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Mu2e and COMET will search for electrons produced via the neutrinoless conversion of stopped muons bound
in 1s atomic orbits of 27Al, improving existing limits on charged lepton flavor violation (CLFV) by roughly
four orders of magnitude. Conventionally, μ → e conversion experiments are optimized to detect electrons
originating from transitions where the nucleus remains in the ground state, thereby maximizing the energy of the
outgoing electron. Clearly, detection of a positive signal in forthcoming experiments would stimulate additional
work—including subsequent conversion experiments using complementary nuclear targets—to further constrain
the new physics responsible for CLFV. Here we argue that additional information can be extracted without the
need for additional experiments, by considering inelastic conversion in 27Al. Transitions to low-lying nuclear
excited states can modify the near-endpoint spectrum of conversion electrons, with the ratio of the elastic and
inelastic responses being sensitive to the underlying CLFV operator. We extend the nuclear effective theory of
μ → e conversion to the inelastic case, which adds five new response functions to the six that arise for the elastic
process. We evaluate these nuclear response functions in 27Al and calculate the resulting conversion-electron
signal, taking into account the resolution anticipated in Mu2e/COMET. We find that 27Al is an excellent target
choice from the perspective of the new information that can be obtained from inelastic μ → e conversion.

DOI: 10.1103/PhysRevC.111.025501

I. INTRODUCTION

Unlike their neutral counterparts, which famously oscillate
between flavor eigenstates as they propagate, standard-model
processes involving charged leptons are expected to conserve
flavor. The level of charged lepton flavor violation (CLFV) in-
duced by neutrino oscillations, although technically nonzero,
is unobservably small. Thus, any signal of CLFV would be
definitive evidence of new physics. Existing upper limits on
CLFV branching ratios provide strong constraints on pro-
posed extensions of the standard model [1–3]. Among the
most sensitive tests of CLFV are those employing stopped
muons, including μ+ → e+ + γ , μ+ → e+e−e+, and μ− +
(A, Z ) → e− + (A, Z ).

The last of these processes, known as μ → e conversion,
involves the capture of a negative muon by the Coulomb
field of an atomic nucleus with A nucleons and Z protons.
Essentially, the nucleus is used as a laboratory to study
flavor violation, with proper interpretation of conversion ex-
periments requiring a detailed understanding of the relevant
nuclear physics. The nuclear physics can be leveraged to

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

maximize the information about CLFV that one can extract
from experiment.

The quantity reported by μ → e conversion experiments is
the branching ratio

Rμe = �[μ− + (A, Z ) → e− + (A, Z )]

�[μ− + (A, Z ) → νμ + (A, Z − 1)]
, (1)

where the numerator is the rate for the CLFV process and the
denominator is the rate for standard muon capture, which is
well measured in many different nuclear targets [4]. Currently,
the best limit is Rμe < 7.0 × 10−13 at 90% confidence level,
which was obtained by SINDRUM II using a gold target [5].

By the end of the current decade, a new generation of
experiments, Mu2e [6] at Fermilab and the COherent Muon-
to-Electron Transition (COMET) experiment [7] at Japan
Proton Accelerator Research Complex (J-PARC), will im-
prove existing limits by up to four orders of magnitude,
reaching a single-event sensitivity of Rμe � 10−17. Both ex-
periments have selected 27Al as the target nucleus.

As the captured muon quickly de-excites to the 1s orbital
of the nuclear Coulomb potential, the muon energy is known
precisely. The momentum of the conversion electron (CE) is
then determined by kinematics

�q 2 = MT

mμ + MT

[(
mμ − Ebind

μ − �Enuc
)2 − m2

e

]
, (2)

where MT is the mass of the target nucleus, �Enuc = E f −
Ei is the energy gap between the final and initial nuclear
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states, and Ebind
μ is the muon binding energy, defined here

to be a positive quantity. The CLFV signal is a mono-
energetic electron with energy ECE = √

m2
e + |�q |2. For elastic

conversion, �Enuc = 0 and ECE → E elastic
CE ≈ mμ. The pri-

mary background is due to bound muons decaying via the
standard-model process μ → e + 2ν. Near the endpoint, the
spectrum of electrons produced by decay-in-orbit (DIO) is
suppressed by (E − Eend )5, where Eend = E elastic

CE . While the
DIO background for elastic μ → e conversion is nonzero
only because of an experiment’s finite energy resolution, it
becomes progressively more troublesome for inelastic transi-
tions characterized by increasing �Enuc.

If a positive CLFV signal is observed in Mu2e and/or
COMET, then some modification of the standard model would
be indicated. There would be intense interest in further con-
straining the source of the new physics. In contrast to the
positive muons employed in μ → eγ and μ → 3e searches,
the captured negative muons in μ → e conversion provide
sensitivity to a wider range of CLFV mechanisms, which can
be explored by performing additional conversion experiments
with different nuclear targets. Frequently, this task is consid-
ered within the limited context of coherent conversion (see,
e.g., Refs. [8–11]), where the underlying operator is assumed
to couple to nuclear charge and consequently the response
is coherently enhanced. Under these assumptions, one can
attempt to disentangle the relative coupling strength to protons
versus neutrons and to determine whether μ → e conversion
is mediated by a scalar or vector coupling to quarks or a
dipole coupling to photons. To probe the relative couplings
to protons versus neutrons, one can compare rates in targets
with different neutron excesses. The difference between scalar
and vector mediators amounts to the sign of the relativistic
correction from the muon’s lower component. In both cases,
the sharpest contrast can be made between light and heavy
nuclear targets, for example 27Al and 197Au.

However, there is no guarantee that CLFV, if realized in
nature at an observable level, will be mediated by a coherent
operator. In Refs. [12,13], the most general description of the
elastic μ → e conversion process was derived in the context
of nonrelativistic effective theory (NRET). General symme-
try arguments dictate that transitions to the nuclear ground
state can be mediated by six independent nuclear responses,
only one of which corresponds to the much-studied coherent
response. (If distinct couplings to protons and neutrons are
considered, then there would be 12 and 2 such responses, re-
spectively.) The additional responses are nuclear spin- and/or
velocity-dependent and can be probed by selecting nuclear
targets having ground states with the requisite sensitivity to
spin, convection current, or spin-orbit correlations [13].

In subsequent work, the nucleon-level NRET descrip-
tion was matched to relativistic, quark-level weak effective
theory (WET) [14]. When combined with existing standard-
model effective field theory (SMEFT) and WET formulations
[15,16], this yields a tower of effective theories connecting
the low-energy nuclear scale where elastic μ → e conversion
experiments are performed with the UV scale where theories
of CLFV are formulated. This framework can be utilized to
perform a top-down reduction of a specific UV theory to

determine the elastic μ → e conversion rate it will predict,
or alternatively, to port a given experimental limit from the
bottom upward, to constrain entire classes of UV theories.

The completeness of the NRET operator basis guarantees,
in a consistent top-down reduction, that the low-energy con-
sequences of a given UV theory will be properly captured.
This happens even though each step of the reduction will,
in general, filter out degrees of freedom relevant at higher
energies.

Conversely, given that the source of CLFV is unknown,
the bottom-up approach should be executed in a manner that
takes into account all candidate nuclear-scale operators. These
are the operators generating the six independent elastic μ → e
conversion nuclear responses described above: the coefficient
of each response is, in principle, a measurable quantity. De-
termining the precise values of these coefficients and their
consequences for UV theories will be a challenging task re-
quiring observation of CLFV in a large number of conversion
experiments, performed with nuclear targets carefully selected
for their ground-state properties.

Experimental considerations place various constraints on
the choice of nuclear target. The impressive sensitivities ex-
pected at Mu2e and COMET are due in part to the use of a
pulsed muon beam, which allows electrons to be observed
during a delayed time window largely free of backgrounds
from radiative pion capture (RPC). However, the population
of captured muons can be depleted during the time that one
waits for the background to subside. In heavier nuclei, bound
muons decay primarily by ordinary muon capture, with rates
scaling approximately as Z4 [4,17]. For a sufficiently heavy
target nucleus, the muon lifetime becomes shorter than the
RPC timescale, so that most of the captured muons are de-
pleted before the electron observation window opens. To avoid
such losses, the muon capture lifetime must be �250 ns [18],
restricting target nuclei to those with Z � 25. Thus, while the
pulsed-beam technique promises to greatly extend experimen-
tal sensitivities, it does somewhat limit the nuclear targets that
can be used.1

While we can learn more about CLFV by performing
experiments with different targets, this strategy also has an
obvious drawback: the additional time each new experiment
will require. Consequently, it is important to consider other
strategies for extracting additional information about CLFV.
Here and in the accompanying Letter [22], we show that
observation of the inelastic contribution to μ → e conversion,
together with the elastic contribution, can provide such infor-
mation, without the need for an additional experiment. This
strategy is also compatible with new techniques like pulsed
muon beams, because the lighter nuclear targets employed
in such experiments are more likely to have the necessary
attributes, namely low-lying states sufficiently separated to
be distinguishable, given expected experimental resolutions.
With increasing nuclear mass, level densities increase, tran-
sition strengths become increasingly fractionated, and, for

1Proposed muon storage-ring experiments [19–21] could poten-
tially provide competitive sensitivity without being restricted to light
target nuclei.
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many operators, stronger collectivity removes strength from
low-lying states—all trends that make finding states with the
necessary properties less likely. Thus, lighter targets, like
27Al, that are suitable for the Mu2e and COMET pulsed-beam
technique also tend to be better for inelastic μ → e studies.
In fact, we find 27Al to be a particularly good choice for this
purpose.

The new information available from inelastic μ → e con-
version comes in two forms. First, there exist CLFV operators
that can only be probed in the inelastic process, as selec-
tion rules prevent them from contributing to the ground-state
process. The axial charge operator is one example. Second,
even if the CLFV interaction generates elastic conversion,
contributions from excited states can modify the spectrum
of conversion electrons in distinctive ways. In the case of a
positive signal at Mu2e and/or COMET, the precise shape of
the CE spectrum can be used to distinguish between possible
conversion mechanisms, potentially influencing the design
and target selection of future experiments. In effect, instead
of changing nuclear targets to probe new aspects of CLFV,
inelastic μ → e conversion allows one to accomplish similar
goals by changing the nuclear final state.

The physics of inelastic μ → e conversion is essentially
governed by two quantities: the nuclear excitation energy
�Enuc and the relative branching ratio

Rμe(gs → f )

Rμe(gs → gs)
= �μe(gs → f )

�μe(gs → gs)
, (3)

for transitions to an excited final nuclear state f . The quantity
in the denominator is the rate for the elastic conversion pro-
cess, which can be readily computed from the general form
described in Ref. [13]. In the present work, we derive—within
the context of nuclear effective theory—the most general ex-
pression for the inelastic μ → e conversion rate �μe(gs → f ),
where f is any final nuclear state.

The nuclear effective theory of inelastic μ → e conver-
sion shares many similarities with the elastic analog. Most
importantly, both processes are governed by the same single-
nucleon effective theory. Significant differences arise when
this single-nucleon description is embedded into a nuclear
system. In the elastic process, the approximate parity (P)
and time-reversal (T) symmetries of the nuclear ground state
restrict the operators that can contribute [12,13]. In principle,
two nuclear charges and three nuclear currents can give rise
to 11 independent nuclear response functions (each charge
has one multipole projection, each current can be decomposed
into longitudinal, transverse-electric, and transverse-magnetic
responses). P and T symmetries permit only six of these
responses to contribute in the elastic case. However, if the
nucleus transitions to an excited final state, then the constraint
of time-reversal no longer applies, and additional operators
can contribute.

In their seminal work on μ → e conversion [23], Wein-
berg and Feinberg considered both the elastic and inelastic
responses that arise when the conversion process is mediated
by a virtual photon. The authors estimated the total response
from all nuclear excited states, concluding that the elastic
response, which is coherently enhanced (over the protons), is
roughly six times stronger than the total inelastic response for

a nucleus like Cu. Subsequent investigations by other authors,
who frequently use the term incoherent to refer to the inelastic
process, are similarly focused on the total response from all
excited states [24–29]. These previous studies focused on
specific CLFV operators—charge or spin—and not on the
current question of interest, how the simultaneous observation
of elastic and inelastic μ → e conversion might be exploited
as a diagnostic of the source of CLFV. Moreover, the inclu-
sive inelastic response is not measurable, as it will be buried
beneath DIO and other standard-model backgrounds.

The focus of this paper is quite different. We have three
goals: First, to use NRET and its complete set of operators
to derive the general form of the inelastic μ → e conver-
sion rate, thereby defining precisely what information is in
principle available from studying inelastic μ → e conversion.
The CLFV physics content is encoded in the coefficients of
the 11 response functions and their interference terms that
comprise the most general form of the rate. These coefficients
are formed from bilinear combinations of the NRET operator
coefficients, the low-energy constants (LECs). The additional
inelastic response functions and the interference terms they
generate introduce seven new combinations of the LECs, in
principle providing new constraints on CLFV. Second, we use
the example of 27Al to illustrate how to extract additional
information on CLFV by studying the electron spectrum near,
but not restricted to, the endpoint region. A nonzero mea-
surement of elastic μ → e conversion can be attributed to
any CLFV operator, but this will not be the case if one adds
information from inelastic transitions. Third, we illustrate how
the additional information available from the near-endpoint
spectrum, given expected Mu2e and COMET backgrounds
and resolutions, can be used to guide the selection of the
next target—what target properties will be important in further
distinguishing candidate CLFV sources? The guidance does
not necessarily require a Mu2e or COMET observation of an
inelastic signal: the absence of such a signal in the presence
of elastic μ → e conversion is also significant.

This paper is organized as follows: In Sec. II, following
our earlier work on the elastic process, we describe how the
Coulomb distortion of leptonic fields can be approximated,
without significant loss of accuracy, to dramatically simplify
the form of NRET interactions used in nuclear calculations.
The nuclear effective theory is then constructed in two steps.
First, in Sec. III, we introduce the NRET basis of 16 op-
erators that represents the most general interaction between
the leptons and a single nucleon. This single-nucleon effec-
tive theory—originally derived in Refs. [12,13]—makes no
reference to a particular nuclear target or transition. As the
coefficients that govern the theory are target- and transition-
independent, the description applies equally well to the elastic
and inelastic conversion processes. Second, in Sec. IV, the
single-nucleon theory is embedded into a target nucleus,
yielding our central result: the most general expression for
the μ → e conversion rate �μe(gs → f ), valid for transitions
to any nuclear final state. The 16 nucleon-level operators
embed into 11 nuclear response functions, the coefficients of
which encode the CLFV physics. Unlike the elastic process,
inelastic μ → e conversion is not constrained by time-reversal
symmetry, permitting all 11 response functions to contribute.
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In Sec. V, we discuss properties of the nuclear response
functions, which we view as experimental “knobs” that can
be “turned,” either by changing the final state in a given
target or by selecting a new target, to determine the oper-
ator(s) responsible for CLFV. In Sec. VI, we compute the
expected CE signal at Mu2e for a series of simplified sce-
narios in which only a single nuclear response contributes.
We find that coherent conversion in 27Al does not yield any
significant modification from the inelastic process. However,
spin-dependent conversion mechanisms generate relatively
strong transitions to excited states, which modify the shape
of the CE spectrum. Thus, if any excess in electron counts is
measured relative to the elastic baseline, then there must be
some other CLFV mechanism besides coherent conversion.

In Sec. VII, we discuss inelastic μ → e conversion in
targets other than 27Al, considering in detail the case of a
natural titanium target with its multiple isotopes. In Sec. VIII,
we summarize and present our conclusions.

The main text is supplemented by a series of appendices:
Appendix A describes a publicly available Mathematica
script that implements the nuclear effective theory of inelastic
μ → e conversion for an 27Al target. Appendix B provides
several intermediate steps in the derivation of the inelastic
μ → e conversion rate �μe(gs → f ) as well as explicit ex-
pressions for the requisite nuclear response functions. Finally,
in Appendix C, we provide numerical values for each nuclear
response function obtained from three different shell-model
calculations employing distinct nuclear interactions.

II. TREATMENT OF LEPTONIC FIELDS

In contrast to the complicated many-body nuclear physics,
the leptonic sector of μ → e conversion is relatively straight-
forward: To begin, the muon is known to occupy the 1s orbital
of the nuclear Coulomb field. Exploiting the spherical sym-
metry of the potential, solutions of the Dirac equation can be
written as

ψκ (�r ) =

⎛
⎜⎜⎜⎜⎜⎝

ig� j

[ 〈
1
2 , 1

2

∣∣(� 1
2

)
jm
〉

〈
1
2 ,− 1

2

∣∣(� 1
2

)
jm
〉
]

− f� j

[ 〈
1
2 , 1

2

∣∣(� ± 1 1
2

)
jm
〉

〈
1
2 ,− 1

2

∣∣(� ± 1 1
2

)
jm
〉
]
⎞
⎟⎟⎟⎟⎟⎠, (4)

where the index κ satisfies j = |κ| − 1
2 and

κ =
{−(� + 1), κ < 0,

�, κ > 0.
(5)

The angular-spin eigenfunctions are defined as〈
θφ

∣∣∣∣
(

�
1

2

)
jm

〉
=
∑
m�ms

〈
�m�

1

2
ms

∣∣∣∣ jm
〉

Y�m�
(θ, φ)ξms , (6)

where ξms is a Pauli spinor. The radial wave functions satisfy
the coupled differential equations

[E − μ − VC (r)]g� j = − d

dr
f� j + κ − 1

r
f� j,

[E + μ − VC (r)] f� j = d

dr
g� j + κ + 1

r
g� j, (7)

TABLE I. Nuclear charge distribution parameters c and β and
the resulting values for the root-mean-square charge radius

√
〈r2〉

and muon binding energy E bind
μ .

Target c (fm) β (fm)
√

〈r2〉 (fm) E bind
μ (MeV)

27Al 3.07 0.519 3.062 0.463
48Ti 3.843 0.588 3.693 1.262

where μ is the reduced mass of the lepton and VC (r) is the
Coulomb potential.

The Coulomb potential is computed by treating the nuclear
charge distribution ρ(r) as an extended source, determined
from elastic electron scattering data. Specifically, we adopt
the two-parameter Fermi model parametrization,

ρ(r) = ρ0

1 + exp[(r − c)/β]
, (8)

where the value of ρ0 is fixed by the normalization condition∫ ∞

0
dr r2ρ(r) = Z. (9)

The values of the parameters c and β in Table I are taken
from Ref. [30], which performed fits to available electron scat-
tering elastic form factors. Combining this information with
the Dirac equation for a spherically symmetric potential, one
can precisely determine the binding energy Ebind

μ and wave

function ψ
(μ)
κ=−1 of the muon. Once the energy of the outgoing

electron is determined from the kinematics, as in Eq. (2), one
can similarly obtain the partial-wave decomposition of the
electron wave function.

The vast majority of the μ → e conversion literature fo-
cuses on the special case of the charge operator, further
simplified by retaining only the two electron partial waves
(κ = ±1) needed for the coherent monopole contribution to
the charge response. It is then computationally feasible to use
exact numerical Dirac solutions. Reference [31] is represen-
tative of this approach. But in general, significant angular
momentum transfer can occur between the leptons and the
nucleus, so that a sum over many electron partial waves must
be done to compute the μ → e conversion amplitude. The use
of exact numerical Dirac solutions then becomes quite com-
plicated, while also obscuring the underlying physics. Instead,
we follow Refs. [12,13] in adopting several simplifying yet
still quite accurate approximations.

The outgoing electron is ultrarelativistic and can be rea-
sonably approximated, well away from the origin, by a Dirac
plane wave. Near the nucleus, however, the plane wave is dis-
torted by the nuclear charge. We can account for this Coulomb
distortion by evaluating the plane wave not at the physical
electron momentum q but at the effective momentum [32,33]

�q 2
eff = MT

mμ + MT

[(
mμ − Ebind

μ − �Enuc − V̄C
)2 − m2

e

]
,

(10)
where

V̄C ≡
∫

dr r2ρ(r)VC (r)∫
dr r2ρ(r)

(11)
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is the average value of the Coulomb potential over the nuclear
charge density. Explicitly, the effective momentum approxi-
mation corresponds to the replacement

U (q, s)ei �q·�r → qeff

q

√
ECE

2me

(
ξs

�σL · q̂ξs

)
ei �qeff ·�r, (12)

where ECE = √
q2 + m2

e is the physical electron energy, and
we have adopted the notation q = |�q |, qeff = |�qeff |. We stress
that this form describes the electron wave function in the
vicinity of the nucleus, where the integral over the transi-
tion density is performed; it properly captures the effects of
Coulomb attraction on the amplitude and local frequency of
the electron in this region, both of which are enhanced. This
form is not to be used asymptotically, where the wave function
heals to its standard plane-wave form with wave number q,
normalized to unit flux as demanded by consistency with the
integration over the density of states.

In Ref. [13], comparisons of the approximate electron wave
function in Eq. (12) with exact solutions of the Dirac equa-
tion are given for various partial waves and for both light and
heavy targets. No fitting was performed in this comparison:
the value of V̄C (and hence qeff ) was computed from the
measured nuclear charge distribution, not adjusted to optimize
the fit. The agreement between the analytic wave function of
Eq. (12) and the numerically generated Dirac partial waves is
excellent.

In contrast to the electron, the bound muon is highly non-
relativistic, so that its lower component f (r) can be neglected
in transition densities, which are all dominated by the upper
component g(r). Nevertheless, for elastic μ → e conversion,
the formalism for handling the effects of f (r) has been worked
out in detail, extending the NRET to all operators linear in
either the nucleon velocity �vN or the muon velocity �vμ [13].
These corrections have been incorporated into a numerical
script for evaluating elastic μ → e conversion rates [14], nu-
merically verifying that f (r) produces corrections to nuclear
response functions of O(5%) for 27Al. The additional NRET
operators associated with �vμ play no role in nuclear selection
rules that govern the general form of the rate.

There is some justification for including f (r) in elastic
μ → e conversion calculations, as there are certain opera-
tors, like the charge, where the associated nuclear response
function can be computed to a precision of �5%. There
is much less justification for doing so in inelastic μ →
e conversion studies, where the nuclear form factors are
not tightly constrained by experiment, but instead must be
taken from nuclear models. Consequently, in the present
treatment of inelastic conversion, we neglect f (r) and thus
corrections associated with �vμ, retaining only the dominant
upper-component contributions of g(r).

The radial wave function g(r) for the upper component
of the muon appears in the nuclear transition density. In our
earlier work on elastic μ → e conversion [12,13], we eval-
uated the integral over the transition density for a specific
operator, the isoscalar monopole charge, then employed this
result to define an effective average muon density within the
nucleus. The latter quantity was then expressed in terms of
an equivalent 1s muon density for a point nucleus of charge

Zeff , evaluated at �r = 0. The value of Zeff was determined by
matching to the exact result,

∣∣φZeff
1s (�0)

∣∣ = 1√
π

[
Zeffαμc

h̄

]3/2

≡
∣∣∣∣∣
∫

d�r ρ0(r) j0(qeffr) 1√
4π

g(r)∫
d�r ρ0(r) j0(qeffr)

∣∣∣∣∣. (13)

Here μ is the muon’s reduced mass and ρ0(r) is the isoscalar
charge density. The exact result can then be expressed in terms
of the undistorted plane-wave result, weighted by the effective
Schrödinger amplitude,∫

d�r ρ0(r) j0(qeffr)
g(r)√

4π
= ∣∣φZeff

1s (�0)
∣∣∫ d�r ρ0(r) j0(qeffr).

The procedure followed in Ref. [13] was to assume that the
same Schrödinger density (same Zeff ) can be used to factor
other transition amplitudes. This of course would not be exact
in those cases, but nevertheless can be justified as the first term
in a Taylor expansion that assumes the muon wave function
varies gently over the region where the nuclear density is
significant. Note that the muon’s Bohr radius in 27Al is ≈
20 fm. This approximation was tested in Ref. [13], where a
series of exact calculations were performed for 27Al in which
both the operator and its isospin coupling were varied. The
Zeff approximation was found to reproduce the exact transition
probability (that is, the exact value of |φZeff

1s (�0)|2) to about 1%,
and in no case did the discrepancy exceed 4%.

The earlier work did not explore the validity of this ap-
proximation when the final nuclear state is varied, though the
underlying Taylor series argument extends to this case as well.
Here we do so, explicitly calculating Zeff in the manner of
Eq. (13) for several charge- and spin-dependent nuclear re-
sponses. Starting from the isoscalar monopole response W 00

M0
,

we can first extend to the full isoscalar charge response W 00
M ,

which includes all contributing higher-order even multipoles
of the charge operator. This has effectively no impact on the
Zeff derived for the elastic case, as the monopole operator
is coherent and dominates the elastic response. But for the
inelastic cases, this procedure changes both the operator and
the final state. Thus, we need to assess the degree to which a
fixed Zeff adequately describes the effects of the muon wave
function on transition densities, for the transitions of interest
in 27Al. We do this by performing an exact calculation to de-
termine Zeff for each transition, then examining the constancy
of the quantity

R ≡
∣∣φZeff

1s (�0)
∣∣2∣∣φZ

1s(�0)
∣∣2 = Z3

eff

Z3
, (14)

as the transition and the underlying nuclear operator are var-
ied.

The deviation of R from one represents the impact of the
finite nuclear size on the convolution integral of the nuclear
density and muon wave function. Numerically computed val-
ues for R (or equivalently Zeff ) are listed in Table II for
a variety of responses and elastic and inelastic transitions,
following the example of the monopole charge operator de-
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TABLE II. Left: Transition-dependent excitation energy �Enuc, electron momentum q, and effective momentum qeff for μ → e conversions
to the ground state and three low-lying states of Al and Ti. Right: Comparison of the reduction factor R that describes the effective constant
value of the muon wave function obtained by averaging over different nuclear transition densities W ττ

O .

R = |φZeff
1s (�0)|2/|φZ

1s(�0)|2

Transition �Enuc (MeV) q (MeV) qeff (MeV) W 00
M0

W 00
M W 11

M W 00
� + W 00

�′ W 11
� + W 11

�′ W 00
�′′ W 11

�′′

27Al(5/2+) 0.0 104.98 110.81 0.657 0.657 0.643 0.647 0.656 0.635 0.632
27Al(1/2+) 0.844 104.13 109.97 – 0.603 0.588 0.593 0.591 0.592 0.592
27Al(3/2+) 1.015 103.96 109.80 – 0.599 0.606 0.601 0.599 0.601 0.598
27Al(7/2+) 2.212 102.77 108.60 – 0.597 0.594 0.626 0.636 0.627 0.627
48Ti(0+) 0.0 104.28 112.43 0.433 0.433 0.411 – – – –
46Ti(2+) 0.889 103.39 111.54 – 0.359 0.362 0.337 0.345 – –
47Ti(3/2+) 0.159 104.11 112.27 – 0.359 0.362 0.390 0.374 0.384 0.367
48Ti(2+) 0.984 103.29 111.45 – 0.359 0.357 0.341 0.346 – –

scribed above. If we consider all of the inelastic results of 27Al
given in Table II, then we find R = 0.604 ± 0.014. This value
is somewhat smaller than that found for the isoscalar elastic
response, R = 0.657, but this is expected because the oper-
ators for inelastic transitions act on valence nucleons, with
transition densities peaked nearer to the nuclear surface, while
the coherent monopole operator acts on all nucleons. Thus,
inelastic transitions should exhibit larger finite-size effects.
Were one to use the coherent elastic value for all transitions,
the typical error in the rate would be 8%.

If the same exercise is repeated for 48Ti, then one finds
R = 0.360 ± 0.015 for the inelastic transitions considered in
Table II, compared to the elastic charge response value of
R = 0.433. There again is good consistency among the R’s
calculated for inelastic transitions, with the typical variation
being 4%, though the central value is about 20% smaller than
that found in the coherent elastic case. Finite-size effects are
larger in Ti because the Bohr radius is smaller and nuclear
radius larger, relative to Al.

The factorization of the muon wave function from the
transition density is not necessary: In Ref. [13] the complete
elastic rate formula is given with both the upper and lower
components of the muon wave function explicitly retained.
However, there are advantages to performing the factorization,
both in improving the transparency of the final result and in
simplifying the evaluation of matrix elements. Specifically, if
harmonic oscillator Slater determinants are employed, then
the nuclear matrix elements can be evaluated analytically,
assuming the finite-size effects associated with the muon are
handled as above. However, the exercise just described shows
that results are significantly improved if one uses a different
value of Zeff for the elastic response than for inelastic re-
sponses. We make this choice here. In terms of the effective
charge, this yields Zel

eff = 11.30 for the ground-state transition
and Z inel

eff = 10.99 for all inelastic transitions in 27Al.
In this work, because of Mu2e and COMET plans, the

nucleus of primary interest is 27Al. In Sec. VII, we also briefly
discuss titanium, which was used previously in the SINDRUM
II experiment [34] and has been discussed as a future target
[18]. The atomic number of Ti is 22, compared to 13 for
Al. The Zeff approximation slowly deteriorates with increas-

ing atomic number, as the muon’s Bohr radius decreases.
However, in Ref. [13] the procedure was tested through Cu
(atomic number 29), with satisfactory results. Unlike 27Al, Ti
has multiple (five) stable isotopes. We determine the muon
binding energy and Zeff for natural Ti using 48Ti, the principal
isotope with an abundance of 74%. As in 27Al, we adopt dif-
ferent R values for elastic versus inelastic transitions, yielding
Zel

eff = 16.64 for the ground-state transition and Z inel
eff = 15.65

for all inelastic transitions in Ti.

III. NUCLEON-LEVEL EFFECTIVE THEORY

Nucleons that are bound in a nucleus are only mildly rel-
ativistic, with typical velocities vavg ≈ 0.1 (in units of c). We
can therefore perform a nonrelativistic expansion of the nu-
clear charges and currents. In the NRET, the nucleon velocity
operator �vN stands for the set of A − 1 independent nucleon
Jacobi velocities, e.g., the Galilean-invariant velocities �vN ≡
{(�v2 − �v1)/

√
2, (2�v3 − (�v1 + �v2))/

√
6, . . .}, where �vi is the

velocity operator for the ith nucleon and A is the nucleon
number. See Refs. [13,35] for details.

The single-nucleon NRET operators can then be con-
structed from the available Hermitian vector operators: iq̂
where q̂ is the velocity of the outgoing ultrarelativistic elec-
tron, the nucleon velocity operator �vN , and the respective
lepton and nucleon spin operators, �σL and �σN . To first order
in the nucleon velocity �vN , there are 16 NRET operators that
can mediate μ → e conversion [12,13]:

O1 = 1L 1N ,

O′
2 = 1L iq̂ · �vN ,

O3 = 1L iq̂ · [�vN × �σN ],

O4 = �σL · �σN ,

O5 = �σL · (iq̂ × �vN ),

O6 = iq̂ · �σL iq̂ · �σN ,

O7 = 1L �vN · �σN ,

O8 = �σL · �vN ,

O9 = �σL · (iq̂ × �σN ),
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O10 = 1L iq̂ · �σN ,

O11 = iq̂ · �σL 1N ,

O12 = �σL · [�vN × �σN ],

O′
13 = �σL · (iq̂ × [�vN × �σN ]),

O14 = iq̂ · �σL �vN · �σN ,

O15 = iq̂ · �σL iq̂ · [�vN × �σN ],

O′
16 = iq̂ · �σL iq̂ · �vN . (15)

This operator basis matches closely the one previously derived
for dark matter direct detection [35]; we distinguish with a
prime the operators for which there are significant differences.
The NRET operators Oi are understood to act between Pauli
spinors ξs for muon, electron, and nucleons. The NRET can be
extended with the leading relativistic corrections to the muon
by including the muon velocity operator �vμ to first order [13].
As discussed above, these relativistic corrections are always
subleading, and we will not consider them further in this work.

We allow for different couplings to protons versus neu-
trons, or equivalently isoscalar and isovector couplings

LNRET =
16∑

i=1

∑
τ=0,1

cτ
i Oit

τ , (16)

where t0 = 1 is the identity operator and t1 = τ3 is the third
Pauli matrix. The single-nucleon effective theory is specified

by the unknown ci coefficients, which we refer to as low-
energy constants (LECs). Conventionally, we define a set of
dimensionless NRET coefficients c̃i normalized to the weak
scale by writing

ci ≡
√

2GF c̃i, (17)

where GF = 1.116 × 10−5 GeV−2 is the Fermi constant.
The nucleon-level effective theory that we have described

so far is identical to that developed for the elastic process in
Refs. [12,13]. We have not yet made reference to any partic-
ular nuclear target, let alone a specific nuclear transition. As
such, the ci coefficients are target-independent, and the same
single-nucleon effective theory governs both the elastic and
inelastic conversion processes.

IV. NUCLEAR EFFECTIVE THEORY

Now we are ready to embed the single-nucleon effective
theory described in the previous section into a particular nu-
clear target. The single-nucleon operators {1N , �vN · �σN } and
{�vN , �σN , �vN × �σN } appearing in the NRET basis of Eq. (15)
are treated in the impulse approximation, with �vN interpreted
as the local velocity operator for bound nucleons.

The effective Hamiltonian density can then be expressed as

Heff (�x) =
√

ECE

2me
|φZeff

1s (�0)|qeff

q
e−i �qeff ·�x

∑
τ=0,1

[
lτ
0

A∑
i=1

δ(�x − �xi )] + lA τ
0

A∑
i=1

1

2mN

(
−1

i

←−∇ i · �σN (i)δ(�x − �xi ) + δ(�x − �xi )�σN (i) · 1

i

−→∇
)

+ �lτ
5 ·

A∑
i=1

�σN (i)δ(�x − �xi ) + �lτ
M ·

A∑
i=1

1

2mN

(
−1

i

←−∇ iδ(�x − �xi ) + δ(�x − �xi )
1

i

−→∇ i

)

+�lτ
E ·

A∑
i=1

1

2mN
(
←−∇ i × �σN (i)δ(�x − �xi ) + δ(�x − �xi )�σN (i) × −→∇ i )

]
int

t τ (i), (18)

where we have introduced the leptonic charges/currents

lτ
0 ≡ cτ

11L + cτ
11iq̂ · �σL,

lA τ
0 ≡ cτ

71L + cτ
14iq̂ · �σL,

�lτ
5 ≡ cτ

4 �σL + cτ
6 iq̂ · �σLiq̂ − cτ

9 iq̂ × �σL + cτ
10iq̂1L,

�lτ
M ≡ cτ

2 iq̂1L − cτ
5 iq̂ × �σL + cτ

8 �σL + cτ
16iq̂ · �σLiq̂,

�lτ
E ≡ −cτ

3 q̂1L + cτ
12i�σL + cτ

13q̂ × �σL − icτ
15q̂ · �σLq̂. (19)

The subscript int in Eq. (18) indicates that all nuclear operators are understood as acting on intrinsic nuclear coordinates, i.e.,
the Galilean-invariant Jacobi coordinates. As described in the previous section, the muon wave function has been replaced in
transitions by its average value, and Coulomb distortions of the electron have been encoded in qeff , yielding operators that can
be expanded in spherical waves.

A multipole expansion of the nuclear charges and currents is performed by expanding the plane-wave exp(−i �qeff · �x) in
Eq. (18) in spherical waves, then employing standard spherical harmonic and vector spherical harmonic techniques. Each
of the two charge operators generates a family of multipole operators (indexed by multipolarity J), and each of the three
spatial currents has transverse-magnetic, transverse-electric, and longitudinal projections that each yield an independent set
of multipole operators. Thus, we expect to find a total of 11 independent nuclear responses. Adding a label to denote isospin, the
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single-nucleon multipole operators are

MJM;τ (q) ≡
A∑

i=1

MJM (q�xi ) t τ (i),

�JM;τ (q) ≡
A∑

i=1

MJM (q�xi )�σN (i) · 1

q
�∇i t τ (i),

�JM;τ (q) ≡
A∑

i=1

�MM
JJ (q�xi ) · 1

q
�∇i t τ (i),

�′
JM;τ (q) ≡ −i

A∑
i=1

{
1

q
�∇i × �MM

JJ (q�xi )

}
· 1

q
�∇i t τ (i)

=
A∑

i=1

[
−
√

J

2J + 1
�MM

JJ+1(q�xi ) +
√

J + 1

2J + 1
�MM

JJ−1(q�xi )

]
· 1

q
�∇i t τ (i),

�′′
JM;τ (q) ≡

A∑
i=1

(
1

q
�∇iMJM (q�xi )

)
· 1

q
�∇i t τ (i)

=
A∑

i=1

[√
J + 1

2J + 1
�MM

JJ+1(q�xi ) +
√

J

2J + 1
�MM

JJ−1(q�xi )

]
· 1

q
�∇i t τ (i),

�JM;τ (q) ≡
A∑

i=1

�MM
JJ (q�xi ) · �σN (i) t τ (i),

�′
JM;τ (q) ≡ −i

A∑
i=1

{
1

q
�∇i × �MM

JJ (q�xi )

}
· �σN (i) t τ (i)

=
A∑

i=1

[
−
√

J

2J + 1
�MM

JJ+1(q�xi ) +
√

J + 1

2J + 1
�MM

JJ−1(q�xi )

]
· �σN (i) t τ (i),

�′′
JM;τ (q) ≡

A∑
i=1

{
1

q
�∇iMJM (q�xi )

}
· �σN (i) t τ (i)

=
A∑

i=1

[√
J + 1

2J + 1
�MM

JJ+1(q�xi ) +
√

J

2J + 1
�MM

JJ−1(q�xi )

]
· �σN (i) t τ (i),

�JM;τ (q) ≡ i
A∑

i=1

�MM
JJ (q�xi ) ·

(
�σN (i) × 1

q
�∇i

)
t τ (i),

�′
JM;τ (q) ≡

A∑
i=1

(
1

q
�∇i × �MM

JJ (q�xi )

)
·
(

�σN (i) × 1

q
�∇i

)
t τ (i)

=
A∑

i=1

[
−
√

J

2J + 1
�MM

JJ+1(q�xi ) +
√

J + 1

2J + 1
�MM

JJ−1(q�xi )

]
·
(

�σN (i) × 1

q
�∇i

)
t τ (i),

�′′
JM;τ (q) ≡ i

A∑
i=1

(
1

q
�∇iMJM (q�xi )

)
·
(

�σN (i) × 1

q
�∇i

)
t τ (i)

=
A∑

i=1

[√
J + 1

2J + 1
�MM

JJ+1(q�xi ) +
√

J

2J + 1
�MM

JJ−1(q�xi )

]
·
(

�σN (i) × 1

q
�∇i

)
t τ (i), (20)
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TABLE III. Characteristics of the 11 single-nucleon response functions including the charge/current projection from which they arise,
their transformation properties under P-T [even (E) or odd (O)], and the LECs of the nucleon-level effective theory that are associated with
each response. Based on these results, the elastic μ → e conversion amplitude can depend only on even multipoles of M, �̃′, and �′′, and odd
multipoles of �, �′, and �′′ (shown in bold below).

Projection Charge/Current Operator Range Even J Odd J LECs Probed

Charge 1N MJM J � 0 E-E O-O c1, c11

Charge �vN · �σN �̃JM J � 0 O-E E-O c7, c14

Longitudinal �σN �′′
JM J � 0 O-O E-E c4, c6, c10

Transverse magnetic �σN �JM J � 1 E-O O-E c4, c9

Transverse electric �σN �′
JM J � 1 O-O E-E c4, c9

Longitudinal �vN �̃′′
JM J � 0 E-O O-E c2, c8, c16

Transverse magnetic �vN �JM J � 1 O-O E-E c5, c8

Transverse electric �vN �′
JM J � 1 E-O O-E c5, c8

Longitudinal �vN × �σN �′′
JM J � 0 E-E O-O c3, c12, c15

Transverse magnetic �vN × �σN �̃JM J � 1 O-E E-O c12, c13

Transverse electric �vN × �σN �̃′
JM J � 1 E-E O-O c12, c13

where we have used the multipole projections

MJM (q�x) ≡ jJ (qx)YJM (x̂),

�MM
JL(q�x) ≡ jL(qx) �YJLM (x̂), (21)

and �YJLM is a vector spherical harmonic.
In addition to carrying angular momentum (J, M ), each

multipole operator has a well-defined transformation under
parity �x → −�x. The operators M, �′, �′′, �, �′, and �′′ are
normal-parity operators that transform with a phase (−1)J un-
der parity, whereas �, �, �′, �′′, and � are abnormal-parity
operators that transform with a phase (−1)J+1.

Matrix elements of the above multipole operators evalu-
ated between single-particle harmonic oscillator states can be
expressed analytically in terms of the dimensionless quantity
y = (qb/2)2, where b is the oscillator length scale. In partic-
ular, letting TJM (q�xi ) represent any of the 11 single-particle
operators, the first-quantized matrix elements become

〈n′(�′ 1/2) j′||TJ (q�xi )||n(� 1/2) j〉 = 1√
4π

y(J−K )/2e−y p(y),

(22)

where K = (1)2 for (ab)normal parity operators and p(y) is
a finite-degree polynomial in y. For the choices of phase
conventions in our definitions, all of the matrix elements are
real. We also redefine certain operators, relative to their con-

ventional forms [36], so that all of the operators transform
simply under time-reversal,

�̃JM (q) ≡ �JM (q) + 1
2�′′

JM (q),

�̃′′
JM (q) ≡ �′′

JM (q) − 1
2 MJM (q),

�̃JM (q) ≡ �JM (q) − 1
2�′

JM (q),

�̃′
JM (q) ≡ �′

JM (q) + 1
2�JM (q). (23)

With these changes, the single-particle matrix elements of all
operators transform simply under the exchange of initial and
final states

〈n(� 1/2) j||TJ (q�xi )||n′(�′ 1/2) j′〉
= (−1)λ 〈n′(�′ 1/2) j′||TJ (q�xi )||n(� 1/2) j〉 , (24)

with λ = j′ − j for the operators M, �, �′, �′′, �̃′, and �′′,
and λ = j′ + j for the operators �̃, �′, �̃′′, �, and �̃. The
properties of the nuclear response functions are summarized
in Table III.

Having introduced the single-nucleon response functions,
we can now proceed to write the most general form of the rate
for inelastic μ → e conversion �μe(gs → f ). Details of the
derivation are given in Appendix B. The resulting factorized
form is

�μe(gs → f ) = G2
F

π

q2
eff

1 + q
MT

∣∣φZeff
1s (�0)

∣∣2 ∑
τ=0,1

∑
τ ′=0,1

{
R̃ττ ′

M W ττ ′
M (qeff ) + R̃ττ ′

�′′ W ττ ′
�′′ (qeff ) + R̃ττ ′

�′
(
W ττ ′

�′ (qeff ) + W ττ ′
� (qeff )

)

+ q2
eff

m2
N

[
R̃ττ ′

�̃′′ W
ττ ′
�̃′′ (qeff ) + R̃ττ ′

�̃
W ττ ′

�̃
(qeff ) + R̃ττ ′

�′′ W ττ ′
�′′ (qeff ) + 2R̃ττ ′

�̃′′�′′W
ττ ′
�̃′′�′′ (qeff )

+ R̃ττ ′
�′
(
W ττ ′

�′ (qeff ) + W ττ ′
� (qeff )

)+ R̃ττ ′
�̃′
(
W ττ ′

�̃′ (qeff ) + W ττ ′
�̃

(qeff )
)+ 2R̃ττ ′

��̃

(
W ττ ′

��̃
(qeff ) + W ττ ′

�′�̃′ (qeff )
)]

− 2qeff

mN

[
R̃ττ ′

�̃′′MW ττ ′
�̃′′M (qeff ) + R̃ττ ′

�′′MW ττ ′
�′′M (qeff ) + R̃ττ ′

�̃�′′W
ττ ′
�̃�′′ (qeff )

+ R̃ττ ′
��′
(
W ττ ′

��′ (qeff ) − W ττ ′
�′� (qeff )

)+ R̃ττ ′
�̃′�

(
W ττ ′

�̃′� (qeff ) − W ττ ′
�̃�′ (qeff )

)]}
. (25)
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All of the information about CLFV is encoded in the lep-
tonic response functions R̃ττ ′

i . There are eight independent
direct terms:

R̃ττ ′
M ≡ c̃τ

1 c̃τ ′∗
1 + c̃τ

11c̃τ ′∗
11 ,

R̃ττ ′
�̃

≡ c̃τ
7 c̃τ ′∗

7 + c̃τ
14c̃τ ′∗

14 ,

R̃ττ ′
� = R̃ττ ′

�′ ≡ c̃τ
4 c̃τ ′∗

4 + c̃τ
9 c̃τ ′∗

9 ,

R̃ττ ′
�′′ ≡ (

c̃τ
4 − c̃τ

6

)(
c̃τ ′∗

4 − c̃τ ′∗
6

)+ c̃τ
10c̃τ ′∗

10 ,

R̃ττ ′
�′′ ≡ c̃τ

3 c̃τ ′∗
3 + (

c̃τ
12 − c̃τ

15

)(
c̃τ ′∗

12 − c̃τ ′∗
15

)
,

R̃ττ ′
�̃

= R̃ττ ′
�̃′ ≡ c̃τ

12c̃τ ′∗
12 + c̃τ

13c̃τ ′∗
13 ,

R̃ττ ′
�̃′′ ≡ c̃τ

2 c̃τ ′∗
2 + (

c̃τ
8 − c̃τ

16

)(
c̃τ ′∗

8 − c̃τ ′∗
16

)
,

R̃ττ ′
� = R̃ττ ′

�′ ≡ c̃τ
5 c̃τ ′∗

5 + c̃τ
8 c̃τ ′∗

8 , (26)

and seven independent interference terms

R̃ττ ′
�′′M ≡ Re

[
c̃τ

3 c̃τ ′∗
1 − (

c̃τ
12 − c̃τ

15

)
c̃τ ′∗

11

]
,

R̃ττ ′
�̃′′M ≡ Im

[
c̃τ

2 c̃τ ′∗
1 − (

c̃τ
8 − c̃τ

16

)
c̃τ ′∗

11

]
,

R̃ττ ′
�′� = Rττ ′

��′ ≡ Re
[
c̃τ

5 c̃τ ′∗
4 + c̃τ

8 c̃τ ′∗
9

]
,

R̃ττ ′
�̃�′ = R̃ττ ′

�̃′� ≡ Im
[
c̃τ

13c̃τ ′∗
4 + c̃τ

12c̃τ ′∗
9

]
,

R̃ττ ′
�̃�′′ ≡ Im

[
c̃τ

7 c̃τ ′∗
10 − c̃τ

14

(
c̃τ ′∗

4 − c̃τ ′∗
6

)]
,

R̃ττ ′
�̃′′�′′ ≡ Im

[
c̃τ

2 c̃τ ′∗
3 + (

c̃τ
8 − c̃τ

16

)(
c̃τ ′∗

12 − c̃τ ′∗
15

)]
,

R̃ττ ′
��̃

= R̃ττ ′
�′�̃′ ≡ Im

[
c̃τ

5 c̃τ ′∗
13 + c̃τ

8 c̃τ ′∗
12

]
. (27)

The notation R̃ indicates that the leptonic responses have
been expressed in terms of the dimensionless NRET LECs
c̃i. The leptonic response functions, as bilinear combinations
of the single-nucleon NRET LECs, are target-independent.
Thus, by studying elastic μ → e conversion in a variety of tar-
gets with complementary properties, one can study the LECs
while changing the response-function nuclear physics, obtain-
ing new information. Similarly, as they are also independent
of the nuclear transition being studied, inelastic transitions
also provide new information, complementing the constraints
obtained from elastic conversion.

All of the nuclear physics relevant to μ → e conversion has
been factored into the nuclear response functions W ττ ′

i (qeff ),
which are dimensionless, squared matrix elements of the
various operators introduced in Eq. (20). As indicated, each
nuclear response is evaluated at the effective momentum qeff ,
determined by Eq. (10). The precise definitions of the W ττ ′

i are
provided in Appendix B. The nuclear responses are entirely
determined by standard-model physics. Their numerical val-
ues, which can be calculated using the nuclear shell model, are
strongly dependent on the nuclear target and transition under
consideration.

For a fixed transition, each nuclear response function is
composed of a summation over either even or odd multipoles,
depending on the parity of the underlying operator and the
nuclear transition under consideration. For example, the three
low-lying excited states of 27Al that we consider in this work
are positive-parity states, as is the ground state. So, only mul-
tipoles that conserve parity can contribute to these transitions.

Higher up in the spectrum of Al, there are odd-parity states
that would connect to the ground state only through parity-
violating multipoles. The constraint of parity also determines
the interference terms that can contribute to the conversion
rate. For example, � and � are both transverse-magnetic
projections, but they do not interfere because for fixed J they
connect to states of opposite parity.

Equation (25) is a generalization of the elastic μ → e con-
version rate originally derived in Refs. [12,13]. To recover the
elastic rate, Eq. (59) of Ref. [13], one takes f to be the nuclear
ground state. In this case, the surviving nuclear responses are
those that simultaneously conserve parity and time-reversal—
M, �′, �′′, �, �̃′, and �′′. Six of the direct responses and
two of the interference terms involve only these operators, and
thus are nonzero. The NRET coefficients c2, c7, c14, and c16

do not appear in the surviving response functions R̃ττ ′
i and thus

can only be probed in inelastic conversion.
The responses �, �′, and �̃—which, by virtue of their P

and T transformation properties, contribute only to excited-
state transitions—share the same leptonic response functions
as their elastic counterparts �′, �, and �̃′. In other words,
transverse-magnetic and transverse-electric projections of the
same nuclear current share the same leptonic response func-
tions, R̃ττ ′

O = R̃ττ ′
O′ for O = �,�, �̃. Therefore, although �,

�′, and �̃ contribute only to excited-state transitions, they are
always accompanied by operators that can, in principle, con-
tribute to the ground-state process. In contrast, the operators
�̃ and �̃′′ are purely inelastic, and through their respective
response functions R̃ττ ′

�̃
and R̃ττ ′

�̃′′ they provide sensitivity to
the NRET LECs (c7, c14) and (c2, c16), which are not probed
by elastic μ → e conversion.

The previous paragraph could be interpreted to mean that
the inelastic responses �, �′, and �̃ do not provide any CLFV
information that is not already available from the elastic pro-
cess, since they share the same CLFV response functions as
their elastic counterparts. In fact, this is a target-dependent
statement that is only true if the nuclear ground state permits
the elastic response in question. In each electric/magnetic
pair, one response is generated by a normal parity operator,
the other by an abnormal parity one. This can lead to situations
where nuclear selection rules allow one response but not the
other to contribute to a particular transition.

For example, if the nuclear ground state carries angular
momentum Jπ = 0+, then the only response functions that
can contribute to the ground-state process are M and �′′.
If the same nucleus were to transition to an excited state
with Jπ = 2+, then one would gain sensitivity to additional
CLFV coefficients that, although they could be measured
in ground-state transitions in other nuclear targets, do not
contribute to the elastic process in the nucleus under con-
sideration. In particular, the coefficient R̃ττ ′

� = R̃ττ ′
�′ could be

measured in the 0+ → 2+ transition due to contributions from
the normal-parity transverse-magnetic multipole operator �2.
The abnormal parity transverse-electric response �′ would
not contribute to either the 0+ → 0+ elastic process or the
0+ → 2+ inelastic transition.

Five of the interference terms in Eq. (27) are unique to the
inelastic case and depend on the NRET LECs containing an
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imaginary component. In general, the ci coefficients are com-
plex (see Sec 4.3 of Ref. [14] for a detailed discussion of this
point). Like the direct contributions, the interference terms
are symmetric under the exchange of electric and magnetic
components, leading to several redundancies in the CLFV
response functions (e.g., R̃ττ ′

��′ = R̃ττ ′
�′�).

Current conservation constraints

We have not assumed in our multipole operator de-
velopment that the vector current is conserved. However,
applications of the formalism could include those utilizing
the standard model’s conserved vector current, e.g., when
the lepton-nucleus interaction is mediated by exchange of a
photon. In such cases, it can be advantageous to use alternative
forms of certain operators.

First consider the longitudinal multipoles �̃′′, �′′, and �′′
associated, respectively, with the impulse-approximation ve-
locity (or convection), spin, and spin-velocity currents. The
spin is an axial vector, while the spin-velocity current is not
generated by the standard model (to linear order in velocity).
Consequently, the relevant operator is �̃′′, which by partial
integration can be rewritten as

�̃′′
JM (q) = imN

q2

∫
d�x[ �∇MJM (q�x)] · �jc(�x)

→ imN

q2

∫
d�x[ �∇MJM (q�x)] · �j(�x)

= − imN

q2

∫
d�x MJM (q�x) �∇ · �j(�x). (28)

In the first line above, �jc(�x) is the impulse-approximation
form of the convection current,

�jc(�x) =
A∑

i=1

1

2i mN
[−←−∇ iδ(�x − �xi ) + δ(�x − �xi )

−→∇ i], (29)

while in the second line it has been replaced by the full nuclear
vector current �j(�x). The full current would include additional
one-body contributions, for example, magnetization current
i �q/mN × �σN , which is transverse and thus makes no contri-
bution. But it would also include all of the corrections beyond
the impulse approximation, such as two-nucleon currents. The
last line in Eq. (28) is the general form of �̃′′

JM , prior to
specializing to the impulse approximation.

For a conserved current, the continuity equation yields

�∇ · �j(�x) = −i[H, ρ(�x)],

where H is the nuclear Hamiltonian and ρ the vector charge.
Making this replacement yields

〈 j f |�̃′′
JM (q)| ji〉 = −mN

q2
(E f − Ei )〈 j f |MJM (q)| ji〉

= mN q0

q2
〈 j f |MJM (q)| ji〉. (30)

This result can be substituted into the expressions for the
nuclear response functions given in Eqs. (B3) and (B4), elim-
inating �̃′′

J .

As we are working in the impulse approximation, what is
the advantage of this rewriting? Both the one-body contribu-
tion and two-body corrections to the vector current �j(�x) are
O(�vN ) (although the former is enhanced by the large isovec-
tor magnetic moment μT =1 ≈ 4.7). In contrast, the one-body
contribution to the charge operator is O(1) while the two-body
corrections are O(�v 2

N ). By using MJM , results become much
less sensitive to such corrections.

Similar steps can be taken with the transverse electric
response, where the convection current contribution enters
through �′

JM . All contributions of the convection current that
are constrained by current conservation can be identified and
eliminated in terms of the charge operator, through the gen-
eralized Siegert’s theorem [37]. There are several possible
re-writings of the resulting operator that are all equivalent if
used in many-body calculations that respect current conser-
vation: Explicit forms can be found in Ref. [38]. However,
forms that remain well behaved at high q, while generating
important corrections at low q, produce quite small correc-
tions once the momentum transfer reaches q ≈ 100 MeV [39].
Consequently, for the present application, there is no motiva-
tion for using more complicated expressions, in preference to
the simpler transverse electric operator �′

JM employed here.
The importance of using the full current operator (for a

conserved current) is connected with the choice we have made
to describe the 27Al states in the 2s-1d shell model. By par-
tially integrating the first line of Eq. (28) one can show

〈n′(�′ 1/2) j′||�̃′′
J (q�xi )||n(� 1/2) j〉

= mN

q2
(N − N ′)ω 〈n′(�′ 1/2) j′||MJ (q�xi )||n(� 1/2) j〉

= 1

4y
(N − N ′) 〈n′(�′ 1/2

)
j′||MJ (q�xi )||n(� 1/2) j〉 , (31)

where ω = 1/mN b2 is the oscillator frequency, and N ≡
2(n − 1) + � and N ′ are the principal oscillator quantum num-
bers associated with oscillator shell energies (N + 3/2)h̄ω.
Consequently all impulse-approximation matrix elements of
�̃′′ vanish for our shell-model description of 27Al as N = N ′
(and similarly for any other target described in a basis of 0h̄ω

shell-model configurations).
We conclude that for such shell-model calculations, tran-

sition matrix elements of �̃′′
J are generated entirely by

corrections to the impulse approximation. By assuming a
conserved vector current and exploiting the continuity equa-
tion, we can take account of these corrections—which we
have previously noted are of the same order as the one-body
contribution, in an expansion in the nucleon velocity. In our
numerical results below, we will always assume that the nu-
clear convective current is conserved and apply Eq. (30), thus
avoiding the direct evaluation of �̃′′. We again caution the
reader that the extent to which current conservation applies is
dependent on the underlying CLFV interaction.

V. RESPONSE FUNCTION PROPERTIES

Having derived the most general expression for the inelas-
tic μ → e conversion rate, Eq. (25), we can now calculate
the ratio in Eq. (3), which determines the relative importance
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of excited-state contributions. Before undertaking this task,
we will discuss a few properties of the nuclear response
functions that will aid in our interpretation and understand-
ing of the inelastic process. The explicit forms of these
response functions—for the phase conventions used here,
which produce real nuclear matrix elements—can be found
in Appendix B.

The operators M and {�,�′, �′′} arise, respectively, from
couplings to nuclear charge and spin—macroscopic quantities
that are nonvanishing for a pointlike nucleus. The remaining
responses—involving the operators �̃, �, �′, �̃′′, �̃, �̃′, and
�′′—depend explicitly on �vN , defined as the set of Galilean-
invariant internucleon velocities of the bound nucleons, and
thus these operators arise from the composite structure of the
nucleus. In the rate formula of Eq. (25), their nuclear matrix
elements are accompanied by a factor of qeff/mN , which van-
ishes in the long-wavelength (pointlike) limit, qeff → 0.

By considering the long-wavelength form of the various
multipole operators, we can make several observations that re-
main true at finite momentum transfer. We begin by discussing
only those operators that contribute to elastic μ → e con-
version. The small-q forms of the three velocity-independent
multipole operators are

M00(0) = 1√
4π

A∑
i=1

1N (i),

�′
1M (0) = 1√

6π

A∑
i=1

σ1M (i),

�′′
1M (0) = 1√

12π

A∑
i=1

σ1M (i). (32)

These three operators survive in the point-nucleus limit and
are parity even, and thus contribute to elastic scattering. The
two spin operators can also drive inelastic μ → e conversion.
For isoscalar coupling, M00(0) is coherent, with a matrix ele-
ment proportional to the total nucleon number A. In contrast,
the isovector charge monopole and the two spin operators
act only on the single unpaired valence nucleon in 27Al. Of
course, for the momentum transfers ≈ mμ relevant for μ → e
conversion, the A2 rate coherence from isoscalar M00(0) is
reduced somewhat by the elastic form factor, an effect whose
fractional impact grows with A.

The threshold forms of the velocity-dependent operators
that contribute to elastic scattering are

�1M (0) = − 1√
24π

A∑
i=1

�1M (i),

�̃′
2M (0) = − 1√

20π

A∑
i=1

[
�xi ⊗

(
�σN (i) × 1

i
�∇i

)
1

]
2M

,

�′′
JM (0) = − δJ0

6
√

π

A∑
i=1

�σN (i) · ��(i)

− δJ2√
30π

A∑
i=1

[
�xi ⊗

(
�σN (i) × 1

i
�∇i

)
1

]
2M

, (33)

so that �1M (0) and �′′
00(0) measure, respectively, the total

orbital angular momentum and total spin-orbit response of the
nucleus. As we discuss in detail below, the operator �′′

00 is co-
herently enhanced in certain nuclei [35], including 27Al. All of
these operators also contribute to inelastic μ → e conversion.

There are five additional operators that only contribute to
inelastic scattering. For parity-conserving nuclear transitions,
their leading threshold forms are

�2M (q) = q2r2

15

A∑
i=1

[Y2(�i ) ⊗ �σN (i)]2M,

�′
2M (0) = 1√

20π

A∑
i=1

[�xi ⊗ �∇i]2M,

�̃′′
JM (0) = δJ0

12
√

π

A∑
i=1

(
←−∇ i · �xi − �xi · −→∇ i )

+ δJ2√
30π

A∑
i=1

[�xi ⊗ �∇i]2M,

�̃1M (0) = 1

2
√

12π

A∑
i=1

[�xi �σN (i) · −→∇ i − ←−∇ i · �σN (i) �xi]1M,

�1M (0) = − 1√
12π

A∑
i=1

[
�xi ⊗

(
�σN (i) × 1

i
�∇i

)
1

]
1M

. (34)

For elastic scattering, despite the fact that μ → e con-
version operators are evaluated for qeff ≈ mμ, the threshold
forms often provide useful information on the strength of
matrix elements, as we know the charge, spin, and angular
momentum of the valence nucleons. For example, if we have
an operator proportional to ��(i) but a nucleus with a single
unpaired nucleon in an s-wave shell-model orbital, then we
would expect to find a weak matrix element. However, for
inelastic transitions, the interplay between the nuclear physics
of the transition and operator properties is more subtle. In-
elastic transition matrix elements generally must be addressed
through detailed nuclear structure calculations; we have done
this for 27Al and report the results below.

The threshold operators do play another role relevant to
transitions, connecting μ → e conversion matrix elements to
those mediating standard-model processes like γ -decay and
β-decay. While the connections are qualitative because of the
momentum-transfer differences, nevertheless they can serve
as a crosscheck on the nuclear modeling.

27Al is an attractive target choice for studies of both elastic
and inelastic μ → e conversion. The ground state has Jπ =
5/2+, making it sensitive to all six of the nuclear response
functions associated with elastic μ → e conversion [12,13].
The low-energy spectrum of 27Al contains three reasonably
well spaced excited states, Jπ = 1/2+ (0.844 MeV), 3/2+
(1.015 MeV), and 7/2+ (2.212 MeV), in the energy window
where inelastic μ → e conversion might be detectable above
background.

Figure 1 compares the 27Al spectrum to theoretical esti-
mates obtained from 2s-1d nuclear shell-model calculations.
We employed three widely used effective interactions: USDA
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FIG. 1. Experimental and theoretical (shell-model) values of the
nuclear excitation energy �Enuc for low-lying eigenstates of 27Al.

and USDB [40] and Brown-Wildenthal (BW) [41]. The
agreement among these calculations and with experiment is
generally quite good. The one-body density matrices needed
in nuclear response function evaluations were calculated from
the associated wave functions. A single-particle harmonic os-
cillator basis was adopted for Slater determinants, a choice
that preserves translational invariance in the computed transi-
tion densities.

Transitions from the 5/2+ ground state to the 3/2+ and
7/2+ second and third excited states of 27Al are “allowed,”
as they can be driven by the point-nucleus operator �σN . For
small qeff , these transitions would dominate over “forbidden”
transitions, such as the 5/2+ → 1/2+ quadrupole transition
to the first excited state. However, the effective momentum
transfer in μ → e conversion is not small: the relevant dimen-
sionless quantity governing the nuclear multipole expansion
is y = (qeffb/2)2 ≈ 0.27 in 27Al, where b is the oscillator
parameter. The momentum transfer can alter the relative im-
portance of the different transitions compared to the naïve
long-wavelength estimate. The evolution of the 27Al response
functions with momentum transfer qeff is displayed for each
of the 16 nuclear responses in Figs. 2–4.

The top panels of Fig. 2 show the isoscalar and isovector
nuclear charge responses, W 00

M (q) and W 11
M (q), for transi-

tions to the ground and first three excited states of 27Al,
summed over all contributing multipoles. At qeff = 0 only
the monopole charge operator survives: its threshold form is
diagonal and thus only contributes to the elastic transition.
The relevant excited-state transitions are generated by the qeff -
dependent higher charge multipoles M2, M4, etc., allowed by
parity and angular momentum triangulation. The M2 contri-
butions are dominant: the isoscalar form factors grow rapidly
with qeff and by qeff ≈ mμ are approaching their peak values.
The shell model predicts strong M2 responses, and we will see
below that this is consistent with experiment.

For isovector coupling, the coherence of the monopole
response is lost with only the single unpaired neutron con-
tributing, greatly diminishing the elastic response. But a
similar reduction to that observed in the isoscalar case, though
somewhat less in magnitude, is also apparent in the inelas-
tic responses. The natural explanation for this is that the
strong M2 amplitudes noted above are a consequence of a
collective quadrupole deformation of the nucleus, an isoscalar
effect.

The middle (bottom) panels of Fig. 2 show the longitudinal
(transverse) spin response function for the same transitions.
The response function for the nonallowed transition to the
1/2+ state increases rapidly, reaching a broad peak not far
beyond the momentum transfer of interest, qeff ≈ mμ. The
transverse magnetic operator �2M would contribute to this
transition, which we noted previously has the leading be-
havior q2[r2Y2(�) ⊗ �σN ]2M . Similarly, the allowed transverse
electric �′

1M and longitudinal �′′
1M spin operators include,

in addition to their leading dependence on �σN , corrections
of the form q2[r2Y2(�) ⊗ �σN ]1M . The allowed responses are
relatively weak at threshold and their profiles in qeff are
generally flat or slightly declining, without a diffraction mini-
mum. Consequently, at the physically relevant value of qeff ,
the strengths of the allowed (�′ and �′′) and momentum-
suppressed (�) responses are comparable, for both isoscalar
and isovector coupling. These results are consistent with
relatively weak allowed responses in two cases and with com-
paratively large momentum-dependent corrections originating
from an enhanced quadrupole interaction—a phenomenon
frequently found in midshell nuclei like 27Al.

One concludes that nuclear structure effects must be sup-
pressing transitions to the 3/2+ and 7/2+ states relative to
transitions to the 1/2+ state. While this conclusion is based
on the shell model, it is consistent with experiment: The
measured (magnetic) B(M1) values for the gamma decays
of the 3/2+ and 7/2+ states to the ground state are a small
fraction of a single-particle unit, 0.0122 W.u. and 0.0627 W.u.,
respectively, while the (electric) B(E2) values for the decays
of the 1/2+, 3/2+, and 7/2+ states are all large, 7.86 W.u.,
7.8 W.u., and 15.0 W.u., respectively [42]. Recall that the elec-
tric quadrupole γ -decay amplitude can be expressed in terms
of the charge quadrupole M2 operator via Siegert’s theorem,
while the γ -decay magnetic dipole amplitude involves a com-
bination of �σN and ��. Gamma decay probes these operators
very near threshold.

A simple exercise shows that indeed some interesting
collective physics is at play in the response functions. The
naïve single-particle shell model of 27Al describes transi-
tions from the ground state to the first two excited states
as 2d5/2 → 2s1/2 and 2d5/2 → 2d3/2, respectively. Evaluating
the response function ratio in this simple picture yields

W�′′ (gs → 1/2+)

W�′′ (gs → 3/2+)
→ | 〈2s1/2||�′′

3 (qeffr)||2d5/2〉 |2
| 〈2d3/2||�′′

1 (qeffr)||2d5/2〉 |2 ≈ 0.23,

(35)

where we have suppressed isospin labels for simplicity (the
response couples only to the odd proton). This calculation
properly accounts for the significant momentum transfer and
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FIG. 2. The shell-model charge and spin nuclear response functions for 27Al as a function of the effective momentum qeff evaluated for
transitions to the ground-state (solid blue) and first three excited states: 1/2+ (dashed red), 3/2+ (dotted purple), and 7/2+ (dot-dashed orange).
Responses that are nonzero at qeff = 0 include allowed contributions. The isoscalar (isovector) responses are on left (right). The vertical dashed
line marks the value qeff = 110.81 MeV of the effective momentum transfer for the ground-state transition.

leads one to conclude that the allowed transition will be the
stronger.

However, repeating the calculation with our fully corre-
lated 2s-1d shell-model wave function, we obtain a very
different answer

W�′′ (gs → 1/2+)

W�′′ (gs → 3/2+)
≈ 1.9, (36)

with the forbidden transition being the stronger. Similar re-
sults are obtained for all three of the effective interactions
we employ. We have noted the consistency of this result
with γ -decay. It is also consistent with the long lifetime of
the isospin-analog electron-capture reaction 27Si(5/2+, gs) →
27Al(3/2+, 1.015 MeV), log( f t ) = 7.23(6) [42].

The nucleus can also alter the naïve hierarchy of responses
by enhancing certain operators through coherence. The oper-

ator �′′
00 is coherently enhanced in nuclei where one of two

spin-orbit partners j = � ± 1
2 is occupied [cf. Eq. (33)]. 27Al

is an ideal nucleus for exploiting this coherence, as the naïve
ground-state configuration has five protons and six neutrons
in the 2d5/2 shell and no nucleons in the 2d3/2 shell. As a
result, the �′′ response, which is suppressed by q2

eff/m2
N in the

conversion rate, can be elevated by coherence to contribute
at the same level as the elastic spin responses �′, �′′, even
including the additional momentum suppression factor.

VI. EXPERIMENTAL SIGNATURES

The electrons produced in μ → e conversion must be dis-
tinguished from background electrons originating in standard-
model μ → e + 2ν decays. Because the neutrinos always
carry away some amount of energy, the continuous spectrum
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FIG. 3. As in Fig. 2 but for velocity-dependent nuclear responses that contribute to the elastic process. In the μ → e conversion rate, these
responses enter with an additional factor q2

eff/m2
N ≈ 0.014 in 27Al.

of DIO electrons falls off steeply towards the endpoint energy.
Conversion electrons, however, are emitted exactly at the end-
point energy, assuming that the nucleus remains in the ground
state. Any energy that is absorbed by the nucleus to produce
an internal excitation must be subtracted from the conver-
sion electron, as in Eq. (2), moving the signal into the DIO
background. For the low-lying states of 27Al with excitation
energies �Enuc � 2 MeV that we consider, the DIO contribu-
tions in the relevant spectral region are modest. Fortunately,
this background is well understood theoretically [43–45] and
can be subtracted when performing a shape analysis of the
measured electron spectrum.

The less well understood electron background from radia-
tive muon capture (RMC)

μ− + A(Z, N ) → νμ + γ + A(Z − 1, N + 1), (37)

where the emitted photon subsequently undergoes pair pro-
duction γ → e+e−, does not contribute in this energy

window, as the endpoint for RMC electrons in 27Al is
3.62 MeV below the maximum CE energy.

The monoenergetic CE will be registered in the Mu2e
detector with a reconstructed momentum qrec that differs from
the initial momentum q due to energy losses incurred as the
electron moves through additional layers of the aluminium
target and through the proton absorber before reaching the
calorimeter. The momentum resolution of the Mu2e detector
is significantly more precise than the smearing due to energy
losses. Recently, the Mu2e collaboration performed detailed
simulation studies to characterize the detector response and
overall efficiency [46]. Based on this study, the energy loss
experienced by electrons in the signal window (q � 100 MeV)
results in a typical shift in the reconstructed momentum δq0 =
qrec − q = −0.5497(26) MeV. The smearing is highly asym-
metric, with a long low-energy tail.

The shape of the CE signal generated by individual nuclear
transitions is independent of the underlying CLFV mecha-
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FIG. 4. As in Fig. 2 but for purely inelastic responses where the ground-state transition is forbidden. In the μ → e conversion rate, these
responses enter with an additional factor q2

eff/m2
N ≈ 0.014 in 27Al.

nism; generically, one expects a mono-energetic electron with
momentum q determined by Eq. (2), which is then smeared
out by energy losses in the tracker. When more than one
nuclear final state contributes, the smeared mono-energetic
signals from each transition are combined in a unique way
depending on the respective excitation energies �Enuc and the
relative branching ratios [see Eq. (3)]. As a result, the com-
bined signal contains information about underlying CLFV
operators that is not available from the elastic process alone.

The phenomenology of inelastic μ → e conversion can
be quite complicated, due to the large number of terms in
Eq. (25) that can simultaneously contribute. Restricting our
attention to the direct terms and considering either purely
isoscalar or purely isovector couplings, there are 16 indepen-
dent “directions” in CLFV parameter space that are accessible
to experiments. In this work, we perform a sensitivity study
by considering each direction independently. That is, we cal-
culate the relative branching ratio2

Rμe(gs → f )

Rμe(gs → gs)
= �μe(gs → f )

�μe(gs → gs)

→
(

Z inel
eff

Zel
eff

)3
W ττ

O (gs → f )

W ττ ′
O (gs → gs)

, (38)

2In our numerical results, we include small phase-space corrections
to Eq. (38) from the variation in q2

eff/(1 + q/MT ) as the nuclear
transition is varied. The same applies below in Eqs. (39) and (40).

where on the second line we take the limit of a single response
function (or minimal pair of responses, e.g., W ττ

� + W ττ
�′ ). In

this limit, the transition-independent CLFV response coeffi-
cient R̃ττ

O drops out of the ratio. Aside from the fixed rescaling
due to the effective charge, the quantity that we explore is a
nuclear response function ratio, depending only on standard-
model physics. However, if the spectral endpoint signature of
the chosen W ττ

O is distinctive, then the presence or absence
of this signature would constrain R̃ττ

O and thus the source of
CLFV physics.

We assess the phenomenological importance of inelastic
μ → e conversion by estimating the expected electron spec-
trum in different CFLV scenarios using the Monte Carlo
results of the recent Mu2e simulation study. Starting from
their result for the elastic electron spectrum, we generate an
excited-state signature by shifting the signal by the excitation
energy �Enuc and rescaling the amplitude by the relative
response function ratio in Eq. (38). The various excited-state
signals are then added together to the elastic signal to generate
the total inelastic CE spectrum.

The needed 27Al nuclear response functions are taken from
the shell model: we use the three 2s-1d interactions described
previously [40,41] to assess the nuclear modeling uncertain-
ties. The shell-model diagonalizations were performed with
the configuration-interaction code BIGSTICK [47,48].

As the primary quantity derived from nuclear shell-model
calculations is a ratio, many systematic uncertainties associ-
ated with nuclear response function evaluations should cancel.
For example, the well-known “quenching” of the Gamow-
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TABLE IV. Relative μ → e conversion strengths for transitions
to the first three excited states of 27Al, normalized by either the
ground-state (upper) or 7/2+ state (lower). Reported errors cor-
respond to one standard deviation about the mean of the three
shell-model calculations performed.

Rμe(gs → f )/Rμe(gs → gs)

Response f = 1/2+ 3/2+ 7/2+

W 00
M 2.40(3) × 10−4 4.4(2) × 10−4 9.4(2) × 10−4

W 11
M 8.2(5) × 10−3 0.0113(5) 0.019(1)

W 00
�′′ 0.084(4) 0.042(3) 0.185(7)

W 11
�′′ 0.081(4) 0.055(4) 0.194(10)

W 00
� + W 00

�′ 0.20(2) 0.22(2) 0.30(3)

W 11
� + W 11

�′ 0.22(3) 0.22(3) 0.33(4)

W 00
�′′ 7(1) × 10−4 8(1) × 10−4 2.8(4) × 10−3

W 11
�′′ 6(3) × 10−3 0.015(2) 0.048(6)

W 00
�̃

+ W 00
�̃′ 3.6(8) 2.7(7) 34(6)

W 11
�̃

+ W 11
�̃′ 7(3) × 10−3 0.037(4) 0.163(4)

W 00
� + W 00

�′ 2.41(4) × 10−3 2.6(2) × 10−3 7.7(2) × 10−3

W 11
� + W 11

�′ 2.1(2) × 10−3 0.084(8) 0.010(2)

W 00
�̃′′ 0.0361(8) 0.097(4) 1

W 11
�̃′′ 0.062(6) 0.12(1) 1

W 00
�̃

7(3) × 10−3 0.016(6) 1

W 11
�̃

0.010(3) 0.04(2) 1

Teller operator στ requires one to employ a renormalized
value of the axial coupling constant gA that is roughly 80%
of the free-nucleon value to faithfully reproduce the measured
β decay lifetimes of sd-shell nuclei [49]. This correction—
and others like it—would drop out of the required response
function ratio in Eq. (38). In the general case where multiple
nuclear response functions contribute simultaneously, effects
of operator mixing and renormalization would need to be
more carefully treated.

If the elastic process is not forbidden, then we normalize
the amplitude of the expected CE signal by fixing the ground-
state CLFV branching ratio to the fiducial value Rμe(gs →
gs) = 10−15. In cases where the elastic process is forbidden
(�̃′′ or �̃), we normalize by fixing the value of the largest
individual branching ratio (which, in all cases considered, is
to the 7/2+ state at 2.2 MeV) to the fiducial value Rμe(gs →
f ) = 10−15. The predicted electron spectra correspond to
the expected counts in Mu2e Run I, where 6 × 1016 muons
will be stopped. Table IV gives the relative strengths of the
inelastic transitions for each nuclear response in 27Al, as
well as the theoretical uncertainties inferred from the spread
of the three shell-model calculations. The expected electron
spectra corresponding to each of the 16 simplified CLFV
scenarios are shown in Figs. 5–7. The uncertainties in the
computed spectra are obtained by combining the estimated
theory error on the relative branching ratios with the reported
statistical error from the Mu2e Monte Carlo simulations of
the elastic spectrum. We now discuss each CLFV scenario in
detail:

A. Coherent conversion

Many previous studies [8–11,31,50,51] have focused on
coherent μ → e conversion, which can arise, for example,
from a scalar or vector coupling of the leptons to quarks or a
dipole coupling to photons. We first take the CLFV coupling
to be isoscalar, thereby maximizing the coherent enhance-
ment. As no such coherence arises for inelastic transitions, the
elastic contribution dominates the rate. From Table IV, we see
that transitions to excited states constitute ≈0.1% of the total
response, consistent with the expected elastic enhancement of
≈0.43A2 ≈ 300 (including effects of the elastic form factor).
The top left panel of Fig. 5 demonstrates that the inclusion
of excited-state contributions has no discernible effect on the
simulated elastic spectrum of Ref. [46].

If the underlying CLFV charge coupling is isovector, then
the coherence is lost: the scattering takes place on the un-
paired nucleon. The leading multipole operator for the elastic
process is monopole, M0, while that for inelastic conversion
is quadrupole, M2. The resulting q-dependent dimensional
suppression of inelastic responses is ≈ a factor of seven. The
computed inelastic contribution is smaller, ≈3% of the total,
reflecting the specific nuclear structure of 27Al. Consequently,
if experiment finds even a modest inelastic contribution, then
the CLFV could not be entirely attributed to a charge in-
teraction, regardless of the charge’s isospin couplings. The
resulting electron spectrum is shown in the top right panel of
Fig. 5.

B. Spin-dependent conversion

Spin-dependent operators, which couple primarily to the
unpaired proton in 27Al, have been studied in the form �σL · �σN

[52,53]. In the NRET formalism two spin responses arise
without velocity suppression, and three more arise when �vN

is included to first order. We discuss the former here. Spin-
dependent operators primarily couple to the odd proton in
27Al; as a result, there is typically little difference between
isoscalar and isovector variants of the same response.

Longitudinal coupling to spin, associated with the
abnormal-parity operator �′′

J , arises for pseudoscalar or
axion-like-particle (ALP) CLFV exchanges [14,54]. The con-
tribution of the first excited state is roughly 9% of the
elastic response. As the peak of the inelastic electron spec-
trum is displaced from the elastic peak, this produces a 40%
enhancement in the spectrum for qrec ≈ 103.5 MeV/c, distin-
guishing this case from the charge responses discussed above.
(See the middle panels of Fig. 5.) The operator dominat-
ing this transition is �′′

3 , which has the threshold behavior
q2[r2Y2(�) ⊗ �σN ]3M , underscoring again the importance of
the strong quadrupole in enhancing momentum-dependent
contributions to 27Al response functions.

A transverse coupling to spin generates the electric and
magnetic operators �′

J and �J , with parities (−1)J+1 and
(−1)J , respectively. The inelastic contributions are quite sub-
stantial, with each of the first three excited states contributing
with strengths ≈20 − 35% that of the ground state. This
creates a distinctive second peak in the CE spectrum near
103.5 MeV/c, shown in the bottom panels of Fig. 5.
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FIG. 5. Expected electron counts in reconstructed momentum bins of width 50 keV/c in Mu2e Run I for six different CLFV scenarios:
coherent conversion (top panels), longitudinal spin-dependent (middle), and transverse spin-dependent (bottom). The left (right) column
corresponds to purely isoscalar (isovector) responses. The total CE signal (black) is separated into contributions from the nuclear ground state
(blue) and first three excited states at 0.84 MeV (red), 1.0 MeV (purple), and 2.2 MeV (orange). Green squares denote the DIO background,
which dominates all other sources [46]. The gray shading indicates the region 103.60 < qrec < 104.90 MeV/c where the Mu2e sensitivity has
been optimized. Each panel is normalized to produce a ground-state branching ratio Rμe(gs → gs) = 10−15. The theory uncertainty associated
with variations among the shell-model predictions of nuclear response function ratios and the statistical uncertainty in simulations of the Mu2e
detector response were combined in computing error bars.

FIG. 6. As in Fig. 5 but for velocity-dependent nuclear response functions.
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FIG. 7. As in Fig. 5 but for velocity-dependent nuclear response functions. The purely inelastic transitions driven by �̃ and �̃′′ are
normalized so that the dominant transition (to the 7/2+ state) has a branching ratio Rμe(gs → f ) = 10−15.

C. Exotic responses

Last, we consider several responses that depend explicitly
on nuclear compositeness through their dependence on the
internucleon velocity operator �vN [12,13]. When matched to
a Lorentz-invariant, quark-level effective theory, some fine
tuning is required to make �vN -dependent operators leading
[14]. From a bottom-up perspective, however, the associated
response functions contain new CLFV information accessible
to experiment.

If CLFV couples to the transverse components of the
nuclear convective current, then the response W ττ

� + W ττ
�′ is

generated. In the isoscalar case, the excited-state contributions
represent ≈1% of the total response. Correspondingly, the
top left panel of Fig. 3 shows almost no discernible inelastic
contribution. However, if the coupling is isovector, then the
transition to the 3/2+ state provides a modest (≈10%) contri-
bution, leading to a roughly 40% enhancement in the number
of electron counts around 103.5 MeV/c.

Next, we consider responses that arise from projections of
the nuclear spin-velocity current �vN × �σN , which generically
appears when CLFV is mediated by tensor exchanges [13,14].
Taking the longitudinal component yields the response �′′.
As discussed in Sec. V, this response is coherently enhanced
in nuclei, like 27Al, where one of two spin-orbit partner or-
bitals is occupied. Similar to the case of the isoscalar charge
response W 00

M , the coherent enhancement of the isoscalar ten-

sor response W 00
�′′ applies only to the ground-state transition;

excited states contribute �0.5% of the total response. The
resulting CE spectrum, shown in the bottom left panel of
Fig. 6, is indistinguishable from the purely elastic signal. The
isovector response W 11

�′′ shows a very slight excess.
Therefore, while it is true that if any significant excess is

measured over the elastic signal, then there must be some
CLFV mechanism besides the simple coupling to nuclear
charge WM , the converse does not hold: The absence of an
appreciable inelastic CE signal does not imply that μ → e
conversion is mediated the coherent operator WM . If a signal
consistent with purely elastic μ → e conversion is observed,
then subsequent measurements with additional target isotopes
would be required to distinguish between WM , W�′′ , and
W 00

� + W 00
�′ as the CLFV source.

Another interesting case is W 00
�̃

+ W 00
�̃′ , generated from the

transverse projection of �vN × �σN . The transition to the 7/2+
state at 2.2 MeV is ≈40 times stronger than the suppressed
elastic transition, dominating the response, as shown in the
bottom left panel of Fig. 7. The expected number of counts
is high because of our adopted normalization to the ground-
state rate. If the coupling is isovector, then the transition to
the 7/2+ state provides only a modest contribution, yielding a
small second peak in the electron spectrum, deep in the DIO
background, which can be seen in the bottom right panel of
Fig. 7.
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The last two responses considered here are associated
with CLFV operators that can only be probed in inelastic
transitions, as the elastic response vanishes. The response
�̃ is generated from interactions that couple to the nu-
clear axial charge, �vN · �σN . Our calculations predict that
�95% of the transition strength goes to the 7/2+ state at
2.2 MeV. This places the signal—shown in the top panels
of Fig. 7—in a region where the DIO background is sub-
stantial, so that a background subtraction would be needed.
While the DIO shape is known well, ultimately the success
of the subtraction will depend on statistical details of future
experiments.

Finally, we consider the response �̃′′
J , defined as the longi-

tudinal projection of the full nuclear current �j(�x), which we
assume is conserved to rewrite the operator in terms of MJ

and the state energies, as in Eq. (30). The resulting response
is dominated by the transition to the 7/2+ state, although
the first two excited states also make modest contributions.
This is shown in the middle panels of Fig. 7, where the total
electron spectrum is double peaked, with the primary response
obscured by the DIO background.

While the predicted counts in each 50 keV/c bin are
typically small, our estimates are based on Mu2e Run I,
where 6 × 1016 muons will be captured. Over the total ex-
perimental lifetime, Mu2e is expected to stop 1018 muons
in its 27Al target [6], improving the statistics by more
than an order of magnitude. Mu2e-II [18,55], a proposed
extension leveraging proton beamline upgrades at Fermi-
lab, could yield a further order-of-magnitude improvement.
There is also the possibility that experiments can enhance
their sensitivity to inelastic conversion by detecting the
coincident low-energy photons emitted when the nucleus
de-excites.

In our analysis, we employed Mu2e simulation data. Our
conclusions should apply equally well to COMET, though
the exact shape of the reconstructed electron signal will
likely differ to some extent. Our analysis is a sensitivity
study, exploring separately several charge, spin, and convec-
tion current responses generated in NRET, assuming either
isoscalar or isovector couplings. Clearly, multiple responses
with arbitrary isospin couplings can contribute to total rates,
requiring a more general NRET analysis. Still, the basic con-
clusions reached here should hold up. In particular, even a
modest inelastic signal would rule out the most frequently ex-
plored model, CLFV generated entirely by a coherent charge
coupling.

VII. OTHER NUCLEAR TARGETS

The electron spectra presented in the previous section were
derived from simulated Mu2e detector response data, which
is only strictly applicable for an aluminum target in their
particular experimental design. Even if all design elements
of Mu2e were fixed except for the target isotope, the energy
loss experienced by electrons in the tracker would change,
yielding a different spectral profile for the smeared CE signal.
Nonetheless, we can explore—to some extent—the physics of
inelastic μ → e conversion in other targets of interest by eval-
uating nuclear response function ratios for relevant low-lying

TABLE V. Relative μ → e conversion strengths for transitions
to three low-lying excited states of stable titanium isotopes, nor-
malized by either the total elastic response (upper) or that of the
dominant excited state (lower). Reported errors correspond to one
standard deviation about the mean of the three shell-model calcula-
tions performed.

Rμe(gs → f )/Rμe(gs → gs)

Response f = 46Ti(2+) 47Ti(7/2−) 48Ti(2+)

W 00
M 2.0(1) × 10−4 6.6(2) × 10−5 1.6(1) × 10−3

W 11
M 2.9(2) × 10−3 1.9(1) × 10−3 0.039(4)

W 00
�′′ – 8.0(1) × 10−3 –

W 11
�′′ – 0.013(1) –

W 00
� + W 00

�′ 0.034(8) 0.03(1) 0.5(1)
W 11

� + W 11
�′ 1.6(9) × 10−3 0.033(5) 0.2(1)

W 00
�′′ 1.0(3) × 10−3 3.3(8) × 10−4 6(2) × 10−3

W 11
�′′ 3(4) × 10−5 9(1) × 10−5 3(1) × 10−3

W 00
�̃

+ W 00
�̃′ 2.6(6) 0.9(2) 20(4)

W 11
�̃

+ W 11
�̃′ 0.4(4) 1.3(3) 0.7(6)

W 00
� + W 00

�′ 1.79(7) × 10−3 1.0(1) × 10−3 0.021(3)
W 11

� + W 11
�′ 4.5(2) × 10−4 1.8(8) × 10−3 6.6(7) × 10−3

W 00
�̃′′ 0.104(8) 1.08(8) × 10−3 1

W 11
�̃′′ 0.060(7) 1.2(1) × 10−3 1

W 00
�̃

– 1 –

W 11
�̃

– 1 –

transitions. Although many different nuclei could be analyzed
in this manner, here we will consider only titanium, which is
illustrative of the potential challenges and rich phenomenol-
ogy of inelastic μ → e conversion.

For aluminum, which is isotopically pure and has low-
lying excited states that are reasonably well spaced in energy,
the analysis is comparatively simple. Considering a titanium
target, the situation is complicated by the fact that there are
five stable isotopes at natural abundance, some of which have
a relatively dense low-energy spectrum. For example, 47Ti—
which constitutes 7.44% of a natural titanium target—has
eight excited states with energies �Enuc < 2 MeV, including
some states that are inferred from particular nuclear reactions
but not confirmed by others and for which the angular mo-
mentum has not been experimentally determined [56]. For
this reason, we take a simplified approach to titanium by
considering only states with �Enuc < 1 MeV, which are gen-
erally well established experimentally. There are three such
excited states: 46Ti(2+, 0.899 MeV), 47Ti(7/2−, 0.159 MeV),
and 48Ti(2+, 0.984 MeV). The second of these states has
an excitation energy �Enuc = 0.159 MeV that is likely to be
very small compared to the characteristic energy width of the
detector response. As a result, it would probably be difficult
to distinguish electrons originating in transitions to this state
from those produced in elastic conversion, unless one could
also detect the coincident de-excitation photons.

Table V compares the relative strength of the 16 indepen-
dent nuclear response functions, evaluated for the selected
transitions in a natural titanium target. In cases where the elas-
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tic process is not forbidden, we report the response function
ratio for a transition to final state f in isotope i as

(
Z inel

eff

Zel
eff

)3
AiW ττ

O (gs → f )i∑
j A jW ττ

O (gs → gs) j
, (39)

where Ai is the natural abundance of the ith isotope, and
the denominator is the total (abundance-weighted) elastic
response. The notation W ττ

O (gs → f )i indicates that the re-
sponse function O should be evaluated for a transition to
final state f in isotope i. In scenarios where the total elas-
tic response is zero (�̃′′ or �̃), we report in Table V the
abundance-weighted response ratio relative to the dominant
transition

AiW ττ
O (gs → f )i

max
[
AjW ττ

O (gs → f ) j
] . (40)

Compared to the corresponding results for 27Al (Table IV),
the most immediate difference is that some of the response
functions in titanium vanish identically due to nuclear selec-
tion rules. In particular, 0+ → 2+ transitions in 46Ti and 48Ti
can only be mediated by parity-conserving J = 2 multipole
operators. As a result, the abnormal-parity responses �′′ and
�̃ cannot contribute. By the same token, the abnormal-parity
responses �, �′, and �̃ also vanish for these transitions,
but their normal-parity counterparts �′, �, and �̃′ provide a
nonzero contribution.

Similar to 27Al, when CLFV is mediated by the responses
W ττ

M and W ττ
�′′ , the coherently enhanced ground-state transition

tends to dominate over the excited states. Thus, one does not
expect to see a strong modification of the CE spectrum in these
scenarios, although in the case of isovector charge coupling,
W 11

M , the 0+ → 2+ transition in 48Ti approaches 4% of the
elastic response.

If CLFV is mediated by the isoscalar, transverse-spin
responses W 00

� + W 00
�′ , then the transition to the 48Ti(2+,

0.984 MeV) state contributes with strength ≈50% that
of the total elastic response. The uncertainty on this
quantity—estimated from the spread in the results from
three shell-model calculations employing different effec-
tive interactions [57–59]—is significant. Nonetheless, given
the relative strength and the considerable energy separation
(�Enuc ≈ 1 MeV) of this inelastic transition, it seems proba-
ble that an excess of electron counts (compared to the elastic
signal) could be measured in a natural titanium target in
this transverse-spin-mediated CLFV scenario. Of course, ad-
ditional transitions with energies �Enuc � 1 MeV could also
contribute in this same spectral region. Fortunately, the com-
bined spectral shape is strictly additive: the inclusion of these
states would only further increase the electron excess com-
pared to the elastic baseline.

In the exotic scenario where μ → e conversion couples to
nuclear axial charge—leading to the response �̃—the only
transition that contributes is 47Ti(5/2−, gs) → 47Ti(7/2−,
0.159 MeV). As discussed above, the relatively small exci-
tation energy will likely make it difficult to distinguish this
transition from the elastic process.

VIII. SUMMARY AND DISCUSSION

By the end of the current decade, new experiments at Fer-
milab and J-PARC will probe μ → e conversion with 10 000
times greater sensitivity than previous efforts. A positive sig-
nal would be definitive evidence of new physics. As many
plausible extensions of the standard model could account for
such a signal, additional information would be required to
connect the low-energy signal to UV physics and thus deter-
mine the source of the CLFV. Despite the power of the new
experiments, one drawback is that they will provide only a
single number, the elastic μ → e conversion rate. At least, this
is the assumption most commonly made in the literature.

What information is available from μ → e conversion?
This question was addressed recently for elastic μ → e con-
version using the tools of nonrelativistic effective theory
(NRET). Originally developed for heavy-quark systems, this
Galilean-invariant formalism can be applied to μ → e con-
version because the relative motion of the constituents of both
the initial muonic atom and final nucleus is nonrelativistic.
The small parameters governing the process—the momentum
transfer through the combination (qb/2)2, the relative nucleon
velocity �vN , and the bound muon velocity �vμ—form an oper-
ator hierarchy that guides the construction of the most general
CLFV lepton-nucleon interaction. This interaction, expanded
through order �vN , contains 16 operators. The subsequent em-
bedding of this interaction in the nucleus generates an elastic
μ → e conversion rate involving six response functions (and
two interference terms). This form of the rate can in fact be
derived from symmetry arguments alone but also emerges
organically from the NRET because of the completeness of
the effective theory’s basis of operators.

The response functions can be viewed as “knobs” that can
be turned by altering the nuclear physics, while the coeffi-
cients of the response functions—bilinear combinations of
the LECs of the NRET operator expansion—represent the
CLFV physics that can be extracted from experiment. Thus,
in principle, one can extract six constraints on CLFV from
elastic μ → e conversion. In practice, the feasibility of this
extraction depends both on the operator source of the CLFV
and our skill at turning the nuclear knobs. The most direct
way to do this is by selecting new targets and repeating
the experiment, clearly a tedious task. Each new experiment
will require a major investment of time and effort. Targets
would be carefully selected to enhance or suppress particu-
lar responses, with each successive experiment informing the
choice of the next target. Among the nuclear properties that
could be exploited are the nucleus’s angular momentum and
isospin, and the spin, orbital, and spin-orbit properties of the
valence nucleon or nucleons.

It would be very attractive to find an alternative and more
efficient strategy, one that could yield additional information
from the 27Al experiment and any other efforts completed in
the next few years. We point out, in an earlier letter [22] and
in this paper, that inelastic μ → e conversion could provide
such an alternative. The signal of the inelastic contributions
would be a modification of the spectrum of observed electrons
in a narrow energy window within about two MeV of the
endpoint energy. This is the window where inelastic contri-
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butions can stand out above backgrounds. We argue that 27Al
is an excellent target from this perspective, with three excited
states in this energy window that are reasonably well sepa-
rated in energy, with distinct nuclear properties. By extracting
and utilizing the information from both elastic and inelastic
μ → e conversion, Mu2e and COMET experimentalists can
learn more about CLFV from their 27Al measurements and
consequently make a more informed choice of follow-up tar-
gets, should a CLFV signal be detected.

The generalization from elastic to inelastic μ → e con-
version is a substantial exercise, as nuclear operators are no
longer constrained to be CP even. Consequently, when the
NRET nucleon-level interaction is embedded in a nucleus,
five new nuclear operators arise (in addition to the six that
contribute to the elastic process). This paper derives, for the
first time, the most general expression for the inelastic μ → e
conversion rate. (The elastic rate then is the limit of this
more general rate formula obtained by requiring all nuclear
operators to be both parity- and CP-even.) The coefficients of
the five new response functions provide new information on
CLFV—including information on four of the NRET operators
that do not contribute to the elastic rate. Further, the CLFV
LEC bilinears that appear in the elastic rate can be tested
in new combinations in inelastic μ → e conversion, yielding
additional information.

Here we illustrate the power of combining these two sig-
nals through a shape analysis of the near-endpoint spectrum.
Using the anticipated energy resolution function for the Mu2e
experiment, we predict the distortions of the electron spectrum
for various CLFV scenarios, identifying several very distinc-
tive signals. We stress that either the presence or absence of
an excited-state signal provides new information and thus new
guidance for follow-up experiments.

We also extended the treatment to a second target of in-
terest, Ti. The comparison with 27Al highlights the attractive
properties of the lighter target—one composed of a single
isotope, with three states in the energy window of interest.
Titanium’s multiple isotopes, some with higher level densities,
complicate both the interpretation of spectrum distortions and
the underlying nuclear physics. Nevertheless, this example
brings out additional possibilities for exploiting inelastic μ →
e conversion. In particular, because the two most important
isotopes, 48Ti and 46Ti, have 0+ ground states, transitions like
0+ → 2+ isolate single multipoles carrying a definite parity,
simplifying the task of isolating the operator source of the
CLFV physics.

In summary, NRET provides a flexible and fully general
framework for describing μ → e conversion in the nuclear
field. While most attention has been focused on the elastic
process, with its potential for coherent enhancement, there
are in fact many candidate operators that might encode the
low-energy consequences of CLFV. The advantage of NRET
is that it allows for all such possibilities, eliminating any
chance of error by assumption. Here we have focused on
the additional CLFV information that might be extracted
from Mu2e and COMET by considering inelastic transitions,
showing how different interactions can produce distinctive
distortions of the near-endpoint electron spectrum. We have

illustrated several CLFV scenarios in which such inelastic
contributions will be detectable, given the anticipated energy
resolution of Mu2e. A great deal of additional information
thus might be extracted from upcoming experiments by con-
sidering both elastic and inelastic conversion. The Mu2e and
COMET target, 27Al, is an attractive choice for such a pro-
gram. In addition to properties already noted, the various
nuclear transitions differ in their underlying nuclear physics,
with some admitting an allowed response and others having
strong quadrupole amplitudes typically associated with de-
formed midshell nuclei. By comparing the relative responses
of all four states, much more information can be extracted on
the source of the CLFV. Thus, inelastic μ → e conversion
opens up attractive opportunities for combining ideas from
particle and nuclear physics.
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APPENDIX A: CODE DESCRIPTION

The effective theory of inelastic μ → e conversion
has been distilled into a publicly available Mathematica
script, which we call Mu2e_Inelastic_v1, available at
Ref. [60].

Details on obtaining and running the code can be found
in the corresponding README file. Here we provide only a
brief overview of the software’s scope and utility: The choice
of nuclear target is currently limited to 27Al, although this
can be extended in the future. The user specifies the form of
the CLFV interaction by entering the dimensionless NRET
coefficients c̃τ

i . The code then produces several outputs: First,
it evaluates the requisite nuclear response functions3 to calcu-
late the expected μ → e conversion decay rates and branching
ratios for the four low-lying transitions in 27Al considered in
this work. Each calculation is performed with three different
shell-model interactions, yielding an estimate of the theory

3In evaluating the multipole operator �̃′′, the code assumes cur-
rent conservation and evaluates the equivalent charge operator, as in
Eq. (30). Nonetheless, the subroutines to compute matrix elements of
�̃′′ are included in the Mathematica library and could be straight-
forwardly utilized by an enterprising reader.
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uncertainty in the computed decay rates. However, as addi-
tional effects of operator mixing and renormalization have
been neglected, we recommend that the reported errors be
regarded as minimum uncertainties.

Combining the decay rates with the simulated elastic μ →
e conversion spectrum from Ref. [46], Mu2e_Inelastic_v1
calculates the conversion-electron spectrum expected in Mu2e
run I. The results are output in a series of files, contain-
ing separate CE spectra for each transition as well as the
combined signal. Thus, one can reproduce Figs. 5–7 or ex-
plore more general scenarios where multiple nuclear response
functions contribute simultaneously. In principle, one can use
Mu2e_Inelastic_v1 in combination with the existing pack-
age MuonConverter [61] to connect to quark-level WET and

SMEFT. Using MuonConverter, one can match a set of WET
Wilson coefficients at μ = 2 GeV to the set of 16 NRET coef-
ficients, which can then be input into Mu2e_Inelastic_v1.

APPENDIX B: DERIVATION OF RATE FORMULA

Starting from Eq. (18), we multipole expand the nuclear
charges/currents. We specialize to the case of even-parity
nuclear transitions, take the nuclear states to be eigenstates
of parity and CP, and adopt a sign convention where the
single-particle and nuclear matrix elements of the various one-
body operators are real [36]. Averaging over initial nuclear
spins and summing of final nuclear spins yields the μ → e
transition probability:

1
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Here || indicates a matrix element reduced in angular momentum. We see that all 11 nuclear response functions—and various
interference terms—contribute to this process. Next, we average over spin states of the bound muon and sum over spin states of
the outgoing electron. Evaluating the resulting leptonic traces yields
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where the leptonic response functions are given in Eqs. (26) and (27). For transitions that conserve parity, the nuclear response
functions are
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The summations over nuclear multipoles J are restricted by the triangle inequality | ji − j f | � J � ji + j f , where ji and j f are
the total angular momentum of the initial and final nuclear states, respectively. As discussed in Sec. IV, if the vector current is
known to be conserved, then the operator �̃′′ can be replaced by the charge multipole M, as in Eq. (30).

If the nucleus transitions to a state of opposite parity, then the nuclear response functions must change to opposite parity.
In this case, the conversion rate is still described by Eq. (25), the leptonic response functions R are unchanged, but the nuclear
response functions are given by
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TABLE VI. Comparison of nuclear response functions computed for low-lying transitions in 27Al for three different 2s1d-shell effective
interactions.

W 00
M W 00

�′′ W 00
� + W 00

�′

BW USDA USDB BW USDA USDB BW USDA USDB

27Al(5/2+) 262.85 262.86 262.86 0.113 0.107 0.110 0.105 0.091 0.099
27Al(1/2+) 0.0690 0.0694 0.0708 0.011 0.010 0.010 0.0219 0.0216 0.0211
27Al(3/2+) 0.124 0.133 0.131 5.0 × 10−3 5.5 × 10−3 5.0 × 10−3 0.023 0.025 0.024
27Al(7/2+) 0.281 0.285 0.276 0.023 0.024 0.022 0.034 0.032 0.033

W 11
M W 11

�′′ W 11
� + W 11

�′

BW USDA USDB BW USDA USDB BW USDA USDB

27Al(5/2+) 0.274 0.272 0.273 0.099 0.092 0.091 0.066 0.054 0.052
27Al(1/2+) 2.7 × 10−3 2.4 × 10−3 2.4 × 10−3 8.6 × 10−3 8.2 × 10−3 8.5 × 10−3 0.0137 0.0136 0.0137
27Al(3/2+) 3.3 × 10−3 3.4 × 10−3 3.6 × 10−3 5.4 × 10−3 5.8 × 10−3 6.0 × 10−3 0.0131 0.0149 0.0143
27Al(7/2+) 6.3 × 10−3 5.5 × 10−3 5.8 × 10−3 0.0206 0.0207 0.0206 0.0221 0.0215 0.0206

W 00
� + W 00

�′ W 00
�′′ W 00

�̃
+ W 00

�̃′

BW USDA USDB BW USDA USDB BW USDA USDB

27Al(5/2+) 0.494 0.504 0.498 11.0 10.7 11.6 1.0 × 10−3 8.8 × 10−4 9.4 × 10−4

27Al(1/2+) 2.0 × 10−5 2.5 × 10−5 2.3 × 10−5 9.3 × 10−3 7.8 × 10−3 0.010 4.2 × 10−3 3.0 × 10−3 4.4 × 10−3

27Al(3/2+) 8.9 × 10−4 1.1 × 10−3 9.3 × 10−4 8.6 × 10−3 8.5 × 10−3 0.011 2.5 × 10−3 2.4 × 10−3 3.7 × 10−3

27Al(7/2+) 3.1 × 10−3 3.1 × 10−3 3.0 × 10−3 0.042 0.034 0.033 0.045 0.037 0.033

W 11
� + W 11

�′ W 11
�′′ W 11

�̃
+ W 11

�̃′

BW USDA USDB BW USDA USDB BW USDA USDB

27Al(5/2+) 0.225 0.206 0.222 0.087 0.083 0.087 0.068 0.066 0.069
27Al(1/2+) 4.0 × 10−5 3.8 × 10−5 4.9 × 10−5 8.0 × 10−4 3.0 × 10−4 6.2 × 10−4 7.5 × 10−4 2.5 × 10−4 5.3 × 10−4

27Al(3/2+) 0.019 0.021 0.022 1.7 × 10−3 1.4 × 10−3 1.4 × 10−3 3.2 × 10−3 2.7 × 10−3 2.6 × 10−3

27Al(7/2+) 1.6 × 10−3 2.6 × 10−3 2.1 × 10−3 4.2 × 10−3 5.0 × 10−3 5.4 × 10−3 0.0129 0.0129 0.0132

W 00
�̃′′ W 00

�̃

BW USDA USDB BW USDA USDB

27Al(1/2+) 2.96 × 10−4 2.98 × 10−4 3.04 × 10−4 5.0 × 10−5 1.2 × 10−4 8.6 × 10−5

27Al(3/2+) 7.76 × 10−4 8.31 × 10−4 8.16 × 10−4 1.5 × 10−4 1.4 × 10−4 2.5 × 10−4

27Al(7/2+) 8.72 × 10−3 8.85 × 10−3 8.55 × 10−3 0.015 0.012 0.0095

W 11
�̃′′ W 11

�̃

BW USDA USDB BW USDA USDB

27Al(1/2+) 1.14 × 10−5 1.02 × 10−5 1.04 × 10−5 4.4 × 10−5 3.4 × 10−5 4.0 × 10−5

27Al(3/2+) 2.06 × 10−5 2.10 × 10−5 2.25 × 10−5 1.7 × 10−4 1.5 × 10−4 2.1 × 10−4

27Al(7/2+) 1.96 × 10−4 1.71 × 10−4 1.81 × 10−4 5.9 × 10−3 4.0 × 10−3 3.2 × 10−3
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∞∑
J=2,4,...

〈 j f ||�̃J;τ (q)|| ji〉 〈 j f ||�′
J;τ ′ (q)|| ji〉 ,
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W ττ ′
�′� (q) ≡ 4π

2 ji + 1

∞∑
J=1,3,...

〈 j f ||�′
J;τ (q)|| ji〉 〈 j f ||�J;τ ′ (q)|| ji〉 ,

W ττ ′
�̃′� (q) ≡ 4π

2 ji + 1

∞∑
J=1,3,...

〈 j f ||�̃′
J;τ (q)|| ji〉 〈 j f ||�J;τ ′ (q)|| ji〉 ,

W ττ ′
�̃�′′ (q) ≡ 4π

2 ji + 1

∞∑
J=0,2,...

〈 j f ||�̃J;τ (q)|| ji〉 〈 j f ||�′′
J;τ ′ (q)|| ji〉 ,

W ττ ′
��̃

(q) ≡ 4π

2 ji + 1

∞∑
J=1,3,...

〈 j f ||�J;τ (q)|| ji〉 〈 j f ||�̃J;τ ′ (q)|| ji〉 ,

W ττ ′
�′�̃′ (q) ≡ 4π

2 ji + 1

∞∑
J=1,3,...

〈 j f ||�′
J;τ (q)|| ji〉 〈 j f ||�̃′

J;τ ′ (q)|| ji〉 . (B4)

APPENDIX C: NUCLEAR MODELING UNCERTAINTIES

The 27Al wave functions used in calculations were taken from shell-model diagonalizations that included all Slater determi-
nants in the 2s1d shell. Three commonly used effective interactions [40,41] were employed. The numerical values are given in
Table VI, so that future studies can use these results as a cross-check. Differences among the three calculations provide a measure
of nuclear modeling uncertainties, though we stress that the calculations all share certain assumptions. Thus, their differences
should be taken as minimum uncertainties. As is the case throughout this work, numerical evaluations of �̃′′

J are performed
assuming a conserved vector current, so that we can use Eq. (30) to rewrite this operator in terms of MJ .
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