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ARTICLE

Non-coding somatic mutations converge on the
PAX8 pathway in ovarian cancer
Rosario I. Corona 1,2,13, Ji-Heui Seo3,4,13, Xianzhi Lin 1,13, Dennis J. Hazelett2, Jessica Reddy1,

Marcos A. S. Fonseca1, Forough Abassi1, Yvonne G. Lin5, Paulette Y. Mhawech-Fauceglia6,

Sohrab P. Shah 7,8,9, David G. Huntsman8,9,10, Alexander Gusev 3,11, Beth Y. Karlan1, Benjamin P. Berman2,

Matthew L. Freedman3,4,12,14✉, Simon A. Gayther 1,2,14✉ & Kate Lawrenson1,2,14✉

The functional consequences of somatic non-coding mutations in ovarian cancer (OC) are

unknown. To identify regulatory elements (RE) and genes perturbed by acquired non-coding

variants, here we establish epigenomic and transcriptomic landscapes of primary OCs using

H3K27ac ChIP-seq and RNA-seq, and then integrate these with whole genome sequencing

data from 232 OCs. We identify 25 frequently mutated regulatory elements, including an

enhancer at 6p22.1 which associates with differential expression of ZSCAN16 (P= 6.6 × 10-4)

and ZSCAN12 (P= 0.02). CRISPR/Cas9 knockout of this enhancer induces downregulation of

both genes. Globally, there is an enrichment of single nucleotide variants in active binding sites

for TEAD4 (P= 6 × 10-11) and its binding partner PAX8 (P= 2×10-10), a known lineage-

specific transcription factor in OC. In addition, the collection of cis REs associated with PAX8

comprise the most frequently mutated set of enhancers in OC (P= 0.003). These data

indicate that non-coding somatic mutations disrupt the PAX8 transcriptional network during

OC development.
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Epithelial ovarian cancer (OC) is a heterogeneous disease,
comprising several different histological subtypes that differ
in their underlying genetics, epidemiologic risk factors,

clinical characteristics, and cellular origins1–3. The most common
subtype is high-grade serous OC (HGSOC), which accounts for
around two-thirds of all invasive OCs, and likely arises from
fallopian tube secretory epithelium4. Other subtypes of invasive
OC are rarer and include clear cell and endometrioid OCs
(CCOC and EnOC), which are strongly associated with the
benign precursor lesion endometriosis5, and mucinous OC
(MOC), which may derive from appendiceal tissues or primordial
germ cells6.

Molecular analyses of primary OCs have so far focused on
characterizing somatic genomic variation in protein-coding
genes, which have implicated distinct genetic alterations and
biological pathways in the development of each histotype. TP53
mutations are ubiquitous in primary HGSOCs7. Loss-of-function
mutations in DNA double-strand break repair genes (e.g. BRCA1,
BRCA2), which confer high-penetrance genetic susceptibility to
OC, are also relatively common8 and predicate a genomic
instability phenotype that results in an accumulation of gross
structural genomic changes as tumors develop9. CCOCs and
EnOCs often harbor somatic pathogenic mutations in ARID1A, a
member of the SWI/SNF family of chromatin remodelers10.
TERT promoter mutations are specific to CCOCs11, and coding
mutations and promoter methylation in DNA mismatch repair
genes are relatively common in the EnOC subtype12. Alterations
in the MAPK pathway are present in ~70% of MOCs, with KRAS
hotspot mutations (amino acid 12 or 13) the most frequent
genetic change13.

There is currently a lack of understanding of the role of non-
coding mutations in cancer pathogenesis. Whole genome-
sequencing (WGS) studies shows that ~96% of all somatic
mutations identified in primary tumors lie in non-protein coding
DNA regions. A proportion of non-coding somatic mutations
likely represent functional drivers of cancer disease develop-
ment14–16, mediating their effects by modifying the function of
regulatory elements (REs) that modify the expression of target
genes that contribute to neoplastic development. The architecture
of gene regulation is highly tissue and cell-type specific17. Somatic
mutations within disease-specific REs are therefore expected to
affect gene expression in a disease-specific manner.

The goals of the current study are: (1) To characterize the
histotype-specific regulatory landscapes of the different OC his-
totypes and (2) using WGS data from primary ovarian tumors, to
identify frequently mutated REs (FMREs) that may play a role in
disease pathogenesis (Fig. 1a).

Results
Epigenomic and transcriptomic landscapes of OCs. We char-
acterized the histotype-specific landscapes of active chromatin in
primary ovarian tumors using chromatin immunoprecipitation-
sequencing (ChIP-seq) for acetylated lysine 27 of histone H3
protein (H3K27ac). H3K27ac ChIP-seq was performed in 20
primary tumors, 5 each for the different histotypes, HGSOC,
CCOC, EnOC, and MOC (Supplementary Table 1). We identified
a union set of 295,243 non-overlapping ChIP-seq peaks across all
tumors, comprising 11.6% of the genome (Fig. 1b and Supple-
mentary Fig. 1). The number of peaks identified plateaued at 16
tumors, suggesting we have identified the majority of active REs
in OCs. The 12,954 peaks (4.4%) shared across all tumor types
were enriched at gene promoters (odds ratio= 14, P < 0.001,
Fisher’s exact test, when compared genome-wide) (Fig. 1c). For
each tumor type, we also identified a set of histotype-specific
H3K27ac peaks: 6,583 in HGSOCs, 5,401 in CCOCs, 2,134 in

MOCs, and 20 in EnOCs. These peaks fall predominantly in
enhancers (odds ratio= 40, P < 0.001, Fisher’s exact test,
histotype-specific H3K27ac peaks versus common H3K27ac
peaks in OCs) (Fig. 1c).

We performed RNA sequencing (RNA-seq) in 19 of these
tumors. Consistent with H3K27ac ChIP-seq data, we identified
histotype-specific patterns of gene expression for each tumor
type. There were 1,214 differentially expressed genes (DEGs)
specific to CCOC, 519 DEGs for HGSOC, 371 DEGs for MOC,
and 16 DEGs for EnOC (Supplementary Fig. 2). Patterns of
chromatin activity were consistent with patterns of gene
expression; genes flanking histotype-specific peaks of active
chromatin were consistently expressed at higher levels in tumors
of the same histotype. Conversely, lower H3K27ac signal was
associated with lower expression of nearby genes (Fig. 1d). As an
example, we observed elevated H3K27ac ChIP-seq signal in the
promoter of WFDC2 associated with higher expression of the
WFDC2 gene in HGSOC and EnOC samples compared to
CCOCs and MOCs (Spearman’s rho= 0.78, P= 5.5 × 10−5)
(Fig. 1e–g). WFDC2 encodes for human epididymis protein 4
(HE4), a biomarker overexpressed in serous and endometrioid
OCs18. HE4 is used clinically to monitor OC recurrence. Taken
together, these data indicate that histotype-specific enhancers
regulate gene expression in cis in a histotype-type specific
manner.

Predicting REs and target genes interactions. We integrated
H3K27ac ChIP-seq and RNA-seq data to map REs, including
typical enhancers and promoters, to putative target genes. We
calculated all correlations between gene expression and RE
activity to identify all gene–RE pairs within topologically asso-
ciating domains (TADs) (Spearman’s rho > 0.4, P < 0.05, distance
<500 kbp) (Fig. 1h). We use the term ‘CREAG’ (collection of ‘cis-
Regulatory Elements Associated with a Gene’), to define the
collection of predicted enhancers for a gene of interest (a CREAG
is conceptually similar to the previously described gene ‘plexi’19).
This defined a catalog of 15,380 RE–gene associations between
6,197 genes and 11,371 REs across all histotypes, with a median of
2.5 enhancers per CREAG (Fig. 1i) and 1.4 genes per enhancer
(Fig. 1j). We compared enhancer–gene associations with the
GeneHancer database to infer target genes for 285,000 human
enhancers20. Forty-four percent of our predicted enhancer–gene
associations were annotated to the same gene in GeneHancer,
seven times more than expected by chance (P < 0.001). We then
mapped all histotype-specific REs to their putative target gene(s)
(Supplementary Data 1) and performed pathway enrichment
analysis to identify biological mechanisms associated with each
histotype (Fig. 1k and Supplementary Fig. 3). Genes associated
with histotype-specific REs function in pathways known to be
involved the development of each histotype. RE-associated genes
for CCOC (e.g. AKT2, ITGA5, LAMC1, MET, PPP2R3A, and
SGK1) are involved in PI3K-Akt signaling (P= 0.0017)3,21,22; and
active REs specific to MOCs are associated with genes (e.g.
GCNT3, MUC12, GALNT5 and B3GNT5) involved in O-glycan
processing (P= 0.0001), likely reflecting upregulated mucin
production and O-glycosylation activity in this histotype23.
Pathways common across histotypes were associated with cell
proliferation and mitosis (Supplementary Fig. 3).

Super-enhancer landscapes in OCs. Large enhancer domains,
termed super-enhancers (SEs) or stretch enhancers24,25, typically
regulate genes critical to cell identity. We asked whether
histotype-specific SEs were present, and whether these were
associated with genes that may contribute to phenotypic hetero-
geneity in OCs. We characterized between 653 and 1,945 SEs per
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tumor (mean= 1245, sd= 321) (Fig. 2a, Supplementary Table 2).
By assigning SEs to the highest expressed overlapping gene we
identified a total of 5,338 SE-associated genes, of which 1,123
were common to all OC histotypes. PAX8, a transcription factor
and known essential gene in OC26, was associated with SEs in 17

(out of 20) tumors, with the lowest signal in MOCs (Fig. 2b and
Supplementary Fig. 4). MUC16, which encodes CA125, another
clinical biomarker used to diagnose and monitor OC, coincided
with an SE in 13/20 tumors; again the lowest enhancer activity
was in MOCs, which are known to have the lowest CA125
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expression of the four major histotypes27. SE-associated genes for
OC include the highly expressed lncRNA LINC00963, which was
identified in 17/20 tumors (average expression= 470 CPM, sd=
585 CPM, Supplementary Fig. 3). LINC00963 has been implicated
in prostate cancer progression28 but has not been previously
associated with OC.

A total of 2,094 SE-associated genes were histotype-specific:
634 for CCOC, 617 for HGSOC, 565 for MOC, and 278 for EnOC
(Fig. 2c). As expected, histotype-specific SE-associated genes were
more highly expressed in the histotype of interest (Supplementary
Fig. 4); for example, SE-associated genes specific to CCOC had a
median normalized gene expression above zero, but less than zero
for all other histotypes. The known function of many of the SE-
associated genes we identified support a histotype-specific role in
OC (Fig. 2d-f); for example the CCOC-specific gene protein
phosphatase 1 regulatory subunit 3B (PPP1R3B) regulates
glycogen synthesis, consistent with the observations that clear
cell tumors contain large deposits of cytoplasmic glycogen.
PPP1R3B is expressed more highly in CCOC cell lines than in
HGSOC and normal FTSEC lines (Fig. 2g). In vitro knockdown
of PPP1R3B in two CCOC models (JHOC5 and RMG-II cell
lines) results in a significant decrease in glycogen content (P=
0.05, Fig. 2h and i). SE-associated genes common to all OCs are
involved in pathways, such as TNFA signaling via NF-kB and
response to growth factor (P= 2.7 × 10−25 and 1.3 × 10−14,
respectively (Supplementary Fig. 4).

Somatically mutated REs in OCs. We collated whole genome
sequencing (WGS) data from 232 primary OCs which included
169 HGSOCs, 28 CCOCs, and 35 EnOCs3 to identify the somatic
non-coding mutations occurring in active enhancers and pro-
moters in OCs. In total, there were 1.7 million single nucleotide
variants (SNVs) across all 232 tumors, with an average of 7,163
SNVs per tumor (range 480–40,576) (Supplementary Fig. 5). Of
these, 1.6 million (98.8%) SNVs lay in non-coding DNA regions
(Supplementary Fig. 5). Approximately 9.3% percent of SNVs are
located in active REs. Fourteen percent of these are in active
promoters and 86% in active enhancers. We looked for FMREs
harboring SNVs at a frequency greater than expected by chance
based on the average distribution of mutations throughout all
H3K27ac positive regions (see “Methods” section). We identified
25 FMREs across all histotypes at a false discovery rate (FDR) of
0.25 (Fig. 3a–c). Eight FMREs were unique to HGSOC, 17 were
unique to endometriosis-associated OCs (CCOC and EnOC)
(Supplementary Table 3). FMREs included both promoters and
enhancers. To evaluate the functional consequences of FMREs we
used our gene–RE maps to quantify global patterns of differential
gene expression associated with somatic SNVs in promoters and
enhancers. For 89 HGSOCs both WGS and RNA-seq data were
available, which enabled us to quantify differential gene expres-
sion associated with RE mutation. We found that overall, genes
were significantly more likely to be overexpressed in samples with
RE mutations compared to wild-type samples, i.e., samples
without somatic mutations in the RE of interest. For the 2,893

REs harboring at least 1 somatic SNV, 89 associated genes were
significantly overexpressed (FC > 2) and 46 genes were sig-
nificantly downregulated (FC < 0.5) (P-value < 0.05, binomial
distribution), indicating that SNVs in enhancers are around twice
as likely to activate rather than repress gene expression (Fig. 3d).
At chromosome 10p15, we identified a cluster of nine somatic
SNVs all located within the KLF6 promoter, within a common SE
in primary OCs (Fig. 3e). Two somatic SNVs coincided with a
binding site for PAX8 in the promoter, defined by H3K27ac
ChIP-seq in OC cell lines29. SE activity is associated with KLF6
expression in all OC histotypes, but the SE is only mutated in
HGSOC (P= 8.2 × 10−8). KLF6 is a Krüppel-like transcription
factor with tumor suppressor functions, and is associated with
chemoresponse and prognosis in OC patients30,31.

At the 6p22.1 locus, we identified a cluster of seven SNVs in an
enhancer located ~9 kb centromeric to the HIST1 gene cluster
(Fig. 3f). The activity of this putative enhancer correlates strongly
with the expression of ZSCAN16 (Spearman’s rho= 0.69, P=
6.6 × 10−4) and ZSCAN12 (Spearman’s rho= 0.47, P= 0.02)
(Fig. 3g). We used CRISPR/Cas9 to knock out 635 bp of this
enhancer in two HGSOC cell lines (UWB1.289 and SHIN3)
(Supplementary Fig. 6). Enhancer knockout induced down-
regulation of both ZSCAN16 and ZSCAN12, and ZKSCAN3 and
HIST1H2AI, which are previously predicted targets of this
enhancer32 (Fig. 3h, i and Supplementary Fig. 6). Crucially,
there was no change in expression of ZSCAN31, a gene not
predicted by any method to be targeted by this enhancer.
ZSCAN16, ZSCAN12, and ZKSCAN3 are TFs containing SCAN
domains that mediate protein–protein interactions; little is
known about their function and they have not previously been
implicated in OC.

Using motifBreakR33 we predicted that a somatic SNV in the
6p22.1 enhancer (chr6:27870735:T:A) breaks a TEAD4 motif; this
transition was identified in two independent tumors (Fig. 3f).
Using publicly available TEAD4 ChIP-seq data in cancer cell
lines, we found TEAD4-binding sites overlap 6/8 (75%) FMREs
identified in HGSOCs, including the 6p22.1 enhancer. Active
TEAD4-binding sites (coinciding with H3K27ac ChIP-seq OC
peaks) were significantly mutated in ovarian tumors (fold change
(FC)(obs/exp)= 1.8, P= 6 × 10−11) (Fig. 3j). Globally, we
observed that mutations in TEAD4-binding sites occur preferen-
tially in the active TEAD4-binding sites; 196 of 10,872 TEAD4-
binding sites (1.8%) and 185 of 1968 active-binding sites (9.4%)
harbored SNVs in ovarian tumors. TEAD4 is a known binding
partner of PAX834,35. Consistent with this, we found enrichment
of SNVs in HGSOCs in active PAX8-binding sites (FC= 1.9, P=
2 × 10−10). One hundred and nine of 169 HGSOCs (64.5%)
harbored a somatic SNV in at least one active PAX8-binding site.
Taken together these data indicate that somatic point mutations
converge on TEAD4/PAX8-binding sites to deregulate PAX8
target gene expression during OC progression.

Gene-centric analysis of mutated REs. We tested the aggregate of
somatic mutations in 6,197 CREAGs identified in primary ovarian

Fig. 1 Epigenomic profiling in 20 epithelial OCs reveals histotype-specific REs. a Study overview— leveraging landscapes of active chromatin in ovarian
cancer to identify frequently mutated regulatory elements. b Number of peaks and genome coverage as a function of number of samples. c Heatmap
showing the normalized H3K27ac ChIP-seq signal for the 20 OC samples (columns) at the active REs (rows). d Gene expression averaged by OC histotype
(CCOC, red; EnOC, blue; HGSOC, green; MOC, purple) around histotype-specific REs. e–g WFDC2 locus; e H3K27ac ChIP-seq signal in the promoter
region (chr20:44,095,981–44,101,060) and f gene expression in different histotypes of OC. g Normalized H3K27ac ChIP-seq signal versus WFDC2 gene
expression. h Diagram of the enhancer–gene association strategy that computes the Spearman’s correlation between enhancer activity (normalized
H3K27ac ChIP-seq signal) and gene expression (normalized RNA-seq) (rij) between all enhancers and all genes within the same topologically associating
domain (TAD). A putative enhancer–gene association is established if the correlation (rij) is significant (rij > 0.4 and P-value < 0.05). i Histogram of number
of associated genes per RE and j number of associated REs per gene. k Pathway enrichment analysis of genes associated with histotype-specific REs.
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tumors. A total of 916 genes had a significantly increased mutation
burden across multiple REs associated with each gene (P < 0.05,
Fig. 4a–c). There was statistically significant enrichment of SE-
associated genes among the most frequently mutated CREAGs (P
= 0.01, Fig. 4d) which included genes known to be involved in OC
pathogenesis; for example hepatocyte nuclear factor 4, gamma

(HNF4G), homeobox D9 (HOXD9)36, N-myc downstream regu-
lated 1 (NDRG1)37, CD47 molecule (CD47)38, MDS1 and EVI1
complex locus (MECOM)39 and PAX829.

We measured differential gene expression as a function of
mutational state for all associated REs for each gene. Comparing
samples with mutated CREAGs to samples with wild-type
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CREAGs, we found 30 significantly differentially expressed genes
(Mann–Whitney U test P < 0.05). More of these genes were
overexpressed (n = 20) than down-regulated (n = 10) in mutant
samples, suggesting gain of function alterations in RE activity are
more common than loss of function. Overexpressed genes include
prothymosin-alpha (PTMA) (FC= 1.26, P= 0.005,
Mann–Whitney U test); integrator complex subunit 1 (INTS1)
(FC= 1.44, P= 0.01, Mann–Whitney U test); and NOC2 like
nucleolar-associated transcriptional repressor (NOC2L) (FC= 1.66,
P= 0.01, Mann–Whitney U test). Analysis of gene essentiality in
517 cancer cell lines (including 53 OC cell lines) show that PTMA,
INTS1, and NOC2L are all common essential genes in cancer40.
Downregulated genes included lysophosphatidic acid receptor 3
(LPAR3) (FC= 0.09, P= 0.007, Mann–Whitney U test) and
metallothionein 1X (MT1X) (FC= 0.4, P= 0.013, Mann–Whitney
U test) (Fig. 4e).

Based on the normalized mutational burden (P-value) and the
frequency with which somatic SNVs occur in any of the REs that
contribute to a CREAG, the CD47 CREAG (containing five REs) is
the most significantly mutated in OC and contains 22 mutations in
21 patients (P= 6.46 × 10−6, Fig. 4c). Overall, the PAX8 CREAG
was the most frequently mutated in HGSOC; 36/169 tumors (21%)
harbored a somatic mutation in at least one of three REs in this
CREAG (P= 0.003) (Fig. 4f). SNVs in the PAX8 CREAG are
scattered throughout PAX8 SE, a 82 kb region overlapping the
PAX8 gene locus (Fig. 4g). The PAX8 CREAG is mutated in other
cancer types, but this only reached statistical significance in
melanoma, kidney, and OCs (Fig. 4h). Kidney and OCs have high
levels of PAX8 expression and cell viability dependency shown by
CRISPR screens in cancer cell lines40, while skin cancer does not
show a clear relationship with PAX8 dysregulation. Recent studies
have shown that skin cancer has abundant number of mutations in
non-coding regions and TF-binding sites, but estimate that a large
number of those are random events41. Combining these data, we
find that 90% of OCs harbor an alteration in the PAX8 pathway,
either by somatic amplification (23% of cases) or deletion (13%) of
the PAX8 locus, mutation of enhancers upstream of PAX8 (25%),
somatic mutation in PAX8-binding site (61%) or TEAD4-binding
site mutation (61%) (Fig. 4i). PAX8 target genes were among the
differentially expressed genes associated with CREAG mutational
state (Supplementary Fig. 7a) including downregulated expression
of HOXA10, a gene implicated in the development of endometrioid
but not high-grade serous tumors42 and upregulated expression of
TMPRSS3, a gene associated with tumorigenic phenotypes in
in vitro models of OC43.

Discussion
Different cancers have been defined by the spectrum of protein-
coding mutations and target genes that drive disease pathogen-
esis; but little is known about the functional role of non-coding
somatic mutations in cancer development which likely drive the
underlying mechanisms of gene regulation through epigenomic
perturbation. This study describes the histotype-specific archi-
tecture of gene regulation in OC based on H3K27ac ChIP-seq
analysis of primary tumors representing the four major subtypes
of invasive disease. As anticipated, different histotypes of OCs

share common epigenomic features, which likely reflects a shared
embryologic lineage; but we show conclusively that each subtype
also has a unique signature of active enhancers that underpins the
histotype-specific patterns of gene expression. Endometrioid OCs
(EnOCs) represent an exception in that H3K27ac ChIP-seq
analysis only identified a small number of histotype-specific REs.
When we focused on the histotype-defining enhancers, two of our
EnOCs resembled HGSOC, while the other three resembled
CCOC. This is consistent with clinical and biological traits of
these tumors; both EnOCs and CCOCs are associated with
endometriosis; but late-stage EnOCs can share somatic features
with high-grade serous ovarian OCs. This may partly explain the
lack of specificity in defining the regulatory landscape of this
histotype.

Histotype-specific REs were strongly enriched for putative
enhancers. Enhancer depletion was more common than enhancer
gain, consistent with previous reports that loss of activity drives
cell-type-specific identity44. A more in-depth analysis of enhancer
activity identified around 1,100 ‘Müllerian’ SEs that are common
across all OC histotypes. SEs mark genes associated with cell
lineage and cell state, in normal and cancer tissues alike45. We
identified SEs coinciding with genes that encode established
biomarkers in OC, highlighting the disease-specific nature of
these findings. This included SEs associated with mucin 16
(MUC16) that encodes CA125, and PAX8. MUC16/CA125 is a
serum marker that is used clinically to aid in the diagnosis of OC
and monitor disease progression. PAX8 is a lineage-specific
transcription factor that is highly expressed in fallopian tube
epithelia, a precursor of HGSOC and is commonly amplified in
HGSOCs, emphasizing its essentiality in OC development8,26.
The PAX8 SE was detected in all OC histotypes and was most
active in HGSOC and EnOC. A SE proximal to PPP1R3B was
unique to CCOC. PPP1R3B was most highly expressed in CCOC
compared to other histotypes and knockout of PPP1R3B in
CCOC cell lines indicates that these analyses have identified
functionally relevant biomarkers associated with disease devel-
opment. We found other histotype-specific SEs which likely
regulate genes important for establishing the defining features of
each OC histotype that will warrant functional validation in the
future. Overall, the data indicate a role for SE landscapes as
underlying drivers of histotype-specific OC pathogenesis.

Integrating mutation data from WGS of 232 primary ovarian
tumors with epigenomics landscapes, we identified somatic
mutations that fall into REs that are candidate non-coding
functional targets of these mutations. Ovarian tumors contain
several thousand somatic mutations, the vast majority of which
(98.7%) lie in the non-protein coding DNA regions; but only a
proportion of these are likely to have a functional impact on
disease development. There are several hypotheses for the func-
tional mechanisms of non-coding mutations in disease etiology:
(1) that somatic mutations perturb specific REs, including active
enhancers and SEs, to affect in cis the expression of gene(s) that
are critical in disease biology; (2) that the constellation of somatic
mutations across multiple REs targeting the same gene have
equivalent functional effects; and (3) somatic mutations con-
tribute to disease development by impacting either the expression

Fig. 2 Histotype-specific super-enhancers. a Number of super-enhancers as a function of number of samples. b PAX8 and MUC16 loci show common OC
SEs. c UpsetR plot showing the size of the all the subsets of super-enhancer associated genes by whether they are present in CCOC, EnOC, HGSOC, and
MOC. d Plots of all enhancers ranked by enhancer signal for four representative OC samples, one for each histotype, showing the top 10 SEAGs, and the rank
of PAX8 SE, MUC16 SE, and EPCAM SE for each sample. e and f Examples of histotype-specific SEAGs. Gene tracks e and gene expression f that show one
example of histotype-specific SEAGs for each histotype (PPP1R3B, DLG5, PBX1, and TFF3 for CCOC, EnOC, HGSOC, and MOC, respectively). g PPP1R3B
expression in CCOC, HGSOC, and FTSEC cell lines. Relative PPP1R3B expression h and glycogen level i in JHOC5 and RMG-II cell lines before and after
PPP1R3B knockdown, error bars indicate one standard deviation of the mean values from three independent experiments (performed with technical replicates).
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or activity of transcription factors (e.g. by altering TF-binding
sites). Our analyses found several non-coding REs that contained
clusters of somatic mutations (FMREs). FMREs showed histo-
type-specificity, consistent with the histotype specificity we
observed from ChIP-seq and RNA-seq analysis, and were

associated with genes known to be biologically important in OC
development. The burden of somatic mutations in REs were also
predicted to deregulate pathways that are critical in OC biology.
Thus, taken together, our studies support the hypothesis that
non-coding somatic mutations within tissue-specific REs perturb
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Fig. 3 Frequently mutated regulatory elements (FMREs) in OC. a QQ-plot that shows the expected (x-axis) and observed (y-axis) significance values of
the mutational burden for all active REs in HGSOC. b Manhattan plot that shows the genomic location (x-axis) and significance value (y-axis) of the
mutational burden for all active REs in HGSOC. c Heatmap that shows the mutational burden (P-value) of the 25 FMREs across CCOC, EnOC, and HGSOC;
asterisks represent FDR≤ 10%. d Volcano plot that shows the fold change of median gene expression (x-axis) and the significance value (y-axis) of the
putative target gene of samples with overlapping single nucleotide variants in an active RE vs. wild-type samples. The histogram on top of the scatterplot
shows more overexpression events (−log2(FC) > 0) in the presence of single nucleotide variants than under expression events (−log2(FC) < 0). e The
KLF6 locus, location of SNVs, SE, and PAX8-binding sites. f The 6p22.1 mutated enhancer, location of SNVs, TEAD4-binding sites and motif logo relative
shows position of the recurrent mutation g Spearman’s rho correlation between the activity of a FMRE (6p22.1 enhancer) and nearby genes. h and i Single-
cell-derived clones after CRISPR/Cas9-mediated deletion in the SHIN3 HGSOC cell line. h Gel electrophoresis showing the genotype of the 16 clones (3
OR1C1 control knockouts (KO), 4 wild type (WT), 6 partial KO (PKO), and 3 complete KO (CKO)). i Relative expression of ZSCAN16, ZSCAN12, HIST1H2AI,
and ZSCAN31 in the 16 clones. j Fold change and P-value of the enrichment of HGSOC somatic SNVs in active TF-binding sites using publicly available
MCF-7 TF ChIP-seq data.
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regulatory networks that are specifically associated with disease
etiology.

These analyses were based on WGS data generated for a
relatively small number of primary OCs and for several histo-
types. Inevitably, these studies will benefit in the future from
additional WGS analyses performed in ovarian tumors for the
different histotypes. The greater number of FMREs in endome-
triosis-associated OCs compared to HGSOCs, despite the smaller
sample size, suggests somatic noncoding mutations may play a
greater role in the development of clear cell and endometrioid
tumors, however, further analysis is needed to properly evaluate
this result, since different somatic mutation calling pipelines were
used in the generation of this dataset. There are also likely to be
limitations in the current analyses because not all SNVs in a RE
are likely to have a similar functional impact. Neither did we
evaluate other somatic events in REs (e.g. deletions, amplification,
and other structural rearrangements) that may impact gene reg-
ulation by affecting RE activity.

Perhaps the most compelling finding from these studies is the
convergence of several analyses on PAX8 as a major transcription
factor target in the etiology of high-grade serous OC. There was a
significant clustering of mutations in enhancers upstream of
PAX8 in HGSOC but not in CCOC or EnOC; and PAX8-bound
active enhancers were also significantly mutated in HGSOC, as
were active enhancers bound by TEAD4, a known PAX8-binding
partner29,34. When we look at the PAX8 CREAG specifically, we
do not see evidence for differential expression associated with
enhancer/promoter mutations (Supplementary Fig. 7b), but this
could be because of our small number of mutated samples with
RNA-seq data (n= 21), passenger mutations, or heterogeneity of
mutation effects. Together these data indicate a role for PAX8 as
both a target and mediator of non-coding somatic mutations.
This was further supported by the finding of somatic mutations
disrupting the TEAD4 motif within a mutated enhancer on
chromosome 6. Knockout of the frequently mutated enhancer at
6p22.1 locus validated a positive association between the activity
of the enhancer and four genes predicted to be regulated by the
enhancer. Further analysis is needed to determine whether there
is direct contact between the RE and ZSCAN16, ZSCAN12,
HIST1H2AI, and ZKSCAN3 promoters, and to determine the
functional role for one or more of these genes in OC pathogen-
esis. Our studies also identified genes and transcription factors
that warrant additional functional studies to validate their role in
OC. In addition to PAX8 and TEAD4-bound enhancers, we also
identified significantly increased somatic mutation rates in
FOXM1 and ESR1 bound regions in HGSOC. Analysis of
HGSOC TCGA data indicates FOXM1 is a frequently altered
pathway in HGSOC development8, while ESR1 is expressed in
around 80% of HGSOCs46.

In conclusion, through the integration of tissue-specific epi-
genomic and gene expression landscapes for the different histo-
types of OC with somatic mutation data from WGS analyses of
primary tumors, we have identified non-coding elements that
may contribute to OC development. Many of the mutated REs
and their associated genes provide insights into disease patho-
genesis, and the lineage-specific TF PAX8 was identified a central
player in the transcriptional dysregulation caused by non-coding
somatic mutations in HGSOCs.

Methods
Tissue ChIP-seq. All tissues used were collected with informed consent and the
approval of the institutional review boards of the University of Southern California
and Cedars-Sinai Medical Center. Tissue ChIP-seq is performed as follows47:
Briefly, one frozen 3 mm core was pulverized in a pulverization bag (TT05) using
the Covaris CryoPrep system (Covaris, Woburn, MA) twice at intensity 4. The
tissue was then fixed using 1% formaldehyde (Thermo fisher, Waltham, MA) in
Phosphate-buffered saline solution for 10 min at room temperature with rotation

and quenched with 125 mM glycine for 10 min at room temperature with rotation.
After rinsing with ice-cold phosphate-buffered saline solution twice, chromatin was
resuspended and lysed in ice cold lysis buffer (50 mM Tris, 10 mM EDTA, 1% SDS
with protease inhibitor) for 10 min. Chromatin was sheared to 300–500 base pairs
using the Covaris E210 sonicator (AFA: 5% duty cycle, 5 intensity, 200 cycles/
burst) for 10 min. 1% of chromatin was saved as input for each sample. 5 vol of
dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris–HCl
pH 8.1) was added to the rest of chromatin and the sample was incubated with 1 µg
H3K27ac antibody (DiAGenode, C15410196, Denville, NJ; as a ratio of 1:600)
coupled with protein A and protein G beads (Life Technologies, Carlsbad, CA) at
4 °C overnight. The chromatin was washed with RIPA washing buffer (0.05 M
HEPES pH 7.6, 1 mM EDTA, 0.7% Na deoxycholate, 1% NP-40, 0.5 M LiCl) for
five times and, rinsed with TE buffer (pH 8.0) once. The sample was resuspended
in elution buffer (50 mM Tris, 10 mM EDTA, 1% SDS), treated with RNase for
30 min at 37 °C, and incubated with proteinase K overnight at 65 °C. Sample DNA
and input were extracted using Qiagen Qiaquick columns, and sequencing libraries
prepared using the ThruPLEX-FD Prep Kit (Rubicon Genomics, Ann Arbor, MI).
Libraries were sequenced using 75-base pair single reads on the Illumina platform
(Illumina, San Diego, CA) at the Dana-Farber Cancer Institute.

ChIP-seq data processing. The AQUAS pipeline (version 0.3.3)48 was used to
process all H3K27ac ChIP-seq data. Reads were aligned against the reference
human genome hg19, filtered by quality and duplication. Several quality control
metrics were computed for each individual replicate, including number of reads,
percentage of duplicated reads, NSC, RSC, and FRiP (Supplementary Fig. 1).
AQUAS follows ENCODE3 guidelines to process ChIP-seq data. For histone
modification ChIP-seq data, AQUAS uses macs2 as the peak caller algorithm and a
naive overlap approach that selects for the final peak set the regions of the pooled
replicate that overlaps 50% or more of each individual replicate. For the 20 OCs, we
obtained an average of 33.7 million mapped reads (standard deviation, sd=
9,071,589), and an average of 77,346 peaks (sd= 21,020), per sample. H3K27ac
peaks were, on average, 1078 bp wide (sd= 1206 bp), and covered around 83 Mbp
per sample (sd= 16 Mbp) (Supplementary Fig. 1).

There was negative correlation between the number of peaks and the average
peak width (Pearson’s ⍴=−0.58, P-value= 0.007) and positive correlation
between number of peaks and genome coverage (Pearson’s ⍴= 0.54, P-value=
0.007). Histotype-specific regions were identified using the R Bioconductor package
DiffBind49, which calculates differentially bound regions from multiple ChIP-seq
experiments. For each histotype, we selected sites called in at least three out of five
samples in the given histotype, with absolute FC value ≥ 3, FDR ≤ 0.05, contrasting
the five samples of the histotype of interest against the remaining 15 samples using
the method DBA_EDGER. Common regions that were called in all 20 OC
H3K27ac ChIP-seq experiments regardless of the intensity of the ChIP-seq signal.
The consensus set of H3K27ac ChIP-seq regions for HGSOC were all sites present
in at least three (out of five) HGSOC samples, merging overlapping peaks and we
recalculated the ChIP-seq score using DiffBind with the new coordinates across all
samples, to have homogenous start/end positions for all peaks across the samples.

RNA-seq. Primary OC specimens were homogenized, and total RNA was extracted
using TRIzol LS (Thermo Fisher Scientific, catalog number: 10296028). Ribosomal
RNA (rRNA) was depleted using RiboMinus Transcriptome Isolation Kit (Thermo
Fisher Scientific, catalog number: K155002). Poly (A)+ RNA was then isolated
using Dynabeads Oligo (dT) 25 (Thermo Fisher Scientific, catalog number: 61002).
Twenty nanograms rRNA-poly (A)+ RNA was used to prepare each RNA-Seq
library. External RNA Controls Consortium (ERCC) spike-ins (Thermo Fisher
Scientific, catalog number: 4456740) were added as control for normalization of the
samples. Strand-specific RNA-Seq libraries were constructed using the NEBNext
Ultra Directional RNA Library Prep Kit (NEB, catalog number: E7420). The
resulting library concentrations were quantified using the Nanodrop. Libraries were
sequenced to generate paired-end 75 bp reads on NextSeq 500 platform (Illumina)
in high output running mode. Sequencing was performed at the Molecular
Genomics Core facility at the University of Southern California.

RNA-seq data analysis. Reads were aligned to hg38 (ref_genome_hg38_genco-
dev26) using STAR (STAR-2.5.1b), then a read count matrix was generated using
featureCounts (version 1.5.0-p1; gencode.v24.annotation.gtf). The samples range
from 8.6 to 32.2 million uniquely mapped reads. Histotype-specifically expressed
genes were identified using the R Bioconductor package DESeq2 (version 1.24.0)
with absolute log2 FC ≥ 2, P-value ≤ 0.05, contrasting the five samples (four in case
of EnOC) of one histotype against the remaining 14 (15 in case of EnOC).

RE/gene mapping. We were unable to collect sufficient tumor material for one of
the endometrioid tumors for RNA-seq, therefore, we only have 19 samples (out of
20) with paired ChIP-seq/RNA-seq. We calculated the pairwise Spearman’s rho
correlation (ρ) of the H3K27ac ChIP-seq score of a given RE against the gene
expression, in counts per million (CPM), of all genes within the same TAD. We
selected RE/gene pairs with ρ > 0.4 and one-sided P-value < 0.05.

Pathway enrichment analysis is performed using Metascape [https://metascape.
org] using as input the list of genes associated with CCOC-specific, HGSOC-
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specific, and MOC-specific (enriched and depleted separately) REs against KEGG
pathway.

Filtering SNVs. We used SNVs from 232 OCs (110 from the PCAWG cohort and
122 from the UBC cohort). We removed all SNVs that overlap coding regions,
regions annotated as low mappability regions by ENCODE (wgEncodeDacMap-
abilityConsensusExcludable.bed), as well as areas of the genome that are prone to
cause false positives in ChIP-seq assays (seq.cov1.ONHG19.bed.gz). For HGSOC
(n= 169), there is a total of 1,276,929 SNVs that fall into 1,276,108 individual
positions (1,275,309 positions with only 1 mutated sample, 784 positions with two
mutated samples, 11 positions with three mutated samples, three positions with
four mutated samples, and one position (chr3:174499208-174499208) with seven
mutated samples).

Identifying FMREs. To identify FMREs we used a Poisson binomial distribution
(PBD) with a vector of probabilities, i.e., one background mutation rate for each
sample. Let Xi(Xi 2 ½0; 232�) be a random variable that represents the number of
samples with at least one mutation in the ith RE, then Xi follows a PBD with a
vector of probabilities p ¼ 1� 1� pkð Þni½ �k , where ni is the size of the ith RE in
base pairs, and pk is the global background rate of sample k (k 2 ½1; 232�)
empirically estimated by the ratio of the total number of non-coding SNVs in
sample k (nk) over the total coverage of the regions of interest in base pairs, (the
H3K27ac-positive regions) (ncov):

pk ¼
nk
ncov

To determine whether the observed number of mutated samples in the ith RE
(si), we calculate the probability of having at least si samples mutated, i.e., P-valuei
= PðXi ≥ siÞ. P-values were adjusted used the Benjamini–Hochberg method. For
gene-level analysis, we combined all REs and annotated promoters associated to
gene j into a pseudo-RE and estimated the probability of having sj or more mutated
samples in all combined REs, i.e., P-valuej= PðXj ≥ sjÞ, where Xj follows a PBD
with a vector of probabilities p ¼ 1� 1� pkð Þnj½ �k , where nj is the total length of
the pseudo-RE, i.e., the sum of the widths of all REs and annotated promoters
associated to gene j.

Gene expression changes associated with RE mutations. For 89 WGS samples
(out of 110) in PCAWG, RNA-Seq was available. Analysis was restricted to genes
with at least two mutated samples in the RE overlapping the promoter or an
associated RE. For each gene, we calculated the FC, defined as the ratio of the
median gene expression of the gene in the mutated samples (x1) over the median
gene expression of the gene in the non-mutated samples (x2).

Enhancer deletions in OC cell lines. CRISPR/Cas9 system was used to delete the
chr6 enhancer in OC cells. FUCas9Cherry (Gifts from Dr. Marco Herold, Addgene
plasmid number 70182) was transfected together with lentiviral packaging plas-
mids pMD2.G and psPAX2 (Gifts from Dr. Didier Trono, Addgene plasmid
numbers 12259 and 12260) into HEK293T cells. UWB1.289 and SHIN3 cells were
then transduced with lentivirus and mCherry-positive cells (UWB1.289/Cas9 and
SHIN3/Cas9) were sorted by FACS. Cas9 activity was confirmed using gRNAs
targeting the RB1 locus, and Surveyor T7 Endonuclease 1 digests. UWB1.289/Cas9
and SHIN3/Cas9 were subsequently transduced by lentivirus containing either
gRNA pair targeting enhancer region on chromosome 6 (Chr6) or gRNA pair
targeting a control gene OR1C1 before selection with 400 ng/mL puromycin.
Plasmids expressing gRNAs were obtained from Transomic Technology. Sequences
for Chr6_gRNA-A are: TCCCTTGCCAGCTCACTCAA; Chr6_gRNA-B:
AGGAATCCAACTAATACCAT; OR1C1_gRNA-A: AGGGCTGAAATA-
GACGGCGA; OR1C1_gRNA-B: AGAGGTGATCTTCAGAACAG. Progeny of
edited cells were sorted by FACS into single cells, based on mCherry expression.
The following primers were used for PCR to validate the corresponding genome
type after editing: Chr6-F: TGCTTCCTGATTTTCTCCTCA; Chr6-R: CCTGAAA
AGAAGGGAAGAAGG; OR1C1-F: GCATTTTCTGAAGTCCCCTCT; OR1C1-R:
TGTGCCTCCAATATCATCCA.

Gene expression measurement by RT-qPCR. Total RNA was extracted from bulk
cells or single cell colonies with either knockout (KO) of the targeted enhancer on
Chr6 or control gene OR1C1 using the NucleoSpin RNA extraction kit (Macherey-
Nagel, Catalog number: 740984.250). Total RNA was reverse transcribed into cDNA
using M-MLV reverse transcriptase (Promega, Catalog number: M1705) according to
the manufacturer’s instructions. Targeted gene expression analysis was performed
using KAPA SYBR FAST (Millipore Sigma, Catalog number: KK4618)-based PCR
using the following primers: ZSCAN16-F: CTCCTCAGCATCCTAAGTCCAAA;
ZSCAN16-R: GCTATGACTGAAACTTTTCCCACAT; ZSCAN12-F: GCAGAGA
GGTCTTCCGTCAG; ZSCAN12-R: AGACCTGCTCTCCTGGTTCA; ZKSCAN3-F:
GAGCTTCCAGAAAAGGAGCAT; ZKSCAN3-R: CTTTCCACATTCATGGCAG
AT; HIST1H2AI-F: AACGATGAGGAGCTCAACAAG; HIST1H2AI-R: GCTCTG
AAAAGAGCCTTTGGT; ZSCAN31-F: CTGAAGTGCTCTTGGAGGATG; ZSC
AN31-R: CCCCAAATGTTCCATTTCTTT; U6-F: GCTTCGGCAGCACATATA

CTAAAAT; U6-R: CGCTTCACGAATTTGCGTGTCAT.U6 was used for
normalization.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA-sequencing and ChIP-sequencing data have been deposited in the GEO
database under the accession code GSE121103. The whole-genome sequencing data is
available from the PCAWG database under the search “Primary Site=Ovary” and
“Software=PCAWG SNV-MNV callers” [https://dcc.icgc.org/pcawg]. All the other data
supporting the findings of this study are available within the article and its
supplementary information files and from the corresponding author upon reasonable
request. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
Custom code is available at the Lawrenson Lab GitHub repository [https://github.com/
lawrenson-lab].
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