VEEs are less sensitive to basis set than the static DFT LUMO+1-

LUMO energies, since individual orbital energies are typically more sensitive to

incomplete overlap due to finite basis. Given these results, we henceforth use the

6-31++G basis, which for our purposes yields effectively the same quality results

as POL1 with significantly less computational effort (656 basis functions instead of

1308). In general, for calculations of this kind on extended systems, augmenting a

small basis with a few diffuse functions offers an affordable way to capture charge

transfer processes.

1.3.2 Static versus dyanamic splittings

For the -1 charged system, the HOMO and LUMO are extended across the dimer,

and the excitation corresponds to a symmetric → antisymmetric flip for the dimer

wavefunction (see Fig. 1.2). This is important because transitions between orbitals

localized on individual fragments would result in an apparently large splitting, but

with no electron transfer. This situation can be remedied somewhat by applying

a delocalizing potential to the system to force a delocalized initial state but this

was unnecessary for this symmetric system. The shapes of the neutral LUMO and

LUMO+1 are qualitatively similar to the HOMO and LUMO of the negatively

charged dimer (not shown), and since they are likewise extended, the difference

in their energy is a fair measure of the static splitting.

Fig. 1.3 shows the -1 charged dimer vertical excitation energies using a range

of TDDFT exchange-correlation functionals: local-density approximation (LDA)

(slater exchange [58] and Vosko-Wilk-Nusair (VWN) correlation [59]), Perdew-

Burke-Ernzerhof (PBE) functional [60], B3LYP [61]. The corresponding DFT

neutral dimer LUMO+1-LUMO energies are shown for comparison. Overall, all

TDDFT VEEs are quite insensitive to exchange-correlation functional; B3LYP
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Figure 1.2: Snapshots of the orbitals involved in the vertical excitation of the -1

charged dimer (5 Åseparation, PBE, 6-31++G basis). The excitation corresponds

to a symmetric → aysmmetric flip of the wavefunction.

is slightly red-shifted from LDA and PBE, but all have roughly the falloff rate

(exponential decay constant 0.73 Å−1). For separations less than 4.5 Å, there are

intra-fragment excitations which are lower in energy than the HOMO → LUMO

excitation. These excitations are independent of separation, however, and with

increasing R the HOMO → LUMO transition is guaranteed to become the lowest

excitation, since it decays exponentially with separation. The DFT neutral static

splittings between the first two virtual states (LUMO+1 vs. LUMO) are likewise

insensitive to the functional, but are both significantly shifted lower in energy than

the TDDFT VEEs, and also decay much faster (1.5 Å−1). Fig. 1.3 also shows the

corresponding static and time-dependent ZINDO results. Since we are interested

in the slope rather than absolute energies, they were scaled by 1.5 to facilitate

comparison with the DFT results. The ZINDO results are qualitatively similar to

DFT, except for steeper exponential falloffs. Better tuning of the ZINDO coupling

parameter might lead to better agreement with DFT.

Overall, these results suggest that the neutral static picture drastically under-

estimates the charge transfer rate, and the underestimation grows rapidly with

increased separation. For example, whereas the static PBE energy is only 34 %
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Figure 1.3: Static DFT/ZINDO splitting for the neutral dimer (dashed) and

HOMO → LUMO TDDFT/TD-ZINDO vertical excitation energies for the -1

charged dimer (solid); the corresponding exponential decay constants are shown

above each curve. All DFT calculations use the 6-31++G basis set. The ZINDO

results are scale by 1.5 for easier comparison.

lower than the TD-PBE VEE at 3.5 Å, it is a full order of magnitude smaller

at 6 Å. The reason for this is twofold: First, the static picture of orbital en-

ergy differences does not include re-arrangement of the electronic density during

charge transfer; this is analogous to static DFT orbital energy differences versus

TDDFT for traditional excitations. Second, the static picture assumes negligible

perturbation of the electronic structure of the fragments upon adding an addi-

tional electron. Although the qualitative features of the orbitals (e.g., shape and

ordering) are qualitatively unchanged by the additional electron, the orbital ener-

getics are affected. For shorter separations, this effect is lessened since the dimer
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is more like a super-molecule. In a similar vein, the electronic structure of larger

systems (e.g., fullerenes) is likewise less sensitive to extra electron.

As a final check, we compared the neutral LUMO+1-LUMO splitting to the

-1 charged HOMO-LUMO, as shown in Fig. 1.4. For pure DFT functionals (LDA,

PBE), the two are virtually identical, which is consistent with the idea that the

electronic structure of the dimer is negligibly affected by the addition of an extra

electron. The anion splitting for the hybrid functional (B3LYP), however, is

significantly overestimated, and falls off in an incorrect subexponential manner.

For pure HF (not shown), this is even more pronounced. In a nutshell, HF is

driving the system into an ionic-like state rather than a delocalized one, resulting

in unphysical orbital energies; this failure of HF to describe anions is well-known.

It is not surprising that B3LYP shows this behavior because it contains 20% HF.

ZINDO, which is a HF-type method (albeit with modified interaction terms), also

suffers from this problem.

There are two things to note from these results: First, they confirm that dy-

namic (time-dependent) effects (e.g., electronic relaxation) are indeed important,

and these calculations are not merely a measure of the anion static HOMO-LUMO

splitting. Second, even though HF-based methods break down when describing

the anionic orbital energies, the corresponding dynamics are still quite reasonable,

i.e., the TD-B3LYP excitation energies are in excellent agreement with TD-LDA

and TD-PBE, and TD-ZINDO is in reasonable agreement. Put another way, the

response of the system is relatively insensitive to the poor ground state descrip-

tion.

1.4 Conclusion

In summary, we computed the electronic couplings for a -1 charged pentacene

dimer as a first step towards modeling electron transfer in organic photovoltaics.
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Figure 1.4: Static splitting for the neutral and -1 charged dimer. The two agree

well for pure DFT, but the anion is poorly described by B3LYP and ZINDO due

to the failure of HF to capture the delocalized ground state.

Two types of splitting were computed: the static DFT and ZINDO LUMO+1-

LUMO of the neutral dimer, and the vertical excitation energy of the -1 charged

dimer from a delocalized ground state, which was obtained via time-dependent

methods (TDDFT and TD-ZINDO). The static picture consistently underesti-

mates the splitting, and results in a far steeper exponential falloff than the dy-

namic splitting. As a consequence, while the static splitting offers a decent approx-

imation to the transfer at short distances, with increasing separation it becomes

ever more important to use the dynamic approach. These results have strong

implications in systems like organic photovoltaics, where the LUMO+1-LUMO is

a common rule of thumb for estimating charge transfer efficiency, since the ad-

dition of an extra electron on a fullerene is usually assumed to not significantly
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perturb the electronic structure. Care must be taken, however, as using the static

approximation for large separations will drastically underestimate transfer prob-

abilities, perhaps even by orders of magnitude in extreme cases. Future studies

will address the accuracy of the static versus dynamic picture for charge transfer

across fullerene pairs.
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CHAPTER 2

Static coupling in fullerene derivatives:

Understaing local and macroscopic electron

mobilities in organic solar cells

2.1 Introduction

One of the primary factors limiting OPV performance is device morphology.

While there are a number of organic electron donors and acceptors with opti-

mally matched energy level, they can produce poorly performing solar cell devices.

Most typically, poor performance from seemingly ideal materials is caused by an

improper degree of phase separation when blended together [62, 63]. Because of

this, there has been a great of effort using processing conditions to control BHJ

morphology, including the use of solvent additives [12, 15, 16], post fabrication

thermal annealing [17–19], and sequential deposition of the donor and acceptor

layers [20–27]. All of these techniques greatly increase the parameter space for

optimizing power conversion efficiency, which is detrimental when most of the

progress in increasing PCE for a given set of materials is made via exploring this

parameter space through trial-and-error.

Another possible method for fabricating OPV devices with a robust morphol-

ogy would be to utilize self-assembly. Our experimental collaborators have been

using fullerene molecules which stack in a columnar fashion (see Fig. 2.2(b) for

example) [64,65]. The propensity to stack is a result of the five ‘feathers’ coming
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off the fullerene ball (due to their appearence, they have been dubbed ‘shut-

tlecocks’. Refs. [64, 65] show that certain shuttlecocks produce functional OPV

devices, whereas other produce devices with exceptionally poor performance, de-

spite being nearly electronically identical. The motivation behind the work in

this chapter is then to better understand the connection between morphology

and performance by comparing electronic coupling calculations with experimental

measurements of local and bulk mobilities. In this chapter, we develop a method

for efficiently calculating electronic coupling in asymmetric dimers, apply to sev-

eral molecules, and conclude from the data that shuttlecocks having a propensity

to stack produce superior devices to those that do not stack.

2.2 Methodology

2.2.1 Introduction

As mention in Chapter 1 the problem we consider is transfer of electrons between

two fragments, labeled left and right:

L− +R → L +R−

where we are most interested in the eletronic coupling, which formally has the

form,

γ(L→ R) = |〈ΨL|H|ΨR〉| (2.1)

where we introduced the total Hamiltonian and the left- and right-localized wave-

functions for the transferred electron. In Marcus theory, the transfer rate for the

electron between the left and right wells is
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k(L→ R) =
γ(L→ R)2

~

√

π

λkBT
exp

(

−(∆E + λ)2

4λkBT

)

(2.2)

where ∆E is the energy difference between the initial and final states, and λ is

the reorganization energy associated with the transfer.

There is a complication in the application of this formalism. The two fragments

that the electron hops between are, in practice, surrounded by other molecules.

Thus, for example, Fig. 2.2 shows two TBP molecules that the electron can hop be-

tween. The fullerene caps do not have same environment in the isolated-dimer; one

cap is surrounded by feathers from the other fullerene, while the second fullerene

cap is exposed. This difference in environment will cause an energy mismatch

for an electron in one fragment versus the other, thus causing a bias; however,

this bias in unphysical and is an artifact of considering only two fragments. In

the actual experimental system, at least within the bulk, each fragment is sur-

rounded by other molecules, making the environment for the electron identical

in each fragment. This modified-environment problem will occur for any dimer

which is not centro-symmetric, (PCBM, a centro-symmetric molecule, will retain

the symmetry between the two fragments even without an environment).

A solution to this problem is outlined in Section 2.2.2. Basically, we show that

by introducing an artificial bias (an artificial electric field) we can bring the levels

to equilibrate and demonstrate that this artificial field captures quantitatively the

same effects as a more sophisticated description with Mulliken charges simulating

the other molecules. We label this artificial bias a delocalizing potential. Further,

we show that the delocalizing potential does not have to be known accurately,

and quite a large range can be used; i.e., the delocalizing potential just has to

ensure that the lowest two considered states of the full Hamiltonian (LUMO and

LUMO+1) are not localized on the same fragment.

In Chapter 1 on a model system (pentacene dimer) we have shown that the best
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way to study such transferred-electron is therefore by using a TDDFT excitation

of the ground anionic LR− system, an approach labeled TD-Split; however, we

have also shown that acceptable results follow with a static-DFT treatment of the

open shell anionic system, LR−, and studying the coupling between the HOMO

and LUMO levels of this system, labeled static-anionic description, as well as a

static-DFT treatment of the neutral system. For large separations, the basis set

should include some diffuse functionals and preferably local density functionals

rather than Hartree-Fock-exchange based ones, due to the tendency of the latter

to localize an electron. We therefore applied both static and neutral approaches.

The results presented are for static neutral systems using the B3LYP functional.

We found these results were in close agreement to anionic systems. For example,

for PCBM, we found that using neutral B3LYP calculations gave a coupling of

1.01 × 10−2 eV, neutral PBE a coupling of 8.72 × 10−3 eV, and anionic PBE

7.16 × 10−3 eV (we disregard anionic B3LYP as this functional is known not to

give accurate results for charged systems).

2.2.2 Direct coupling

Given two fragments, in a static study there are two approaches for extracting

the splitting. In both, we first define a scaled Fock matrix,

F ≡ S− 1

2FS− 1

2 (2.3)

where we introduce the Fock matrix and the overlap matrix. We then diagonalize

the scaled Fock matrix, F:

F = V ǫV T (2.4)

The Fock and overlap matrices are derived from density functional theory

(DFT) using STO-3G basis set from NWChem software package, which has been
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shown to give good accuracy within the Marcus theory framework. The two levels

associated with the transfer are labeled as I, I + 1, where I is the LUMO for the

static-neutral system and the HOMO for the static anionic.

To delocalize the LUMO and LUMO+1 orbitals across the dimer, we apply an

artificial bias through the placement of point charges far away, ±q at ±A where

A = 200 Å, and vary q. At each electric field we also calculate the expectation

value of the localization of the I and the I+1 levels, i.e., θ(I, I) and θ(I+1, I+1),

where the molecular-orbital localization matrix is:

θ = V TS− 1

2θS− 1

2V (2.5)

and θ is the step-function matrix associated with being on the right fragment, i. e.

θij = Sijf(i)f(j) (2.6)

and,

f(i) =











1 i on right fragment

0 otherwise

(2.7)

As we sweep through the electric field, the physical location of the I, I + 1 levels

switch; at the minimum coupling point, the two levels are delocalized over the

two fragments, so θ(I, I) ≈ θ(I + 1, I + 1) ≈ 0.5.

The difficulty with the using diagonal values of the localization matrix is that

the field needs to be precisely determined, especially when the minimum coupling

is very small. While this is not terribly problematic since for each iteration it

is easy to determine if the field is too large or small by the expectation value of

θ(I, I), the method still requires many DFT calculations.

We therefore use a method in which we still have an artificial electric field,

but its only purpose is to ensure that the I and I + 1 levels are not on the same

fragment. For example, in an isolated TBP dimer if there is no electric field then

both the LUMO and LUMO+1 (and even the LUMO+2) are located on the same
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fragment. To prevent this, we apply an electric field. We determine numerically

if the electric field is appropriate by considering the 2 × 2 localization matrix in

the I, I + 1 space, defined as

θ̃ =





θ(I, I) θ(I, I + 1)

θ(I + 1, I) θ(I + 1, I + 1)



 (2.8)

We then diagonalize the θ̃ matrix, obtaining a diabatic basis which is a combina-

tion of the I, I + 1 elements:

θ̃ = MTηM (2.9)

The Fock matrix in the diabatic basis is then defined as:

FD ≡MT





ǫI 0

0 ǫI+1



M =





ǫleft γ

γ ǫright



 (2.10)

and the electronic coupling we desire is given directly by γ(L→ R) = |FD(1, 2)|.
The two methods for calculating the coupling give identical results, but the use

of the diabatic basis allows a much more lenient range of electric fields: the eigen-

values of the adiabatic eigenstates η1, η2 need only be sufficiently close to 0 and 1,

whereas when the coupling is calculated as the half-splitting between the LUMO

and LUMO+1, the diagonal elements of θ need to be precisely 0.5 (see Fig. 2.1).

2.3 Results

To tie in with the work done by our experimental collaborators on shuttlecocks, we

started by examining the coupling between two shuttlecock molecules, 6,9,12,15,18-

pentakis(4-tert-butylphenyl)-1-hydro[60]fullerene (TBP) and 6,9,12,15,18-pentakis(4-

methylphenyl)-1-hydro[60]fullerene (TOL). We chose these two SC fullerenes be-

cause they present a sharp contrast in their ability to self-assemble. Previously,
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Figure 2.1: Two methods for calculating the 4-tBu coupling as a function of

electron field: half-splitting of the LUMO and LUMO+1 orbitals (blue line), and

coupling as calculated from Eq. (2.10). Note coupling is accurately calculated for

the range of electron field over which the eigenvalues of the adiabatic eigenstates

are close to 0 and 1 (balck and red dashed lines).

it was found that TBP was a ‘universal stacker’, assembling into one-dimensional

stacks when crystallized from essentially every solvent explored [64],which in turn

lead to the best solar cell performance of all the SC fullerenes examined [64]. In

contrast, the TOL molecule, which is electronically identical to TPB (TOL differs

structurally from TBP only in the size of the alkyl group on the end of the five

SC feathers), appeared to show little propensity for columnar self-assembly, which

resulted in exceptionally poor device performance [64,65]. Finally, to understand

how local mobility among the fullerenes influences overall device performance, we

also elected to examine coupling between molecules of the well-studied PCBM.

The chemical structures of the TPB, TOL and PCBM fullerene derivatives, as well

as the geometries we used for calculating the electronic coupling between pairs of

27



Figure 2.2: Chemical structures of the fullerene derivatives considered in this

chapter and the geometries of the fullerene pairs used in our DFT calculations.

(a) PCBM; (b) the 4-tBu shuttlecock molecule in its stacked orientation; (c) the

4-Me shuttlecock in its native crystal structurel note the 4-Me molecules crystallize

in a ‘zigzag’ stack motif rather than the linear ‘ball-in-cap’ exhibited by 4-tBu; (d)

the 4-Me molecule in its interstack geometry over which we varied the separation

distance of the individual molecule; (e) 4-Me molecules in a head-to-tail (‘inverted

stack’) geometry similar to that of the PCBM molecules.

these molecules, are shown in Fig. 2.2.

Although we do not know the distribution of geometries of pairs of fullerene

molecules in a working BHJ device, it seems reasonable that on molecular length

scales, the spatial relationship between adjacent fullerene molecules should be

similar to that in single crystals. Thus, we chose geometries for our calculations

for the TOL and TBP derivatives from the crystal structures found in previ-

ous work [65]. For the electronic coupling in TBP dimers, we considered only

the linearly stacked orientation found in the crystals derived from most different
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organic solvents (Fig. 2.2(b)). For pairs of TOL molecules, we calculated the elec-

tronic coupling in a ‘zigzag stack’ geometry taken from crystals formed in toluene

(Fig. 2.2(c)) and an ‘inverted’ geometry taken from crystals formed in methanol

(Fig. 2.2(e)). For completeness, we also calculated the coupling between TOL

dimers at their ‘interstack’ geometry (Fig. 2.2(d)). In the native crystal, the in-

terstack TOL orientation contains interstitial solvent molecules, which prevent the

TOL molecules from residing close together. Since there likely is not any solvent

present between fullerene molecules in a BHJ device, to calculate the electron

transfer probability between TOL molecules in this orientation, we eliminated the

solvent from the crystal structure and repeated the calculation over intermolecu-

lar distances ranging from 11.2 Å to 15.2 Å center-to-center fullerene separation

(the lower end of this range is limited by van der Waals contact between the

TOL molecules, while the upper end is what is found in the native crystal with

interstitial solvent molecules). Finally, for the electronic coupling between PCBM

molecules (Fig. 2.2(a)), we took the geometry from the PCBM crystal structure

in Ref. [66].

Using these geometries and our DFT-based method outline above, we calcu-

Center-to-center

Molecule distance [Å] Coupling (eV)

TBP (native stack) 10.8 2.95 × 10−4

TOL (zigzag stack) 10.9 2.64 × 10−4

TOL (interstack) 11.2-15.2 1.75 × 10−7 − 4.15 × 10−4

TOL (inverted) 9.9 1.45 × 10−3

PCBM 10.2 1.00 × 10−2

Table 2.1: Calculated electron couplings for fullerene molecular dimers with the

geometries in Fig. 2.2.

29



lated the electronic coupling between multiple pairs of fullerene molecules and

obtained the results summarized in Table 2.1. For the SC fullerene derivatives,

we find that both the TOL and TBP molecular pairs have essentially the same

electronic coupling (within 10%) when placed in their respective ‘stacking’ ori-

entations; this result makes sense given that TOL and TBP have an identical

electronic structure, so the overlap of their LUMOs is about the same when ad-

jacent molecules are forced to have similar geometries. When the SC molecules

are not in the desired stacked geometry, the electronic coupling varied strongly

(roughly exponentially) with the average distance between the fullerene balls. At

the closest possible non-stacked distance (limited by steric hindrance of the alkyl

substituents), the coupling is actually slightly higher than that in the stacked

geometry. Thus, even though we do not know the precise geometry between

neighboring SC fullerene molecules in BHJ devices, we can conclude that as long

as these molecules stay in close van der Waals contact, the electronic coupling of

the pentaarylfullerenes is comparable in any geometry, lying in the range of 10−4

to low 10−3 eV.

The fact that the molecular length-scale coupling between pentaaryl fullerenes

is similar in nearly every geometry has important implications for solar cells built

from these materials. If the local coupling of these molecules is the same, and the

molecules have identical electronic structure (i.e., identical HOMO and LUMO

levels with similar orbitals), then any difference in device performance must be

the result of differences in the macroscopic geometry of the fullerene network.

This makes sense given that TBP shuttlecocks self-assemble into long stacks,

creating a much better macroscopic fullerene network throughout the active layer

than TOL molecules, which phase-segregated from the polymer into unconnected

islands [64]. Thus, self-assembly can indeed improve the macroscopic network of

polymer-fullerene BHJ solar cells, as we demonstrated experimentally in previous

work [67].
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To further illustrate the dependence of OPV device performance on morphol-

ogy, we compare the theoretical results mentioned above to two experimental

methods: time-resolved microwave conductivity (TRMC) and space-charge-limit

current (SCLC). TRMC is a method in which one measures the time dependent

absorption absorption of microwave power. The power absorbed is related to the

photoconductance of the sample, from which one can determine the local elec-

tron mobiltiy. The electron mobility from these experiments was found to be 0.44

×10−2 cm2/Vs for TOL and 0.49 ×10−2 cm2/Vs for TBP [5]. The similarity in

these values is not surprising given that these molecules are electronically nearly

identical.

SCLC, on the other hand, involves measuring current-voltage behavior of

diodes of the materials of interest. One is then able to fit this data to give an

estimate of the bulk mobility of the material. The SCLC mobilites were measured

to be 0.68 ×10−6 cm2/Vs for TOL and 0.68 ×10−6 cm2/Vs for TBP [5]. This is

a substantial difference, particularly in comparison to the local mobilities.

Thus, using the results of the DFT calculations and TRMC measurements, one

finds the two are in agreement that TBP and TOL have similar local mobilities.

However, comparing device performanace and SCLC, one finds vastly different

bulk mobilities. Given the higher propensity of TBP to stack, one can therefore

draw the conclusion that it is in fact this morphological difference between the two

fullerenes that causes one to perform better than the other. This is an important

idea, as emphasizes the importance of morphology.

Also shown in Table 2.1 are the results of the electronic coupling calculation

for a pair of PCBM molecules. We find that the electronic coupling between

neighboring PCBM molecules is roughly two orders of magnitude larger than the

average coupling between the SC fullerenes. This explains why devices built from

the SC fullerenes perform so much more poorly than devices built with PCBM,

even though the assembled macroscopic TBP fullerene network is likely better
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than the random PCBM network: electrons are simply orders of magnitude more

easily able to move between PCBM molecules than between SC molecules.

Why is the electronic coupling so much higher between PCBM molecules than

other fullerenes? For PCBM, the LUMO and LUMO+1 orbitals are highly delo-

calized around the molecules in a nearly spherically symmetry fashion, as shown in

Fig. 2.3(a). This allows for greater orbital overlap between neighboring molecules

no matter what their relative geometry. In contrast, the frontier orbitals of the

TBP and TOL shuttlecocks are fairly localized, with the electron density avoiding

the regions near and inside the pentaaryl feathers, as illustrated in Fig. 2.3(b).

This means that when the SC molecules are stacked, there is relatively poor over-

lap of the orbitals on the neighboring molecules: the electron density on the ball

of one SC has little to overlap with in the ‘bowl’ of the next SC in the stack.

The non-spherical orbital distribution of the SCs also explains why the electronic

coupling in the non-stacking direction is as good as that in the stacked direction.

In summary, our calculations suggest that even though they self-assemble into

excellent macroscopic BHJ networks, the electron mobility in pentaarylfullerenes

is limited at the local, molecular length scale. Moreover, our calculations also sug-

gest that PCBM is a champion electron acceptor for organic photovoltaics because

the electron transfer rate between PCBM molecules is not only outstanding, but

also is roughly independent of the molecular geometry. In the next section, we

turn to time-resolved microwave conductivity (TRMC) to provide an experimen-

tal verification of these ideas concerning local mobility. But most importantly,

what these calculations tell us is that if one wishes to create new self-assembling

fullerene acceptors, a key design goal must be to have strong orbital overlap be-

tween adjacent fullerenes.
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Figure 2.3: Kohn-Sham orbitals from our DFT calculations corresponding to the

LUMO and LUMO+1 of the isolated fullerene molecules: (a) PCBM; and (b)

4-tBu. The orbitals were calculated using the B3LYP functional and STO-3G

basis set.
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CHAPTER 3

Direct delocalization for calculating electron

transfer in fullerenes

3.1 Introduction

Due to the large size of fullerene molecules, it is necessary to apply a computation-

ally efficient method for the study of transfer rates. In Chapter 2, we advocated

a simple methodology for calculating the coupling between identical molecules in

dimeric systems of fullerene derivatives [5]. To reiterate, in spite of the fact that

the dimers are chemically identical when they are not placed in a centrosymmet-

ric fashion, the chemical environment seen by each of the individual molecules

is different (e.g., see Fig. 2.2). Because of this, the order of the frontier orbitals

involved in electron transfer (primarily the LUMO and LUMO+1 orbitals) could

be misplaced, for example, in an isolated dimer calculation (where no delocalizing

potential is applied), both LUMO and LUMO+1 could be located on the same

molecule. In that case, a dimer calculation will show little transfer between the

molecules.

To overcome the different-environment problem in isolated dimer calculations,

we delocalize the LUMO and LUMO+1 across the two molecules using one of

two methods. The first method involves “solvating” the dimer with surrounding

molecules. Because the systems are so large, it would be too computationally

expensive to explicitly treat solvating molecules; therefore, we solvate the dimer

with point charges. The values of the point charges are set self-consistently to
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equal the Mulliken charges on the atoms of the dimer. Solving for the values

of the point charges is relatively arduous, so we have also shown that the same

results can be achieved by applying an electric field to the system to delocalize

the frontier orbitals. This method, which we label Delocalizing Field, is much

simpler in that one can sweep across a wide range of electric fields to see where

the ideal delocalization occurs. However, due to the cost of density functional

theory (DFT) simulations on large molecules, the delocalizing field method, while

more simple than solvation, is still computationally expensive because it involves

a potentially large number of DFT calculations.

We present a substantially more efficient method here. Rather than delocaliz-

ing the frontier orbitals with an electric field, we perform a single DFT calculation

on a dimer system (here using the B3LYP functional). We then apply a bias di-

rectly to the post-self-consistent field (SCF) Fock matrix until the extra electron

is balanced evenly between the two molecules in the dimer. We are then able

to calculate the transfer rate according to Marcus theory. We show that the new

method gives similar results and identical trends to the more complicated methods

mentioned above.

The balance of the article is as follows. We present a more detailed description

of the methodology in the next section; followed by the Results section, and finally

the Discussion section.

3.2 Methodology

Typically, the electron transfer rate is calculated for symmetric organic molecules

from the Marcus theory expression [28],

kMT =
2π

~
|Jij|2(4πλκBT )−

1

2exp

(

(∆Eij + λ)2

4λκBT

)

(3.1)

35



where i and j denote the initial and final states, located on the donor and accep-

tor, respectively, J is the transfer integral, ∆Eij is the energy difference between

the initial and final states, and λ is the reorganization energy. This expression

is appropriate when the electronic states within both the donor and acceptor are

well-isolated; however, for large molecules such as fullerenes the distance between

electronic states in the valence band is quite small, below 0.1 eV, so that a sum

over all initial excited states is required; each initial state will have its own rear-

rangement energy due to different coupling to the environment vibrational states.

Furthermore, in large molecules one does not really calculate the true electronic

states but instead uses a single particle (or RPA/TDDFT) approximation, making

the degrees of freedom of the other electrons into an effective bath (not necessarily

linearly coupled); these can actually enhance the transfer for symmetric systems,

unlike vibrational degrees of freedom.

Here we, therefore, use a modified Marcus formalism [68], whereby we sum

over all initial states to calculate the total electron transfer rate:

k′MT =
2π

~

∑

ij

f(ǫi − µL)|Jij|2(4πλκBT )−
1

2exp

(

(∆Eij + λ)2

4λκBT

)

(3.2)

where we introduced the Fermi-Dirac occupation of the donor states, defined as

f(ǫi − µ0) =
1

1 + eβ(ǫi−µ0)
(3.3)

and ǫi is the energy of the donor state. In practice, we report the rate in terms of

the transfer time, defined as

τ =
1

k′MT

(3.4)

For the most part, Eq. (3.2) is a straightforward generalization of the Mar-

cus formula for a single pair of states. However, as stated above, each of these
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combinations of donor and acceptor states should in principle have a particular

rearrangement energy. It is computationally demanding to calculate the reorgani-

zation energies for all the initial states, and the whole concept of transfer energy

becomes questionable when there are many low lying states; so to simplify, we cal-

culate the transfer rates for a range of values. According to MacKenzie et al. [69],

the rearrangement energy for electron transfer in C61H2, that is, a fullerene with

the same linker group as PCBM, was calculated to be 0.136 eV when ignoring

the outer sphere contribution to the reorganization. We therefore present results

for which the reorganization energy was assumed to be 0.1 and 0.15 eV. These

choices bracket the relevant range of values and take into account minor differences

in the individual couplings and in the outer sphere contribution. While solvent

effects are certainly important in electron transfer processes, for computational

efficiency, we rely on the reorganization term in the Marcus theory formalism to

account for these effects based on prior use of Marcus theory in electron transfer

of large molecules (e.g., see Ref. [69]).

The computationally nontrivial aspect of the calculation is the transfer inte-

gral. Formally, the flux-operator has the form:

J̃ = i[F̃ , θ̃] (3.5)

where we introduced the Fock operator and the left-theta operator (identity on the

left-fragment space, zero on the right); the tilde symbol on the matrices indicates

that they refer to an orthogonal basis.

In practice, the calculations are performed by first generating the Fock and

overlap matrices, F and S in a nonorthogonal basis using DFT, which has been

shown to give good accuracy within the Marcus theory framework [35, 37–41].

The NWChem software package was used for calculations [56]. The matrices were

calculated using the B3LYP functional and STO-3G basis set for neutral and
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anionic systems. Results for both neutral and anionic systems were similar (i.e.,

the choice of which Fock operator was used is immaterial in this basis set), and

in the results section we use the neutral systems and anionic systems in PCBM,

which are in good agreement, and the neutral systems for the other molecules.

The Fock matrix and theta operator are then converted to a local orthogonal

basis:

F̃ = S− 1

2FS− 1

2

θ̃ = S− 1

2θS− 1

2

(3.6)

and the theta operator determines whether the orbial of interest is on the left or

the right molecule:

θij = g(i)Sijg(j) (3.7)

where

g(i) =











1, if i ∈ left (donor) fragment

0, otherwise

(3.8)

We then self-consistently calculate the chemical potential of the neutral and

charged species, µ0 and µ−1, such that the following conditions are met:

2Tr[f(F̃ − µ0)] =
No
∑

j=1

f(ǫj − µ0) = N

2Tr[f(F̃ − µ−1)] = N + 1

(3.9)

where N is the number of electrons in the neutral system, No is the number of

orbitals and f is a now a Fermi-Dirac operator

f(F̃ µ0) =
1

1 + eβ(F̃−µ0)
(3.10)
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The factor 2 in Eq. (3.9) above is due to spin.

We then apply a local bias w to the Fock matrix,

F̃ → F̃ + wθ̃ (3.11)

such that the extra electron is delocalized evenly between the two fragments.

This is essentially the same as applying an external electric field on the system;

however, as mentioned, there is significant time saving since the DFT calculation

is done only once, and the local bias is applied post SCF convergence.

To calculate the transfer integral, we convert the theta operator into the molec-

ular orbital basis,

θ̃E = V T θ̃V (3.12)

where V is the eigenvector matrix of the orthogonal-basis Fock matrix, F̃ . The

transfer integral becomes:

Jij = (ǫi − ǫj)θ̃
E
ij (3.13)

The transfer integral is then used to calculate the extended Marcus-theory rate,

Eq. (3.2), summing over all initial states.

3.3 Results

We have studied several molecules, as follows: PCBM (Fig. 3.1, penta-(p-t-

butylC6H4)-1-hydro-C60 (denoted TBP) (Fig. 2.2(b)), and pentamethyl-monohydro-

C60 (denoted C60Me5H) (Fig. 3.2). PCBM is the most commonly used fullerene

in organic solar cells, and consists of a phenyl group and butyric acid methyl
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Figure 3.1: The three PCBM orientations studied in this article, denoted in the

results section PCBM-1, PCBM-2, and PCBM-3.

ester group attached to the fullerene ball via a methano-linker. Here, we study

three dimer orientations of PCBM, each derived from a crystal structure. TBP

and C60Me5H are penta-substituted fullerenes, with tert-butyl phenyl and methyl

adducts, respectively; each has an additional hydrogen atom bonded to the fullerene

ball to compensate for the breaking of a double bond. The allure of these

molecules from a device fabrication perspective is that they tend to self-assemble

into columns, which could enhance optimal phase separation in bulk hetero- junc-

tion solar cells.

We present data for the extended Marcus theory formalism, that is, summation

λ = 0.1 eV λ = 0.15 eV

Multiple-state LUMOs Multiple-state LUMOs

transfer transfer transfer transfer

Dimer time (fs) time (fs) time (fs) time (fs)

PCBM-1 335 531 527 950

PCBM-2 322 1710 478 3060

PCBM-3 147 170 251 305

TBP 140,000 773,000 220,000 1,370,000

C60Me5H 24,200 33,800 43,200 60,500

Table 3.1: Results of transfer times with present formalism.
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Figure 3.2: C60Me5H.

over all initial states (labeled as “multiple-state transfer time”) as well as the

traditional Marcus theory formalism, which typically only considers the coupling

between the lowest states (LUMOs) on the left and right, which in our language

amounts to including only the i, j = LUMO, LUMO+1 (and vice versa) in the

sum in Eq. (3.2).

The results for the transfer time, τ , with the present formalism for the align-

ment potential w [i.e., satisfying Eq. (3.9)] are shown in Table 3.3. Note that

in the table we refer to “Multiple-state transfer time,” and to “LUMO-transfer

time”; these refer to the inverse of the rates in Eqs. (3.2) and (3.1), respectively.

Table 3.3 presents the electron transfer times for PCBM where we calculated

the Fock using several methods: neutral system with B3LYP functional, neutral

system with PBE functional, and anionic system with PBE functional (we ignore

the anionic system with B3LYP functional as B3LYP has been shown to give

inadequate results for charged systems). The data show similar results for the

three methods, so henceforth we employ the B3LYP functional for neutral species.

Several things in particular stand out about the data. First, we demonstrate

that for all the molecules presented, a two-level Marcus formula is insufficient

to fully capture the electron transfer behavior. This is because for very large

molecules such as fullerene derivatives, the excited states are sufficiently low that

they can be thermally excited. Therefore, many levels can be thermally populated
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and can contribute to electron transfer.

We also note that for all relative orientations of PCBM, shown in Fig. 3.1,

electron transfer rates are very high. Due to the spherical symmetry of the LUMO

and LUMO+1 orbitals about the fullerene units in PCBM (shown in Fig. 2.3(a)),

the molecule conducts well in a variety of directions, and the rate of transfer is

primarily a function of separation between these units. The variation in transfer

times and the importance of summing over all initial states is primarily a result of

the energy difference between the higher order state and the LUMO. For example,

only a minor improvement in transfer time is seen in the third PCBM dimer; in

this system, the LUMO+1 and LUMO+2 orbitals are 0.04 and 0.12 eV above

the LUMO, respectively. Therefore, the standard Marcus transfer handles this

system quite well. Alternatively, in the second PCBM dimer, the LUMO+1 and

LUMO+2 are 0.07 and 0.10 eV above the LUMO. This energy difference results

in a much more substantial contribution from the LUMO+2.

The results for the variety of methods for TBP are shown in Table 3.3. Com-

paring the three methods, we note that the total solvation method gives transfer

rates about 40% faster than the electric field delocalization and direct delocaliza-

λ = 0.1 eV λ = 0.15 eV

Multiple-state LUMOs Multiple-state LUMOs

transfer transfer transfer transfer

Method time (fs) time (fs) time (fs) time (fs)

B3LYP neutral 335 531 527 950

PBE neutral 370 747 595 1300

PBE anionic 433 1,100 680 2,000

Table 3.2: Comparison of transfer times with neutral and anionic system in

PCBM.
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tion, which give very similar results. This is a result of several things. First, the

addition of solvating molecules causes the frontier orbitals to have a much greater

overlap, that is, the LUMO and LUMO+1 matrix element of the theta operator

in the molecular orbital basis is much larger. Second, in the solvation method,

the higher order frontier orbitals are closer to the LUMO than in the electric

field and direct delocalization methods. For example, in direct delocalization, the

LUMO+1 and the LUMO+2 are 5.94 × 10−4 eV and 3.06 × 10−2 eV above the

LUMO, respectively; whereas when solvated, these orbitals are 5.10 × 10−4 eV

and 2.57 × 10−2 eV above the LUMO. Additionally, excited states higher than

the LUMO+2 play only a minor role in electron transfer, as the energy gap above

the LUMO prevents significant population. We also note that the transfer times

are also more greatly enhanced when one compares the multiple-state method

to the LUMOs method. This is due to the higher level orbitals being closer to

the LUMO. While the results presented for the several methods for calculating

transfer times in TBP vary, we would argue that the solvation method provides

the most accurate treatment of the system. The presence of point charges around

the dimer, while not explicit treatment of neighboring molecules, most thoroughly

mimics the bulk environment of the system. Nonetheless, the direct delocalization

method provides a qualitative picture for comparing possible performance device

λ = 0.1 eV λ = 0.15 eV

Multiple-state LUMOs Multiple-state LUMOs

transfer transfer transfer transfer

Dimer time (fs) time (fs) time (fs) time (fs)

Solvated TBP 84,000 3,500,000 141,000 6,220,000

Electric field 128,000 1,120,000 208,000 1,190,000

Direct delocalization 140,000 773,000 2,200,000 1,370,000

Table 3.3: Results for the variety of methods for TBP.
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of a number of molecules.

We also investigated the solvent effects of using the polarizable continuum

model to solvate a TBP dimer, using the COSMO method in NWChem. We find

that similar to calculations on an isolated dimer, the excited state orbitals are

localized on a single fragment, and, therefore, no electron transfer is observed.

We believe that this unphysical and the polarizable continuum model does not

sufficiently capture the electronic behavior of the system. To compare the transfer

rates of such a system, we applied the direct delocalization method and find that

the multiple-state transfer times are 133,000 and 210,000 fs for reorganization

energies of 0.1 and 0.15 eV, respectively. This is in good agreement with our

direct delocalization times of the unsolvated dimer.

3.4 Conclusions

We present a simple method to efficiently calculate electron transfer rates between

molecular dimers. The method handles vastly asymmetric-placed dimers, where

each individual molecule sees a different chemical environment. Additionally, the

method is useful in molecules for which higher excited states interact with the

frontier orbitals of the system. The proposed method is also highly efficient as it

does not require additional DFT calculations.

Of the molecules studied, PCBM and TBP have been fabricated to make

OPV devices. According to experiment, PCBM makes significantly more efficient

devices than TBP, 5-6% power conversion efficiency versus 1.5% for TBP [67,70,71]

. Our study is therefore qualitatively consistent with experiment and can be

used to screen new molecules. While our study does not take into account the

morphological behavior of these molecules, it gives a good basis for the types of

molecules that would make efficient devices. We mention in the Results section, for

example, the spherical symmetry of the LUMOs about the fullerene cage provides
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multidirectional pathways for electron transfer.

The work presented indicates several important factors relevant in the design of

fullerenes for the use of organic solar cells. First, the methano-substituted motif,

as in PCBM, conducts electrons well due to the spherical symmetry of the frontier

orbitals. Additionally, substitutional motifs that retain this spherical symmetry

about the fullerene unit would also make for high transfer rates. We should note,

however, that this would not necessarily lead to a top performing cell as the

energetics would still need to match those of the electron donor. Nonetheless, the

particular motif seems highly efficient.
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CHAPTER 4

Breaking the theoretical scaling limit for

predicting quasi-particle energies: The

stochastic GW approach

4.1 Introduction

The GW approximation [72, 73] to many-body perturbation theory (MBPT) [74]

offers a reliable and accessible theory for quasi-particles (QPs) and their ener-

gies [73, 75–89], enabling estimation of electronic excitations [2, 90–95], quantum

conductance [96–100], and level alignment in hybrid systems [101,102]. Practical

use of GW for large systems is severly limited because of the steep CPU and mem-

ory requirements as system size increases. The most computationally intensive el-

ement in the GW method, the calculation of the polarization potential (screened

Coulomb interaction), involves an algorithmic complexity that scales as the fourth

power of the system size [103, 104]. Various approaches have been developed to

reduce the computational bottlenecks of the GW approach [79, 89, 93, 103–107].

Despite these advances, GW calculations are still quite expensive for many of

the intended application in the fields of materials science, surface sience, and

nanosciene.

This chapter outlines a stochastic, orbital-less, formalism for the GW theory,

unique in that it does not reference occupied or virtual orbitals and orbital energies

in the Kohn-Sham (KS) Hamiltonian. While the approach is inspired by recent
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developments in electron structure theory using stochastic orbtials [108–112], it

introduces three powerful and basic notions: stochastic decoupling, stochastic

matrix compression, and stochastic time-dependent Hartree (sTDH) propagation.

The result is a stochastic formulation of GW, where the QP energies become

random variable sampled from a distribution with a mean equal to the exact GW

energies and a statistical error proportional to the inverse number of stochastic

orbitals (iterations, IsGW ).

We first illustrate the sGW formalism for silicon nanocrystals (NCs) with vary-

ing sizes and band gaps [3,113] and demonstrate that the CPU time and memory

required by sGW scales nearly linearly with system size, thereby providing means

to study QPs excitations in large systems of experimental and technological inter-

est. We also apply the sGW to several such molecules of interest to the organic

photovoltaic community, in particular fullerene and PCBM, and compare the re-

sults to experiment. We find the results to be in agreement with experimental QP

energies, which ilustrates the sGW method is a powerful tool in predicting energy

levels in large organic molecules.

4.2 Methodology

In the reformulation of the GW approach, we treat the QP energy (ǫQP = ~ωQP )

as a perturbative correction to the KS energy [73, 76]:

ǫQP (ǫ) = ǫ + Σ̃P (ωQP ; ǫ) + ΣX(ǫ) − ΣXC(ǫ) (4.1)

We view the KS energy ǫ as a variable (rather than an eigenvalue) and the actual

values we use is determined from the density of states of the KS Hamiltonian

available from the sDFT calculation [111]. For each value of ǫ one needs to evaluate

the self energy in Eq. (4.1) given by the sum of the self-energy terms:
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ΣP (t; ǫ) =
1

Q(ǫ)
tr

[

fσ

(

ĥKS − ǫ
)2

Σ̂P (t; ǫ)

]

ΣX(ǫ) =
1

Q(ǫ)
tr

[

fσ

(

ĥKS − ǫ
)2

Σ̂X

]

ΣXC(ǫ) =
1

Q(ǫ)
tr

[

fσ

(

ĥKS − ǫ
)2

vXC

]

(4.2)

The frequency domain polarization self-energy ΣP (ω, ǫ) is given in terms of the

Fourier transform of the time domain counterpart ΣP (t, ǫ). ΣX(ǫ) and ΣXC(ǫ)

are the exchange and exchange-correlation self-energies, respectively, and Q(ǫ) =

tr

[

fσ

(

ĥKS − ǫ
)2

]

is a normalization factor. In the above, vXC(r) is the exchange-

correlation potential of the KS-DFT Hamiltonian ĥKS and fσ(ǫ) = e−ǫ
2/2σ2

is an

energy filter function of width σ [114]. ΣX(ǫ), ΣXC(ǫ), and Q(ǫ) can be calculated

using a linear-scaling stochastic approach.

In the GW approximation, the most demanding calculation involves the po-

larization self-energy, formally given by [73]:

ΣP (r1, r2, t; ǫ) =
〈

r1

∣

∣

∣
Σ̂P (t; ǫ)

∣

∣

∣
r2

〉

= i~G0(r1, r2, t)W
P (r1, r2, t; ǫ), (4.3)

where

i~G0(r1, r2, t) ≡
〈

r1

∣

∣

∣
e−iĥKSt/~P̂µ(t)

∣

∣

∣
r2

〉

(4.4)

is the Green function and

W P (r1, r2, t; ǫ) ≡ 〈r1|uC ⊗ χ(t; ǫ) ⊗ uC |r2〉 (4.5)

is the polarization potential. In the above equations, P̂µ(t) ≡
[

θ(t) − θβ

(

µ− ĥKS

)]

,

θ(t) and θβ(E) = 1
2
[1 + erf(βE)] are the Heaviside and smoothed Heaviside func-

tions, respectively, µ is the chemical potential, uC(|r1 − r2|) = e2/4πǫ0|r1 − r2| is
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the bare Coulomb potential, and χ(r1, r2, t; ǫ) is the time-ordered density-density

correlation function [74]. The symbol ⊗ represents a space convolution.

Instead of performing the trace operations in Eqs. (4.2) – (4.5) using the full

basis of ĥKS, which for large systems is prohibitive, we use real stochastic orbitals

φ(r) [115–118] for which formally 1 = 〈|φ〉〈φ|〉φ where 〈...〉φ denotes a statistical

average over φ. The choice of φ(r) satisfying these requirements is not unique. The

form used here assigns a value of ±h−3/2 at each grid point with equal probability,

where h is the grid spacing. This is a crucial step which allows us to rewrite the

self-energy in Eq. (4.2) as:

ΣP (t; ǫ) =

〈
∫∫

φǫ(r1)ΣP (r1, r2, t; ǫ)φ(r2)d
3r1d

3r2

〉

φ

(4.6)

where |φǫ〉 = fσ(ĥKS − ǫ)|φ〉 is the corresponding filtered state at energy ǫ, which

can be obtained by a Chebyshev expansion of the Gaussian function with σ chosen

as a small parameter [119, 120]. We note in passing that the Chebyshev method

enables you to obtain simultaneously ΣP (t; ǫ) for several values of ǫ.

To obtain ΣP (r1, r2, t; ǫ) in Eq. (4.6) we need to calculate the non-interacting

Green function i~G0(r1, r2, t) in Eq. (4.4) and the polarization potentialW P (r1, r2, t; ǫ)

in Eq. (4.5). For the former, we introduce an additional set of real stochastic or-

bitals, ζ(r),and describe it as a stochastic average

i~G0(r1, r2, t) = 〈ζµ(r1, t)ζ(r2)〉ζ (4.7)

where ζµ(r1, t) =
〈

r

∣

∣

∣
e−iĥKSt/~P̂µ(t)

∣

∣

∣
ζ
〉

is a “propagated projected” stochas-

tic orbtial whcih can be obtained by a Chebyshev expansion of the function

e−iǫt/~ [θ(t) − θβ(ǫ− µ)] [119, 120]. One appealing advantage of the stochastic

form of Eq. (4.7) is that it provides a compact representation for G0(r1, r2, t),

equivalent to matrix compression where r1 and r2 are decoupled. This allows a

drastic simplification of the representation of the polarization self-energy obstaing
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by combing Eqs. (4.6) and (4.7):

ΣP (t; ǫ) = 〈〈φǫζµ(t)∗ |uC ⊗ χ(t) ⊗ uC| ζφ〉〉φζ . (4.8)

Next, we employ a temporal decoupling scheme by introducing an additional set

of real stochastic orbitals ψ(r):

ΣP (t; ǫ) = 〈〈φǫζµ(t)∗ |ψ〉 〈ψ|uC ⊗ χ(t) ⊗ uC | ζφ〉〉φζψ , (4.9)

which allows us to disassociate the two temporal terms 〈φǫζµ(t)∗|ψ〉 and 〈ψ|uC ⊗
χ(t) ⊗ uC |ζφ〉. Note that the average 〈...〉φζψ in Eq. (4.9) is performed over IsGW

pairs of φ and ζ stochastic orbitals, and for each such pair we use a different

set of Nψ stochastic ψs. The term 〈φǫζµ(t)∗|ψ〉 is straightforward to obtain while

〈ψ|uC⊗χ(t)⊗uC |ζφ〉 is determined from the time-retarded polarization potential,

〈ψ|uC ⊗ χr(t) ⊗ uC|ζφ〉, calculated from the linear response relation:

〈ψ |uC ⊗ χr(t) ⊗ uC | ζφ〉 = 〈ψ |uC| δn(t)〉 , (4.10)

where δn(r, t) is the causal density response to the impulsive perturbation δv(r, t) =

〈r|uC|ζφ〉δ(t) calculated by the time-dependent Hartree (TDH) approach [54,121,

122]. Alternatively, a full time-dependent density functional theory (TDDFT)

propagation [123] is often found to yield better QP energies than the TDH prop-

agation [2]. Once the retarted response 〈ψ|uC|δn(t)〉 is calculated and stored for

each time t, the corresponding time-ordered response 〈ψ|uC ⊗ χ(t) ⊗ uC |ζφ〉 is

obtained by a standard transformation [74].

The TDH (or TDDFT) propagation is usually performed using the full set

of occupied KS eigenfunctions, but we deliberately avoid these in our formula-

tion. Instead, we introduce, once again, a stochastic way to perform the TDH

or TDDFT propagation where a new set of Nϕ occupied projected stochastic or-

bitals, ϕµ(r, 0) = 〈r|θ(µ − ĥKS)|ϕ〉 are used (as before, ϕ(r) are real random
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orbitals for which 1 = 〈|ϕ〉〈ϕ|〉ϕ). The so-called sTDH (or sTDDFT) propagation

is carried out identically to a TDH propagation, except one propagates only the

Nϕ stochastic orbtials and at each time step (rather than all ocupied orbitals), and

the density is calculated as n(r, t) = 〈|ϕ(r, t)|2〉ϕ from which the Hartree potential

is updated in the usual way. We verified that for a given accuracy the number

of propagated orbtials Nϕ does not increase (and actually somewhat decreases)

with system size. This suggests that the computational complexity (storage and

compuational time) of the sTDH (or sTDDFT) step scales linearly with system

size.

4.3 Results

We validate our formalism by first applying it to a small model system where a

deterministic GW calculation is available as a benchmark. In Fig. 4.1 we show the

estimates for the real part of the polarization self-energy, obtained by both the

deterministic and the stochastic methods. The stochastic calculation employed

a large number of iterations (IsGW = 10, 000) to achieve a small statistical er-

ror. The agreement between the results of the two calculations for all relevant

frequencies as seen in Fig. 4.1 is impressive for both the highest quasihole and

lowest quasielectron levels, validating the stochastic formulation.

Next we performed a set of sGW calculation for a series of hydrogen passi-

vated silicon NCs as detailed in Table 4.1. The sDFT [111] method was used to

generate the KS Hamiltonian within the local density approximation (LDA). The

calculation employed a real-space grid of spacing h = 0.6a0, the Troullier-Martins

norm-conserving pseudopotentials [124], and fast Fourier transforms for imple-

menting the kinetic and Hartree energies. The CPU time needed to converge the

sDFT to a stistical error in the total energy per electron of about 10 meV was

≈ 5000 hrs for the entrire range of systems studied.
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Figure 4.1: Comparison of the schochastic (dashed red) and deterministic (black)

estimates of the real part of the polarization self-energy ΣX(ω, ǫ) for the 14 electron

benchmark model corresponding to the highest quasihole and lowest quasielectron

levels. Frequency scale in atomic units.

In the lower panel of Fig. 4.2 we plot the QP energies of the highest quasihole

and lowest quasielectron levels for the silicon NCs. We have used IsGW = 1000

stochastic iterations, each one involviong one pair or random φ and ζ orbitals,

and a set of Nψ = 100 stochastic ψ orbitals. As can be seen, the statistical error

in the values of the QP energies is very small (<0.1 eV) and can be reduced by

increasing IsGW . The quasihole (quasielectron) energy increases (decreases) with

system size dues to the quantum confinement effect. The quasiparticle energies

tend to plateau and approach the bulk value as the size of the NC increases. The

onset of the plateau for electrons seems to exceed the size systems studied. This

is consistent with the fact that the effective mass of the electron is smaller than

that of the hole. The middle panel of Fig. 4.2 shows the QP energy difference
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from the KS values for the holes and electrons. Larger deviations are observed

for small NCs in the strong confinement regime. The corrections for the holes are

larger than that for the electrons. This is rather surprising, given that for small

systems, the error in the frontier orbital energies in KS-DFT within LDA should

be divided equally between the electron and the hole [125, 126].

The upper panel of Fig. 4.2 shows the CPU time scaling of the entire sGW

approach for the combined calculation of ΣX(ǫ), ΣXC(ǫ), and ΣP (t, ǫ). The scaling

is nearly linear with the number of electrons, breaking the quadratic theoretical

limit. This near-linear scaling behavior kicks in already for the smallest system

studied, and therefore the stochastic method outperforms the ordinary O(N4)

GW approach for systems studied beyond SiH4. It is important to note that for

almost the entire range of NC sizes the sGW calculations were cheaper than the

sDFT.

We have also test the sGW approach on PCBM, a large nonsymmetric system.

EQP
gap (eV)

System Ne Ng IsDFT Nϕ β−1
GW sGW GWf ∆SCF

Si35H36 176 603 3000 16 0.020 6.2 7.0a 6.2a

Si87H76 424 643 1600 16 0.012 4.8

Si147H100 688 703 800 16 0.010 4.1 5.0a 4.1a

Si353H196 1608 903 400 16 0.008 3.0 2.9b

Si705H300 3120 1083 200 16 0.007 2.2 2.4b

Table 4.1: The of electrons (Ne), size of grid (Ng), number of sDFT iterations

(IsDFT ), number of stochastic orbitals in sTDDFT (Nϕ), the value of β−1
GW (Eh) in

the sGW calculation, and the resulting QP energy gap (EQP
gap ) compared to GWf

(taken from [2]) and self-consistent-field energy differences (∆SCF) (taken from

[3]) calculations.
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We obtained ǫQP = 7.1±0.1eV for the hole and ǫQP = 3.4±0.1eV for the electron

using I = 600 iterations. These results can be compared to the experimental

results ofr the ionization potential EIP = 7.17eV and the electron affinity EEA =

2.633V [127, 128]. The agreement for the electron affinity can be improved by

replacing the RPA screening with TDDFT screening [129], which gives ǫQP =

2.5 ± 0.1eV for the electron. We find similar behavior for C60. The results are

summarized in Table 4.2. The error per iteration is thus similar to that of the

symmetric silicon nanocrystalline systems.

PCBM C60

method IP EA IP EA

sGW(TDH) 7.75 3.36 7.78 3.70

sGW (TDDFT) 6.38 2.51 6.80 2.78

experiment 7.17 2.63 7.6 2.7

Table 4.2: Comparison ionization potentials and electron affinites between sGW

and experiment. Quasiparticle energies using sGW were calculating using both

TDH and full TDDFT.
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Figure 4.2: Lower panel: QP energies for the highest quasihole (black) and lowest

quasielectron (red) levels. Middle pane: QP energy difference from the KS energy

for the highest quasihole (black) and lowest quasielectron (red) levels. Upper

panel: CPU time versus the number of electrons. The power law fit (solid line)

yields an exponent close to 1.
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4.4 Conclusion

In conclusion, we have reformulated the GW approximation to MBPT for QP

energies as a stochastic process without directly referring to KS eigenstates (or,

equivalently, the single-particle density matrix). The sGW approximation is a

fully quantum paradigm shift and removes the main obstacle for addressing large

systems up to the mesoscopic limit. Indeed, the application to silicon NCs of size

far exceeding the current state-of-the-art indicates that the complexity is near

linear with system size, breaking the theoretical limit. Some fo the concepts pre-

sented here may be applicable to other forms of MBPT, such as propagators [130]

and Green function theories.

The sGW method developed here has several appealing advantages: (i) Rep-

resentation: It is especially suitable for real-space-grid and/or plane-wave pseu-

dopotential representations for which the Hamiltonian operation on a stochastic

orbital scales linearly. These representations are natural for large-scale electronic

structure computations. The approach is also useful for periodic systems with very

large super-cells. (ii) CPU time scaling: The present method enables a GW calcu-

lation that scales near linearly in CPU time. Existing methods have been able to

reduce the complexity to cubic and it was implicitly assumed that linear scaling is

impossible due to the complexity of RPA. The present method circumvents this by

developing sTDH. The scaling of our approach is insensitive to the sparsity of the

density matrix and thus represents a significant improvement over existing GW

implementations. (iii) Storage scaling (matrix compression): The introduction

of stochastic orbitals circumvents the need to store huge matrices of the Green

function and the polarization potential (or the inverse dielectric matrix ǫ−1, etc.),

thus acheiving considerable savings in memory. The scaling of storage is O(Ng),

which makes the sGW calculation applicable to a large system without recourse

to various energy cutoff approximations in the unoccupied space [84, 131, 132].
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(iv) Parallelization: The stochastic character of the sGW formalism allows for

straightforward parallelization—self-energies are averaged over different stochas-

tic orbitals and each processor performs its own independent contribution to this

average.

These features make sGW the method of choice for studying QP excitations

in large complex materials not accessible by other approaches.

Appendix 4.A Using stochastic orbitals

4.A.1 Real random orbitals

A real random orbital ζ(r) is a set of random numbers associated with each grid

point and can take the values ±h−3/2 with equal probability, where h is the grid

spacing. In the algorithm below by “draw a random orbital” we mean that one

has to produce by a pseudorandom number generator a sample of ζ(r).

The mean of the projection 〈|ζ〉〈ζ |〉ζ is the unit operator on the grid:

〈|ζ〉〈ζ |〉ζ = 1̂.

For an operator Â the stochastic trace formula is

tr
[

Â
]

=
〈〈

ζ
∣

∣

∣
Â

∣

∣

∣
ζ
〉〉

ζ
.

4.A.2 Chebyshev evaluation

The algorithm below assumes we need to compute the self-energy Σ̃(ω; ǫ) for

several Kohn-Sham energies ǫ (say, ǫn, n = 1, ..., Nǫ). A filtered real random

orbital is associated with each energy ǫ using an appropriate filtered φǫ = fσ(ĥKS−
ǫ)φ where φ is a random orbital.

The filter function fσ(ĥKS − ǫ) is applied onto φ using Chebyshev expan-
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sion techniques by which φǫ =
∑

m cm(ǫ)φm where φ0 = φ, φ1 = ĥφ and the

following iteration is used for the other terms: φm+1 = 2ĥφm − φm−1. Note

that only 3 auxilary wave functions are needed for applying this series. Here,

ĥ = ĥKS−h
∆h

is a shifted-scaled Hamiltonian, such that the eigenvalues of ĥ are

contained in the interval [-1,1] and the expansion coefficients are obtaned from

cm(ǫ) =
∫ π

0
fσ(∆h cos θ + h− ǫ) cosmθdθ.

When φǫ for several values of the parameters ǫ are needed one can save numer-

ical effort by exploiting the fact that ǫm are not ǫ dependent and thus summing

φǫ =
∑

m cm(ǫ)φm simultaneously for all values of ǫ.

4.A.3 The use of φ

For evaluating the expectation value

aǫ = Q(ǫ)−1tr

[

fσ

(

ĥKS − ǫ
)2

Â

]

,

where

Q(ǫ) = tr

[

fσ

(

ĥKS − ǫ
)2

]

,

one can use the stochastic trace formula

aǫ = Q(ǫ)−1
〈〈

φǫ

∣

∣

∣
Â

∣

∣

∣
φǫ

〉〉

φ
,

Q(ǫ) = 〈〈φǫ|φǫ〉〉φ.

However, this is expensive numerically, since one needs to operate with Â on φ

Nǫ times, for each desired value of ǫ. Instead, one can define φ =
∑

ǫ φǫ and

then aǫ = Q(ǫ)−1
〈〈

φǫ

∣

∣

∣Â
∣

∣

∣φ
〉〉

φ
, where now Q(ǫ) =

〈〈

φǫ|φ
〉〉

φ
. Since φ does not

depend on ǫ, one has to act with Â on φ only once and then for each value of ǫ

perform the stochastic average to obtain aǫ.
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4.A.4 Matrix/Operator compression and decoupling

Given and operator Â we draw a random orbital ζ(r) and Â =
〈

Â|ζ〉〈ζ |
〉

ζ
=

〈|ζA〉〈ζ |〉ζ; therefore, as a grid-matrix:
〈

r1

∣

∣

∣
Â

∣

∣

∣
r2

〉

= 〈ζA(r1)ζ(r2)∗〉ζ and one

achieves a compact and “decoupled” stochastic representation of Â.

4.A.5 Compression of the density matrix and the exchange self-energy

The exchange self-energy at orbital energy ǫ can be obtained by one of two choices.

The first uses φ and φǫ as defined above to calculate the exchange self-energy for

all sampled energies simultaneously:

ΣX(ǫ) = − 1

〈〈φǫ|φ〉〉φ

〈
∫∫

φǫ(r1)
ρ(r1, r2)

|r1 − r2|
φ(r2)d

3r1d
3r2

〉

φ

. (4.11)

For large enough β (β ≫ 1
Eg

, where Eg is the QP gap), the density matrix (DM),

ρ(r1, r2), can be expressed as the matrix elements of the operator

ρ̂ ≡ θβ

(

µ− ĥKS

)

=
1

2

{

1 + erf
[

β
(

µ− ĥKS

)]}

(4.12)

where ĥKS is the KS Hamilonian and µ is the chemical potential. Since ρ̂ = ρ̂2,

one can define a compact representation of ρ̂ in terms of a new set of stochastic

orbitals, ϕ, as 〈ϕµ(r1)ϕµ(r2)
∗〉ϕ, where ϕµ = 1

2

[

1 + erf
[

β
(

µ− ĥKS

)]]

ϕ. Note

that these are exactly the same orbitals used for the stochastic time propagation.

Using this representation of ρ̂, we rewrite the exhange self energy as:

ΣX(ǫ) = − 1

〈〈φǫ|φ〉〉φ

〈
∫∫

d3r1d
3r2φǫ(r1)ϕµ(r1)

1

|r1 − r2|
ϕµ(r2)φ(r2)

〉

ϕφ

.

(4.13)

For every pair of random orbitals ϕ and φ we need to compute ϕµ, φǫ, and φ =
∑

ǫ φǫ, and then through a Fourier transform perform the convolution to obtain
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the exchange energy.

The second variant uses the fact that most of the numerical effort in the

exchange energy goes towards the determination of the orbitals ϕµ rather than

the actual calculation of the exchange integral in Eq. (4.13). Therefore, a better

numerical convergence with very little additional cost is achieved if the exchange

energy is calculated for each energy separately, replace φ by φǫ:

ΣX(ǫ) = − 1

〈〈φǫ|φǫ〉〉φ

〈
∫∫

d3r1d
3r2φǫ(r1)ϕµ(r1)

1

|r1 − r2|
ϕµ(r2)φǫ(r2)

〉

ϕφ

.

This is the variant we used in the computations reported in this chapter. We

find that for a fixed statistical error, the number of ϕ’s and φ’s is independent

of system size, which implies that the calulations of the exchange self-energy is

scaling linearly.

Appendix 4.B Algorithm

The steps below are done IsGW times. In each stochastic sampling we

1. Draw a real random orbital ζ(r) and a real random orbital φ(r) and by filter-

ing produce φǫ(r) =
〈

r

∣

∣

∣
fσ

(

ĥKS − ǫ
)∣

∣

∣
φ
〉

. Generate φ =
∑

ǫ φǫ. Typically

we filtered two or four orbitals simultaneously, e.g., two near the HOMO

and two near the LUMO. This is done with a single Chebyshev expansion,

as explained above.

2. Add the contribution to the exchange energy,
∫

vXC(r)|φǫ(r)|2d3r, and the

contributions
∫

|φǫ(r)|2d3r and
∫

φǫ(r)φ(r)dr to the denominators, Q(ǫ) =

〈〈φǫ|φ〉〉 (used for the polarization) and 〈〈φǫ|φǫ〉〉 (used for the exchange and

the Kohn-Sham energy).

3. Draw Nψ real random orbitals ψl(r), l = 1, ..., Nψ. These will be used to
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generate W r(ζφǫ, ψl, tk) and 〈φǫζ(t)∗|ψl〉 in steps 5 and 8.

4. Calculate ∆(r) =
∫

uC(r − r′)ζ(r′)φ(r′)d3r′.

5. Draw NTDH random orbitals ϕm(r), m = 1, ..., NTDH and project each one

on the occupied space: ϕm,µ(r) =
〈

r

∣

∣

∣
θβ

(

µ− ĥKS

)∣

∣

∣
ϕm

〉

. These orbitals

are then used for two purposes:

(a) Evaluate the Fock exchange self-energy for which we accumulate the

contribution:

− 1

NTDH

NTDH
∑

m=1

∫∫

φǫ(r)ϕm,µ(r)uC(|r − r′|)φǫ(r′)ϕm,µ(r′)d3rd3r′.

(4.14)

(b) Propagate the orbitals using the stochastic time-dependent Hartree

equations (only for positive times):

i~ϕ̇m,µ(r, t) =

[

ĥKS +

∫

δn(r′, t)

|r − r′| d
3r′

]

ϕm,µ(r, t)

δn(r, t) =
2

NTDH

NTDH
∑

m=1

(|ϕm,µ(r, t)|2 − |ϕm,µ(r, 0)|2)
(4.15)

This is done on a time grid t = τδt, δt ≡ T
NT

, τ = −NT , ..., NT con-

taining 2NT + 1 points for a maximum time T ≈ 100~E−1
h using a split

operator technique with δt = 0.05au. The propagation is done twice:

i. For an initial state ϕim,µ(r, t = 0) = e−i∆(r)ηϕm,µ(r).

ii. For an initial state ϕiim,µ(r, t = 0) = ϕm,µ(r).

6. Use ∆n(r, τδt) = 1
η
[δni(r, τδt) − δnii(r, τδt)] to form Nψ time-dependent

retarted (r) overlaps:

W r(ǫ, l, τ) = θ(τδt)

∫∫

d3r1d
3r2ψl(r1)

∫

uC(r1 − r2)∆n(r2, τδt). (4.16)

7. Multiply the time-dependent overlaps W r(ǫ, l, τ) by a regularization function

g(τδt) = exp
{

− (Γτδt)2

2

}

, where Γ is a damping parameter (typically we set
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Γ = 0.03~
−1Eh). Performing the transformation

W̃ (ǫ, l, ωτ ) = W̃ r(ǫ, l, ωτ )θ(ωτ ) + W̃ r(ǫ, l, ωτ )
∗θ(−ωτ ) (4.17)

where W̃ r(ǫ, l, ωτ ) is the discrete Fourier transform of W r(ǫ, l, τ). Transform

W̃ (ǫ, l, ωτ) back to the time domain to generate the time-ordered overlaps

W (ǫ, l, τ).

8. Filter the random orbitals ζ to yield its occupied and unoccupied parts,

ζ−(r, t = 0) = 〈r|θβ(µ− ĥKS)〉

ζ+(r, t = 0) = ζ(r) − ζ−(r, t = 0)
(4.18)

9. Propagate ζ+ forward in time and ζ− backward in time under ĥKS.

10. Calculate and store G(ǫ, l, τ) = 〈φǫζ(τδt)∗|ψl〉, where ζ = θ(t)ζ+(t) −
θ(−t)ζ−(−t).

11. Average the polarization self-energy

ΣP (τδt, ǫ) =
g(τδt)

Nψ

Nψ
∑

l=1

〈G(ǫ, lτ)W (ǫ, l, τ)〉φζ.

At the end of the stochastic iterations, Eq. (4.1) is solved to yield the final quasi-

particle energy.
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CHAPTER 5

Modeling molecular effects on plasmonic

transport

5.1 Introduction

Plasmonic materials [133, 134], where electrons oscillate collectively, are interest-

ing to study due to a wide range of properties. Plasmon frequencies are tunable by

modifying size [135], shape [136], and geometry [137]. The propagation and trans-

mission of surface plasmons through plasmonic materials can be specifically mod-

ulated [138], including subwavelength focusing of electromagnetic energy [139].

Plasmonic materials also generate highly intense fields at their surfaces when ex-

cited [133], resulting in a strong interaction with neighboring molecules [140].

The most common example is surface enhanced Raman spectroscopy, where in-

tense fields lead to very sensitive measurements (up to 15 orders of magnitude

more sensitive than that of the traditional Raman spectroscopy) [141]. Recently,

chlorophyll has been shown to have an 18-fold increase in fluorescence as a result

of plasmon interactions when placed near a silver surface [142].

Given the intensity of the fields surrounding excited plasmonic materials, it is

not surprising that these materials have a strong effect on neighboring molecules.

It is remarkable that a few [143] or even individual molecules can also greatly affect

a plasmonic material. We have recently shown that two-level molecules can rotate

plasmon polarization transmitted between nearby nanoparticles as well as greatly

affect the energy transmission [144]. To expand this work, we investigate the effect
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of a large fluorophore having a strong transition dipole moment on the polarization

and transmission of current through similar arrays of metal nanoparticles.

In previous papers [144, 145] on a two-level molecule, we showed that for a

pronounced effect on the polarization and transmission of current through metal

nanoparticles to occur, the molecule must have an excitation energy similar to

the plasmon resonance frequency of the metal. Here, we investigate the effects on

silver nanoparticles, and therefore chose a yellow fluorophore, tartrazine (Fig. 5.1),

as its excitation energy is similar to the plasmon resonance frequency of silver.

While Ref. [144] studies a similar system with a two-level model for the molecule,

a more thorough study is warranted. Two-level systems could have vastly different

properties in principle; primarily, this is because each time the molecule is excited

it relaxes to the same ground level. A realistic description of a molecule, with its

variety of excited states and a wide absorption profile could yield very different

results, which, a priori, could have masked the effect. Fortunately, as we show

below, this is not the case, and a strong molecular effect remains.

On the length scales relevant to metal nanoparticles, metal electrons can be

well treated classically [146]. We thus employ the finite-difference time-domain

(FDTD) method, which has been shown to accurately model metal nanoparticles [147].

The molecule was subsequently modeled using time-dependent parameterized method

number 3 (TDPM3), a time-dependent version of a semiempirical quantum me-

chanical routine [148]. TDPM3 was chosen over more common methods such as

time-dependent density functional theory (TDDFT) as it is significantly faster.

TDPM3 has recently been shown to fairly accurately model large organic

molecules, yielding excitation energies within 15% of experiment and TDDFT [45].

The method is very efficient because of the ease of applying the Fock operator

and the small (minimal) basis set. Thus, TDPM3 allows the simulation of large

fluorophores, which have a strong transition dipole moment.

The resulting simulations, discussed below, show that a single molecule can
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Figure 5.1: The yellow fluorophore tartrazine as oriented in this work.

sufficiently modify the transmitted current and rotate its direction to potentially

conceive devices that could measure such a change in the y-polarized current and

give single molecule detection. Further, future simulations will investigate how

plasmon propagation can be modified by a larger set of molecules.

Section II A describes the FDTD method used to model the silver nano-

particles, Sec. II B the TDPM3 method used for the molecule, and Sec. II C

the interaction between the two. Section III describes the investigated system

and discusses the results. Conclusions follow in Sec. IV.

5.2 Theory

5.2.1 Classical treatment

To treat the metal and vacuum background classically, we set interlocking Yee

grids to describe the electric field, magnetic field, and plasmon generated cur-

rent [146]. To avoid double counting of the self-interaction of the molecule (beyond

the inherent Coulomb integrals in the time-dependent TDPM3 Hamiltonian), we

also establish such grids for a separate molecule-induced field, so that the molecule

is only influenced by the external field and by the TDPM3 Hamiltonian, and not
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by its induced electric field.

We label the fields generated by the molecule with subscript m and the fields

generated by the plasmons with subscript p. Thus, the total fields are (see

Ref. [144])

Etot(r, t) = Ep(r, t) + Em(r, t) (5.1)

H tot(r, t) = Hp(r, t) + Hm(r, t) (5.2)

J tot(r, t) = Jp(r, t) + Jm(r, t) (5.3)

The total fields are defined and evolved in time in terms of the Maxwell equa-

tions:

∂Etot(r, t)

∂t
=

1

ǫeff (r)
[∇× H tot(r, t) − J tot(r, t)] (5.4)

∂H tot(r, t)

∂t
= − 1

µ0

∇× Etot(r, t) (5.5)

The plasmonic current is calculated as (Ref. [146])

∂J p(r, t)

∂t
= α(r)Jp(r, t) + β(r)Etot(r, t) (5.6)

where, as usual, the metal susceptibility function, ǫeff , α, and β are defined

according to

ǫeff(r) = ǫ0ǫr,∞(r), (5.7)

α(r) = −γD(r), (5.8)
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β(r) = ǫ0[ωD(r)]2 (5.9)

ǫr,∞(r), γD(r), and ωD are the Drude asymptotic relative permittivity, damping

constant, and plasma frequency, respectively. The parameters are material de-

pendent, and fitted to experimental values [146,147,149] (parameters used in the

simulations were taken from Ref. [149]).

The plasmonic fields are evolved in time by the Maxwell equations:

∂Ep

∂t
=

1

ǫeff
∇× Hp +

(

1

ǫeff
− 1

ǫ0

)

∇× Hm − 1

ǫeff
Jp (5.10)

∂Hp

∂t
= − 1

µ0

∇× Ep (5.11)

Note that Eq. (5.10) has a contribution from the molecular magnetic field, un-

like Eq. (5.11). This is because the plasmons electric field is the difference of

the total and molecular components, and each of these is affected by a differ-

ent susceptibility, leading to the term from the molecular magnetic field. As the

magnetic susceptibility is assumed constant between the plasmons and the sur-

rounding air, no such term exists for Eq. (5.11), which is therefore much simpler.

The full derivation can be found in Ref. [144]. The last ingredient is the molecular

current, which is derived below from the quantum mechanical density matrix.

5.2.2 Quantum mechanical treatment

To model the contribution of the molecule, we employ the TDPM3 method [45].

TDPM3 is a semiempirical time-dependent method which greatly reduces the

computational cost of modeling the molecule. TDPM3 gains efficiency in several

ways. First, it treats the inner shell electrons of an atom and the nucleus as

a fixed core, and thus only explicitly treats the valence electrons. Second, the
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PM3 Hamiltonian is defined in terms of parameterized variables, optimized to fit

experimental data:

Hµµ = Uµµ +
∑

B

Vµµ,B (5.12)

Hµν =
∑

B

Vµν,B (5.13)

Hµλ =
1

2
(βAµ + βBλ )Sµλ (5.14)

Here, Uµµ corresponds to the sum of the kinetic energy of the electron in orbital

µ and the potential energy resulting from the attraction of the electron in orbital

µ and the core of the atom on which that orbital is located. Vµν,B corresponds to

the attraction of an electron in atom A to the core of atom B. The β values are

parameters specific to the orbital type and atom. These parameters are typically

fitted to spectroscopic data. Finally, Sµλ is an element of the overlap matrix. The

β terms are used to describe the group state of a molecule.

Note that no image potential is used on the metal; formally, it will be required

in a static or near static treatment, where the metals reflectivity effect manifests

itself as an image charge. However, we are interested at higher frequencies, where

the metal is no longer a purely reflecting substance and instead its properties are

explicitly accounted for by the Maxwell equation and the frequency dependent

susceptibility.

The electric field is included by a usual dipole moment, as we ignore the effect

of the magnetic field on the molecule:

Hij = H0,ij + Ep · dij (5.15)

Hij is a matrix element of the corrected, excited state Hamiltonian, H0,ij is the
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corresponding matrix element of the ground state Hamiltonian described above

in Eqs. (5.12) – (5.14), Ep is the plasmon-induced electric field at the molecules

location, and dij is the dipole matrix of the molecule. The calculations are con-

cerned with qualitative effects so that the inherent accuracy of TDPM3, about

15%-20% for excited states of organic molecule, is quite acceptable.

The Fock matrix in PM3 calculations is composed of the Hamiltonian and

2-electron terms only, and since 3- and 4- center contributions are neglected, the

method is very efficient. The 1-center α (spin-up) Fock matrix is defined as

F α
µν = Hµν + 2P α+β

µν (φAµφ
A
ν , φ

A
µφ

A
ν )

− P α
µν [(φ

A
µφ

A
ν , φ

A
µφ

A
ν ) + (φAµφ

A
µ , φ

A
ν φ

A
ν )]

+
∑

B

∑

λ,σ

P α+β
λσ (φAµφ

A
ν , φ

B
µ φ

B
ν ),

(5.16)

while the 2-center matrix elements are written as

F α
µλ = Hµλ −

∑

µ

∑

σ

P α
νσ(φAmuφ

A
nu, φ

B
λ φ

B
σ ). (5.17)

Here, P is the density matrix, and we introduced the repulsion integrals of atomic

orbitals φ of the specified atom. These repulsion integrals are semiempirically

fitted to atomic properties (see Ref. [148]). Note the inclusion of only 1- and

2-center integrals.

5.2.3 Interaction between molecule and FDTD grid

The interaction between the quantum-mechanically treated molecule and the clas-

sically treated metal nanoparticles is through the molecular current term, which is

obtained from the von Neumann equation for the evolution of the density matrix:

dP

dt
− i[F (P ), P ] − P − P0

τ
(5.18)
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Figure 5.2: The system studied consists of three silver nanoparticles, each with a

2 nm diameter and a center-to-center distance of 4 nm. The molecule is located

halfway between the second and third nanoparticles.

where F is the Fock matrix and −(P − P0)/τ represents a phenomenological

damping of the density matrix. Without this latter term, an excited molecule

would only dissipate energy radiatively and would remain excited much longer

than is physically reasonable.

We found that the transmitted current in Fourier space is insensitive to the

value of the damping constant unless it is realistically too short (30 a.u., i.e.,

less than 1 fs, or lower). The reason is that almost all the transport happens

on a very short time scale (the scale of transport from field to molecule and vice

versa), so that the damping of the residual values of the current does not change

its Fourier transform. Note that the overall dynamics takes reasonably long times

(hundreds of atomic units, more than 10 fs, as presented later), but since the

molecule mainly acts as a scatterer, only its short time dynamics is relevant; so

there is no dependence on the damping constant.

Note that from Eq. (5.15) the Fock matrix includes the electric field. It should

also be noted that the molecule and the grid act entirely through this current

term, and that electrons are not actually shared between the two regimes.

The dipole moment µ of the molecule is
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µ =
∑

ij

dij · Pij (5.19)

and the current is calculated as

Jm =
∂µ

∂t
(5.20)

The FDTD equations [Eqs. (5.4) – (5.6)] are solved simultaneously with the

TDPM3 equations for the density matrix and the current [Eqs. (5.18) and (5.20)].

In practice, the evolution is done by alternating between an FDTD evolution of

the electromagnetic fields and plasmonic current, and a TDPM3 evolution of the

density matrix.

5.3 Results

Fig. 5.2 shows the basic setup. Plasmons are induced in the first nanoparticle

(labeled 1) through adding a pulse of current (i.e., a delta function in time) as

from a tip. The current is then propagated through the array via plasmon transfer

as defined by the Maxwell equations, listed above in Section 5.2.1. Fig. 5.3 shows

the induced current on the first nanoparticle. While a 2 nm diameter metal sphere

is very small, experimentally, we chose to use such a size in our investigation, as

it is sufficiently small for a single molecule that has a strong effect. We investi-

gated systems with a more experimentally common size of 5 nm, but the effect is

diminished. Future work will examine the effect of using a set of molecules rather

than a single one, on larger spheres.

The molecule used is tartrazine, shown in Fig. 5.1. We chose this molecule due

to its strong transition dipole moment at 3.406 eV/~ which is very close to the

plasmon frequency of silver nanoparticles, 3.397 eV/~ (Fig. 5.4). The molecule is

oriented along the negative xy-axis as indicated in Fig. 5.1.
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Figure 5.3: The time-resolved x-polarized current on the first nanoparticle. The

current is induced on the first nanoparticle with a pulse as from a tip, and transfers

to the other nanoparticles via plasmon propagation.

The simulations used are given in Eqs. (5.1) – (5.6) and Eqs. (5.10) – (5.20).

The physical parameters can be found in Table 5.1 and the simulation parameters

are in Table 5.2. The time-step used was 0.006 a.u., and the total grid had

150× 50× 50 points, with a 2 a.u. grid spacing. Convergence with respect to the

time-step, number of grid points, and grid spacing were confirmed.

silver molecule

ǫr,∞ = 5.976

γD = 9.582 × 10−3 τ = 30

ωD = 0.3630

Table 5.1: The physical parameters for gold and for the molecule used in the

simulations. All values with units are in a.u.
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Figure 5.4: Overlap of the silver plasmon resonance (solid line) and the absorption

spectrum of tartrazine (dashed line). The silver plasmon resonance curve was

generated using FDTD, and the absorption spectrum of tartrazine was generated

using TDPM3.

Fig. 5.5 shows the frequency resolved current on the third nanoparticle with

and without the molecule. The molecule significantly reduces the current in the

grid time

Nx = 150

Ny = 50 dt = 0.006

Nx = 50 tmax = 2024

dx = dx = dz = 2

Table 5.2: Time parameters used in simulations. All values are in a.u.
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Figure 5.5: Frequency resolved current on the third nanoparticle in the x-direction

(solid lines) with (bold) and without (narrow) the molecule and in the y-direction

with the molecule (dashed line). The presence of the molecule rotates the

x-polarized current into the y-direction, results in a y-polarized current on the

third nanoparticle.

x-direction and increases the current in the y-direction.

The induced current on the molecule, shown in Fig. 5.6, effectively rotates the

transferred current between the second nanoparticle and the third nanoparticle

from the x-direction to the y-direction. This effect is a result of the strong tran-

sition dipole moment in tartrazine near the plasmonic frequency of silver. The

molecule absorbs much of the current in the x-direction from the second nano-

particle and re-emits nearly all of the current in the y-direction.

We also investigated the effect of the molecular orientation of the molecule.

Fig. 5.7 shows the frequency resolved x- and y-currents on the molecule and on

the third nanoparticle for systems with the molecule oriented along the xy-axis,
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Figure 5.6: The x-polarized current on the molecule as a function of time. The

y-polarized current (not shown) is slightly large than the x-polarized current.

the x-axis, and the y-axis. For a molecule oriented along the x-axis, the current on

the molecule is entirely in the x-direction, and subsequently no y-oriented current

is observed on the third nanoparticle. The x-polarized current in this orienta-

tion is very high, and actually results in an enhanced transfer from the second

nanoparticle to the third, as shown in Fig. 5.7(e). For a y-oriented molecule, the

current on the molecule is very small. The majority of the current is in the x-

direction, but this current is negligible compared with the case that the molecule

is oriented differently. The most interesting part is when the molecule is in the

xy-direction. Then, one can either view the process as a molecule absorbing x-

polarized radiation and then emitting xy-polarized current, or simply view it as a

scattering process, as the molecule can only absorb and emit radiation in the xy-

direction, so that the initial polarization of the light is projected to the molecular

xy-direction.
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Figure 5.7: (a)-(c) The x-polarized (solid line) and y-polarized (dashed line) cur-

rents of the molecule oriented along the xy-axis, x-axis, and y-axis, respectively.

(d)-(f) The frequency resolved current on the third nanoparticle for each of these

orientations. The x-polarized currents are represented with a solid line, and the

y-polarized currents with a dashed line. The bold lines are for simulations with

a molecule, and narrow lines are for simulations without a molecule. Not the

different scales on the y-axes.

Note the current on the third nanoparticle and on the molecule for the different

orientations mentioned above. Specifically, when a molecule is oriented along the

y-axis, very little energy is absorbed. The rotation of current in the nanoparticles
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Figure 5.8: (a) and (b) The frequency resolved current on the third nanoparticle

for systems in which the initial current is oriented along the xy axis for systems

without the molecule (narrow lines) and with the molecules (bold line) oreiented

along the xy-axis (a) and x-axis (b). The x-polarized current is shown with a solid

line, and the y-current with a dashed line. (c) and (d) Systems ith an inital current

in the y-direction, and a molecule oriented along the xy-axis and the x-axis. Note

the different scale on the y-axis.

is not just a function of the molecules presence, but also the orientation, as it

scatters the radiation.

We also investigated the effects of rotating the initial current on the first

nanoparticle. In Fig. 5.8(a) and (b), we investigate systems with an initial current

in the xy-direction and molecules in the xy- and x-directions, respectively. Notice

that for systems without a molecule, almost no y-current is transmitted to the

third nanoparticle; this is due to the fact that there is no mechanism to transmit
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Figure 5.9: The percentage of x-polarized current transfer from the second to the

third nanoparticle without (solid line) and with (dashed line) a molecule. The

presence of a molecule significantly reduced x transfer.

y-current between the first and second nanoparticles. Thus, for systems with

the molecule in the xy-direction, the molecule again rotates x-current into the

y-direction. Likewise, the x-oriented molecule enhances the transmission of x-

current, but has no effect on the y-current. For systems where the current is

introduced in the y-direction, very little current reaches the third nanoparticle.

In these cases, we observe similar behavior as before: the xy-oriented molecule

rotates some current into the x-direction, and the x-oriented molecule enhances

the transfer in the x-direction.

The molecule also has a strong effect on the energy transfer between the second

and third nanoparticles. The transfer of the x-polarized current is defined as

T (ω) =

∣

∣

∣

∣

Jx,3(ω)

Jx,2(ω)

∣

∣

∣

∣

(5.21)
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Fig. 5.9 shows the energy transfer between the second and third nanoparticles

for system with and without a molecule around the absorption band of tartrazine

and silver. The graph indicates the large decrease in energy transfer, about 65%,

at and around the silver plasmon resonance in the presence of the molecule.

Comparing to previous work on a two-level molecular system (Ref. [144]), we

note several differences.

Percentage-wise, tartrazine has a stronger effect on the current on the third

nanoparticle than does the two-level molecule, where the overall current changes

by as much as 35%. However, the shape of the curve changes less strongly here:

tartrazine results in a reduction of current transfer less sharply pronounced around

the excitation energy of the molecule. We attribute this difference to several

factors. Mainly, tartrazine does not have as sharp an absorbance as the two-level

molecule. Also, Fig. 5.4 shows that tartrazine has several excitation modes at

or near silvers plasmon frequency. This leads to differences in absorption and

re-emission.

These main differences arise from the fact that the properties of the two-level

molecule were tunable, i.e., we were able to set the excitation frequency and more

importantly the extinction coefficient. In contrast, the properties of tartrazine are

determined by the physics of the molecule itself.

Finally, recall that the absorption of tartrazine in this work is determined by

the minimum basis TDPM3 method. While the TDPM3-generated absorption

spectrum is qualitatively similar to the experimentally generated absorption spec-

trum, the differences could change the effects on current transmission between the

nanoparticles (see Fig. 5.10 for an overlay of TDPM3-generated and experimen-

tally generated spectra; experimental spectrum is taken from Ref. [150]).
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Figure 5.10: Overlay of the TDPM3-generated (dashed line) and experimentally

generated (solid line) absorbance spectra of tartrazine.

5.4 Conclusions

To conclude, we show the strong effect of a single molecule can have on the

transmission of current and energy between neighboring nanoparticles.

The presence of tartrazine results in a large decrease in the x-polarized current

on the third nanoparticle. This current is rotated into the y-direction, and we

observe y-polarized current on the third nanoparticle where none is found without

the molecule. This effect can potentially have a multitude of applications in the

areas of sensing and molecular switches. The enhancement of y-polarized current

is sufficient so that devices sensitive enough to detect a single molecule could be

conceived.

There are several directions for future research, such as enhancing the effect

of a single molecule. This could be achieved with an alternate, more strongly
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absorbing molecule or by a varied geometry. Another direction could be including

more molecules, which could greatly enhance y-polarized current on the third

nanoparticle or cause a resonant effect between the molecules.

The present work is a multiscale approach to model the interaction between

molecules and metal surfaces. The method allows a simultaneous treatment of

a quantum mechanical molecule interacting with a classical metal cluster. This

combined approach allows for an accurate treatment of the respective components

in the system without sacrificing efficiency.

The approach developed here is general. Because the interface between the

classical FDTD routine and the TDPM3 routine does not depend on either specif-

ically, other methods could be substituted. For example, the model could easily

account for the introduction of TDDFT as an alternative to TDPM3. In addition,

the fact that the metals are described by just a few parameters, substitution of

any metal for which the necessary experimental data is available is possible.

An extension of the present work will be the modeling of complex moleculemetal

surface interactions. A future direction would be a more sophisticated interface

between the molecule(s) and metal.
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CHAPTER 6

Near-field finite-difference time-domain method

for simulation of electrodynamics on small scales

6.1 Introduction

The finite-difference time-dependent method (FDTD, also labeled here as Maxwells

FDTD) is one of the main methods for quantitative simulations of electromagnetic

systems [146,147,151–153] (alternatives include, e.g., the discrete dipole approxi-

mation (DDA) [154–156], plasmon hybridization [157], and frequency-domain ap-

proaches [158, 159]). Recently, there have been much efforts directed at merging

Maxwells FDTD with the time-dependent Schrödinger (or alternatively Heisen-

berg or Bloch) equations for describing near-field dynamics and the effects on or

of molecules (see e.g., Ref. [160]). A difficulty in these simulations, however, is

the tiny time step required in FDTD. Here, we show how to circumvent the time

step difficulty for small structures (below 50 nm).

In Maxwell’s FDTD, the time step dt needs to be smaller than dx/(
√

3c),

where dx is the minimal grid spacing and c is the velocity of light, ∼137 a.u. For

example, for near field (NF) structures where the features are as small as 0.1 nm,

dt ∼ 0.008 a.u = 0.2 attoseconds. This is a tiny step when considering that in

real-time electronic dynamics dt can be as big as ∼1 a.u.

A simple solution is to realize that in the near-field world, where the structures

are much smaller than the wavelength, the electric field is mostly unrelated to the

velocity of light; instead, the dominant component of the electric field is longitu-
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dinal, i.e., the quasistatic gradient of the Coulomb integral over the instantaneous

charge distribution:

Enear-field(r, t) = − ∇
4πǫ0

∫

ρ(r′, t)

|r − r′|d
3r′ (6.1)

We therefore propose here to propagate only the time-dependent density and

currents (see precise definitions later), and to assume that the electric field is

longitudinal. The relation between electric fields and currents remains, however,

exactly as in Maxwell’s FDTD so that the crucial frequency dependence of the

permittivity, ǫ(r, ω), is fully captured. The overall approach is therefore labeled

NF. NF is simply the time dependent version of the usual frequency dependent

Poisson approach (see, e.g., Ref. [159]).

For the evolution of NF in time, we develop here a leapfrog approach, analogous

to Yee’s method for Maxwell’s FDTD. As we show, a very large time step is feasible

in NF (2.5 a.u., ∼ 300 times bigger than the minimum time step in FDTD for

small features) at a price of a convolution (Coulomb integral) each time step.

Note that as a matter of semantics we use the term NF rather than quasistatic.

The latter term could be misleading as the frequencies involved here are as high as

in any FDTD simulations (up to 6 eV in our simulations); the NF label only implies

that the length scales are much smaller than the wavelength of the light. Also,

formally NF is also a finite-difference time-dependent method, but for brevity we

often label it just as NF.

Finally, we develop here a new and very accurate, 8- and 9-oscillator fit (con-

taining a total of 24-27 terms) to the permittivity of gold and silver. The fit yields

very closely the experimental values between near IR and UV. The main feature

in the new fit is that all damping constants (explained below) are not overly large,

so the fit can be used with the large time steps allowed in NF.

The remainder of the paper is developed as follows. The method is explained

83



in detail in Section 6.2, the fit is examined in Section 6.3, and Section 6.4 shows

absorption profiles for both single spheres and dimers; the results are favorably

compared to Mie theory (for single spheres) and numerical Maxwell’s FDTD sim-

ulations (metal dimers). Discussion and conclusions follow in Section 6.5.

6.2 Methodology

6.2.1 Overall equations

For each material the permittivity is represented as a sum of Drude oscillators:

ǫ(ω) = ǫ∞ + ǫ0

Nj
∑

j=1

βj
ω2
j − iαjω − ω2

(6.2)

where αj, ωj, βj are (real) material-dependent paramters: most studies use Nj

∼ 2-4 Lorentzians (i.e., Drude-oscillators) (see e.g., Ref. [161] and references

therein), but as mentioned, here we apply 8-9 Lorentzians to give an excellent fit

over a wide frequency range. Further, the first version developed here requires

a spatially constant ǫ∞ (here we use ǫ∞ = ǫ0); the next version will relax this

requirement, as explained in the conclusions. Eq. (6.2) is natural for metals, so in

this first paper we only simulate metals + vacuum.

We aim for an overall time-dependent density which fulfills the continuity

equation,

∂ρ

∂t
= −∇ · J (6.3)

such that the permittivity will be associated with an overall polarization which

fulfills the Poisson equation

∇ · (ǫ(r, ω)Ẽ(r, ω)) = 0 (6.4)
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where the Poisson equation vanishes since the density is due to the polariza-

tion in the metal, and there are no free charges in this version (they could be

straightforwardly added). Also Ẽ) referes to the field in frequency space. The

frequency-dependent Poisson equation and the continuity equation are both ful-

fulled if we define currents and polarizations J j(r, t), P j(r, t), which are evolved

as follows:

∂P j(r, t)

∂t
= J j(r, t) (6.5)

∂J j(r, t)

∂t
= −αj(r)J j(r, t) − ω2(r)P j(r, t) + ǫ0βj(r)E(r, t) (6.6)

such that the total current and polarization are

J(r, t) =
∑

j

J j(r, t)

P (r, t) =
∑

j

P j(r, t)
(6.7)

Equations Eqs. (6.5) – (6.7) give the the usual relation between the current

and the electric field, i.e., when transforming from time to frequency, then at each

point in space

J̃(r, ω) = −iω(ǫ(r, ω) − ǫ0)Ẽ(r, ω)

P̃ (r, ω) = (ǫ(r, ω) − ǫ0)Ẽ(r, ω)

The total density is

ρ = −∇ · P (6.8)

and the potential is obtained from the density by a convoluation:
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φ(r, t) =
1

4φǫ0

∫

ρ(r′, t)

|r − r′|d
3r′ (6.9)

(The numerical approach for calculating the convolution integral is discussed

later.) The total field is made from any external fields applied as well as the

contribution of the potential, i.e.,

E(r, t) = −∇φ(r, t) + Eext(t) (6.10)

A proof that this description yields the correct frequency-dependent Poisson equa-

tion is straightforward and presented later. Note that Eq. (6.3) and Eqs. (6.9)

and (6.10) also yield

∂E − Eext

∂t
+

JT

ǫ0
= 0

where

JT =
1

∇2
∇∇ · J

i.e., Eq. (6.3) and Eqs. (6.9) and (6.10) are equivalent to the Maxwell equation,

except that the curl of the magnetic field is neglected.

Finally, note that the electric field is not propagated independently; only the

currents and polarizations are integrated forward in time, as shown below.

6.2.2 Leapfrog propagation

Eqs. (6.5) and (6.6) are simplest to propagate forward in time in a leapfrog fashion;

i.e., the currents J j(r, t) are stored at times dt/2, dt+dt/2, 2dt+dt/2, . . . , while

the polarizations P j(r, t) are stored at 0, dt, dt, . . ..

The discretization of the evolution equation for the current is then
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J j(r, t+ 1
2
dt) − J j(r, t− 1

2
dt)

dt
= −αj(r)

J j(r, t+ 1
2
dt) + J j(r, t− 1

2
dt)

2

− ω2(r)P j(r, t) + ǫ0βj(r)E(r, t)

(6.11)

so that the evolution equation for the current is

J j

(

r, t+
dt

2

)

=
1 − αj(r)

2

1 +
αj(r)

2

J j

(

r, t− dt

2

)

− dt

1 +
αj(r)

2

(ω2(r)P j(r, t) − ǫ0βj(r)E(r, t))

(6.12)

The evolution of the polarization is even simpler:

P j(t+ dt) = P j(t) + dtJj

(

t +
dt

2

)

(6.13)

The initial conditions for the evolution are then

J j

(

t = −dt
2

)

= 0,

P j(t = 0) = 0,

Eext(r, t = m dt) = f(t = m dt)E0,

(6.14)

where E0 is the spatial profile of the external field (either uniform or concentrated

in a given area); we chose a delta-function pulse for the time-dependent external

field, i.e.,

f(t = m dt) =











0, m > 0

1
dt
, m = 0

(6.15)

but other choices, such as a step function, could have also been used.

In algorithmic form, the resulting formalism is straightforward:

Start with J j = P j = 0. Then, at each step:
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• First calculate the density, potential, and electric field

• Then, update the current (Eq. (6.12))

• Finally, update the polarization (Eq. (6.13))

The form of NF shoudl allow for simple embedding, as discussed later.

6.2.3 Relation to frequency-space Poisson algorithm

The NF algorithm is reminiscent of two other formulations: Maxwell’s FDTD,

where the electric and magnetic fields are propagated rather than the polariza-

tions, and where the current is also included; and the discrete dipole approxima-

tion.

The NF algorithm is also the time dependent version of the frequency depen-

dent Poisson algorithm, whereby one solves

∇ · (ǫ(r, ω)∇φ̃) = −∇ · (ǫ(r, ω)Ẽext(r, ω)) (6.16)

(i.e., the same as Eq. (6.4), with E = Eext −∇φ, and Eext is the external field).

The proof relies on the fact that the density and potential are related, from the

potential’s definition, by the usual Coulomb potential, so that, in frequency space,

∇ · (ǫ(r, ω)Ẽ(r, ω)) = ∇ · ((ǫ(r, ω) − ǫ0)Ẽ(r, ω))

+ ǫ0∇ · (Ẽ(r, ω) − Ẽext) + ǫ0∇ · (Ẽext)

= ∇ · (P̃ (r, ω)) − ǫ0∇2φ̃(r, ω) + ǫ0∇ · (Ẽext)

= −φ̃(r, ω) + ρ̃(r, ω) + ǫ0∇ · (Ẽext)

(6.17)

and if the external field is constant in space, the last term vanishes.
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6.2.4 The convolution integral

A remaining issue is how to calculate the convolution integral. Here, we adopt the

simplest approach, i.e., using a spatial Fourier transform; specifically, we write

ρ(r) → ρ̃(k)

φ̃(k) =
4π

k2
ρ̃(k)

φ̃(k) → φ(r)

For consistency, we also could use a similar approach when calculating the

divergence of the polarization field, although we found in practice that the re-

sults are quite similar when a few-point formula is used for the calculation of the

divergence.

There are many possible variations on this theme; for example, wrap-around

effects can be accounted for by modifying the 4π/k2 coefficients; or the Poisson

equation (−∇2φ = ρ/ǫ0) could be solved explicitly by iterations; these variants

will be explored in future work.

6.2.5 Extinction cross section

The extinction cross section is calculated by the usual formulae from the polar-

ization or current. Specifically, we use homogenous external field profile E0δ(t),

which has a uniform frequency distribution (Eext(r, ω) = E0 = const.) and get

Cext =
4πω

c|E0|2
Im

[
∫

P (r, ω)dr

]

· E0

=
4πω

c|E0|2
Re

[
∫

J(r, ω)dr

]

· E0

(6.18)

where the Fourier transform has a unit overall coefficient, i.e.,
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J(r, ω) =

∫ ∞

−∞

J(r, t)e−iωtdt

Therefore, we just need, as usual, to calculate the total spatial current, integrate

it over time, and Fourier transform to frequency space.

As a reminder, the presence of the velocity of light in this quasistatic expression

is due to the definition of the extinction coefficient as the ratio of the energy-

dissipation rate and the incoming flux, as the latter is proportional to c.

6.3 Fitting the permittivity of gold and silver

The parameters in the fit, αj, ωj, βj , have a clear physical meaning from Eq. (6.2),

as well known from textbooks and previous work. For each local “oscillator” j,

αj is the damping, ωj is the restoring frequency of the oscillator, and βj (taken

here as either positive or negative) is the contribution to the overall permittivity.

Here, we fitted the permittivity of gold and silver, over a wide frequency range

(for gold 0.6-6.7 eV, the range of data for Johnson and Christy [1]). As mentioned

above, there are several fits in the literature over narrower ranges, as well as a

four-Lorentzians fit over the same range we covered (see Ref. [161] and references

therein); these fits, however, have a wider range of values of the parameters. Here,

a very large time step is used (2.5 a.u.); with such large time-steps, the damping

constants αj and oscillator frequencies cannot be too large, so, as mentioned, a

refit is necessary.

The fit was done by standard methods. An objective is defined:

I{αj , ωj} = Min{βj}

[

1

eV

∫

g(ω)
(

Re [ǫ(ω) − ǫexp(ω)]2

+ CIm [ǫ(ω) − ǫexp(ω)]2
)

dω +
10−5

(eV)2

∑

j

β2
j

] (6.19)
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Figure 6.1: Comparison of the fitted permittivity of silver: The Johnson-Christy

data (triangles) vs. the new fit. The upper and lower panels show the real and

imaginary parts. The left side shows the fit over the a large range, and the right

side zooms to a smaller frequency reange, 1.5-4.4 eV.

For each value of the set of parameters, {αj , ωj} the optimal coefficients {βj}
are found analytically by differentiation of the two terms in the right-hand side

of Eq. (6.19) since the objective is bilinear in the coefficients, βj. The objective

functional with the optimal coefficients was minimized with respect to the non-

linear parameters, {αj, ωj}, by a steepest descent algorithm, with the damping

and restoring frequencies allowed to vary only in a restricted range,

0.1 eV < αj < 2 eV

0.001 eV < ωj < 12 eV
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8-OscillatorFitof ε(ω)forGold
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Figure 6.2: Similar to Fig. 6.1, for gold, using 8 Lorentzians.

and we chose a weight function which will de-emphasize the lower frequency part

where the permittivity is larger but has less structure: g(ω) = ω2

ω2+(1 eV)2)
.

Note that since the coefficients {βj} are real we could treat the real and imag-

inary part in the objective independently; therefore, for the best fit we have set

the coefficient of the imaginary part as C = 10.

Table 6.1 and Table 6.2 show the fit parameters. Fig. (6.1) and (6.2) show the

quality of the fit over the Johnson and Christy range. As shown the fit is very

accurate. Of course, in many simulations a lower quality fit (or the one tailored to

a smaller specific region of frequencies) will suffice, so fewer terms could be used.

A similar fit could have been applied to other metals; dielectrics would be more

challenging, as mentioned.

Since the goal of the fit was numerical, we should be careful with allocating
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specific features in the permittivity (with their origin in inter- or intra-band tran-

sitions) to specific terms in the fit. However, we could tentatively relate some of

the features of the permittivity to specific terms, for example, the features around

3 and 4 eV for gold or 4-5 eV for silver, where the permittivity changes rapidly.

ωj (eV) αj (eV) βj (eV)2

0.2350 0.1551 95.62

0.4411 0.1480 -12.55

0.7603 1.946 -40.89

0.161 1.396 17.22

2.946 1.183 15.76

4.161 1.964 36.63

5.747 1.958 22.55

7.912 1.361 81.04

Table 6.1: Fitting parameters for gold.

ωj (eV) αj (eV) βj (eV)2

0.1696 0.1795 135.0

0.3655 0.2502 -40.30

0.6312 2.114 -50.06

1.175 1.627 16.73

20.77 1.820 7.651

4.018 1.049 -15.36

4.243 0.9967 18.07

5.303 2.592 40.42

7.197 2.774 31.02

Table 6.2: Fitting parameters for silver.
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6.4 Results

To test NF we studied two types of systems: first, a single uniform gold or silver

sphere; then, two uniform gold and silver spheres of 10 nm diameter as a function

of the distance between them.

Most dimer simulations below included a grid of 64 × 32 × 32 points, with

the grid spacing about 1/10th of the sphere radius; for single spheres, where high

accuracy was required (as the results were compared to the analytical Mie theory,

see below), we increased the number of grid points to 643 and interpolated the

results to the infinite-cell limit. Future publications will investigate the overall

dependence on cell length.

We first study the extinction cross section for a single sphere. We scaled the

results by the sphere volume and present below the scaled extinction cross section,

C ′
ext ≡

Cext
V

=
Cext
πd3

6

where d is the sphere diameter.

Fig. 6.3 compares NF to the analytical solution of Maxwell’s equations for a

single sphere (Mie theory) for different sphere sizes. NF is formally exact in the

long-wavelength limit, where the well-known extinction cross section is, from Mie

theory,

C ′
ext =

Cabs + Cscat
V

∼= Cabs
V

=
3ω

c
Im

[

ǫ− 1

ǫ+ 2

]

(asd→ 0)
(6.20)

and we introduce the absorption and scattering cross section, where the latter is

negligible for small spheres.

As Fig. 6.3 shows, the numerical NF simulations agree with the exact Mie-

theory Maxwell results for small spheres. For small diameters (d = 1 nm, d = 10
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ωωωω

Figure 6.3: Scaled extinction coefficient (C ′
ext ≡ Cext/C) for small gold spheres

using both Mie theory at various sizes as well as NF. The Mie theory results

are calculated and marked at the experimental frequency point values taken from

Johnson and Christy [1].

nm), the Mie-theory results equal to the limiting form in Eq. (6.20). The numerical

NF simulations are slightly different from Eq. (6.20) due to grid-discretization and

finite grid volume.

At low frequencies, where the wavelength is large, the larger-spheres Mie-

theory results are reasonably similar to NF up to diameters of d ∼ 50 nm; at

higher frequencies, good agreement is obtained until d ∼ 30 nm.

Fig. 6.4 shows the evolution of the spectral shape for Maxwell’s FDTD vs. NF

as a function of spacing for both gold and silver dimers. The external electric field

polarization is parallel to the dimer axis, and we study the absorption for differ-

ent dimer spacings. The agreement is quite good. The lowering of the absorption
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Figure 6.4: Evoluation of the spectral shape of the Maxwell FDTD (top) vs.

NF (bottom) for spheres of diameter 10 nm, and an electric field parallel to the

spheres. The left panels are for gold, and the right for silver. Each line refers

to a different seration between two spheres. Maxwell FDTD and NF agree well,

and, in particular, NF shows the redshift that is expected with the decrease in

the separation between the spheres.

peak at low separations [137] (essentially due to hybridization of the plasmon

modes [162]) is evident, and reproduced very similarly in both approaches. There

are some differences for small inter-sphere spacings; these are mostly due to the

different spatial discretization schemes. NF uses a spatial-Fourier transform to

calculate the electric field potential, rather than the nearest-neighbor spatial dif-

ferences in Maxwell’s FDTD.
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Figure 6.5: NF is stable and accurate even for large time-step, as shown by the

dependence of the absorption of a single gold sphere on time step. The figure

shows that even for time step of 3.0 a.u., algorithm is convergent.

Fig. 6.5 shows that the method is well converged even for large time-steps.

Finally, Fig. 6.6 compares the electric field intensities for a challenging case,

two silver spheres with a minimum distance of about 1 nm. The time-dependent

electric fields were Fourier transformed at a frequency of 3.26 eV, and we show

the intensity of the Fourier transformed fields along a slice in the xy plane (near

z = 0). The fields are quite similar; the differences are slightly due to the neglect

of retardation effects in NF, but mostly due to the use of a different spatial dis-

cretization scheme. The intensities, which should be compared to the initial field

intensity set at |Ẽ0(r, ω)|2 = 1 are quite large, due to the well-known enhancement

of fields in confined regions near metal edges.

6.5 Discussion and Conclusion

To summarize: The NF algorithm presented here is very efficient for systems with

small scale dynamics, and enables very large time steps. There are several further
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Figure 6.6: A 2D cut, near z = 0, of the intensity of the electric fields at ω = 3.26

eV in Maxwell-FDTD and NF. All x, y distances are in nm. The top panels

encompass the full dimers, while the bottom panels zoom in to the central region

and show clearly the high intensity between the spheres. For comparison, the

intensity of the external electric field is normalized to 1.

improvements and extensions which are discussed in detail below.

6.5.1 Convolutions and dielectrics

There are two challenges in the approach as it stands. First is the use of a

convolution to get the electric field from the density; this is quasilinear in the

number of points (if an FFT convolution algorithm is used), so it will not slow

the approach significantly, but an alternative approach to convolution will still be
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welcomed, as discussed below.

A different issue is, as mentioned, dielectrics, where the permittivity is almost

constant over a large frequency range (and typically almost purely real). The

difficulty is that the NF approach presented here requires that the frequency-

independent term (associated with the first term in Eq. (6.2)) will be uniform

(i.e., so that if a vacuum is used it equals ǫ0), so that the Poisson equation could

be easily solved. Possible solutions are as follows.

First is the combination of several terms as in Eq. (6.2) so that the sum of these

terms will be fairly constant over a large frequency range; the difficulty is that

then very wide Lorentzians (with large damping constants and large coefficients)

will be needed, making the necessary time step quite small.

A second choice will be to use ǫ∞ = const., i.e., the same static term for all the

materials. This choice would have been useful for the description of, e.g., metals

with a single dielectric (e.g., water) without vacuum, where the same ǫ∞ constant

of the dielectric could be used for ǫ∞ of the metal (at the cost of an additional fit

of the metal parameters with the new ǫ∞.

A more elegant solution allows for dielectrics with multiple different values of

ǫ∞ and has no convolutions. In this modification, the potential will be treated as

an independent Car-Parinello type variable, and its evolution will be determined

by

µφ̈ = −
(

∇ · (ǫs∇φ) − ρ

ǫ0

)

(6.21)

where ǫs is the frequency-independent part of the permittivity instead of the first

term (ǫ0) of the RHS of Eq. (6.2) for metals. Here, µ is an artificial Car-Parinello

type mass. Since this equation is scalar it could be solved with a smaller time

step than that used in the main set of equations of the NF approach (Eqs. (6.5)

and (6.6)) without loss of efficiency.
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6.5.2 Embedding and magnetic fields

We note that the NF approach as presented here is ideal for embedding into it a

smaller region where the material is presented more accurately. This will amount

to adding an additional “quantum” current into the system, JQ, which will be

propagated by more accurate approaches; either orbital-free TDDFT, where the

current is obtained by propagating a Schrödinger equation for a single orbital, or

even TDDFT. The added current will be supplemented by an additional quantum

density ρQ; embedding could be done by overlapping the two regions or by using

a small transition region which will interpolate between the quantum and NF

Poisson regions.

We also note that the method could potentially also be applicable to magnetic

fields. While by its nature it cannot describe propagating far-field waves, it will

be suitable to describe static magnetic fields or more generally near-fields due to

the underlying currents.

6.5.3 Relation to FDTD features: Total-field scattered field (TF/SF)

and absorbing layers

Finally, we comment on the equivalence in NF of two time-saving features in

the usual Maxwell-FDTD.[ref 3] The first is the TF/SF approach, where only

the electric field in the inner scattered region is represented. This feature is

automatically included in NF for most cases; for example, a planar incident field

is represented by a spatially homogenous E0; the reason is that the k-dependence

(exp(ik · r)) of the incident field is ignored in NF, as it only deals with sub-

wavelength features.

The second modern feature in FDTD is boundaries. Modern FDTD methods

often employ the perfectly matched layers approach, which is essentially equivalent

to exterior scaling in molecular scattering. NF could, in principle, have employed
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a similar approach; however, in practice, reflection is less of an issue in NF since

the electric fields fall off quite rapidly in the subwavelength (near-field) regime.

One could also pad the grids by a gradually rising layer of a conducting material,

which will absorb any electric field which impinges on the boundaries.
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