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A B S T R A C T

Strength properties of most sedimentary and metamorphic rocks are known to vary with direction. Knowledge
of this so-called rock anisotropy is of utmost importance for reliability analysis and engineering design. The
purpose of this paper is twofold. First, we propose a formulation of the Hoek–Brown (HB) failure criterion,
which calculates strength anisotropy using a non-uniform scaling of the stress tensor. We use two scaling
factors, 𝐶N and 𝐶S, to link the orientation of the anisotropy planes with the loading direction. As we assume
isotropic parameters for intact rock, our HB model formulation is relatively easy to use and has the additional
advantage that it does not demand any modifications to the HB failure criterion. Second, we embed our HB
model formulation in a Bayesian framework and illustrate its power and usefulness using experimental data
of anisotropic rock samples published in the literature. Results demonstrate that our HB model formulation
predicts accurately measured peak strengths of rocks with different degrees of anisotropy, confining stresses
and anisotropy orientations. The uncertainty in peak strength of anisotropic rocks can be quite large, reiterating
the need for an explicit treatment of strength anisotropy uncertainty in rock mechanics studies. The Bayesian
methodology is general-purpose, and, as such, can help better inform geotechnical engineers, contractors and
other professionals about rock conditions and design reliability and assist decision makers in determining the
overall risks of engineering structures.
. Introduction

Most metamorphic and sedimentary rocks are anisotropic mean-
ng that their physical properties vary with direction when subjected
o stress. Rock anisotropy is the result of a myriad of tectonic,1–3

eposition,4 stress state and history,5 and fabric6 processes. These
rocesses are usually characterized as mineral foliation in metamorphic
ocks and stratification in their sedimentary counterparts and produce
nisotropic planes in sandstone, shale, slate, marble, schist, gneiss, and
hyllite. In large rock masses, planes of anisotropy are also classified
s discontinuities and/or fractures. Experimental evidence suggests that
he strength properties of anisotropic rocks depend critically on the ori-
ntation of stresses or loads with respect to their anisotropic planes.7–14

s anisotropy exerts a large control on the stability and strength
f geotechnical structures, including dam and bridge foundations,1,15

nderground excavations,16 oil boreholes17,18 nuclear waste storage,19

nd slopes,20,21 accurate estimates of rock strength anisotropy are of

∗ Corresponding author at: Graduate Program in Geotechnics, School of Mines, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
E-mail addresses: guilhermejcg@ufop.edu.br (G.J.C. Gomes), jforerogga_11@hotmail.com (J.H. Forero), vargas@puc-rio.br (E.A. Vargas Jr.), jasper@uci.edu

J.A. Vrugt).

utmost importance in rock engineering design.15,22–25 Stability analysis
of such structures should take into account the influence of structural
anisotropy on the mechanical behavior of rocks.

Engineers often make use of strength criteria to model rock
anisotropy. During the last few decades, a great deal of research has
been dedicated to the development and formulation of constitutive
models for rock anisotropy and failure criteria of geomaterials.22,26–28

Much of this research has been inspired by the classical theories of
Navier–Coulomb and Griffith, and has led to theoretical8,26,29–31 and/or
empirical strength criteria.11 An example of theoretical strength criteria
includes the single plane of weakness criterion of Jaeger,29 which
relies on the classic Mohr–Coulomb criterion to describe rock failure
using two different sets of material constants (cohesion and friction
angle) along both the plane of weakness and intact rock. This criterion
models the strength behavior of a rock cut by one joint or a single
joint set relatively well.32 Jaeger’s theory was extended to highly
vailable online 17 November 2021
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stratified materials by Ref. 33 and for transversely isotropic rocks by
Ref. 34. Yet, these last two criteria are defined with several material
parameters. Theoretical strength criteria based on Mohr–Coulomb cri-
terion also include continuous variation of friction angle,26 cohesion29

nd both Mohr–Coulomb parameters8 with anisotropy direction. Other
ommonly used theoretical failure criteria based on the Griffith theory
nclude the Walsh–Brace31 and Hoek30 fracture anisotropic theories.
his body of research has shown that failure criteria can be formally
odified to take into account the anisotropy in strength properties,
owever the applicability of these approaches is restricted as these
odels are unable to accurately describe rock failure.34,35 Moreover,

ome of the coefficients (parameters) of theoretical strength criteria
annot be measured directly from rock specimens and, therefore, are
ifficult to determine in practical applications,21 particularly for larger
ock masses. Consequently, researchers and practitioners often resort
o empirical strength criteria instead.

In the past decades many different publications have appeared in
he rock mechanics literature on the development and use of empirical
trength criteria11,36–38. Most of these criteria are derived from first
rinciples and/or closed-form equations and require experimental data
rom rock specimens (e.g. triaxial compression testing) to determine
he unknown parameters of relevant failure criteria using linear and/or
onlinear regression techniques.15 What is more, the usefulness of
mpirical criteria is often limited to the rock types that they have been
eveloped for.39 Among the different empirical strength criteria, the
oek–Brown (HB) criterion11,40 is most widely used for determining

he strength of both intact rock and rock masses35 including applica-
ions to engineering structures such as tunnels41 and slopes.42,43 The
B criterion is particularly appealing as it considers different rock
roperties (structure, strength and stress state), can handle nonlinear
ailure envelopes and can be adapted to provide an estimate of the
ecreased strength of the rock mass44,45 using parameters that can be
etermined from laboratory experiments. For these reasons, the HB
trength criterion and constitutive relationships, hereafter conveniently
eferred to as the HB model, have found its way into commercial
eotechnical software packages such as PLAXIS and FLAC.

The HB model was originally developed for isotropic geomaterials;
ence, further developments are needed to warrant its application to
nisotropic materials/rocks. A simple adaptation to anisotropic rocks
nvolves the use of non-isotropic HB model parameters,46–48 but ad-

ditional research is needed to determine their suitability to other
anisotropic rock types.49 Such redefinition of the HB model parameters
may be convenient, but is susceptible to misinterpretation in prac-
tical application of anisotropic HB strength criteria.49 Therefore, an
anisotropic strength criterion that preserves the isotropic formulation of
the HB model could be a valuable contribution to engineering practice.
Indeed, Ref. 13 proposed a one-parameter extension of the HB strength
criterion to account for strength anisotropy. Unfortunately, as this pa-
rameter does not originate from first principles and cannot be measured
directly in physical experiments, a large number of experiments are
required to accurately determine its value using statistical inference.50

Published modifications of the HB model may succeed in accurately
predictingthe strength and failure of anisotropic rock specimens, yet
current practice fails to systematically address the uncertainty of HB
model parameters and output.51 Regression methods may suffice in
finding the optimum, least squares values, of the HB parameters, from
measured stress data of anisotropic rock samples. It would be naive,
however, to rely on such single unique estimates of the parameters
in the presence of structural imperfections of the HB failure criterion
and constitutive relationships (epistemic uncertainty), natural vari-
ability and measurement errors of the experimental data (aleatory
uncertainty).52 Indeed, practical experience suggests that it is typically
difficult to find a single ‘‘best’’ vector of parameter values, whose per-
formance obviates consideration from other feasible solutions. There-
fore, we should dissect and delineate properly the space of adequate
2

solutions. This approach is not only key to (among others) analysis of
parameter identifiability and quantification of the uncertainty associ-
ated with the simulated model output, but also of utmost importance
for engineering design and reliability analysis. In fact, some countries
are shifting the focus from the use of safety factors to more rea-
sonable reliability-design standards for engineering works.53,54 Hence,
there is sufficient scope and reason to develop more comprehensive,
uncertainty-based, approaches for the characterization and analysis of
rock strength anisotropy.

There is a growing awareness in the geotechnical community about
the importance of uncertainty quantification as researchers are trying
to quantify design reliability and inform geotechnical engineers, con-
tractors and other professionals about soil and rock conditions and
decision makers seek to better determine the overall technical and
financial risks of engineering structures and mitigate geotechnical-
related risks.51,53,55–59 This paper builds on our recent work on slope
stability analysis, which embraced uncertainty analysis of safety fac-
tors to improve risk analysis and decision-making.60,61 Recent pub-
lications in the rock engineering literature have introduced meth-
ods for assessing the uncertainty of in situ stress data,58,62 rock mass
properties63–65 and slope stability,56,66 including its application to the
design of foundations,67 tunnels68 and gas reservoirs.69 Many of these
contributions adopted a Bayesian approach to reconciling rock engi-
neering models with field and/or laboratory data. For example, Ref. 51
used Bayesian inference to estimate the intact rock strength from data
of compressive and tensile strength tests. This work demonstrated
the advantages of the Bayesian approach over standard Frequentist
regression methods for uncertainty quantification of model parameters
and output. Nevertheless, as Ref. 45 has shown, differences between the
inferred strength envelopes of both methods may be small in practical
applications. Another recent study by Ref. 70 used Bayesian inference
to back out the twelve coefficients of the Lade–Kim isotropic model
using a non-uniform scaling of the stress tensor71 and two scaling
factors, 𝐶N and 𝐶S, that link the orientation of the anisotropy planes
with the loading direction. The maximum deviatoric stresses and stress–
strain curves predicted and simulated by their model were shown to
be in good agreement with experimental data, but the authors did
not present and investigate the uncertainty of the predicted maximum
deviatoric stresses. What is more, the so-called posterior estimates of
𝐶N and 𝐶S were evaluated only for two sedimentary rocks, leaving
unanswered the question of how well these inferred scaling factors
generalize to other anisotropic rocks?

In this paper, we introduce an alternative formulation of the HB
model for anisotropic rocks. Our approach builds on the isotropic
HB failure criterion and calculates the strength anisotropy using a
non-uniform scaling of the stress tensor. We follow Ref. 70 and use
the scaling factors, 𝐶N and 𝐶S, to link the orientation of the planes
of anisotropy with the loading direction. Our HB model formulation
assumes isotropic parameters for intact rock, which can be measured
directly from rock samples using triaxial tests. This approach is rela-
tively easy to use and has the additional advantage that it does not
demand any modifications to the HB failure criterion. We illustrate
our anisotropic HB formulation by application to experimental data of
anisotropic rock samples published in the literature. This includes ex-
periments with different confining stresses and anisotropy orientations.
The optimum anisotropic model parameters and their underlying sta-
tistical uncertainty (posterior distribution) are inferred from Bayesian
analysis using Markov chain Monte Carlo (MCMC) simulation with
the DREAM algorithm72–74. Specific attention is paid to the posterior
distribution of our HB model formulation. The predicted rock strengths
are evaluated using split sampling with a calibration and evaluation
data set. Furthermore, the posterior model simulations are investigated
using standard error (residual) metrics and the 95% confidence inter-
vals of the HB model output are determined to clarify the predictive

uncertainty of modeled rock strength anisotropy.
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Fig. 1. Schematic overview of the different building blocks of our uncertainty-based framework for rock strength anisotropy. The top panel illustrates the modeling steps including
isotropic Hoek–Brown constants and the introduced anisotropic parameters (a), and sensitivity of the model to the values of the scaling factors 𝐶N (b) and 𝐶S (c) when rotating
the anisotropy direction for confining stresses of 𝜎c = 10 MPa (solid lines) and 𝜎c = 5 MPa (dashed lines). The bottom panel exemplifies the database used in this research (left)
and the main parts of the Bayesian analysis (right) for the inference of the anisotropic model parameters. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
2. Methodology

Our uncertainty quantification framework of rock strength
anisotropy is comprised of three building blocks, including our HB
numerical model of rock anisotropy, a database of experimental data
and a general-purpose method for Bayesian analysis of the anisotropic
HB model parameters. Fig. 1 provides a schematic overview of the pro-
posed methodology. The top panel provides a brief description of our
numerical model, including (a) definition of the isotropic HB constants
and anisotropic parameters and a simple demonstration of the model
sensitivity to the values of the dimensionless scaling factors (b) 𝐶N and
(c) 𝐶S when rotating the direction of anisotropy, using confining stress,
𝜎c, of 10 MPa (solid lines) and 5 MPa (dashed lines). The panel in the
left bottom, labeled (d), constitutes the experimental data that are used
for HB model training and evaluation. Finally, the panel in the right
bottom summarizes the main elements of our Bayesian framework.
This panel provides a graphical illustration of the bivariate (e) prior
distribution, (f) likelihood function and (g) posterior distribution of
the anisotropic HB model parameters, 𝐶N and 𝐶S. Fig. 1 also presents a
scatter plot of the observed and simulated rock strengths, including and
the 95% prediction intervals due to parameter (dark region) and model
(light region) uncertainty. The next subsections detail the different
steps of the graphical illustration presented in Fig. 1.

2.1. Model description

The isotropic HB strength criterion11 considers the nonlinear rela-
tionship between the major, 𝜎 (ML−1T−2), and minor, 𝜎 (ML−1T−2),
3

1 3
effective principal stresses under the ultimate failure state (Fig. 1a), as
follows44:

𝜎1 = 𝜎3 + 𝜎ci

(

𝑚i
𝜎3
𝜎ci

+ 𝑠
)𝑎

, (1)

where 𝜎ci (ML−1T−2) denotes the uniaxial compressive strength of the
intact rock, 𝑚i is a unitless material constant for intact rock, and 𝑠 and
𝑎 are dimensionless parameters that reflect the characteristics of the
rock mass. For intact rocks, 𝑠 = 1 and 𝑎 = 0.5. Ref. 13 have shown that
the material constant, 𝑚i, is a rock characteristic independent of the
loading direction.

If we use 𝐹 (ML−1T−2) as our failure criterion, then Eq. (1) can be
written as:

𝐹 = 𝜎1 − 𝜎3 − 𝜎ci

(

𝑚i
𝜎1
𝜎ci

+ 𝑠
)𝑎

= 0. (2)

To account for anisotropy in the HB empirical formulation, we express
Eq. (2) in terms of the stress tensor, σ (ML−1T−2), invariants:

𝐹 = 𝜎ci

[
√

𝐽2(2 cos 𝜃)
𝜎ci

]1∕𝑎

+
√

𝐽2𝑚i

(

cos 𝜃 + 1
√

3
sin 𝜃

)

−
𝑚b𝐼1
3

−𝜎ci𝑠, (3)

where 𝐼1 (ML−1T−2) signifies the first invariant of the stress tensor, 𝐽2
(M2L−2T−4), denotes the second invariant of the deviatoric stress tensor,
σ′ (ML−1T−2), and 𝜃 (◦) is the Lode angle. These scalar quantities of the
stress tensor are defined below:

𝐼1 = 𝜎m = 𝜎1 + 𝜎2 + 𝜎3, (4)

𝐽 = 1𝜎 𝜎 , (5)
2 2 𝑖𝑗 𝑗𝑖
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𝜃 = −1
3
arcsin

[

3
√

3
2

(

𝐽3
𝐽2

)3
]

for − 𝜋∕6 ≤ 𝜃 ≤ 𝜋∕6, (6)

where 𝜎2 (ML−1T−2) is the intermediate effective principal stress, and
𝐽3 represents the third invariant of the deviatoric stress tensor. One can
show that this third invariant equals the determinant of σ′.75

Our anisotropic formulation uses as main building block the
isotropic HB strength criterion11 as detailed above. Yet, this isotropic
strength criterion cannot characterize strength anisotropy in rocks. We
follow the elastoplastic models of Mánica et al.71 and Forero et al.70

and formulate an anisotropic strength criterion with the help of the
unitless scalar orientation parameters, 𝐶N and 𝐶S. As the strength of
anisotropic rocks depends on how the loading is applied relative to the
orientation of their anisotropy planes, this approach provides a simple
way to relate the loading direction to the anisotropy direction. Fig. 1d
illustrates our definition of the axis of anisotropy and the angle, 𝛽 (◦),
between the anisotropy plane and the horizontal plane. This angle,
𝛽, may be designated as the “orientation angle”. The global (𝑥-𝑦-𝑧)
and local (𝑥′-𝑦′-𝑧′) coordinate systems are also shown. The angle, 𝛽, is
oriented counterclockwise from the horizontal and may represent the
direction of the potential shear plane. As highlighted in Fig. 1d, the
anisotropy plane, 𝛽 = 0◦, is perpendicular to the axial (vertical) axis
(direction of the maximum applied load to the sample). Accordingly,
𝛽 = 45◦ for an inclined anisotropic plane and 𝛽 = 90◦ for a plane parallel
to the axial axis.

The stress tensor, σ, of the global coordinate system can be trans-
formed into the local coordinate system, σr , using the 3 × 3 rotation
matrix, 𝐑, as follows:

σr = 𝐑σ𝐑⊤. (7)

where ⊤ denotes transpose. The rotation matrix, 𝐑, is comprised of the
following entries:

𝐑 =
⎡

⎢

⎢

⎣

cos 𝛽 cos 𝛼r sin 𝛽 −cos 𝛽 sin 𝛼r
−cos 𝛼r sin 𝛽 cos 𝛽 sin 𝛽 sin 𝛼𝑟

sin 𝛼r 0 cos 𝛼r

⎤

⎥

⎥

⎦

, (8)

where 𝛼r (◦) is defined as the angle of rotation of the 𝑦 axis. We
follow Ref. 70 and set 𝛼r = 0, thus, assuming no rotation of the 𝑦 axis.
Furthermore, the anisotropic stress tensor, σani, is defined as in Ref. 71
using a non-uniform scaling of the stress tensor oriented with the local
coordinate system σr :

σani =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎r11
𝐶N

𝐶S𝜎r12 𝜎r13
𝐶S𝜎r12 𝐶N𝜎r22 𝐶S𝜎𝑟23
𝜎r13 𝐶S𝜎r23

𝜎r33
𝐶N

⎤

⎥

⎥

⎥

⎥

⎦

, (9)

where 𝜎r𝑖𝑗 denotes the (𝑖, 𝑗)th stress component of the local coordinate
system and 𝐶N and 𝐶S, signify the normal and shear scaling factors,
respectively. The effect of the anisotropic parameters, 𝐶N and 𝐶S, have
on the rock strength in our new anisotropic formulation, is illustrated
in Fig. 1(b and c). In summary, the anisotropic HB formulation as
proposed herein can simulate the strength of anisotropic rocks for
different loading directions and magnitudes of the confining stress,
𝜎c. For unit values of the scaling factors 𝐶N and 𝐶S, our anisotropic
model formulation simplifies to the isotropic HB failure criterion, inde-
pendently of the orientation angle, 𝛽. A detailed analysis on how the
dimensionless scaling factors, 𝐶N and 𝐶S affect the rock strength when
rotating the anisotropy direction is presented in Refs. 70, 71, and, thus,
will not be repeated herein.

Now, the mathematical formulation of our anisotropic HB strength
criterion has been completed, we are left with its computational im-
plementation. In doing so, we resort to a hydrostatic stress state and
set the effective principal stresses equal to the confining stress, 𝜎c.
Then, the major principal stress 𝜎1 is changed in incremental steps to
satisfy Eq. (2). Altogether, our anisotropic HB strength criterion has six
4

Table 1
Forcing variables, isotropic and anisotropic parameters of the anisotropic HB strength
criterion.

Model component Symbol Description Unit Ranges

Forcing variable 𝛽 Orientation angle ◦ 0–90
Forcing variable 𝜎c Confining stress MPa 0–200
Isotropic parameter 𝑚i Constant for the intact rock – 1–30
Isotropic parameter 𝜎ci Uniaxial compressive strength MPa 60–225
Anisotropic parameter 𝐶N Normal scaling factor – 0.5–1.5
Anisotropic parameter 𝐶S Shear scaling factor – 0.5–2.5

input arguments, including two forcing variables, 𝛽 and 𝜎c, and four
parameters, 𝑚b, 𝜎ci, 𝐶N and 𝐶S. Table 1 provides a brief description
f these different variables, including their units and prior (feasible)
anges. The isotropic HB parameters, 𝑚b and 𝜎ci, were held fixed for
ach anisotropic rock investigated in this study, details of which will
e discussed in the next subsection.

Algorithm 1 presents a step-by-step recipe on how to compute
he peak strength, 𝜎1, using the anisotropic HB strength criterion.
he basic idea of the proposed procedure is to increase the major
rincipal stress with an increment, 𝛥𝜎1, until 𝐹 is equal or lower than
small convergence threshold, err. Although we used in our study

nly increments of 𝜎1, we note here that 𝜎2 could also be incremented
y modifying the stress tensor, as performed in line 13 for 𝜎1. This

could provide a basis to account for the influence of the intermediate
principal stress. The convergence threshold, err, and increment, 𝛥𝜎1,
exert a strong control on the efficiency of Algorithm 1. If the values of
err and/or 𝛥𝜎1 are set too small then it may take a prohibitively large
number of iterations to solve for the peak strength, 𝜎1, as a function
of confining stress, 𝜎c, and orientation angle, 𝛽. Preliminary analysis
has demonstrated that the values of err = 3 and 𝛥𝜎1 = 0.5 work well
for the data sets considered herein. These values provided an adequate
trade-off between the computational efficiency of the algorithm and the
accuracy of the inferred peak strengths. The use of smaller values of err
and 𝛥𝜎1 considerably deteriorates the CPU-efficiency of the algorithm
without changing much the final estimates of the peak strength. The
formulation as proposed in this paper is relatively simple to implement
and has an additional advantage since our approach does not use
complex components of elastoplastic models as in previous studies.70,71

Algorithm 1 Anisotropic HB strength criterion with scaled stress tensor
1: Define model parameters 𝑚b, 𝜎ci, 𝐶N, 𝐶S
2: Define forcing variables 𝜎c, 𝛽
3: Compute the hydrostatic stress tensor, σ, in the global system
4: Initialize 𝐹 with a large value
5: while |𝐹 | > err do
6: Compute the stress rotation matrix, σr , using Equation (7)
7: Compute the anisotropic stress tensor, σani, using Equation (9)
8: Compute stress invariants 𝐼1, 𝐽2, and 𝜃 using Eqs. (4), (5), (6),

respectively
9: Compute the failure criterion, 𝐹 , using Equation (3)
0: if |𝐹 | ≤ err then
1: return the peak strength, 𝜎1
2: else
3: 𝜎1 ← 𝜎1 + 𝛥𝜎1
4: return 𝜎1 ⊳ 𝜎1 is the peak strength

2.2. Database

Experimental data were collected from different, well-known, liter-
ature studies (Table 2). A total of eight anisotropic rocks was ana-
lyzed, specifically, (1) Green river shale,8 (2) gneiss,9 (3) Moretown
phyllite,76 (4) Penrhyn slate,10 (5) slate,11 (6) Tournemire shale,12

(7) Mancos shale,14 and (8) gneiss A.13 In each cited publication, the
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Table 2
Overview of the different anisotropic rocks used in our analysis, including type, literature reference of the data set, the corresponding values of the HB parameters, 𝜎ci and 𝑚i,
or intact rock, measured values of the minimum and maximum peak strength (MPa) and prior ranges of the anisotropic parameters, 𝐶N and 𝐶S, used in our analysis. The last

column quantifies the strength of the correlation between the bivariate posterior samples of the scaling factors, 𝐶N and 𝐶S. This column will be addressed in the discussion section
Rock type Reference HB parameters Peak strength 𝐶N 𝐶S 𝜌

𝜎ci 𝑚i min. max. min. max. min. max.

1. Green river shale II Ref. 8 106.0 4.9 95.1 356.2 0.5 1.5 0.5 2.0 0.02
2. Gneiss Ref. 9 215.0 28.5 141.1 553.3 0.5 1.5 0.5 1.2 −0.09
3. Moretown phyllite Ref. 76 247.0 6.90 135.9 738.3 0.5 1.5 0.5 2.0 0.06
4. Penrhyn slate Ref. 10 206.6 6.2 39.0 471.3 0.5 1.5 0.5 2.5 −0.06
5. Slate Ref. 11 225.0 4.7 152.3 821.3 0.5 1.5 0.5 2.5 0.09
6. Tournemire shalea Ref. 12 74.0 1.0 57.7 111.8 0.5 1.5 0.5 2.0 0.11
7. Mancos shalea Ref. 14 62.4 8.1 39.3 65.0 0.5 1.5 0.5 2.0 −0.01
8. Gneiss A Ref. 13 60.6 27.8 37.2 269.7 0.5 1.5 0.5 1.4 −0.12

aIsotropic HB model parameters determined using the RocLab software package.
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uthors carried out extensive laboratory experiments and the resulting
ight data sets have in common the measurement of mechanical rock
roperties for different confining stresses, 𝜎c, and orientation angles, 𝛽.
his is particularly important, as 𝜎c and 𝛽 exert a large control on the
trength of anisotropic rocks.

For intact rock, the values of the material constants, 𝑠 and 𝑎, are set
o 1 and 0.5, respectively. The values of the isotropic HB model param-
ters (intact rock), 𝜎ci and 𝑚i, for (1) Green river shale II, (2) gneiss, (3)
oretown phyllite, (4) Penrhyn slate and (8) gneiss A, were obtained

rom Ref. 49 and their values for (5) slate originate from Ref. 11. For
he remaining two anisotropic rocks, (6) Tournemire shale12 and (7)
ancos shale14, the isotropic HB (intact rock) model parameters, 𝜎ci

nd 𝑚i, were determined using the Levenberg–Marquardt algorithm
mplemented within the RocLab software package35,77. These isotropic
arameters can be determined by means of inverse modeling of peak
trength data at 𝛽 = 0◦. Table 2 summarizes key variables of the
xperimental data of the eight anisotropic rock types. Specifically, for
ach rock type, we provide a data reference, report the values of 𝜎ci
nd 𝑚i for intact rock, list the minimum and maximum measured peak
trengths and document the ranges of the scaling factors, 𝐶N and 𝐶S,
sed in our analysis. The last column lists the correlation coefficient
etween the posterior samples of 𝐶N and 𝐶S. We will revisit this last
olumn in our discussion section. For the time being, we conclude
hat the two scaling factors of our anisotropic HB formulation are
ncorrelated for all different rock types. This is an important finding,
hich inspires confidence in the formulation of our anisotropic HB
odel, a claim that will be backed up by further evidence in the

esults section. Note that the strength values encompass a large range
f rock failures, from 37 MPa to 821 MPa. For all rock types, the peak
trength reported in Table 2 is evaluated in terms of the major principal
tress, 𝜎1. Exceptions are made for the (6) Tournemire shale and (7)
ancos shales, where the peak strengths were evaluated in terms of

he deviatoric stress, 𝜎d, and unconfined compressive strength (UCS),
espectively. Lastly, the investigated rocks exhibit different degrees of
nisotropy, from ‘‘low to medium’’ in shales and gneisses to ‘‘medium
o very high’’ in slates and phyllite1.

.3. Bayesian inference

The Bayesian paradigm offers a coherent and integrated framework
or systematically addressing different sources of modeling uncertainty
n statistical inference of state variables, model inputs and/or param-
ters, nuisance and latent variables. This methodology has received
uch attention in the past two decades made possible, in large part,

y continued advances in computational speed and power, and a grow-
ng recognition by researchers and/or decision makers that modeling
esults should be accompanied by estimates of uncertainty. Indeed,
uch progress has been made in the application of Bayesian analysis

or reconciling dynamic system models with data.74 For example, in
5

eotechnical engineering, there is a steadily growing body of litera-
ure on the application of Bayesian analysis to inverse modeling and
uantification of model parameter and output uncertainty.51,55–58,60,70

Bayesian inference allows for an exact description of parameter
ncertainty by treating the parameters (and nuisance variables) as
robabilistic variables with joint posterior probability density function,
(θ|σ̃1). This multivariate distribution, the so-called posterior parame-
er distribution, is the consequence of two antecedents, a prior distri-
ution, 𝑝(θ), which captures our initial degree of beliefs in the values
f the model parameters, θ, and a likelihood function, 𝐿(θ|σ̃1), which
uantifies, by the rules of probability theory, the level of confidence
= conditional belief) in the parameter values in light of the observed
eak strength data, σ̃1 = (𝜎1,1, 𝜎1,2,… , 𝜎1,𝑛), where the subscripts of 𝜎1,2

refer to sample 2 of the peak strength 𝜎1, etc.
Bayes’ theorem can be derived from the basic axioms of probability,

specifically conditional probability, and reads in our application

𝑝(θ|σ̃1) =
𝑝(θ)𝐿(θ|σ̃1)

𝑝(σ̃1)
∝ 𝑝(θ)𝐿(θ|σ̃1), (10)

where the denominator, 𝑝(σ̃1), the so-called evidence or marginal like-
lihood, acts as a normalizing constant

𝑝(σ̃1) = ∫𝜣
𝑝(θ)𝑃 (σ̃1|θ)dθ = ∫𝜣

𝑃 (θ)𝐿(θ|σ̃1)dθ = ∫𝜣
𝑝(θ|σ̃1)dθ, (11)

so that the posterior distribution, 𝑝(θ|σ̃1), integrates to unity over the
prior (feasible) parameter space, θ ∈ 𝜣 ⊆ R𝑑 . Knowledge of 𝑝(σ̃1)
s strictly necessary for hypothesis testing to select the most plausible
odel from a set of different candidate models deemed valid apriori.

or now, we suffice to say that the evidence of a model is largest, if
ts data likelihood, 𝐿(θ|σ̃1), is high relative to other candidate models
nd distributed uniformly over its prior parameter space, 𝜣. As our
ocus is on statistical inference of the scaling factors, 𝐶N and 𝐶S, using
he measured peak strength data, σ̃1, we can ignore the evidence,
(σ̃1), without harm and work instead with the unnormalized posterior
istribution as articulated by the proportionality sign in Eq. (10). We
efer to Ref. 74 and references therein for a review of Bayesian analysis
nd its application to various fields.

In our case, θ, is synonymous to the parameters, 𝐶N and 𝐶S, of our
anisotropic HB strength criterion, hence, θ = (𝐶N, 𝐶S) and σ̃1 signi-
fies the 𝑛-vector of peak strength measurements for each anisotropic
rock considered herein. In the next subsections, we will detail our
choice of prior distribution, 𝑝(θ), for the anisotropic parameters and
resent our formulation of the likelihood function, 𝐿(θ|σ̃1), in pursuit

of the posterior probability distribution, 𝑝(σ̃1|θ), of 𝐶N and 𝐶S, respec-
tively. Furthermore, we will briefly discuss the methodology (software
package) used to derive the posterior parameter distribution.

2.3.1. Prior distribution of the anisotropic model parameters
The prior distribution, 𝑝(θ), should encode all the ‘‘subjective’’

nowledge about the scaling factors, θ = (𝐶N, 𝐶S), before collection
f the peak strength data, σ̃ . This distribution, often simply called
1
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Fig. 2. Trace plots (top) and histograms of the posterior distributions (bottom) of 𝐶N (dark gray) and 𝐶S (light gray) fitted to the collected dataset for the (4) Penrhyn slate (a)
nd (2) gneiss (b). The MAP (solid black point) and the 95% confidence intervals (CI) of the parameters are also indicated.
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he prior, expresses one’s beliefs about the parameters before the peak
trength data (also referred to as evidence) are taken into account. In
he absence of detailed information about the values of the anisotropic
odel parameters, we assign a noninformative prior distribution to 𝐶N

nd 𝐶S using the ranges stipulated in Table 2. This choice of 𝑑 = 2-
imensional hypercube is synonymous to a bivariate uniform prior
istribution (see Fig. 1e) with scaling factors for (7) Tournemire shale
qual to 0.5 ≤ 𝐶N ≤ 1.5 and 0.5 ≤ 𝐶S ≤ 2.0 and density on the
ertical or 𝑧-axis, 𝑝(θ) = 1∕

(

(1.5 − 0.5) × (2.0 − 0.5)
)

= 2
3 , so that

he prior distribution integrates to one. Based on preliminary runs of
ur anisotropic HB model, the minimum value of each scaling factor
as set to 0.5, whereas the maximum value of 𝐶N was fixed at 1.5

and the upper bound of 𝐶S was made dependent on rock type. These
so-called prior ranges of the two anisotropic model parameters may
appear somewhat conservative, nevertheless, allows simulation of a
wide variety of shapes of the (𝜎1, 𝛽) relationship depicted graphically
n our methodological overview in Figs. 1b and c. The general-purpose
ampling method used herein has a demonstrated efficacy and effi-
iency on a large suite of test problems and applications, hence, will
ot suffer from a more dispersed prior distribution of 𝐶N and 𝐶S. Care
hould always be exercised that the prior distribution is wide enough
o not discard feasible solutions of the two scaling factors and truncate
heir bivariate and marginal posterior distributions.
6

An uninformative prior does not favor apriori any values of the
nisotropic model parameters, 𝐶N and 𝐶S, rather lets the peak strength
ata, σ̃1 = (𝜎1,1, 𝜎1,2,… , 𝜎1,𝑛), speak for itself. This implies that the

posterior density, 𝑝(θ|σ̃1), of the anisotropic HB model parameters,
N and 𝐶S, is simply equal to a fixed multiple of two-thirds of the

ikelihood, 𝐿(θ|σ̃1), for all θ ∈ 𝜣. As a result, the scaling factors, 𝐶N
and 𝐶S, which maximize the posterior density, 𝑝(θ|σ̃1), are synonymous
with maximum likelihood estimates.

2.3.2. Choice of likelihood function
The likelihood was designated as a mathematical quantity by Sir

Ronald Fisher78 to measure our degree of belief (confidence) in simu-
lated outcomes. In this application, the likelihood (function) quantifies
in probabilistic terms the distance between the observed, σ̃1, and sim-
lated, σ1, peak strength data using our formulation of the anisotropic
B model and the scaling factors, θ = (𝐶N, 𝐶S).

If we make the common and convenient assumption that the mea-
urement errors of the peak strength observations follow a zero-mean
ormal distribution with a constant variance, 𝜎2𝜎 , then the likelihood

function becomes

𝐿(θ|σ̃1, 𝜎2𝜎 ) =
𝑛
∏

𝑖=1

1
√

2𝜋𝜎2
exp

⎡

⎢

⎢

−1
2

(

𝜎1,𝑖 − 𝜎1,𝑖(θ)
𝜎𝜎

)2
⎤

⎥

⎥

, (12)

𝜎 ⎣ ⎦
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Fig. 3. Diagnostic tests of the model residuals using rock strength data for the (8) gneiss A (a) and (1) Green river shale II (b): residuals as a function of the modeled peak stress
top), quantile–quantile plots (middle), and autocorrelation function with theoretical 95% significance intervals of strength data of uncorrelated residuals (bottom).
(

here the difference, 𝜎1,𝑖 − 𝜎1,𝑖(θ), between the 𝑖th observed and
simulated rock strength is the so-called residual

𝐞(θ) =
(

𝑒1(θ), 𝑒2(θ),… , 𝑒𝑛(θ)
)

= σ̃1 − σ1. (13)

The likelihood function of Eq. (12) can suffer from arithmetic
nderflow, that is, finite multiplication can result in a number that is
ery close to zero that the computer cannot store this in memory. This
an already happen for relatively small 𝑛, say 𝑛 = 500, particularly if the
odel poorly describes the observed data, and the residuals are large

ompared to the measurement error standard deviation, |𝑒𝑖(θ) ≫ 𝜎𝜎 |
for many elements 𝑖 ∈ (1, 2,… , 𝑛). For reasons of numerical stability
it is therefore convenient to work with the log-likelihood, (θ|σ̃1, 𝜎2𝐲̃ ),
instead

(θ|σ̃1, 𝜎2𝜎 ) = − 𝑛
2
log(2𝜋) − 𝑛

2
log(𝜎2𝜎 ) −

1
2
𝜎−2𝜎

𝑛
∑

𝑖=1

(

𝜎1,𝑖 − 𝜎1,𝑖(θ)
)2. (14)

his log-likelihood formulation is arguably also easier to interpret al-
ebraically. The measurement error variance of the peak strength data,
2
𝜎 , can be defined by the user, its value can be inferred simultaneously
ith the parameters, θ, or be integrated out of Eq. (16). If the variance
f the residuals,

2 = 1
𝑛 − 1

𝑛
∑

𝑖=1

(

𝑒𝑖(θ)
)2, (15)

is taken as sufficient statistic for 𝜎2𝜎 , then the log-likelihood function,
(θ|σ̃1, 𝜎2𝜎 ), simplifies to Ref. 74

(θ|σ̃1) ∝ − 𝑛
2
log

( 𝑛
∑

𝑖=1

(

𝜎1,𝑖 − 𝜎1,𝑖(θ)
)2
)

, (16)

and the likelihood function, 𝐿(θ|σ̃1), equals

𝐿(θ|σ̃1) ∝
𝑛
∑

𝑖=1
|𝜎1,𝑖 − 𝜎1,𝑖(θ)|−𝑛. (17)

If we now apply Bayes theorem, 𝑝(θ|σ̃1) ∝ 𝑝(θ)𝐿(θ|σ̃1), in Eq. (10),
then the posterior density is equivalent to

𝑝(θ|σ̃1) ∝
𝑛
∑

𝑖=1
|𝜎1,𝑖 − 𝜎1,𝑖(θ)|−𝑛. (18)

As is evident, the posterior density will find its maximum at the
7

minimum of the sum of squared residuals. Thus, the least squares fit
of our anisotropic HB model to the observed peak strength data will
equal the maximum likelihood, and, thus, maximum a-posteriori (MAP)
estimate of the scaling factors, 𝐶N and 𝐶S.

To verify that our assumptions of normality and independence
of the peak strength measurement errors (residuals) are satisfied,
we perform diagnostic checks of the 𝑛-vector of residuals, 𝐞(θ) =
𝑒1(θ), 𝑒2(θ),… , 𝑒𝑛(θ)

)

. This approach includes tests for homoscedas-
ticity, independence and normality of the residuals.

2.3.3. Posterior exploration
We infer the posterior distribution of the two scaling factors, 𝐶N

and 𝐶S, in our anisotropic HB model using Markov chain Monte Carlo
(MCMC) simulation with the DiffeRential Evolution Adaptive Metropo-
lis (DREAM) software package.72,73 This algorithm has shown an ex-
cellent performance in the sampling of complex posterior distributions,
including high-dimensional and multi-modal target distributions.74 In
this work, we used the core of the DREAM algorithm released in
a software publication.74 Interested readers are referred to the cited
publications for a detailed description of the DREAM algorithm. Sev-
eral geotechnical applications of this method can be found in earlier
publications.55,57,60,70

To evaluate the performance of the inferred scaling factors on an
independent data set, we use split sampling and divide the 𝑛-vector
of measured rock strengths of (2) gneiss, (3) Moretown phyllite, (4)
Penrhyn slate and (5) slate, σ̃1 = (𝜎1,1, 𝜎1,2,… , 𝜎1,𝑛), into calibration
and evaluation data set. In doing so, we randomly assign 75% of the
observations to the training data set, and the remaining quarter of the
peak strength measurements to an evaluation data set. To assess the
robustness of our inference procedure and anisotropic HB model, we
repeat this exercise 10 times. The length of the data set of the other
four anisotropic rocks was insufficient for split sampling. Thus, for the
(1) Green river shale II, (6) Tournemire shale, (7) Mancos shale and (8)
gneiss A, all peak strength measurements were used for model training.

Two standard statistical metrics, the coefficient of determination
(𝑅2) and the root mean squared error (RMSE), were used to analyze
our results of the calibration and evaluation simulations.

3. Results and discussion

3.1. Posterior parameter uncertainty

Fig. 2 exemplifies trace plots (top) and histograms of the posterior

distributions (bottom) of 𝐶N and 𝐶S derived from DREAM using 8
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Fig. 4. Posterior estimates (MAP and 95% confidence intervals) for the anisotropic parameters, 𝐶N and 𝐶S, based on the full datasets (blue lines) and 10 randomly selected stress
samples with 75% of the data for model calibration. The plots illustrate results for the (4) Penrhyn slate (a), (5) slate (b), (3) Moretown phyllite (c) and (2) gneiss (d).
Fig. 5. Posterior parameter distributions for the anisotropic model parameters based on the full datasets. Black points represent the MAP solution for 𝐶N (a) and 𝐶S (b) while
black lines illustrate the corresponding 95% uncertainty ranges of the parameter values.
Markov chains. Here, for brevity, we analyze only the posterior samples
generated for the (4) Penrhyn slate (a) and (2) gneiss (b) using 1200
and 800 generations, respectively. This corresponds to 9600 (Penrhyn
slate) and 6400 (gneiss) posterior samples generated with the DREAM
algorithm. Individual chains are coded with different symbols. Dark
gray symbols represent 𝐶 samples, while light gray points depict
8

N

𝐶S samples. The maximum a-posteriori (MAP) solution is separately
indicated in each trace plot and histogram with a solid black point.
These parameter values are associated with the highest value of the
likelihood function of Eq. (17) of all posterior samples generated by
DREAM, and this MAP solution coincides almost perfectly with the
posterior median values. The 95% confidence intervals (CI) computed
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Fig. 6. Bivariate scatter plots of the posterior samples of 𝐶N and 𝐶S for the different investigated rocks. Filled and open circles represent correlation between the anisotropic
arameters considering the full dataset and one random sample of the calibration data, respectively. The parameters exhibit a negligible correlation by calibration against the
bserved peak strength data.
c

rom the posterior distributions of the parameters are also indicated in
he plots.

Informal visual inspection of the sampled trace plots suggests con-
ergence of all the chains (Fig. 2). Optionally, the DREAM algorithm
as an arsenal of statistical measures to test whether the convergence to
he posterior distribution has been achieved.74 The posterior distribu-

tions of the last 25% of the samples stored in each of the 8 Markov
chains demonstrates that both 𝐶N and 𝐶S are very well-defined by
calibration against the observed rock strength data. In fact, the density
histograms exhibit normality and occupy a small part of the prior
distribution (see Table 2). Similar findings on the posterior parameter
distributions of 𝐶N and 𝐶S have been reported by Forero et al.70 using a
modified version of the Lade–Kim constitutive model. Therefore, these
posterior distributions can be further used for model simulation and
prediction uncertainty. The MAP solution of 𝐶S for the (4) Penrhyn
slate near 2 indicates that this rock is highly anisotropic, with min-
imum strengths found when the major principal stress direction and
the anisotropy plane has an intermediate angle, that is, between 30◦

and 60◦ (see blue curves in Fig. 1c). On the contrary, the posterior
parameter distribution of 𝐶S for the (2) gneiss assumes a different MAP
value near 1, indicating that this investigated rock is weakly anisotropic
and thus appears insensitive to parameter 𝐶S if the material is oriented
orthogonal, parallel or inclined to the loading direction. The remaining
studied rocks have shown equivalent outcomes. We will revisit the
parameter distributions of the random samples and all examined rocks
latter.

The likelihood function adopted in this paper was based on assump-
tions of uncorrelated, homoscedastic, and normally distributed residu-
als. In Bayesian analysis, it is good practice to access if these assump-
tions are violated as the posterior distribution and the corresponding
prediction uncertainty intervals might be subject to

58,79,80
9

misinterpretation. To assess the validity of these assumptions, t
Fig. 3 shows diagnostic tests of the residuals as a function of the
peak stress, 𝜎1 (top), the quantile–quantile plot (middle) and the
autocorrelation function (bottom) for the (8) gneiss A (a) and (1) Green
river shale II (b). The top panel tests whether the magnitude of the
residuals depends on the magnitude of the stress observations. The
residuals seem homoscedastic, i.e., independent of the magnitude of
the observed peak stress data. The middle panel presents a quantile–
quantile plot that examines whether the residuals follow a normal
distribution. Results show that the quantiles of the residuals were
in good correspondence with this assumption for both anisotropic
rocks. For these investigated rocks, the bottom panel shows that the
autocorrelation at given lag (black circles) persisted within the theo-
retical 95% significance interval of residual stress levels (blue lines),
demonstrating that the residuals are uncorrelated. Again, the remaining
rocks under study have shown similar findings. We hence concluded
that the assumptions of the likelihood model were satisfied and that
parameter posterior distributions and equivalent prediction confidence
intervals should be satisfactory.

Fig. 4 examines the MAP solution and the corresponding confidence
intervals of 𝐶N and 𝐶S for rocks with a larger number of peak stress
points, that is, (4) Penrhyn slate (a), (5) slate (b), (3) Moretown phyllite
(c) and (2) gneiss (d). The plots indicate results obtained considering
the full dataset and 10 different random samples, with 75% of the data
for the model calibration. The results clearly indicate that the posterior
estimates for both anisotropic parameters of the random samples (black
lines) match closely the MAP (solid blue lines) and the 95% CI’s (dashed
blue lines) of the full dataset. This means that the samples analyzed
with insufficient data might be considered as good estimates of the
parameters of our anisotropic model. In fact, the random stress samples
generate excellent estimates of 𝐶N and 𝐶S, in close agreement with
alibration against the full datasets. Note that parameter 𝐶N seems close

o 1 for these rock samples, while 𝐶S varies from 1 (weakly anisotropic
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Fig. 7. Bivariate scatter plots that compare the observed and modeled rock strengths of the calibration (open circles) and randomly chosen evaluation (filled circles) datasets for
all anisotropic rocks.
rocks) to 2 (highly anisotropic rocks). Although the posterior estimates
displayed in Fig. 4 might reflect adequately the anisotropic parameter
values of different rock types, we are left with the posterior estimates
for all rock samples.

Based on the posterior parameter distributions derived with the
DREAM algorithm, we now propose values for the anisotropic param-
eters of our model for all rock samples investigated (Fig. 5). Black
points depict the MAP solution for 𝐶N (a) and 𝐶S (b), while black lines
illustrate the corresponding 95% confidence intervals of the parameter
values. An examination of the posterior MAP-values of 𝐶N indicates that
all values are close to one. This means that for rocks with minimum
strengths found when the major principal stress direction and the
anisotropy plane has an intermediate angle (𝛽 = 30◦ to 𝛽 = 60◦),
𝐶N-values near one are good estimates for this parameter. Thus, a
more informative prior distribution can be further used to constrain
the ranges of this parameter, particularly for cases when minimum
strengths occur at an intermediate angle, 𝛽. Furthermore, the 95%
uncertainty ranges for 𝐶N are relatively small, except for the (7) Mancos
shale. The large uncertainty of this last rock sample is related to the
small number of peak strength observations (more of which later).
These findings agree with results of Feng et al.,58 which have indicated
that the more in situ stress data implicates in more reliable stress
estimates. However, as in engineering practice only limited strength
data are available, estimates of the parameter uncertainty ranges are of
paramount importance for geotechnical reliability analysis. In contrast
to the similar values of 𝐶N close to one, 𝐶S-values are higher for
highly anisotropic rocks, that is, (4) Penrhyn slate, (5) slate, and (3)
Moretown phyllite, and lower for less anisotropic rocks. The 95%
uncertainty ranges for 𝐶S are also relatively small, suggesting that the
model can adequately represent the strength behavior at intermediate
orientations.

Altogether, the posterior histograms of the anisotropic model pa-
10

rameters centers nicely around their MAP solutions and follow an
approximately normal distribution. The marginal distribution of the
parameters occupies a small and defined portion of the uniform prior
distribution, which demonstrates that both anisotropic parameters are
very well-defined by calibration against the observed peak strength
data. Moreover, the parameters exhibit negligible correlation by cali-
bration against the observed peak strength data (Fig. 6). Indeed, 𝐶N and
𝐶S appear well calibrated with relatively tight uncertainty bounds, and
small correlation among the individual parameters, which is confirmed
by the correlation coefficients presented in Table 2. The derived corre-
lation structures among posterior parameters do not vary with different
studied rocks. This provides important insights into the uncertainty of
the parameters 𝐶N and 𝐶S, indicating that our HB anisotropic model
is efficient to model rock strength anisotropy. Now that the posterior
MAP parameter values and the corresponding 95% confidence intervals
derived from the calibration are estimated, we turn our attention to the
performance of the proposed anisotropic HB model on the calibration
and on the independent evaluation datasets.

3.2. Model simulation (prediction) uncertainty

Fig. 7 plots the observed versus modeled peak strength (𝜎1) data for
all the eight calibration cases. The solid black line is used to denote
the identity or 1:1 line. The open circles in these regression plots
represent calibration data, while the filled circles indicate evaluation
data, randomly selected from one of the ten different samples. The
modeled peak strengths agree well with laboratory observations for
all rock samples. Note that the calibration and evaluation data for the
(2) gneiss (b), (3) Moretown phyllite (c), (4) Penrhyn slate (d) and (5)
slate (e) are similar, providing support for the claim that the proposed
anisotropic model gives an adequate description of the rock strength
using the split sampling technique. This is also supported by statistical
analysis of the randomly chosen evaluation datasets (Fig. 8). 𝑅2 and

RMSE-values for the entire dataset are indicated by solid blue and red
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Fig. 8. Values of 𝑅2 (blue solid lines) and RMSE (red solid lines) from the entire dataset for the (4) Penrhyn slate (a), (5) slate (b), (3) Moretown phyllite (c) and (2) gneiss (d).
Dashed lines with open and filled circles represent different calibration and evaluation samples, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
lines in Fig. 8, respectively. Such values are in reasonable agreement
with calibration and evaluation datasets of selected rocks. To simplify
graphical interpretation, the statistical metrics share a common scale
on the 𝑦 axis. Note that 𝑅2 near 0.95 for all rock samples demon-
strate the general ability of the proposed model to describe accurately
the strength of rocks with two anisotropic parameters. The different
random samples exhibit similar values, with small variations around
𝑅2-values of the entire dataset. Indeed, this is most noticeable for the
(5) slate (b) and (2) gneiss (d). Larger differences between 𝑅2-values
f the entire dataset and the random samples are more appreciable for
he (4) Penrhyn slate (a) and (3) Moretown phyllite (c). However, the
2-values are higher than 0.85, demonstrating that our model produces

eliable predictions outside the calibration domain. Similar conclusions
an be made for the RMSE-values. Note that these RMSE results can
e up to 60 MPa (e.g., (3) Moretown phyllite) and thus shall critically
nfluence prediction uncertainty and reliability analysis.

We next analyze how uncertainty in the model simulation affects
ock strength anisotropy. Fig. 9 shows the modeled rock strengths of the
osterior MAP solution (solid lines) derived from the entire dataset for
he rocks: (4) Penrhyn slate (a), (5) slate (b) and (3) Moretown phyllite
c). The 95% prediction intervals due to the parameter and model
imulation uncertainty are indicated with dark and light color regions,
espectively (right plots). For clarity, the estimated 95% uncertainty
anges are displayed for only two confining stresses. Observation points
t different confining stresses are represented with distinct colors and
ymbols. The U-shaped anisotropy curves demonstrate qualitatively
ow highly anisotropic these rocks are. The anisotropic HB model
losely tracks the observed peak strengths at different orientation an-
les and levels of confining stresses for all rock materials. Our findings
lso reveal the potential existence of relatively large uncertainties in the
11
peak strength for these highly anisotropic rocks. This outcome therefore
highlights the relevance of recognizing the treatment of uncertainty
of peak strengths in geotechnical analyzes. Similar findings have been
reported by Gomes et al.60 and Feng et al.58 for uncertainty analysis in
bedrock depth and in situ stresses, respectively.

Fig. 10 shows results of model simulations (left plots) and also il-
lustrates how the marginal posterior probability density function of the
parameters (Fig. 5) translates into 95% strength anisotropy predictive
uncertainty (right plots) for the calibration datasets of the gneissic
rocks: (2) gneiss (a) and (8) gneiss A (b). The results presented here
are qualitatively very similar to those earlier outlined in Fig. 9 for
the slates and phyllite. The proposed anisotropic model track the peak
strength observations very well, although the stress ranges at different
orientation angles are quite distinct for these rocks. Indeed, Fig. 10a
indicates that different 𝛽-values hardly influence the observed peak
strength, 𝜎1. The same is not true for gneiss A, which shows a much
more anisotropic behavior. Similar to the phyllites by Ramamurthy
et al.,1 the anisotropy of gneiss A is reduced as a function of the
confining stress. Note that parameter uncertainty appears to be a rather
small contribution to total uncertainty. This trend is in agreement with
the tight posterior parameter distributions of 𝐶N and 𝐶S in Fig. 5,
especially for the (2) gneiss. Most part of the observations lies within
the limits of the confidence intervals, supporting that the simulation
uncertainty ranges should be statistically adequate.

The (1) Green river shale II has shown to be moderately anisotropic
(Fig. 11a). The results show that the model predictions reproduce
the observed 𝜎1-values quite well at different orientation angles and
confining stresses. A relatively small under-prediction at 𝛽 = 30◦ is
not represented in the model. As an example, notice that at 𝜎𝑐 = 6.9
and 𝜎 = 68.9 MPa, the 95% total prediction uncertainty bounds
𝑐
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Fig. 9. Simulated rock strengths of the posterior MAP solution (solid lines) derived from the entire dataset for the (4) Penrhyn slate (a), (5) slate (b), and (3) Moretown phyllite
(c). Examples of the 95% prediction intervals due to the parameter and model simulation uncertainty are indicated with dark and light color regions, respectively, in the right
plots. Data points at different confining stresses are represented with distinct colors and symbols. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
bracket the peak strength data. As presented earlier, the total prediction
uncertainty is quite large, indicating that the model and/or measure-
ment uncertainty is remarkable. The 95% uncertainty region associated
with parameter uncertainty is narrow and does not always bracket
the strength data, suggesting that the model structure or the model
input data might need additional improvement. Fig. 11b (left) shows
comparisons between the deviatoric stresses 𝜎d of the triaxial test data
performed on the (6) Tournemire shale rock and the predictions of the
anisotropic HB model at different values of 𝛽 (solid lines). Simulations
include the confining stresses of 𝜎c = 20 MPa, 𝜎c = 40 MPa, and
𝜎c = 50 MPa. The results show that the model predictions are in
ood agreement with the observed 𝜎𝑑 -values, specially at 𝛽 = 0◦

and when 𝛽 has an intermediate angle. However, the anisotropic HB
model underestimates 𝜎d at 𝛽 = 90◦. Additionally to our modeling
outcomes, a visual comparison to the CALK model70 shows that the
posterior predictive simulations of 𝜎d are capable of capturing the
measured strength data. As the CALK model is considerably more com-
plex and uses three anisotropic parameters for inverse modeling, our
results demonstrate that the proposed two-parameter model adequately
represents the anisotropic behavior of the (6) Tournemire shale.
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Finally, Fig. 11c compares the uniaxial compressive strength (UCS)
model simulation results (solid black line) with the failure criterion
of Fjær and Nes14 (dashed red line) for the (7) Mancos shale. The
error bars exhibit the uncertainty in the average UCS-value for each
orientation angle, based on the estimated standard derivation of the
collected data. The patchy weakness model of Fjær and Nes was specif-
ically designed to assess heterogeneity on the anisotropic strength
and visually shows a good match between model and observations.
However, the HB anisotropic model does not fit the malicious small-
scale variations of the rock strength induced by the measurement error
and/or heterogeneity. Although these models differ fundamentally in
their underlying philosophy, both methods receive similar performance
in terms of rock strength predictions. In summary, results of both mod-
els indicate that the maximum strength of the (7) Mancos shale occurs
when the major principal stress is either parallel or perpendicular to the
anisotropy plane, while minimum strengths are found when the major
principal stress direction and the anisotropy plane have an intermediate
angle (between 𝛽 = 30◦ and 𝛽 = 50◦). The model simulations also show

that the 95% prediction uncertainty associated with only parameter
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Fig. 10. Simulated rock strengths of the posterior MAP solution (solid lines) derived from the entire dataset for the gneissic rocks: (2) gneiss (a) and (8) gneiss A (b). Examples
of the 95% prediction intervals due to the parameter and model simulation uncertainty are indicated with dark and light color regions, respectively, in the right plots. Data points
at different confining stresses are represented with distinct colors and symbols. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
uncertainty (dark shaded area), and the 95% prediction uncertainty
relative to the total error in terms of modeling residuals (light shaded
area) are quite large, indicating that the model and/or measurement
uncertainty is considerable.

The Bayesian framework used herein enables explicit treatment of
uncertainty of the rock strength anisotropy. One of the major strengths
of the proposed method is that, instead of merely assuming a known
and deterministic rock strength, one can propagate its uncertainty
to improve reliability in geotechnical analysis. Gomes et al.61 have
demonstrated that Bayesian analyzes coupled with MCMC simulations
allows to determine more appropriate confidence limits for the factor
of safety in slope stability analysis. We posit that probabilistic esti-
mates of the rock strength anisotropy could improve model simulations
in rock mechanics involving, for instance, circular tunnels,81,82 and
ock slope83,84 and wellbore stability.85 For instance, the anisotropic

model proposed in this paper could be used as a strength criterion
in geotechnical analysis. In this case, an ensemble of 𝐶N and 𝐶S
would be propagated forward through existing numerical models. Since
the uncertainty in the anisotropic parameters (Fig. 5) translates into
uncertainty in rock strength (Figs. 9 to 11), this approach enables us
to derive probabilistic estimates of safety factors, for example, thereby
allowing proper recognition of the effect of strength anisotropy in sta-
bility assessments. Furthermore, the framework proposed here, while
focused on homogeneous rock masses, could also support heterogeneity
in anisotropy strength. In addition, our model formulation can be easily
adapted to include the influence of the intermediate principal stress, 𝜎2.

owever, our findings suggest that the proposed anisotropic model can
e applied to wide variety of rocks, with distinct degrees of anisotropy.
he road to reliability in geotechnical analysis is a complex one. With-
ut sound probabilistic techniques, that consider important sources of
ncertainty on geotechnical analyzes, the chances of maintaining the
eterministic status quo are high. This probabilistic analysis is beyond
he scope of the current paper, but will be explored in future studies
13

sing the proposed model.
4. Conclusions

In this paper, we have introduced the different building blocks of an
anisotropic Hoek–Brown model to predict the strength of anisotropic
rocks. Our model builds on the isotropic Hoek–Brown failure criterion
and calculates the strength anisotropy with a non-uniform scaling
of the stress tensor. Two scaling factors (𝐶N and 𝐶S) are used in
our model to characterize adequately the effect of rock anisotropy.
Bayesian inference was used to reconcile the predicted rock strength
with experimental data. The following concluding remarks can be
made:

• The anisotropic Hoek–Brown model simulations provide a good
fit to the peak strength observations for both calibration and
evaluation samples. The proposed model can reproduce the ob-
served strength values quite well for rocks with different degrees
of anisotropy (from low to high) at different orientation angles
and confining stresses. Furthermore, our approach preserves the
original Hoek–Brown strength criterion and definitions of the
isotropic parameters.

• Bayesian analysis with the DREAM algorithm enables us to ex-
plore the posterior distribution of the anisotropic parameters,
𝐶N and 𝐶S, and their correlation. The general behavior of the
posterior distributions of both parameters reveals that 𝐶N and 𝐶S
are uncorrelated and that the marginal distributions are relatively
tight and appear well resolved by the available rock strength
data. Our approach highlighted parameter ranges for different
anisotropic rocks, which could be used for constructing mean-
ingful informative priors. Moreover, the parameter distributions
derived will most likely characterize the different anisotropic
rocks encountered in the real world.

• The conventional residual based likelihood function provides ad-
equate statistical properties of the residuals. Analyzes of the
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Fig. 11. Simulated rock strengths of the posterior MAP solution (solid lines) derived from the entire dataset for the (1) Green river shale II (a), (6) Tournemire shale (b) and (7)
Mancos shale (b). Examples of the 95% prediction intervals due to the parameter and model simulation uncertainty are indicated with dark and light color regions, respectively,
in the right plots. Data points are represented with distinct colors and symbols. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
autocorrelation functions, normality tests and plots of residuals as
a function of the modeled peak stress sustained this conclusion.

• The split sampling approach indicates that the posterior estimates
for the anisotropic parameters of the random samples match
closely the MAP of the entire dataset of peak strength. Com-
parison of the values of 𝑅2 and RMSE for the random samples
and the full observations further supported the robustness of our
methodology and inspires confidence in our findings.

• Our modeling results indicate that uncertainty in peak strength of
anisotropic rocks can be quite large at different anisotropy plane
orientations and confining stresses. This advocates the need for
an explicit treatment of rock strength anisotropy uncertainty in
rock mechanics studies.
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