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Abstract
Oligodendrocytes (OL) are the only myelinating cells of the central nervous system thus interferences, either environmental or 
genetic, with their maturation or function have devastating consequences. Albeit so far neglected, one of the less appreciated, 
nevertheless possible, regulators of OL maturation and function is the circadian cycle. Yet, disruptions in these rhythms are 
unfortunately becoming a common “disorder” in the today’s world. The temporal patterning of behaviour and physiology is 
controlled by a circadian timing system based in the anterior hypothalamus. At the molecular level, circadian rhythms are 
generated by a transcriptional/translational feedback system that regulates transcription and has a major impact on cellular 
function(s). Fundamental cellular properties/functions in most cell types vary with the daily circadian cycle: OL are unlikely 
an exception! To be clear, the presence of circadian oscillators or the cell-specific function(s) of the circadian clock in OL has 
yet to be defined. Furthermore, we wish to entertain the idea of links between the “thin” evidence on OL intrinsic circadian 
rhythms and their interjection(s) at different stages of lineage progression as well as in supporting/regulating OL crucial func-
tion: myelination. Individuals with intellectual and developmental syndromes as well as neurodegenerative diseases present 
with a disrupted sleep/wake cycle; hence, we raise the possibility that these disturbances in timing can contribute to the loss 
of white matter observed in these disorders. Preclinical and clinical work in this area is needed for a better understanding of 
how circadian rhythms influence OL maturation and function(s), to aid the development of new therapeutic strategies and 
standards of care for these patients.

Keywords  Circadian rhythms · Myelination · Oligodendrocytes · Oligodendrocyte progenitors · Sleep

In the central nervous system (CNS), mature myelinating 
oligodendrocytes (OL) send processes that wrap around 
the axons to form myelin sheaths, which insulate axons and 
have a critical influence on the passive electrical properties 

of neurons. Myelination involves a finely-tuned pathway of 
OPC specification, proliferation and migration followed by 
differentiation. This is an ongoing dynamic process in the 
CNS and alterations due to external environmental influ-
ences, genetic deficiencies or disease will directly affect the 
speed at which action potentials can travel down an axon 
and thus change the functional connections among circuits 
in the CNS, affecting cognitive functions [1–4]. Prominent 
myelinated tracks in the CNS are commonly referred to as 
white matter (WM) [5–7]. Beside myelinating the axons 
and modifying their conduction velocity, OL have a number 
of supporting roles, which makes them an invaluable and 
irreplaceable partner for the axons. The latter rely on the 
OL also for their survival and integrity and deficits in such 
partnership play a role in neuropsychiatric and neurological 
disorders. As described in previous work, deficits in WM 
observed in some neurodevelopmental disorders are presum-
ably a reflection of abnormalities in OL maturations or their 
ability to properly form and assemble myelin [3, 4, 8].
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Oligodendrocyte progenitor cells (OPC) actively prolifer-
ate during brain development and are present in adulthood. 
OL lineage progression is probably the best characterized 
in the CNS (Fig. 1) and recent reviews are available [9, 10]. 
Importantly, these are the last neural cells to mature, hence, 
this process occurs in an intricate environment under the 
influence of highly coordinated signals from the surround-
ing neural cells. Both cell intrinsic and extrinsic factors 
regulating OL maturation have been identified and exten-
sively studied [11–13]. Many aspects of OL maturation are 
modulated by local extrinsic signals, including astrocytic 
and neuronal activity, as well as more global signals like 
hormones [13–15]. OPC and OL cells express a variety of 
neurotransmitter receptors and ion channels [16, 17], and 
neural activity alters their maturation and consequently mye-
lination of axons in both the developing and mature CNS. 
For example, some of the major neurotransmitters control-
ling arousal like Acetylcholine (ACh) and Norepinephrine 
(NE) regulate neurogenesis, but also OPC proliferation and 
survival [18–21]. Both neural activity and the release of neu-
rotransmitters involved in the control of arousal (ACh, NE, 
etc) vary with a daily cycle and thus the circadian system is 
likely to influence OPC development, at least, through the 
regulation of cell extrinsic factors.

Hence, we propose that the circadian system may also be 
involved in the regulation of the intrinsic factors controlling 
OL maturation. Several cell types possess an intrinsic clock 
that regulate their maturations and function(s) and is aligned 
and reset by internal and external environmental cues. Seg-
ments of the cell maturation processes, such as cell cycle 
and differentiation, are “timed”. OPC, like other precur-
sor cells, will divide a specific number of times controlled 
and limited by this intrinsic timer, before exiting the cell 

cycle and terminally differentiate [24, 25]. Remarkably, this 
“counting” seems to be maintained even in the absence of 
a cell cycle regulator, the cyclin-dependent kinase inhibitor 
p27 [26]. There is strong evidence for a cross talk between 
circadian rhythms and the cell cycle [27, 28]. Perhaps, the 
circadian system regulates this timing mechanism and an 
important area for future work would be to see if clock 
mutants with long or short cycle lengths also exhibit cor-
responding changes in OL maturation.

Although developmental myelination is not complete in 
the cortex until early adulthood, there is abundant evidence 
that this process can continue until late in the adult brain. 
Adult myelination is important to allow remyelination in 
response to injury and to permit plasticity in function. Cir-
cadian rhythms and sleep are likely to be crucial regulators 
of the maturation of OPCs into myelinating OL in the adult. 
For example, Cirelli and colleagues [29] showed that OPC 
proliferation in the adult subventricular zone (SVZ) doubles 
during sleep but is disrupted by sleep deprivation. In the 
adult, levels of neural activity as well as of neurotransmit-
ters, known to influence OL lineage progression at different 
“check-points”, do vary with the sleep/wake cycle (Table 1). 
Hence, to a first approximation the increase in neural activity 
and release of neurotransmitters, such as glutamate, during 
wake would inhibit OPC proliferation, while lower activity 
and reduced secretion during rest would allow for prolifera-
tion to occur. In agreement, it was reported that activation of 
glutamatergic receptors, AMPA-subtype, on OPC in culture 
as well as in vivo elicits a reversible blockade of proliferation 
and likely regulates their migration [21, 30–34]. In contrast, 
activation of GABAB, but not GABAA receptors, stimulates 
cell proliferation and migration [30, 35–37]. These observa-
tions are consistent with a highly plausible model in which 
the circadian system through direct regulation of arousal and 
neural activity would act in concert with sleep to regulate 
the temporal pattern of OPC proliferation and migration.

OL Intracellular Transcriptional Dynamics 
Vary With Sleep/Wake Cycle

OL adapt to changes in the brain and one of the most 
prominent changes in the CNS involves the daily sleep/
wake cycle. Pioneering work by Cirelli [38, 39] and 
colleagues has been exploring day/night differences 
in brain gene expression, and most importantly, how it 
is affected by sleep deprivation [40]. They reported a 
sleep-associated increase in the transcription of fac-
tors involved in OL maturation such as the insulin-like 
growth factor binding protein 2, as well as of OL genes 
encoding for myelin components and enzymes (Myelin 
Oligodendrocyte Basic Protein, Mobp; myelin-associ-
ated glycoprotein, Mag; plasmolipin, CD9, 2′:3′-cyclic 

Fig. 1   Circadian regulation of OL maturation likely occurs at mul-
tiple points. The circadian system (shown by the sine wave) likely 
gates the production of OPCs from stem cells [22] and modulates 
their lineage progression through its regulation of extrinsic factors 
like neural activity, secretion of neurotransmitters, levels of growth 
factors and hormones. Schematic representation of the developmental 
stages of the OL lineage, after Traiffort et al. [23], along with a list of 
some of the commonly used stage-specific markers
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nucleotide-3′-phosphodiesterase, CNPase). Furthermore, 
increased levels in the expression of genes involved in 
fatty acid synthesis and in the synthesis and transport of 
cholesterol, a major constituent of myelin and other mem-
branes, were observed during sleep. Cirelli’s group con-
tinued this line of work by delineating the genome-wide 
mRNA profile in immature and mature OL as a function of 
sleep, wake, and acute sleep deprivation [29]. In this work, 
by specifically targeting mRNAs attached to ribosomes, 
so that the transcripts were more likely to be translated 
into proteins, they found that genes implicated OPC dif-
ferentiation, as well as in apoptosis, cellular stress, and 
metabolism were upregulated during wake, whilst those 
involved in OPC proliferation, phospholipids synthesis, 
and myelination were preferentially transcribed during 
sleep. Crucially, sleep deprivation disrupted this tempo-
ral pattern of expression [40–42] and caused changes to 

myelin structure in adolescent mice [43]. This evidence 
advocates for the pivotal role of sleep/wake cycles dur-
ing windows of rapid OL maturation and intense myelina-
tion, which bizarrely coincide with those periods in life 
when physiologically longer sleep times are natural, i.e. 
from birth to late adolescence. Given the well-documented 
restriction and problems with sleep in the present society, 
especially during vulnerable periods of brain development 
such as adolescence when myelination is an actively ongo-
ing process, the authors understandably interpreted their 
work in the context of sleep regulation. However, ana-
tomically distinct neural cell populations control sleep and 
circadian rhythms but work together to generate rhythms 
in sleep and rest. The temporal pattern of sleep is regu-
lated by the circadian timing system [44], and these sleep/
wake effects can, and should, be considered as the result 
of circadian regulation.

Table 1   Factors known to 
display circadian fluctuations 
have a role in OL maturation 
as well as myelination, another 
link?

The timing of sleep and arousal is controlled by the circadian timing system with a central clock located 
in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN synchronizes independent circadian 
clocks located in each organ of the body to generate tissue specific rhythms. Light entrains the master pace-
maker in the SCN, which in turn synchronizes extra-SCN central (brain) and peripheral clocks. Brain clock 
outputs include behavioural rhythms (i.e., sleep, feeding), while peripheral clock outputs include metabolic 
rhythms (i.e., glucose and lipid homeostasis). Among the rhythmically regulated SCN outputs important 
for oligodendrocytes are melatonin, glucocorticoids, arousal circuits mediated by NE and ACH

Additional factors and supporting evidence, not an exhaustive list

Insulin Roth et al. (1985) J Neurol Sci 71(2–3):339 − 50
Haroutunian et al (2014) Glia 2014 62(11):1856–77
Chirivella et al. (2017) Stem Cells 35(12):2403–2416

Glucocorticoids Chetty et al. (2014) Mol Psychiatry 19(12):1275–1283
Hinds et al. (2017) PLoS One 12(4):e0175075

Thyroid hormone Almazan et al. (1985) Dev Neurosci 7(1):45–54
Lee & Petratos (2016) Mol Neurobiol 53(9):6568–6583
Zhang et al. (2016) Mol Neurobiol 53(7):4406–4416

Melatonin Wen et al. (2016) J Neuroimmune Pharmacol 11(4):763–773
Ghareghani et al. (2017) Cell Mol Neurobiol 37(7):1319–1324

BDNF Miyamoto et al. (2015) J Neurosci 35(41):14002–8
Peckham et al. (2016) Glia 64(2):255–69

Norepinephrine Ghiani CA et al. (1999) Development 126(5):1077–1090
Ghiani & Gallo (2001) J Neurosci 21(4):1274–1282
Marinelli et al. (2016) Front Cell Neurosci 10:27

Acetylcholine Cohen et al. (1996) Brain Res Mol Brain Res 43: 193–201
Zhou et al. (2004) Cell Biol Int 28:63–67
De Angelis et al. (2012) Dev Neurobiol 72(5):713–28
Imamura et al. (2015) J Neurochem 135, 1086–1098
Marinelli et al. (2016) Front Cell Neurosci 10:27
Fields et al. (2017) Glia 65(5):687–698

Histamine Chen et al. (2017) PLoS One 12(12):e0189380
Schwartzbach et al. (2017) J Neurol 264(2):304–315

Glutamate Gallo et al. (1996) J Neurosci 16(8):2659–70
Gallo & Ghiani (2000) Trends Pharmacol Sci 21(7):252–8
Fannon et al. (2015) Glia 63(6):1021–35

GABA Yuan et al. (1998) Development 125(15):2901–14
Luyt et al. (2007) J Neurochem 100(3):822–40
Hamilton et al. (2017) Glia 65(2):309–321
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The Molecular Clock

At a cellular level, circadian rhythms (Fig. 2) are gener-
ated by the highly coordinated functional interaction of 
the core circadian clock genes, such as Circadian Locomo-
tor Output Cycles Kaput (Clock), Brain and Muscle Aryl 
Hydrocarbon Receptor Nuclear Translocator-Like Protein 
1 (Bmal1), Period (Per)1/2/3, and Cryptochrome (Cry) 
1/2. This clockwork drives waves of transcription in most 
cells in the body, including neurons and astrocytes. The 
negative transcription-translation feedback loop is depend-
ent upon the interaction of two heterodimer complexes: 
CLOCK/BMAL1 and PER/CRY, with PER2 levels being 
the limiting factor. The CLOCK/BMAL1 complex works 
as a transcriptional activator to initiate transcription of 

Per1/2/3 and Cry1/2 genes, then formed PER/CRY com-
plexes will reach the stoichiometric levels to inhibit the 
transcriptional activity of CLOCK/BMAL1. The func-
tional interactions of this heterodimer trigger the expres-
sion of the Per1/2/3 and Cry1/2 genes with a cycle length 
of approximately 24 h. In addition to the core feedback 
loop, Retinoic Acid Receptor-Related Orphan Receptor 
(ROR) and Reverse ERB (REV-ERB)α/β activate and sup-
press Bmal1 transcription, respectively, to augment the 
24-h cycle. Phosphorylation of the negative regulators 
of the molecular clock (by kinases such as casein kinase 
I) can target these proteins for proteasomal degradation 
or increase the rate of nuclear translocation. CLOCK-
controlled PAR-domain basic leucine zipper transcrip-
tion factors DBP, TEF, and HLF are highly expressed in 
many cell populations with circadian rhythmicity [45, 46]. 

Fig. 2   Circadian timing system is likely to be active in OPC and 
OL. a schematic of the transcriptional/translational negative feed-
back loop that drives circadian rhythms in gene expression in 
most cells in our body. At the beginning of the cycle, CLOCK and 
BMAL1 protein complexes bind a specific promoter region (E-box) 
to activate the transcription of a family of genes including the Period 
(Per1/Per2/Per3) and Cryptochrome (Cry1/Cry2) genes. The levels 
of the transcripts for Per and Cry reach their peak during mid to late 
day, while the PER and CRY proteins peak in the early night. The 
PERs, CRYs, and other proteins form complexes in the cytoplasm 
that translocate back into the nucleus and turn off the transcriptional 
activity driven by CLOCK–BMAL1 with a delay (due to transcrip-
tion, translation, dimerization, nuclear entry). The proteins are then 
degraded by ubiquitation allowing the cycle to begin again. In its 
simplest form, many cells contain this molecular feedback loop that 
regulates the rhythmic transcription of a number of genes. Addi-

tional feedback loops serve to contribute to the precision and robust-
ness of this core oscillation. b Microarray analysis indicates that OL 
express most of the genes that generate circadian oscillations [49]. 
The temporal profile of clock gene expression in OLs has not been 
established. A number of gene networks critical to OL function are 
known to be rhythmic and listed in this figure. c O4 (left, green) and 
d CNPase (right, white) positive OL in the white matter of adult 
C57bl/6j mice express PER2 (magenta). Arrows highlight OL co-
expressing the markers. Mice were perfused at Zeitgeber Time (ZT) 
6 and double-immunolabelling for O4 or CNPase and Per2 was per-
formed as previously reported [50, 51]. PER2 expression can be also 
appreciated in other neural cells surrounding the O4 positive OL. It 
should be noted that cells from different lineages will exhibit the peak 
of PER2 expression at different phases of the daily rhythm. The O4 
hydridoma was a kind gift of Drs. Pfeiffer and Bansal, University of 
Connecticut [52, 53]
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Genome-wide analyses of the clock feedback loop revealed 
a global circadian control over processes involved in tis-
sue-specific temporal regulation of functionally important 
pathways, such as transcription, and chromatin modifica-
tions and remodelling [45, 46], critical players in OL mat-
uration, regeneration and survival [47, 48]. Broadly speak-
ing, the targets of circadian clocks are intimately linked to 
the regulation of cell growth, maturation, metabolism, so, 
why not also in OL? (Fig. 2).

Somewhat surprisingly, the presence of such a circadian 
clock in OL has not been documented as yet. Nevertheless, 
there are good reasons to assume that such timing system 
is present in this glial cell type. First, most cell populations 
contain a cell autonomous molecular clock that gates the 
transcription of genes important to the function of that 
cell population, including the other main macroglial cell 
type, the astrocytes (see below). Second, OL do express 
most of the genes that generate circadian oscillations as 
reported by the Barres group, who carried out gene pro-
filing using Affymetrix GeneChip Arrays in fluorescent-
activated cell sorted OL from S100β-GFP transgenic mice 
at postnatal day 1 and 30 [49]. This transcriptome data-
base indicated that both the key positive elements Clock 
and Bmal1 as well as the negative elements Per1, Per2, 
Cry1 and Cry2 are expressed in mouse OL, and even some 
well-known clock-controlled genes such as D-box binding 
PAR bZIP transcription factor (Dbp). Third, a number of 
OL-enriched genes, such as platelet-derived growth fac-
tor receptor alpha (PDGFαR), myelin oligodendrocyte 
glycoprotein (Mog), Mag, myelin basic protein (MBP), 
CNPase, serum- and glucocorticoid-inducible kinase 1 
(Sgk1) have been shown to be rhythmically regulated in 
the CNS (Fig. 3; please see: CircaDB: http://circa​db.hogen​
eschl​ab.org/about​ & SCNseq: http://www.wgpem​broke​
.com/shiny​/SCNse​q/; [54]). For instance, the expression 
of Sgk1 in rats OL and WM was shown to fluctuate accord-
ingly with the diurnal variations of corticosterone, with a 
peak in the early night/active phase near the time for the 
peak of this steroid secretion [55]. Finally, there appear to 
be daily rhythms in the proliferation of OPCs in the adult 
hippocampus [56] and in the SVZ [29]. Therefore, while 
untested, it seems likely that the OPC and OL exhibit cell 
autonomous circadian rhythms and disrupting the circa-
dian clock would impact OPC and OL, after all “they can 
count time”. The mechanisms through which the central 
clock in the hypothalamus would regulate cell autono-
mous oscillations in OPC/OL have still to be identified. 
However, it is worth emphasizing that a large number of 
factors known to display circadian fluctuations, also have 
a demonstrated role in OL maturation and their function, 
i.e. myelin biogenesis (Table 1). There is no shortage of 
candidate signalling molecules that could serve to link the 

central circadian clock with cell autonomous oscillations 
in OL and their progenitors.

Cell‑Type Specific Function of the Molecular 
Clock in OL, Just a Gossip?

We can only speculate about the function of the molecular 
clockwork in OL but, based on work done in other cells 
types, can expect at least three key intracellular processes to 
be rhythmically regulated in OL. Since the assembly of the 
myelin sheet requires high levels of lipid synthesis locally 
in the CNS as the blood brain barriers would largely pre-
vent lipids originating in the liver from reaching the brain 
[57], one of the most obvious links would be the temporal 
control of cholesterol metabolism. The brain is the most 

Fig. 3   Transcripts of OL specific genes are rhythmically expressed. 
Search of publicly available databases indicates that a number of OL-
enriched genes express a daily rhythm. Expression levels were meas-
ured by RNA-seq. a Platelet-derived growth factor receptor alpha 
(Pdgfra), b Myelin basic protein (Mbp), and c Myelin oligodendro-
cyte glycoprotein (Mog). (SCNseq: http://www.wgpem​broke​.com/
shiny​/SCNse​q/) [54]. Hitherto, the functions of these transcriptional 
rhythms are unknown

http://circadb.hogeneschlab.org/about
http://circadb.hogeneschlab.org/about
http://www.wgpembroke.com/shiny/SCNseq/
http://www.wgpembroke.com/shiny/SCNseq/
http://www.wgpembroke.com/shiny/SCNseq/
http://www.wgpembroke.com/shiny/SCNseq/
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cholesterol-rich organ, containing perhaps 20% of the whole 
body’s contents [58], and cholesterol metabolism is strongly 
regulated by the circadian system [59]. This rhythmicity is 
likely to temporally synchronize the consumption of cho-
lesterol during wake to its metabolism and processing into 
cell membranes.

Next, fatty acid synthesis and β-oxidation are important 
for myelination and, at least in the liver, are tightly con-
trolled by the circadian system [60]. Alteration of the liver 
circadian clock disrupts fatty acid biosynthesis. Mitochon-
drial acetyl CoA is exported to the cytoplasm, where ATP 
citrate lyase (ACLY) is a rate-limiting enzyme. The circa-
dian peak of ACLY expression coincides with feeding. In 
addition, the rate of mitochondrial β oxidation is limited 
by the entry of fatty acyl groups into the mitochondria by 
carnitine palmitoyl transferase (CPT) 1 and 2. The levels of 
L-carnitine, CPT1, and CPT2 all show circadian rhythms. 
Such circadian- and feeding-mediated regulation generates 
a daily rhythm in fatty acid synthesis and oxidation, which 
peak during feeding and fasting, respectively.

Last, there is a growing body of data indicating that OL 
metabolically support the axons [8, 61–63] and the circa-
dian system controls the temporal pattern of mitochondrial 
function [64] (Fig. 4). The energy for the axon, in the form 
of ATP, would be generated from glucose in the neuronal 
cell bodies but it is likely that local energy is required to 
maintain axonal function along its long course. A detailed 
proteomic map of myelin has been drawn revealing a num-
ber of mitochondrial proteins [65], in conformity with 
early work [66, 67], as well as more recent [68], that dem-
onstrated the presence of mitochondria in the cytoplasmic 
veins of myelin-like membrane in both the peripheral and 

central NS. Furthermore, functional enzymes for the glyco-
lytic and Kreb’s cycles are expressed in myelin [69]. More 
recent work examined the impact of a conditional loss of 
the mitochondrial complex 4 (COX) in OL [70], reporting, 
among other findings, no signs of demyelination or axonal 
degeneration, but increased brain lactate concentrations. 
The authors suggested that lactate originating from the OL 
is enough to “maintain” the axon under these low energy 
conditions. This work complements findings [71] that the 
lactate transporter monocarboxylate transporter 1 (MCT1, 
Slc16a1) is highly enriched within OL, and disruption of its 
functions can produce axonal damage and neuronal loss in 
both cell culture and mouse models. Notably, the Slc16a1 
gene exhibits a strong circadian rhythm in the CNS but also 
in peripheral tissue (liver, heart, lung).

Undoubtedly, the circadian timing system is intimately 
linked to metabolism at a cellular, molecular and system 
level [72]. One of the most dramatic daily rhythms in the 
body is the feeding/fasting cycle in which an organism has 
a number of hours with abundant glucose followed by hours 
without [60]. The circadian system regulates both ingestive 
behaviours and the metabolic systems by which the food is 
processed, and as mentioned above, also sleep. One of oldest 
theories explaining the function of sleep is to reduce activ-
ity during a time that it is not energetically advantageous. 
Thus, the circadian clock coordinates appropriate metabolic 
responses within peripheral tissues with the light–dark cycle. 
For example, the liver clock will promote gluconeogenesis 
and glycogenolysis during the sleep/fasting period, while 
fostering glycogen and cholesterol synthesis during the 
wake/feeding period.

To adapt to the daily feeding/fasting cycle, mitochon-
dria are highly dynamic in form and function. Interestingly, 
recent studies have suggested that a viable circadian clock 
is required for the generation of new mitochondria and 
changes in their morphology. Furthermore, diurnal vari-
ations in mitochondrial respiration were shown in several 
organ tissues [64, 73]. Electron carriers, also called electron 
shuttles, are small organic molecules that play key roles in 
cellular respiration such as nicotinamide adenine dinucleo-
tide (NAD+). The rate-limiting enzyme in NAD + biosyn-
thesis, nicotinamide phosphoribosyltransferase (NAMPT), 
and NAD + levels both exhibit circadian oscillations under 
the control of the core clock machinery, at least in mice. In 
particular, they are involved along with Sirtuin (SIRT) 1/
CLOCK:BMAL1 in a feedback loop to promote oscillation 
of the clock gene Per2 [74]. Mice with a perturbed molecu-
lar clock displayed compromised mitochondrial rhythmicity 
and altered cellular respiration [75], which were restored by 
imposing a scheduled feeding time that coincided with the 
active phase of the animals [64]. A role for malfunctioning 
mitochondria and impaired metabolism has also been pro-
posed in neurodegenerative disorders and dys/demyelinating 

Fig. 4   Circadian clock likely to influence metabolic role of mature 
OL. There is a growing body of data indicating that OL metabolically 
support axons [8, 61, 63]. The circadian system controls the temporal 
pattern of mitochondrial function [64] as well as the availability of 
glucose. Some of the key gene networks known to be regulated by the 
circadian system include the transporters Glut1 and MCT1, glycoly-
sis, cholesterol as well as lipid biosynthesis, after Saab et al. [8] and 
Saab and Nave [63]
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diseases [75, 76]. Children with mitochondrial disorders pre-
sent with abnormal and delayed myelination [77]. Hence, it 
is possible that genetic and/or environmental disruption of 
the circadian system can contribute to perturb myelination 
by compromising the energy supplies, and so a, still to be 
proven, dysfunctional clock in OL would interfere with the 
reciprocal axonal-OL/myelin support.

Astrocytes are Rhythmic

In contrast to the limited information about circadian 
rhythms in OL, compelling data indicate that astrocytes pos-
sess robust circadian rhythms in gene expression and that 
these rhythms are functionally significant. Optical reporters 
have helped to demonstrate that astrocytes exhibit a robust 
circadian clock and rhythmic gene expression [78], and 
not surprisingly, clock genes regulate astrocytic glutamate 
uptake and ATP release [79–81]. The fact that astrocytes 
can exhibit circadian rhythms in intracellular calcium has 
been long appreciated [82, 83], and stunning new observa-
tions suggest that their circadian clock is essential for the 
rhythms expressed in the neural circuit within the central 
circadian clock in the suprachiasmatic nucleus (SCN) [84]. 
These data fit nicely with other work showing that disruption 
of the molecular clock by removing Bmal1 only in astrocytes 
altered daily rhythms in behaviour [75, 85, 86]. Brain-spe-
cific Bmal1 deletion weakened the blood–brain barrier by 
causing loss of pericytes [87], elicited astrogliosis, microglia 
activation and elevation of inflammatory gene expression 
mediated in part by suppression of glutathione-S-transferase 
signalling [75, 88]. Functionally, loss of Bmal1 in astrocytes 
promoted neuronal death in vitro [88].

Implications for “Broken” Circadian Rhythms 
in OPC and OL: 4 Case Studies to Highlight 
the Potential Significance

As detailed above, OPC/OL are likely to exhibit cell autono-
mous circadian rhythms and, in this section, we highlight 
some of the implications for these rhythms across different 
ages. In each of these cases, we would like to emphasize 
that an altered circadian clock can cause malfunctions of 
the immune system as well as metabolism. To date, it has 
not been possible to disentangle direct effects of circadian 
disruption on OPC/OL from those mediated by signalling 
from the neighbouring cell types.

Neonatal Units and White Matter Injury

The duration of sleep that people need to be healthy varies 
with age with infants needing the most sleep, which is also, 

not surprisingly, the time in development when rapid OL 
maturation and myelination are occurring. This relationship 
could just be a coincidence but may also reflect a functional 
relationship if more sleep allows greater OPC proliferation 
and myelination as suggested by the work of Cirelli and col-
leagues [29, 43]. This functional link is particularly relevant 
for neonatal intensive care units (NICU), which traditionally 
do not consider the importance of the light/dark cycle in 
the care of their patients. Many NICU keep their “isolettes” 
in constant light (LL) to facilitate the ability of the staff to 
monitor the infants. LL is particularly disruptive to the cir-
cadian timing system at a behavioural and system level [89], 
as it literally causes the single cell circadian oscillators to 
become desynchronised from each other [90]. Therefore, it 
should be perhaps no surprise that several studies on preterm 
infants revealed that imposing a rhythm to the NICU lighting 
conditions exerts beneficial acute effects, e.g. faster weight 
gain and recovery, shorter hospitalization [91–95]. Some 
benefits were found to be stronger than others, but all were 
encouraging. Lighting technologies are rapidly evolving, 
creating many opportunities for inexpensively improving 
the illumination of these facilities [96]. As far as we know, 
the long-term impact of the lighting conditions in the NICU 
on WM development in childhood and adult development/
health has not been explored. However, this is an extremely 
important point as diffuse WM injury is extremely common 
in survivor preterm infants (23–32 weeks of gestation) and 
has burdensome consequence on their cognitive, sensory and 
behavioural functions. At this time, OL maturation is ongo-
ing in the human brain and the WM is mainly populated by 
pre-myelinating OL, a stage highly sensitive to oxidative 
stress and ischemia/hypoxia-induced cell death, whereas 
OPC and mature OL are more resistant. These brains do 
present with hypomyelination, as, albeit OPC are present and 
proliferating post injury, pre-OL fail to progress along the 
lineage with consequent failure in myelination [4, 10, 97]. 
This raises the possibility that the constant light in the NICU 
could further endanger the, already, aberrant OL maturation 
by, perhaps, disturbing and desynchronising their internal 
rhythms. Mechanistically, it is not known if the benefits 
observed by imposing a light–dark cycle were mediated by 
sleep and circadian rhythms on OPC development, but this 
is an important area for future work.

Poor Sleep in Adolescents with Intellectual 
and Developmental Disabilities (IDD)

Adolescence is a crucial window of brain development 
with actively ongoing myelination along with refinement 
and pruning of synapses in regions centrally involved in 
cognitive functions and profound behavioural changes. 
Environmental stressors at such sensitive period may trig-
ger long lasting changes in brain wiring and the emergence 
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of psychiatric syndromes, which will have a worse outcome 
in individuals rendered more susceptible by genetic predis-
position [4, 98, 99].

A significant proportion of individual with IDD experi-
ences disturbances in their daily sleep/wake cycles, which 
become particularly obvious during adolescence. Among 
the most common complaints are delayed bedtime and fre-
quent nocturnal awakenings [100, 101]. Perhaps because of 
this disrupted temporal pattern of sleep, individuals with 
IDD are more exposed to light via electronic screens dur-
ing the night [102, 103]. This nocturnal light exposure by 
itself has been shown to delay sleep in healthy young peo-
ple [104–106]. These disruptions to sleep and circadian 
rhythms could also impact OL maturation and function. 
Several studies have found evidence for abnormalities in 
white matter connectivity in autism and other IDDs [107, 
108], although these findings are not universal [109]. Even 
in typically developing adolescence, there appears to be a 
relationship between white matter structures and cognitive 
abilities [110]. Intriguingly, sleep variability in adolescence 
has been associated with alterations in brain connectivity, 
reduced academic performance and increased risk-taking 
behaviour [111–113].

In general, adolescents are, already, particularly vulner-
able to disruption of the circadian timing due to social influ-
ences [114, 115]. The human circadian cycle varies with 
age and young adults have the longest cycle length. This 
translates to a natural tendency to stay up late and sleep in 
for many in this age group. Cross-cultural data suggests a 
typical mid-point of sleep to be between 5 and 5:30 a.m. 
for young adults [116]. This tendency runs into direct con-
flict with school start times that frequently befall at 7:30 in 
the morning. So that, to get to school on-time, many teens 
are forced to wake up between 5:30–6:00 a.m., or just after 
the midpoint of their sleep cycle. Of course, additionally 
demanding loads of homework and extracurricular activities 
make the sleep problem even worse as does the use of light-
emitting devices not only for homework, e.g. entertainment 
and socialisation. The net result is a population of sleep-
deprived teens with altered circadian cycles. Later school 
start times have been associated with improved sleep and 
academic performance [117]. Given the links between cir-
cadian rhythms, sleep and OL maturation highlighted above, 
it seems likely that the early school start times would be 
negatively impacting the myelination in the brain.

Multiple Sclerosis (MS)

MS is a demyelinating disease with an age of onset start-
ing in the 20 s and lasting through middle age [118]. Sleep 
disturbances characterised by sleep fragmentation, apnoea, 
and daytime sleepiness are common in MS patients [119, 
120]. The majority of these data come from patient surveys 

providing valuable, although subjective, insights, some of 
which were corroborated by more quantitative EEG-based, 
polysomnography analyses [121]. These data also indicated 
that there is a strong correlation between the individuals 
with the worse sleep pattern and the severity of their clinical 
symptoms [122–124]. These findings alone do not specifi-
cally implicate circadian dysfunctions. For instance, sleep 
apnoea is directly related to respiration, since obstructive 
sleep apnoea and central sleep apnoea (more common in 
MS) occur as a consequence of disrupted airflow through 
the throat and miscommunications between the brain and 
the muscle that control breathing, respectively. Even so, 
other clinical data support the possible dysregulation of the 
circadian system in MS patients. In fact, these individuals 
exhibit malfunctioning of two of the strongest outputs driven 
by the central circadian clock, the SCN, i.e. the circadian 
rhythm in the secretion of cortisol [125] and melatonin [126, 
127]. Together the rhythmic secretion of cortisol (peaks in 
the morning) and melatonin (peaks in the evening) provides 
vital temporal cues for the circadian clocks in peripheral 
organs and tissues, such as liver, heart, adipose tissue. So, 
the disruption of the hormonal rhythms is likely to have an 
impact on tissues throughout the body. Furthermore, the 
severity of MS symptoms, especially central fatigue, appears 
to vary with the daily cycle [128–131]. Finally, genetic poly-
morphisms in the circadian clock genes Per3, Bmal1 and 
Clock have been associated with MS [132, 133]. These clini-
cal associations support the use of sleep and circadian meas-
urements as biomarkers for the disease progression [134] 
but, of course, do not establish causal relationships.

A clear missing piece in this story is the availability 
of data from animal models of MS to specifically test the 
involvement of the circadian system. The three most char-
acterized animal models are (1) the experimental autoim-
mune/allergic encephalomyelitis (EAE), (2) the virally-
induced chronic demyelinating disease, known as Theiler׳s 
murine encephalomyelitis virus (TMEV) infection, which 
best mimic the autoimmune and inflammatory components 
as well as the “clinical manifestations” of MS, and (3) the 
cuprizone-induced demyelination [135], better suited to 
investigate myelin injury and repair. All of the models have 
advantages and disadvantages but, as far as we can tell, no 
work has been done on possible circadian dysfunction in the 
TMEV or neurotoxin-evoked models. In the EAE model, 
one study found a clear disruption in the diurnal (light–dark) 
rhythms in heart rate, blood pressure, corticosterone and lep-
tin levels, along with abnormal rhythmic expression of PER2 
in the liver [136]. A more recent study delineates a pathway 
through which the circadian timing system may affect EAE 
pathophysiology [137]. The authors reported diurnal rhythm 
in the accumulation and activation of various immune 
cells, which were dependent upon the circadian clock 
gene Bmal1. This gene is important for the maintenance of 
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anti-inflammatory responses, and its loss in myeloid cells 
enhanced the inflammatory environment in the CNS through 
the expansion and infiltration of IL-1β-secreting monocytes. 
The result was elevated levels of activated T-cells in the 
absence of Bmal1 or at times of the day when BMAL1 lev-
els are naturally low. This study revealed the importance of 
the molecular clock in the immune cells but did not explore 
the possible impact of EAE on the central circadian tim-
ing system. A critical test to determine the causal involve-
ment of the circadian system would be to place the organism 
in constant darkness and determine if the rhythmicity and 
robustness of the wake/sleep cycles are preserved. This is 
difficult to do in humans and animal are critical to address 
this issue as well as exploring the underlying pathogenesis. 
Future work should examine validated animal models of MS 
to confirm that the genetic or environmental disruption of 
the circadian clock impacts myelination/remyelination but 
also to develop new treatments.

An intriguing example of the interactions between cir-
cadian disorders and MS comes from work on the interplay 
between the PPARγ and the WNT/β-Catenin signalling path-
ways [138]. PPARγ is a circadian transcription factor [139], 
know to regulate rhythmic metabolism, including glucose 
and lipid metabolism, and to have an anti-inflammatory 
effect by acting on the levels of NF-κB. Dysregulation of 
the circadian system results in the activation of NF-κB [140, 
141], which in turn leads to the upregulation of WNT/beta-
catenin pathway. Impaired OPC differentiation and failure 
to remyelinate in MS and EAE are, at least in part, a conse-
quence of overactivation of the WNT/β-Catenin signalling 
pathway. PPARγ absence aggravates EAE pathophysiology, 
whilst, its agonists have shown anti-inflammatory and neuro-
protective effects, in addition to rendering the environment 
permissive to remyelination and ameliorating both EAE 
and MS symptoms [138]. Hence, PPARγ agonists appear a 
promising treatment to promote remyelination by abolish-
ing the prohibitive effects of the WNT/beta-catenin pathway 
through regulation of NF-κB activity.

Huntington Disease (HD)

HD is a progressive neurodegenerative disorder caused by a 
CAG trinucleotide repeat expansion within the Huntingtin 
gene, and a typical middle age onset inversely correlated 
with the length of the repeats [142]. Recent evidence sug-
gests that myelin loss and circadian dysregulation may be 
centrally involved in HD. The hallmark pathology in HD is 
loss of neurons in the striatum with consequent decline of 
motor functions. However, cognitive impairments along with 
altered sleep/wake cycles manifest much earlier in pre-symp-
tomatic stages. Prior work has firmly established loss of 
white matter in HD patients [143–146]. Myelin deficits have, 
as well, been reported in mouse models of HD [147–149] 

along with altered levels of cholesterol in the striatum [150], 
gangliosides in the corpus callosum [151] and altered tran-
scription of myelin-related genes [152]. In addition, sleep 
disorders are extremely common in HD patients and have 
detrimental effects on the daily functioning and quality of 
life of patients and their caregivers [153, 154]. One of the 
first signs of the disease in HD patients is a phase delay in 
the nightly rise in melatonin [155] and, by the end of life, the 
central circadian clock (SCN) shows evidence of degenera-
tion [156]. Mouse models of HD also exhibit a progressive 
and rapid breakdown of the circadian rest/activity cycle that 
closely mimics the condition observed in human patients. 
Phenotype includes loss of consolidated sleep, increased 
wakeful activity during the rest phase, and more sleep dur-
ing the active phase [153, 157–159]. Collectively this prior 
research supports the hypothesis that circadian dysfunction 
is an integral component of HD pathophysiology and could 
be contributing to the deficits in white matter. Recently, we 
have shown that some of the behavioural, physiological, and 
transcriptional deficits in HD animal models were improved 
by ‘re-aligning’ the circadian timing of these mice by impos-
ing a daily feeding/fasting cycle [160, 161]. We are presently 
determining whether restoration of the circadian rhythms 
would delay the loss of axonal and myelin integrity observed 
in these models and perhaps similar environmental manipu-
lations could become regular practice in the preventive treat-
ment of HD and similar neurodegenerative disorders.

Conclusions

In conclusion, although not proven, the findings presented 
and discussed in this review are consistent with the assump-
tion that OL and their progenitors contain their own cell-
autonomous circadian clock. The function of this clock 
would be to control the temporal pattern of gene expression 
of transcripts important for OL maturation and myelination 
during windows of rapid brain development plus additional 
critical functions in the adult CNS. The circadian clock is 
intimately tied to cellular metabolism and there is increas-
ing evidence that the OL metabolically support the axons 
that they insulate. In the liver, the circadian system strongly 
regulates cholesterol and lipid metabolism: two biochemi-
cal processes also important in OL. These cellular clocks 
are normally synchronized by a neural circuit centred in the 
SCN. The SCN circuit synchronizes the rest of the CNS 
through control of centrally active hormones including glu-
cocorticoids and melatonin as well as the driving of neural 
activity and secretion in arousal centres in the locus coer-
uleus (NE), Raphe nucleus (5HT) and basal ganglia cholin-
ergic cell populations (ACh). Many of these hormones and 
neurotransmitters have been shown to alter OPC prolifera-
tion, migration and lineage progression, and now Cirelli and 
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colleagues [29, 43] have extensively documented the impact 
of sleep on these cells. Finally, many individuals in the pre-
sent society exhibit disrupted sleep/wake cycles, including 
patients with IDD or neurological/neurodegenerative disor-
ders, raising the possibility of underlying alterations of the 
circadian timing system in the aetiology of these disorders.
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